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Abstract: The present research is focused on the development of a biofunctionalized hydrogel with
a surface diffractive micropattern as a label-free biosensing platform. The biosensors described in
this paper were fabricated with a holographic recording of polyethylene terephthalate (PET) surface
micro-structures, which were then transferred into a hydrogel material. Acrylamide-based hydrogels
were obtained with free radical polymerization, and propargyl acrylate was added as a comonomer,
which allowed for covalent immobilization of thiolated oligonucleotide probes into the hydrogel
network, via thiol-yne photoclick chemistry. The comonomer was shown to significantly contribute
to the immobilization of the probes based on fluorescence imaging. Two different immobilization
approaches were demonstrated: during or after hydrogel synthesis. The second approach showed
better loading capacity of the bioreceptor groups. Diffraction efficiency measurements of hydrogel
gratings at 532 nm showed a selective response reaching a limit of detection in the complementary
DNA strand of 2.47 µM. The label-free biosensor as designed could significantly contribute to direct
and accurate analysis in medical diagnosis as it is cheap, easy to fabricate, and works without the
need for further reagents.

Keywords: hydrogels; surface micropattern; probe immobilization; photoclick reaction; diffraction;
label-free

1. Introduction

Nowadays, the interest in developing affordable and mass-producible clinical diag-
nostics devices is increasing to improve accessibility to healthcare worldwide. Having
fast and self-monitoring tests that allow detection onsite is a global interest to avoid hos-
pital crowding and the spreading of contagious diseases. Definitely, the development of
portable devices for point-of-care testing (POCT), which allows fast analyte detection with
an easily interpretable readout, is crucial for the future [1]. POCT is presently available
for a variety of analyses, for example, pregnancy tests, infectious disease tests (such as
respiratory infections and sexually transmitted diseases), glucose tests, and several other
applications [2–6]. Among various types of sensors, optical biosensors present great advan-
tages over conventional analytical techniques because they enable direct, real-time, and
label-free detection of many biological and chemical substances [7–9]. Their advantages
include high sensitivity, small size, light weight, cost-effectiveness, and the ability to pro-
vide multiplexed or distributed sensing. In this context, holographic biosensors offer an
appealing approach for label-free optical biosensing. Holographic sensors are gratings,
recorded with holographic techniques, of functionalized polymers capable of quantifying
the concentration of the target analyte [10]. As a transducer, a holographic pattern is
recorded in the sensitive polymer structure, which consists of a 3D periodic structure with
alternating strips of differing refractive index (RI), and thus it diffracts the light. After the
holographic recording, the polymer matrix, permeable to the target analyte, changes its
physical and chemical characteristics, such as lattice spacing and/or refractive index based
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on its interaction with the target analyte, and produces a change in the diffraction pattern.
So far, various hydrophilic and hydrophobic polymers have been used for the fabrication
of holographic sensors including gelatin, poly(2-hydroxyethyl methacrylate) (pHEMA),
poly(acrylamide) (pAAM), and polyvinyl alcohol (PVA). Their application includes hu-
midity, temperature, and pressure sensors, as well as glucose, lactate, electrolytes, and pH
chemical sensors [11]. However, there are very few examples using bioreceptors, mainly
antibodies, to achieve holographic biosensing, with their use for nucleic acid hybridizations
not being reported. In this work, an Acrylamide/Propargyl acrylate (AM/PA) hydrogel
is used, simultaneously, as a matrix for the holographic pattern fabrication and for the
functionalization with single-strand thiolated oligonucleotides as a biorecognition element.
Hydrogels are attractive platforms for bioanalysis thanks to their ability to retain large
amounts of water, acting like biological tissues, optimal for biological interactions [12–16].
Hydrogel-based sensors found numerous applications in clinical diagnostics, biomedi-
cal research, environmental monitoring, and food testing [17–21]. Thus, because of their
properties, hydrogels have been employed in POC systems for different purposes, which
include cell and tissue immunostaining [22], localized photothermal heating [23], micronee-
dle fabrication for drug delivery [24] or for interstitial fluid sampling [25], ion sensing [20],
and cocaine, ochratoxin A [26], and glucose detection [27] as well as mRNA detection with
hydrogel microparticles [28].

Here, a rapid, specific, and label-free detection system for nucleic acid hybridization
based on surface relief holographic gratings was demonstrated. To this aim, the surface
of an oligonucleotide probe-functionalized hydrogel was micro-patterned [29]. Briefly,
Acrylamide/Propargyl acrylate (AM/PA) hydrogels were obtained using the free radi-
cal polymerization (FRP) reaction, both thermally and photochemically activated. Using
replica molding of holographic molds [30], a diffractive micropattern on the hydrogel
surface was fabricated. It acts as a transducer that diffracts light, producing a measurable
signal proportional to the probe–target interaction. The surface micropatterning technique
that was used has some advantages: it is easy to manufacture, does not require expensive
instrumentation, and allows the creation of patterns of micrometer size. To apply this
surface micropatterned hydrogel in biosensing, DNA probes were incorporated into the
network as bioreceptors for the target. In particular, covalent functionalization of thiol-
modified ssDNA probes in acrylamide-based hydrogels was obtained using a photoclick
thiol-ene reaction [31]. Hence, when hybridizing with the complementary strand, the hy-
drogel underwent changes that were monitored with optical diffraction measurements. The
change in the diffraction efficiency of hydrogel gratings was specific for the complementary
strand, given that this is the first time that holographic hydrogel gratings are used to detect
the direct hybridization of oligonucleotides.

2. Materials and Methods
2.1. Chemicals

Acrylamide (AM), propargyl acrylate (PA), N, N′-methylenebis (acrylamide) (MBA),
Potassium persulfate (KPS), 2,2-Dimethoxy-2-phenylacetophenone (DMPA) and Tetrahy-
drofuran (THF), sodium phosphate dibasic, potassium phosphate monobasic, sodium
chloride, potassium chloride, sodium acetate, sodium citrate, ethylenediaminetetraacetic
acid, and Tween-20 were purchased from Sigma–Aldrich (Madrid, Spain). The acetate-Tris
(2-carboxyethyl) phosphine buffer (Ac-TCEP, pH 4.5) consists of 25 mM of TCEP, 0.15 M
sodium acetate, 0.1 M Ethylenediaminetetraacetic acid, and 0.1 M NaCl in DI water; the
phosphate-buffered saline solution with 0.1% (v/v) of Tween 20 detergent (PBS-T, pH 7.4)
consists of 137 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 1.8 mM KH2PO4; and the saline-
sodium citrate buffer (SSC1x, pH 7.4) consists of 0.15 M NaCl and 0.015 M sodium citrate.
Polydimethylsiloxane (PDMS) Sylgard 184 was purchased from Dow Corning (Wiesbaden,
Germany). The oligonucleotides were supplied by Sumilab (Valencia, Spain), and the
sequences used are listed in Table S1.
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2.2. Equipment

Hydrogel photopolymerization and bioreceptor immobilization with UV irradiation
was carried out using a UV photoreactor LightOx PhotoReact 365 nm (13 mW/cm2 light
power) (Sigma–Aldrich, Madrid, Spain). Hydrogel fluorescence measurements were reg-
istered with a fluorescence microarray analyzer SensoSpot (Miltenyi Imaging GmbH,
Radolfzell, Germany) (λex = 633 nm, λem = 670 nm). Fluorescence image data processing
was performed with the GenePix Pro 4.0 software from Molecular Devices, Inc. (Sunnyvale,
CA, USA).

The morphological characterization of hydrogels was carried out using scanning
electron microscopy (SEM, Gemini SEM 500 system, Zeiss, Oxford Instruments, Oxford,
UK). Hydrogels were completely swollen in distilled water and frozen at −20 ◦C. Then,
they were lyophilized overnight (Telstar Lyoquest freeze-drier, Azbil Telstar Technologies,
S. L. U., Terrasa, Spain) to yield completely dry aerogel samples. Finally, dry samples were
prepared using sputter coating with a Au layer of about 15 nm (BAL-TEC SCD 005 sputter
coater, Leica microsystems, Wetzlar, Germany).

Fourier transform infrared (FT-IR) spectroscopy of lyophilized hydrogels was per-
formed using a Tensor 27 FT-IR-spectrophotometer (Bruker, MA, USA). UV-Visible spectra
of hydrogels immersed in H2O were collected in an Agilent 8453 spectrophotometer (Santa
Clara, CA, USA). For the analysis, hydrogels were polymerized inside an Eppendorf and,
after washing, they were placed inside a 1 × 1 cm cuvette filled with H2O.

Swelling behavior studies were carried out with lyophilized hydrogel samples. Sam-
ples with a size of approximately 1 cm3 were immersed in PBS-T (10 mL) at room tempera-
ture. The weight of the swollen hydrogels was recorded at different times until they were
totally swollen (reaching a constant weight). Buffer excess on the surface of the hydrogel
was removed with filter paper before weighing. The swelling degree was calculated using
Equation (1), where Wt is the weight of the hydrogel after being immersed in the buffer
during time “t” and W0 is the weight of the lyophilized hydrogel before the immersion.

Swelling (%) =
Wt−W0

Wo
× 100 (1)

2.3. Hydrogel Synthesis

Acrylamide/Propargyl acrylate (AM/PA) and acrylamide (AM) hydrogels were pre-
pared using free radical polymerization (FRP) either with photochemical or thermal ac-
tivation (Scheme S1). Different hydrogel compositions were optimized: AM(25)/PA,
AM(8)/PA, AM(25), and AM(8). The AM(25)/PA hydrogel was prepared by mixing 25%
(w/v) of AM monomer, 0.05% (w/v) of MBA crosslinker, and 15 µL of PA co-monomer
in 1 mL of distilled water. The AM(8)/PA hydrogel was prepared by mixing 8% (w/v)
of AM monomer, 0.25% (w/v) of MBA crosslinker, and 15 µL of PA co-monomer in 1 mL
of distilled water. The control hydrogel AM(25) was prepared by mixing 25% (w/v) of
AM monomer and 0.05% (w/v) of MBA crosslinker, while the control hydrogel AM(8)
was prepared by mixing 8% (w/v) of AM monomer and 0.25% (w/v) of MBA crosslinker.
For the synthesis of the hydrogel using thermal activation, potassium persulfate (KPS) at
1% (v/v) was added to the solution as a thermal initiator, and the reaction mixtures were
placed in an oven at 60 ◦C for 90 min. For the synthesis of hydrogels with photochemical
activation, 2,2-Dimethoxy-2-phenylacetophenone (DMPA) photoinitiator at 1% (w/v) was
added to the reaction mixture and hydrogels were polymerized irradiating at 365 nm in a
UV photoreactor (13 mW/cm2) for 10 min. Once polymerized, the hydrogels were washed
with immersion in distilled water for at least 2 h using three times fresh water to ensure
that non-polymerized monomers were eliminated. The obtained hydrogels were stored
completely swollen in distilled water at 4 ◦C.
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2.4. Probe Immobilization and Hybridization Assay

For potential biosensing applications, AM/PA hydrogels and their control systems,
AM hydrogels, were covalently functionalized with a thiol-modified oligonucleotide probe,
and hybridization capacity was tested with a fluorescence-labeled target. All probes used
are listed in Table S1. The bioreceptor immobilization was studied either during or after the
hydrogel synthesis. In the first approach, after monomers and crosslinker homogenization
in water, 1 µM of Probe 1 and 1% (w/v) of DMPA photoinitiator in water were added to
the mixture, and the solution was irradiated at 365 nm (13 mW/cm2) for 10 min. In this
strategy, polymerization and bioreceptor immobilization were carried out simultaneously
in one step. In the second approach, the already thermally synthesized hydrogels were cut
into squares (0.5 × 0.5 cm) and immersed in 100 µL of 1 µM of Probe 1 and 1% (w/v) of
DMPA photoinitiator in THF:Ac-TCEP 1:1. Then, the hydrogels were irradiated at 365 nm
(13 mW/cm2) for 30 min. In both approaches, after the immobilization step, the hydrogels
were placed on an oscillator plate and washed overnight with PBS-T.

For the hybridization assays, Probe 1-functionalized hydrogels of 0.5 × 0.5 cm were
placed in a transparent ELISA (enzyme-linked immunosorbent assay) plate and equili-
brated in 250 µL of SSC1x for 24 h. Then, SSC1x was discarded, and the hydrogels were
incubated with 50 µL of Cy5-labeled, complementary strand Target 2, in SSC1x, at growing
concentrations (0; 0.2; 0.4; 0.8; 1; 1.5; and 2 µM) for one hour at 37 ◦C. Fluorescence signals
were collected immediately after the hybridization and after overnight washing with SSC1x.
Control hydrogels having immobilized a non-complementary sequence (Probe 2) were also
hybridized as described.

2.5. Surface Micropattern Fabrication

Surface microstructures made of Polyethylene terephthalate (PET) were fabricated
using the direct laser interference patterning (DLIP) technique [32]. The DLIP system was
equipped with a frequency quadrupled Q-switched laser head (TECH-263 Advanced Laser-
export Co., Ltd., Moscow, Russia) with a maximum pulse energy of 50 µJ, operating at a
wavelength of 263 nm and with a pulse duration shorter than 3 ns. A fluence of 0.09 J/cm2

was used to obtain PET masters with a period of approximately 4 µm. The structural
features of the original PET master were characterized with a 3D optical profilometer
(Sensofar, PLu neon, Terrasa, Spain). Hydrogel surface micropatterns were fabricated
using the replica molding technique (REM) from the original PET master. The micro-
pattern obtained on the hydrogel surface was observed with optical microscopy (OM, Leica
microsystems, MZ APO, Wetzlar, Germany).

Micropatterns were obtained in the hydrogel surface using replica molding (Scheme 1).
Firstly, the original PET micropattern was copied onto PDMS. The PDMS solution was
poured onto the PET surface, a vacuum was applied for 10 min to aid the solution-pattern
adhesion, and then it was placed in the oven at 60 ◦C for 2 h. Secondly, the PDMS negative
pattern was transferred onto the hydrogel surface. Initially, pre-polymeric solutions with
monomers and crosslinkers of hydrogels AM(25)/PA, AM(25), AM(8)/PA, and AM(8)
were stirred for 20 min until homogenization. Then, KPS was added, and the solution
was sonicated for 2 min. The solutions were poured onto different PDMS micropatterned
surfaces, a vacuum was applied for 10 min, and then they were placed in an oven at
60 ◦C for 1.5 h. Once polymerized, they were peeled off and washed with immersion in
distilled water for at least 2 h using three times fresh water to ensure that non-polymerized
monomers were eliminated. The micropatterned hydrogels were stored completely swollen
in distilled water at 4 ◦C.
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Scheme 1. Micropatterning process steps for hydrogel surface structure manufacturing.

The micropatterns obtained on the PDMS and the swollen hydrogel surface were
observed with optical microscopy (OM, Leica microsystems, MZ APO, Wetzlar, Germany).
Surface pattern characterization was also carried out with an optical set-up as shown in
Figure 1. From the bottom, a continuous green laser beam (532 nm, 100 mW) is attenuated
and orthogonally directed to the sample holder using a mirror. The sample holder is
a 3D-printed platform provided with a pinhole and patterned lanes that allow the x–y
movement of a 96-well ELISA plate so the laser beam can be unequivocally directed toward
every well. Then, movable silicon photodiodes are placed after the sample holder to record
the intensity of the different laser beams (incident or diffracted). A concave spherical
lens (f = 30 mm) was placed on the top of the 96-well plate to focus the diffracted beams
produced by the hydrogel micropatterns.
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diffraction efficiency.

Diffraction efficiency (DE%) of the micropatterns was calculated with Equation (2):

DE (%) =
I1

I0
× 100 (2)

where I0 was the intensity of the zero-diffraction order and I1 was the intensity of the first
diffracted order.

2.6. Label-Free Hybridization Assay

Bioreceptor immobilization in micropatterned hydrogels was carried out in two steps.
Firstly, thermally polymerized micropatterned hydrogel (AM(25)/PA) was functionalized
with 5 µM of Probe 1. For that, micropatterned hydrogels were cut in squares (0.5 × 0.5cm)
and treated with 100 µL of a 5 µM solution of Probe 1 and 1% (w/v) of DMPA photoinitiator
in THF:Ac-TCEP 1:1. Then, the hydrogels were irradiated at 365 nm (13 mW/cm2) for
30 min. The functionalized micropatterned hydrogels were washed overnight with PBS-T
to eliminate the non-covalently attached probes. For the label-free hybridization assays,
the probe-functionalized micropatterned hydrogels were placed in separated wells of a
transparent ELISA plate and equilibrated in 250 µL of SSC1x. The day after, SSC1x buffer
solution was replaced with a fresh one and the initial diffraction efficiencies (DEi) of the
hydrogels were obtained using the optical set-up (Figure 1) and Equation (2). Hybridization
assay was performed using incubation of the hydrogels with growing concentrations of
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Target 1 (0; 2; 5; 10; and 25 µM) in 50 µL SSC1x for one hour at 37 ◦C. The hybridization
experiment was also carried out with the AM(25)/PA hydrogel functionalized with a non-
complementary, thiol-bearing oligonucleotide sequence (Probe 2), and hybridized at 10
and 25 µM of Target 1, as a negative control. Then, the hydrogels were washed overnight
with SSC1x to be sure that all the non-specifically bound targets were removed. The
final diffraction efficiencies of the hydrogels (DEf) were obtained using the optical set-up
(Figure 1) and Equation (2). The relative diffraction efficiency was used to characterize the
response of the hydrogel to the target concentration, as described in Equation (3):

RDE(%) =
DEf −DEi

DEi
× 100 (3)

where RDE is the relative diffraction efficiency, DEi is the initial diffraction efficiency
(after the equilibration step with SSC1x), and DEf is the final diffraction efficiency (after
incubation and washing steps) for the first diffraction order. All experiments were repeated
three times.

3. Results and Discussion
3.1. Optimized Hydrogel Compositions

First, hydrogel composition was optimized from both a physical and a chemical point
of view. Polyacrylamide hydrogels are one of the most utilized materials in the synthesis
of holographic and photonic hydrogel due, among other things, to their excellent optical
properties [11]. AM was chosen as the main monomer for the synthesis of the hydrogel
networks and MBA as one of the most common crosslinkers for polyacrylamide. The PA
co-monomer was incorporated to introduce the alkyne moiety, which was necessary for
the further thiolated-probe covalent attachment through thiol-yne photo-click coupling
chemistry [33]. Apart from reaching adequate physical and optical properties such as good
porosity, transparency, and low optical background, the chemical formulation was adapted
to increase the immobilization density of the biorecognition Probe 1. For that, different
ratios of monomer (AM), co-monomer (PA), and crosslinker (MBA) were assayed. All the
assay compositions are shown in Table S2. As expected, all the hydrogels were transparent
with almost zero absorbance at the working wavelength of our system (532 nm). Figure S1
shows the UV-Visible spectra of all hydrogels. However, not all the synthesized hydrogels
showed the consistency required for part of our purposes: the fabrication of surface relief
diffraction grating using replica molding. The requirements of hydrogels for potentially
yielding suitable gratings include the following: they must adapt the form of the container
used for the polymerization and they need to be manipulable, easy to cut, not brittle, and to
keep the macroscopical form after washing and swelling. The consistency of the different
synthesized hydrogels polymerized with thermal activation is indicated in Table S2. In
addition, Figure S2 shows photographs of hydrogels with different consistencies.

AM(25)/PA and AM(8)/PA showed the best consistency and potential to be used
as surface relief gratings for DNA hybridization, so they, and their counterpart controls
without PA, were selected for further optimization. The selected compositions are shown in
Table 1 and photographs of the hydrogels are shown in Figure S3. As the activation process
for polymerization can affect the final properties of the hydrogel, i.e., porosity, swelling, etc.,
the polymerization was carried out following two different activation processes: thermally
and photochemically.

Table 1. Optimized hydrogel compositions.

Hydrogel AM (% w/v) MBA (% w/v) PA (µL) DI water (µL)

AM(25) 25 0.05 0 1000
AM(25)/PA 25 0.05 15 1000

AM(8) 8 0.25 0 1000
AM(8)/PA 8 0.25 15 1000
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The morphology of the optimized hydrogel compositions that contain PA was compar-
atively observed for thermal and photochemical activation, as poor homogeneity has been
previously reported in hydrogels polymerized with UV-light [34–36]. For that, lyophilized
hydrogels were analyzed with SEM (Figure 2 and Figure S4). As can be observed in the
SEM micrographs, the thermal activation provided higher homogeneity and porosity to the
hydrogel network for both the AM(25)/PA and AM(8)/PA compositions, although both
activation procedures resulted in adequate porosity levels.
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Figure 2. Porosity observed with SEM (scanning electron microscopy) for selected hydrogel composi-
tions (AM(25)/PA) and (AM(8)/PA) prepared using thermal and photochemical activation.

As the hydrogels obtained with thermal activation showed the best homogeneity
based on the SEM, swelling behavior studies of these hydrogels were carried out to test
the hydrogel buffer absorption capacity. In Figure S5 of the Supplementary Materials, the
swelling studies show how the chemical composition affects the hydrogel water uptake.
Hydrogels AM(8) demonstrated a higher swelling degree than hydrogels AM(25). This is
probably because the larger quantity of monomer used in AM(25) hydrogels counteracts the
higher crosslinker degree present in AM(8) hydrogels. Equally, the propargyl acrylate co-
monomer contributed to the polymer swelling capacity. PA reduces the buffer absorption
in AM(25)/PA and AM(8)/PA hydrogels in comparison to AM(25) and AM(8) reference
systems, probably due to the higher hydrophobicity of the alkyne moiety. However, in both
compositions, the swelling capacity was over 400%. Thus, the optimized compositions
were tested for subsequent bioreceptor immobilization and surface micropatterning.

3.2. Probe Immobilization and Hybridization Assay

AM/PA hydrogels and their corresponding controls (without PA) were covalently func-
tionalized with a thiol-bearing oligonucleotide probe for potential biosensing applications.
The oligonucleotide probe acts as the specific biorecognition element for its complementary
sequence (target). In the hydrogel formulation, the propargyl acrylate (PA) co-monomer
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had a C–C triple bond that was expected to enhance the binding with thiol-probes, in
comparison to the control system [37]. Thiolated probes incorporation was carried out
using the thiol-yne photoclick coupling reaction with UV irradiation at 365 nm (Scheme S2).
Previous work by our group performed in microarray format had demonstrated that these
irradiation conditions did not affect the probes stability and bioavailability to hybridize
with the complementary strands [38]. Firstly, the thermally polymerized AM(25)/PA and
AM(8)/PA hydrogels were biofunctionalized as the thermal activation yielded hydrogels
with higher homogeneity and porosity, and, in addition, they showed a high swelling
degree. Hydrogels were functionalized with Probe 1, complementary to the target, and, ad-
ditionally, with Probe 2, which was a thiolated, non-complementary sequence. In addition,
hydrogels without PA, AM(25) and AM(8), were also submitted to functionalization with
Probe 1 to assess the role of PA in the probe immobilization process. The immobilization
was carried out in 1:1 THF:Ac-TCEP, and TCEP was added to facilitate the reduction of
disulfide bonds established between the thiolated probes. After probe immobilization, a
fluorescence-labeled target sequence was used for hybridization assays to verify the suc-
cessful incorporation of the thiol probe and its bioavailability for the specific hybridization.
Therefore, thermally activated, probe-biofunctionalized hydrogels AM(25)/PA, AM(25),
AM(8)/PA, and AM (8) were hybridized with increasing concentrations of the Cy5-labeled
target sequence (Target 2) for 1h at 37 ◦C, and the fluorescence was registered after washing
overnight (Figure 3a,b). As a control, a fluorescence signal was also registered after hy-
bridization in several cross-section pieces of the hydrogels AM(8)/PA and AM(25)/PA to
demonstrate that target 2 could reach the probe within 1h (Figure S7). Figure 3a,b show that
significantly higher fluorescence signals (4-fold to 5-fold) were observed for AM(25)/PA
and AM(8)/PA hydrogels compared to their control systems AM(25) and AM(8) when
they were functionalized with Probe 1, complementary to the target. As expected, the
introduction of the PA co-monomer allowed a much more effective probe immobilization,
thanks to the thiol-yne coupling chemistry, increasing the probe loading in the hydrogels.
Therefore, the immobilization strategy was successful for both AM(25)/PA and AM(8)/PA
hydrogels. Moreover, a higher fluorescence signal was measured for the AM(25)/PA hy-
drogel in comparison to the AM(8)/PA hydrogel. In addition, almost no fluorescence was
observed when AM(25)/PA and AM(8)/PA hydrogels were functionalized with Probe 2,
having the non-complementary sequence, which demonstrated that specific hybridization
was taking place, and non-specific binding was negligible inside the hydrogel supports. As
polymerization could be also activated photochemically using the same wavelength needed
for the thiol-yne coupling reaction, a second strategy was assessed for the hydrogels bio-
functionalization: a one-step process that consisted of the immobilization of the thiolated
probe during hydrogel polymerization. In this strategy, the thiol-yne photoclick coupling
reaction and acrylamide polymerization, using DMPA as a photoinitiator, were triggered
with UV irradiation at the same time. Therefore, pre-polymeric solutions of AM(25)/PA
and AM(25) hydrogels were mixed with 1 µM of complementary Probe 1 and DMAP, and
then irradiated at 365 nm for 30 min. Additionally, a control experiment was carried out
with AM(25)/PA hydrogel and the non-complementary Probe 2. Once hydrogels were
washed and equilibrated with SSC1x, hybridization assays with the Cy5-labeled target
sequence (Target 2) at increasing concentrations, as above, were carried out, and fluores-
cence was registered after washing (Figure 3c). In this case, the highest fluorescence signal
was also observed for hydrogels AM(25)/PA functionalized with Probe 1. However, the
high fluorescence observed in the hybridization curve of hydrogel AM(25) showed that the
thiolated probe resulted in being immobilized without the presence of (PA) co-monomer.
This is due to the thiol-acrylate coupling reaction which follows the same principle as
thiol-yne photocoupling reaction [39]. Figure S6 shows the IR spectrum of a lyophilized
AM(25) hydrogel, which showed a spectral profile compatible with the presence of residual
unreacted acrylamide groups. However, even in this case, the presence of PA increased
the hydrogel probe immobilization capability. As before, AM(25)/PA hydrogels biofunc-
tionalized with Probe 2 did not show a significant fluorescence signal after hybridization,
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which reveals that non-specific binding is also avoided with the one-pot functionalization
strategy. Comparing the two strategies for AM(25)/PA hydrogels functionalized with Probe
1, complementary to Target 2, the ones biofunctionalized after polymerization (Figure 3a)
showed two-fold the fluorescence signal of the ones biofunctionalized during the poly-
merization (Figure 3c). Probably, in the case of the biofunctionalization after the polymer
synthesis, a larger number of bioreceptors are introduced and, in addition, these probes
are more accessible to the target. Thus, thermally polymerized AM(25)/PA hydrogels
biofunctionalized after their synthesis showed the best performance for the detection of the
complementary target using fluorescence.
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Figure 3. Fluorescence intensity measured after hybridization with increasing concentrations of
labeled Target 2 (a) in AM(25)/PA and AM(25) hydrogels and (b) in AM(8)/PA and AM(8), biofunc-
tionalized with Probe 1 or 2 after their polymerization; and (c) in AM(25)/PA and AM(25) hydrogels
with Probe 1 or 2 covalently attached during the polymerization step. The Probe 1 sequence was
complementary to Target 2, while the Probe 2 sequence was non-complementary; both probes bear
the thiol moiety needed for thiol-yne or thiol-ene coupling. Details of the obtained fluorescence
signals are shown in Section S-VI of the Supplementary Materials (Figures S8, S9, S10 and S11).

3.3. Surface Micropattern Fabrication and Characterization

For the surface micropatterning of hydrogels, PET masters were used to obtain a
negative in PDMS which was in turn replicated with the above optimized hydrogel compo-
sitions. The fabricated PET master was characterized using confocal microscopy (Figure 4a).
The profile obtained from the confocal images shows that the gratings have a period of
4 µm and a depth of 2.1 µm. The PDMS negative copy was characterized with optical mi-
croscopy where, as expected, a period of 4 µm was observed, which confirmed the correct
replica of the PET master (Figure 4b). In addition, the original PET master and its PDMS
copies were irradiated with a continuous green laser at 532 nm using the optical set-up
described in the Materials and Methods section (Figure 1), and the diffraction efficiency
(DE%) was calculated using Equation (2). Both fabricated microstructures showed good
diffraction efficiency.

Hydrogel surface micropatterning was realized, during the polymerization, for the
optimized compositions using replica molding. The thermally activated curing process,
for Acrylamide/Propargyl acrylate hydrogels, took place in 1.30 h, supposedly a sufficient
time for obtaining a good copy of the original PET microstructure. For the AM(25)/PA
and AM(25) compositions, a good copy of the microstructure was obtained during the
thermal curing. Figure 4c shows the optical microscopy image of the AM(25)/PA hydrogel
grating which correctly replicated the pattern. It should be noticed that a higher period is
observed in the hydrogel compared to the PDMS master, as the first one is swollen in water.
The diffraction of the AM(25)/PA hydrogel, thermally polymerized, was also evaluated
after its irradiation with a continuous green laser at 532 nm using the optical set-up of
Figure 1. Figure 4d shows the diffraction pattern of the AM(25)/PA hydrogel. Zero, first,
and second diffractive orders are present and distinguishable, so it could be very useful for
label-free biosensing based on diffractive measurements. The diffraction efficiency (DE%)
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was calculated for the first diffraction order using Equation (2), resulting in 4.6 ± 0.5, 9.8 ±
0.5, and 1.1 ± 0.2, for PET, PDMS, and AM(25)/PA gratings, respectively. Lower values
were observed in comparison with the PET and PDMS master, which was expected as
the hydrogel has a watery nature and the PET and PDMS are plastics. The replica of the
microstructure using thermal activation was not possible for the AM(8)/PA and AM(8)
compositions. This was attributed to the amount of monomer used, which was too low
to achieve the right viscosity for the replication process. On the other hand, trials of the
grating replica molding using photochemical polymerization resulted unsuccessful, since
the polymerization proceeded too fast to permit the correct molding.
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Figure 4. (a) Images and cross section profile of the microstructure PET (polyethylene terephthalate)
master fabricated with Direct Laser Interference Patterning obtained using a 3D Optical Profilometer
(Sensofar, Spain). Optical microscopy image of (b) the negative micropattern copied in PDMS using
thermal curing and (c) the Surface Relief Grating (SRG) replicated in (AM(25)/PA) hydrogel from the
PDMS micropattern. (d) Optical diffraction observed for the SRG, obtained in (c), measured with
green laser irradiation (λ = 532 nm) after complete swelling in distilled water.

On the other hand, by varying UV photoreactor parameters individually for each
hydrogel composition, such as UV light power and irradiation time, hydrogel surface
micropatterns were successfully obtained for all the optimized hydrogel compositions.
However, the peeling-off of the hydrogel surface pattern copied from the PDMS, using
photochemical activation, was cumbersome, and thus 20 µL of glycerol was added to
promote the detachment. For the (AM(25)/PA), AM(25), and (AM(8)/PA) hydrogels, micro-
patterned replicas were obtained using 15 min of UV irradiation and 10 mW/cm2 of light
power, whereas for the AM(8) hydrogel, 10 min of UV irradiation and 0.6 mW/cm2 of light
power were used.

Although it was possible to replicate the grating using both thermal and photochemical
activation, it was concluded that better reproducibility in surface micropatterns copies
was obtained for the AM(25)/PA hydrogel composition during thermal curing. Thus,
the AM(25)/PA hydrogel composition showed the best results in terms of micropattern
fabrication and biorecognition properties. Consequently, it was chosen for further label-free
biosensing studies.

3.4. Label-Free Biorecognition

To evaluate the potential label-free sensing of surface relief gratings of the probe-
functionalized hydrogels, a hybridization assay was performed using unlabeled probes.
Firstly, surface microstructures were obtained for the AM(25)/PA hydrogels during the
thermal curing as, according to previous results, this hydrogel composition and reaction
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conditions produced the hydrogel with the best properties for the selective detection of
targets with fluorescent sensing, and, in addition, they yielded micropatterned hydrogels
that were able to correctly diffract the light. Therefore, the same conditions were expected
to produce hydrogels with the best properties for the label-free detection of targets. After
the hydrogel synthesis, the AM(25)/PA hydrogel was functionalized with 5 µM of Probe 1.
The functionalized hydrogel patterns were placed in a Petri dish and washed overnight
with SSC1x buffer. The day after, they were cut into squares (0.5 × 0.5cm) and positioned
in separated wells of a transparent ELISA plate with 250 µL of SSC1x. The size of the
hydrogel was chosen to perfectly fit within the ELISA wells and, thus, avoid the crushing
of their walls and their free flotation. Diffraction efficiencies (DE%) of the functionalized
hydrogel patterns were registered using the optical set-up (Figure 1) at controlled condi-
tions (RH 45 ± 5% and 24 ± 1◦C). Ambient conditions were reached with domestic air
conditioning and humidifier systems. Figure S12 shows that signals were stable for at
least 30 min. Therefore, the signal was not affected by the incidence of the focused laser
beam and slight delays in the reading time would not affect the obtained results. After
that, the hybridization assay was performed in triplicate. Hydrogels were incubated with a
growing concentration of Target 1 (0; 5; 10; and 25 µM) in 50 µL of SSC1x for 1h at 37 ◦C.
After overnight washing with SSC1x, DE was registered at 532 nm and RDE was calculated
according to Equation (3) to assess the direct detection of complementary DNA-sequence
(Target 1) (Figure 5). As a control experiment, the AM(25)/PA hydrogel was also func-
tionalized with a non-complementary DNA sequence (Probe 2), and hybridization assays
were performed with Target 1 at 25 µM following exactly the same procedure. A gradual
decrease in the DE% with increasing concentration of the unlabelled target was observed
for the (AM(25)/PA) hydrogel functionalized with Probe 1, while for the control system,
having immobilized the non-complementary sequence Probe 2, no tendency was observed.
The DE (%) data obtained with probe 1 can be best fitted using a Hill 1 correlation curve,
obtaining a correlation coefficient of R2 = 0.991. The RDE (%) data obtained with Probe 1
can also be best fitted using a Hill 1 correlation curve, obtaining a correlation coefficient of
R2 = 0.997. The limit of detection (LOD) of 2.47 µM was calculated from the RDE (%) curve
as the concentration associated with the mean signal of ten blank measurements plus three
times their standard deviation. Thus, it was possible to detect the analyte in the range from
2.47 to 10 µM using the micropatterned hydrogels as an optical transducer.
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Figure 5. Change in the diffraction efficiency of SRG made of probe-functionalized hydrogels
after hybridization with Target 1. (a) Diffraction efficiency (DE) measured at λ = 532 nm and,
(b) relative diffraction efficiency (RDE) of SRG functionalized with Probe 1 (blue) and Probe 2
(orange) hybridized with increasing concentrations of Target 1 (complementary to Probe 1). The DE
changes with the amount of Target hybridized only for the SRG hydrogels functionalized with the
complementary strand.
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Therefore, the label-free biosensing assay using unlabeled probes, performed for
(AM(25)/PA) hydrogels with the surface micropattern, showed excellent preliminary
results. The LOD of DNA in our system is higher lower than most of the hydrogel-based
systems described in the literature [40]. However, most of the approaches are based on
labels or/and elaborate DNA architectures. DNA hybridization with hydrogel has also
been explored for actuators and other purposes [41], but poor consideration of the analytical
performance is contemplated in these studies. Baba and co-workers have reported the
use of diffraction gratings for the label-free detection of DNA with very low LOD, but
the DNA was amplified during the analysis [42]. Our results are very promising, but the
diffraction efficiency calculated for the obtained hydrogel surface-micropattern is not high.
Hence, further improvements in the micropattern fabrication can be realized to increase the
initial DE% and, accordingly, the sensitivity for the analyte detection. These improvements
involve the fabrication of thinner surface relief gratings as well as the replication with lower-
period PET masters. Although fabrication of these gratings can be challenging, technologies
such as two-photon polymerization can be used for fabricating 2D/3D microstructures with
high accuracy [43,44]. In addition, quicker data acquisition and automatization of hydrogel
SRGs will allow for increasing the number of replicates and lowering the experimental
error. Despite those facts, it was possible to directly detect the analyte with good selectivity
and sensitivity, given that this is the first time that surface micro-patterned hydrogels were
used to directly detect hybridization events.

4. Conclusions and Future Outlook

Optical biosensors are emerging for point-of-care testing (POCT) as they present
some advantages such as increased sensitivity and suitability for being integrated into a
compact device with the purpose of being utilized out-of-the-lab. Overall, line-like periodic
microstructures were successfully fabricated on a bioresponsive hydrogel surface and used
as transducers for converting the analyte–bioreceptor binding into a measurable optical
signal. The planned approach for the covalent immobilization of the bioreceptor probes had
notable outcomes. Furthermore, different bioreceptors with thiol terminal groups could
be used, depending on the analyte to be detected. Accordingly, the developed biosensor
can sense multiple analytes. Results obtained from the label-free biorecognition assay
have shown a direct correlation between the diffraction efficiency measured and the target
concentration. The label-free biosensor as designed could significantly contribute to direct
and accurate analysis in medical diagnosis, being cheap, easy to fabricate and working
without the need for further reagents. To fully achieve this, further aspects should be
considered, such as the minimization of biofouling of hydrogels when they are immersed
in real fluids. This can be achieved by tuning the composition of hydrogels, for instance,
using polyacrylamide copolymers or zwitterionic moieties [45].

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/bios13030312/s1. Table S1. Nucleotide Sequence of Probes and
Targets used. Scheme S1. Schematic representation of the hydrogel synthesis by free-radical poly-
merization (FRP). AM: Acrylamide, MBA: N, N’-methylenebis (acrylamide), PA: propargyl acrylate,
Initiator = DMPA: 2,2-Dimethoxy-2-phenylacetophenone. Scheme S2. Thiol probe immobilization
by thiolene and thiol-yne click reaction of (AM/PA) hydrogels by UV light. AM: Acrylamide, PA:
propargyl acrylate, Initiator = DMPA: 2,2-Dimethoxy-2-phenylacetophenone. Table S2. Hydrogel
compositions. Figure S1. UV-Visible spectra of hydrogels with different compositions (a) without PA
and (b) with PA. Figure S2. Digital images of hydrogels pieces with different compositions and con-
sistency AM(8)/PA_0.050, soft; (a), (b) AM(8)/PA_0.250, adaptable and (c) AM(32)/PA_0.250, brittle.
Figure S3. Digital images of selected hydrogels pieces with different compositions (a) AM(8)_0.250,
(b) AM(25)/PA_0.050 (c) AM(8)/PA_0.250, and (d) AM(25)_0.250. Figure S4. Porosity observed by
SEM for selected hydrogel compositions (AM(25)/PA_0.050) and (AM(8)/PA_0.250) prepared by ther-
mal and photochemical activation. Figure S5. Swelling kinetic studies for (AM(25)/PA), (AM(8)/PA),
AM(25) and AM(8) hydrogels soaked in PSB-T (obtained by thermal activation). Figure S6. ATR-FTIR
spectrum of AM(25) hydrogel. Figure S7. Fluorescence signals obtained for probe-functionalized

https://www.mdpi.com/article/10.3390/bios13030312/s1
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a)(AM(8)/PA) hydrogel and b) (AM(25)/PA) after hybridization with Target 2 for 1h at 37 ◦C (λex
= 633 nm, λem = 670 nm). Firstly, hydrogels of were functionalized during the synthesis, using the
first strategy (one-pot, photochemical) with 1 µM of the thiolated probes: Probe 1. After overnight
washing with PBS-T, they were hybridized with 1 µM of fluorescent-labeled Target 2. Hydrogels
were cutted in three pieces and the central piece was flipped prior to analysis to observe the signals
of the cross-section profile. Fluorescence signals were collected after hybridization. Experiment
was carried out in triplicate (three rows of the images). The fluorescence signal is visible in all
thee pieces for both hydrogels. Figure S8. Fluorescence signals obtained for probe-functionalized
(AM(25)/PA) hydrogel after hybridization with Target 2 (λex = 633 nm, λem = 670 nm). Firstly,
hydrogels were functionalized during the synthesis, using the first strategy (one-pot, photochemical)
with 1 µM of the thiolated probes: Probe 1 and, as a control, Probe 2. After overnight washing with
PBS-T, they were hybridized with 1 µM of fluorescent-labeled Target 2. Fluorescence signals were
collected after hybridization and 2 hours washing and after overnight washing with SSC1x. The
fluorescence signal remained only in the case of Probe 1, complementary to the Target. Figure S9.
Fluorescence signals obtained for AM(25) and (AM(25)/PA) hydrogels through hybridization assay
with Target 2 (λex = 633 nm, λem = 670 nm). Firstly, hydrogels were biofunctionalized with thiolated
probes (Probe 1 and Probe 2) at 1 µM after the polymerization. In the first bar chart, fluorescence
signals were registered just after the hybridization assay with 0.5 µM of Target 2. In the second bar
chart, the fluorescence was registered after overnight washing with SSC1x in order to wash away
all the non-specific binding. Figure S10. Fluorescence signals obtained for (AM(8)/PA) hydrogel
through hybridization assay with Target 2 (λex = 633 nm, λem = 670 nm). Firstly, hydrogels were
functionalized with thiolated probes (Probe 1 and the control probe Probe 2) at 1 µM during the
synthesis, using the one-pot synthesis strategy. After overnight washing with PBS-T, they were
hybridized with 1 µM of the Target 2. Fluorescence signals, after hybridization, were collected after
overnight washing with SSC1x. The experiment was conducted in triplicate. Figure S11. Fluorescence
signals obtained for AM(8) and (AM(8)/PA) hydrogels through hybridization assay with Target 2
(λex = 633 nm, λem = 670 nm). Firstly, hydrogels were functionalized with thiolated probes (Probe 1
and, as control probe, Probe 2) at 1 µM after the synthesis, using the two-step strategy. In the first
bar chart, fluorescence signals were registered just after the hybridization assay with 1 µM of the
Target 2. In the second bar chart, the fluorescence was registered after overnight washing with SSC
1x in order to wash away all the non-covalent probe binding. Figure S12. Stability of the measured
signals with the optical setup over night: Intensities of the zero and first diffraction orders generated
by the AM(25)/PA hydrogel immersed in SSC1X withing the wells of the plate were registered with
the photodiodes after illumination with the laser beam (λ = 532 nm).
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