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Abstract Finite Element Method (FEM) has been used for years for radi-
ation problems in the field of electromagnetism. To tackle problems of this
kind, mesh truncation techniques are required, which may lead to the use
of high computational resources. In fact, electrically large radiation problems
can only be tackled using massively parallel computational resources. Different
types of multi-core machines are commonly employed in diverse fields of sci-
ence for accelerating a number of applications. However, properly managing
their computational resources becomes a very challenging task. On the one
hand, we present a hybrid message passing interface (MPI)+OpenMP-based
acceleration of a mesh truncation technique included in a FEM code for elec-
tromagnetism in a high performance computing (HPC) cluster equipped with
140 compute nodes. Results show that we obtain about 85% of the theoretical
maximum speed-up of the machine. On the other hand, a graphics processing
unit (GPU) has been used to accelerate one of the parts that presents high
fine-grain parallelism.
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1 Introduction

Finite Element Method (FEM) has been proven as a reliable, versatile and
flexible tool for electromagnetism in the last decades. This method is based
on the division of the physical domain into simpler geometrical shapes (tetra-
hedra are commonly used for a number of reasons) over which the solution
is approximated by polynomials of a certain order. In this way, the original
partial differential equations obtained from electromagnetism are translated
into an algebraic system of equations. This code has been already verified and
validated for several real problems, [1,2].

However, when FEM is applied to large scale problems in terms of electrical
size, huge computational resources are required since the volumetric meshes
mandatory in FEM lead to huge and highly sparse matrices. These matrices
are commonly solved through direct solvers due to accuracy reasons and the
necessity of sophisticated preconditioners to achieve convergence in iterative
solvers, [3]. Moreover, the use of direct solvers allows an efficient introduction
of a number of different right-hand sides (RHS), present in some problems,
e.g., when computing radar cross section (RCS) of a target.

Moreover, when applying FEM to radiation problems, the free space has
to be included in the volumetric mesh, which is critical since it can gener-
ate not only inaccurate solutions, but also increase significantly the computa-
tional time. Different mesh truncation techniques have already been provided
in the literature, [4,5]. A technique based on a domain decomposition method
(DDM), called finite element-iterative integral equation evaluation (FE-IIEE),
was previously developed to obtain a certain accuracy in these radiation pro-
blems [6].

The fact that the current processors are composed of multiple cores has
allowed to accelerate multiple applications in different fields. In fact, a high
variety of programming technologies are available, including OpenMP [7] and
MPI [8], that can be used for exploiting the cores of a processor and coordi-
nating between different processors and machines. A platform that is suited
for task-oriented parallelization is Xeon Phi [9]. Another kind of acceleration
can be achieved by the use of Graphics Processing Units (GPUs). Following
Flynn’s taxonomy [10], from a conceptual point of view, a GPU can be viewed
as a Single Instruction Multiple Data machine (SIMD), i.e., a computer in
which a single flow of instructions is executed on different data sets. Thus,
GPUs achieves high performances when the application presents fine-grain
parallelism. The CUDA platform [11] provides a computing framework that
enables the use of Graphics Processing Units (GPUs). Since the appearance of
CUDA programming, many researchers in different areas have made use of it
to achieve better performance in their respective fields. For example, in image
processing [12], in acoustics [13], and even in solving electromagnetic problems
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that involve the method of moments or finite-difference time-domain [14,15].
However, GPU is not a technique commonly used in FEM when using direct
solvers to obtain the solution of the system of equations.

Two different accelerations are assessed in this work. On one side, we pro-
pose an MPI+OpenMP-based acceleration of a mesh truncation technique
included on a finite element code for electromagnetism in a high performance
computing (HPC) cluster equipped with 140 compute nodes. On the other side,
we accelerate by using a GPU an specific part of the FE-IIEE that is composed
of a high number of multiply and add (MAD) operations. For this last part,
our work is focused on the issues of computing multiple RHS concurrently.

The rest of the paper is structured as follows: FEM formulation is briefly
described in Section 2, flowchart of the parallelization for the truncation tech-
nique is included in Section 3; speed-up and numerical results are included in
Section 4; and finally conclusions are drawn in Section 5.

2 Variational formulation

A weak formulation based on the double curl vector wave equation to charac-
terize the electromagnetic field in a given problem domain is introduced in the
FEM code. In the frequency domain, the double curl vector wave equation is

∇× 1

µr
(∇×E)− k20εrE = O, (1)

where E is the electric field, k0 is the wavenumber in vacuum, and O is the
excitation related to impressed currents within the problem domain. Dirichlet
ΓD, Neumann ΓN and Cauchy ΓC boundary conditions are included in the
code with the definitions

n̂×E = 0, on ΓD, (2)

n̂× 1

µri
(∇×E) = 0, on ΓN, (3)

n̂× 1

µri
(∇×E) + jk0(n̂× n̂×E) = Ψ , on ΓC, (4)

where n̂ is the outward normal unit vector from the surface where the boundary
condition is applied, and Ψ can be either the exterior boundary for open region
problems or the excitation related to a waveport.

Then, Galerkin method is used on (1) to obtain the variational formulation
of the problem as explained in the following.

Find E ∈W such that

c1(F,E)− k20 c2(F,E) + γ c3(F,E) = l(F), ∀F ∈W, (5)
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Fig. 1 Decomposition in two domains for FE-IIEE

where the bilinear (c1, c2 and c3) and linear forms (l) are defined with

c1(F,E) =

∫

Ω

(∇× F) · ( 1

µr
∇×E) dΩ,

c2(F,E) =

∫

Ω

F · εrE dΩ,

c3(F,E) =

∫

ΓC

(n̂× F) · (n̂×E) dΓC,

(6)

l(F) =

∫

Ω

(F ·O) dΩ −
∫

ΓC

(F · Ψ)ΓC, (7)

and the space of functions is

W := {A ∈ H(curl, Ω), n̂×A = 0 on ΓD}. (8)

To discretize the FEM domain, second order isoparametric curl-conforming
tetrahedral and triangular prismatic finite elements, [16,17] are used.

For open region problems, as introduced in Sec. 1, a non-standard mesh
truncation technique (FE-IIEE, [6]) is included. FE-IIEE is based on a two-
domain decomposition multiplicative Schwarz paradigm, dividing the original
infinite domain into two overlapping domains limited by a finite FEM domain
bounded by an exterior surface S and by an infinite domain exterior to the
auxiliary boundary S′ located within S, as it is shown in Fig. 1.

In practice, the distance between S and S′ is a small fraction of the wave-
length, typically in the range of 0.05λ to 0.2λ, hence allowing the trunca-
tion boundary to be placed very close to the sources. Following the Schwarz
paradigm, FE-IIEE iterates between these two domains until the scattering
field error between two consecutive iterations is lower than a given threshold
or until the maximum number of iterations is reached. Note that these itera-
tions only involve changes on the right-hand side of the problem. This means
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that the FEM matrix needs to be factorized only in the first iteration, and only
forward and backward substitutions are involved in the remaining iterations
when a direct solver is used.

Specifically, the integral equation representation of the exterior field to S′

provides an improved version of the residual function Ψ related to the Cauchy
boundary conditions at each iteration step. Thus, an asymptotically exact
absorbing boundary condition for FEM is implemented retaining the original
sparse nature of the finite element matrices. In practice, the use of the FE-IIEE
method means that function Ψ now is the weighted sum of Ψ inc and Ψ scat,
[6], where Ψ inc is set to zero for radiation problems and Ψ scat is computed
in each iteration of the FE-IIEE method. The computation of Ψ scat requires
a number of operations which reminds of method of moments, with different
computational requirements than FEM. Indeed, this specific part of the code
is the most suitable to be run on GPU since it is composed of the combi-
nation of multiple parameters. Firstly, Green’s function is computed, whose
operations are implemented by a dozen of multiplications between complex
numbers, which involves 5 operations each (4 real multiplications and a sum).
Afterwards, combinations of J-current and M-current are used to obtain the
potential V and ∇ × V (see blue box in Fig.2 and note that for this for-
mulation, based on electric field, V = E), which involves the combination of
thousands of complex elements. All of the described operations are carried out
independently for each of the RHS. Thus, porting this part of the code that fits
within the SIMD paradigm to a GPU can provide a boost in the performance.

In Fig. 2 more details about how FE-IIEE is embedded in the FEM code
are included. Typical flowchart for FEM solver is included in the green box
while blue boxes show how boundary conditions are imposed on domain S. The
boundary conditions are updated until the convergence criteria are achieved.

Assembly of

Element Matrices

Imposition of B.C.

Non Related to S
Postprocess

Sparse

Solver

Initial

B.C on S

Computation of

Element Matrices

Upgrade of B.C. on 

Mesh

FEM code for non−open problems

Ψ(0)(r)

S: Ψ(i+1)(r)

J
(i)
eq (r ′),M(i)

eq (r ′) ⇒

{
V (r ∈ ΓS)
∇×V (r ∈ ΓS)

Fig. 2 Conceptual flowchart for FE-IIEE.
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3 Parallelization

The code was initially designed for small HPC cluster environments, and it
has recently experienced a number of modifications in order to be able to run
on large-scale computer systems and hence, to be able to deal with larger
problems in terms of number of unknowns. Thus, the code has been written
from scratch to make an efficient use of HPC platforms. HOFEM implements a
hybrid parallel methodology based on the use of MPI processes and OpenMP
threads within each process. This hybrid methodology is already used in direct
solvers as MUMPS, [18], which leveraged from the code to obtain the solution
with high accuracy from the system of equations generated with FEM so it is
efficient to use the same scheme in the code.

A workflow particularized for the FE-IIEE method is included in the Fig. 3.
Here, a process is denoted as a box (numbered as p0, p1, and so on) and a
thread is plotted as a smaller box below the process being filled with color if
the thread is used. In this example, four threads per process are shown in the
workflow. At first, all the input data is read and then, for each frequency, a
typical assembly of FEM system of equations is performed. In this assembly,
different elements are assigned to each process while loops are accelerated with
OpenMP threads. To solve the system of equations, MUMPS is used —as a
direct solver— and if the problem is open region, FE-IIEE is enabled so that
the scattering field is computed, the right-hand side is updated only in p0, and
then the system of equations is solved. This is repeated until the convergence
error is achieved or the maximum number of iterations is reached. In this
solving step, the matrix is factorized in the first iteration and then forward
and backward substitutions are applied for the remaining iterations. In this
loop, the performance of OpenMP is critical to attain a good speedup as shown
in Section 4.

It has to be noted how the number of RHS affects to the scalability of
the code. The number of RHS is related, e.g., to the spatial resolution when
computing monostatic radar cross section (RCS): if plane for θ = 90◦ is char-
acterized with an angle sampling of two degrees, 181 points — which means
181 excitations, so 181 RHS if no more excitations are present in the electro-
magnetic problem — will be needed; in fact, if a 3D half-sphere wants to be
characterized with the same angle sampling, 8281 RHS are needed —91 points
in θ planes (from φ = 0 to φ = 180◦), and 91 possible values of θ(from θ = 0
to θ = 180◦)—. The most expensive part in terms of computational time is
the factorization of the matrix, which is performed once for each frequency.
Then, to add more RHS when using a direct solver simply means applying
more forward and backward substitutions. However, the scattering field used
in FE-IIEE method has to be computed for each different RHS, which makes
it suitable for accelerating with GPU due to the distinctive features of its
computation.
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Fig. 3 Parallel workflow for FE-IIEE.

3.1 GPU-based implementation for accelerating RHS

The parallelization of the GPU consists on launching as many GPU-threads
(executions in parallel that are launched at the GPU ) as the number of RHS
in the electromagnetic problem, so that each GPU-thread deals independently
with one RHS. In fig. 4, the parallelization of the computations of Ψ scat com-
posed of multiple RHS is shown. Performance tests were carried out using an
Intel(R) Xeon(R) CPU E5-2697 v2 @ 2.70GHz and a Nvidia GPU K20c, [19].

The integration of the GPU code with the original HOFEM software has
been cumbersome since HOFEM was developed in Fortran and a wrapper that
connecting both codes has been developed. As a consequence, the number of
memory transactions between GPU and CPU has been increased and thus,
the boost in the performance has not been as significant as it was expected
initially. Despite of these facts, Fig. 5 shows that, using a GPU for computing
a scattering vector Ψ scat, a better performance than original HOFEM software
with CPU is obtained when the scattering field is composed by more than 2000
RHS.
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rhs=0 rhs=1 rhs=2

CPU-thread carries out
the computation of 

each RHS sequentially

1) Green Function
2) Potential V
3) rotV

Each GPU-thread carries out
the computation of a RHS
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rhs=1
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Fig. 4 GPU-based parallelization of the scattering vector that is composed of multiple RHS
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Fig. 5 Performance comparison between the use of the CPU and the use of GPU inside
the HOFEM software in order to compute Ψ scat with multiple RHS.

4 Results

Given aside the acceleration using the GPU implementation, the speedup of
the whole code in an HPC environment —HPC cluster of Xidian University
(XDHPC), equipped with 140 compute nodes (each one with two twelve-core
Intel Xeon 2690 V2 2.2GHz CPUs with 64 GB RAM and 1.8 TB hard disk)
connected by 56 Gbps InfiniBand network— is included. Here, the second
order basis functions for tetrahedra introduced in [16] are used. A snapshot of
the car together with the 3D representation of the RCS of the car at 500 MHz
is illustrated in Fig. 6.

Fig. 7 reports the parallel performance of the FEM code considering only
the execution of the FE-IIEE truncation technique. As it was described in



Acceleration of a Mesh Truncation Technique for FEM 9

(a) Geometry of the problem. (b) RCS (planewave illuminates the front)

Fig. 6 RCS analysis of a Chevrolet impala at 500 MHz.
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Fig. 7 Speedup graph corresponding to the mesh truncation phase

the previous section, once the code computes the solution of the problem,
the FE-IIEE technique is executed (when enabled), avoiding any undesired
reflection from the truncation boundary that can disturb the solution. The
parallel performance obtained by HOFEM during these phases is near 85%
almost in all the configurations when using 480 cores. For a smaller number
of cores the performance is even higher. It is worth mentioning that, during
the execution of the FE-IIEE method, a back substitution process is required
in order to compute the solution of the system, slightly degrading parallel
performance.

5 Conclusions

We have presented a GPU-based implementation in order to accelerate one
specific part of the FE-IIEE that is composed of multiple RHS. The proposed
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GPU implementation outperforms the CPU implementation when the number
of RHS is upper to 2000.

On the other hand, we have presented a FEM formulation developed from
scratch to be used in HPC environments. Details of the acceleration of a non-
standard mesh truncation technique designed for open problems are given.
Results show that up to 85% of the theoretical maximum speedup of the
machine is obtained with the computation of an RCS of a target modeled as
a car.
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