
Computers & Operations Research 154 (2023) 106192

A
0
n

Contents lists available at ScienceDirect

Computers and Operations Research

journal homepage: www.elsevier.com/locate/cor

Flowshop with additional resources during setups: Mathematical models and
a GRASP algorithm
Juan C. Yepes-Borrero a, Federico Perea b,∗, Fulgencia Villa c, Eva Vallada c

a Universidad del Rosario. Escuela de Ingeniería, Ciencia y Tecnología, Cl. 12c N 6-25, 111711, Bogotá, Colombia
b Dpto. Matemática Aplicada II. Instituto de Matemáticas de la Universidad de Sevilla. Escuela Politécnica Superior. Edificio Celestino Mutis, Primera planta. Avda.
Reina Mercedes, s/n, 41012 Sevilla, Spain
c Grupo de Sistemas de Optimización Aplicada, Instituto Tecnológico de Informática, Ciudad Politécnica de la Innovación, Edifico 8G, Acc. B. Universitat
Politècnica de València, Camino de Vera s/n, 46021, València, Spain

A R T I C L E I N F O

MSC:
90B06

Keywords:
Scheduling
Flowshop
Mathematical programming
GRASP

A B S T R A C T

Machine scheduling problems arise in many production processes, and are something that needs to be consider
when optimizing the supply chain. Among them, flowshop scheduling problems happen when a number of
jobs have to be sequentially processed by a number of machines. This paper addressees, for the first time, the
Permutation Flowshop Scheduling problem with additional Resources during Setups (PFSR-S). In this problem,
in addition to the standard permutation flowshop constraints, each machine requires a setup between the
processing of two consecutive jobs. A number of additional and scarce resources, e.g. operators, are needed
to carry out each setup. Two Mixed Integer Linear Programming formulations and an exact algorithm are
proposed to solve the PFSR-S. Due to its complexity, these approaches can only solve instances of small size
to optimality. Therefore, a GRASP metaheuristic is also proposed which provides solutions for much larger
instances. All the methods designed for the PFSR-S in this paper are computationally tested over a benchmark
of instances adapted from the literature. The results obtained show that the GRASP metaheuristic finds good
quality solutions in short computational times.
1. Introduction

In a Flowshop Scheduling Problem (FSP) a set of jobs has to be
processed on a set of machines, following the same route (the jobs
visit the machines in the same order). The most studied variant of
the problem is the one that only considers permutations, that is, the
order of the jobs is the same for all the machines. This variant is
known as the permutation flowshop scheduling problem (PFSP) and
has been studied in the literature since the 1950’s, see Johnson (1954).
The objective of PFSP is to find the best schedule so that an objective
function is optimized. One of the objective functions most frequently
optimized in the related literature is the maximum completion time,
known as makespan and denoted by 𝐶𝑚𝑎𝑥. Regarding the complexity of
the problem, Garey et al. (1976) prove that the decision version of PFSP
is 𝑁𝑃 − 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒 for three or more machines.

Several assumptions are considered in a PFSP: (i) each job can only
be processed by one machine at the same time; (ii) one machine can
only process one job at a time; (iii) the processing of a job on a machine
cannot be interrupted; (iv) all jobs are independent and available at
time 0; (v) the machines are continuously available; (vi) if a machine

∗ Corresponding author.
E-mail addresses: juanca.yepes@urosario.edu.co (J.C. Yepes-Borrero), perea@us.es (F. Perea), evallada@eio.upv.es (E. Vallada).

is processing a job, the next job can wait in a machine queue. In a
realistic production environment, setup times on machines between
two consecutive jobs have to be considered. The setup time can be
defined as the time needed to set the machine up to process a given job.
That is, every time a job is finished on one machine, the machine has to
be readjusted in order to process the next job. Moreover, additional and
limited resources (human resources, tools, molds, etc.) are needed to
carry out the setups. To the best of our knowledge, there is no literature
that takes into account setups with additional and scarce resources in
permutation flowshop scheduling problems. This more realistic variant
of the PFSP is called the Permutation Flowshop Scheduling problem with
additional Resources during Setups (PFSR-S). The main contributions of
this paper are:

• the proposal of a new and more realistic version of the permu-
tation flowshop problem, in which machine setups are needed
between the processing of any two jobs and additional resources
are necessary for such setups, denoted as PFSR-S.

• two Mixed Integer Linear Programming models (MILPs) for the
PFSR-S, as well as an exact algorithm based on one of them.
vailable online 23 February 2023
305-0548/© 2023 The Author(s). Published by Elsevier Ltd. This is an open access ar
c-nd/4.0/).

https://doi.org/10.1016/j.cor.2023.106192
Received 6 April 2022; Received in revised form 11 February 2023; Accepted 11 F
ticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

ebruary 2023

https://www.elsevier.com/locate/cor
http://www.elsevier.com/locate/cor
mailto:juanca.yepes@urosario.edu.co
mailto:perea@us.es
mailto:evallada@eio.upv.es
https://doi.org/10.1016/j.cor.2023.106192
https://doi.org/10.1016/j.cor.2023.106192
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2023.106192&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Computers and Operations Research 154 (2023) 106192J.C. Yepes-Borrero et al.

t
t
e
a
c
t
r

2

s
p
t
t
a
e
F
m
r
e
m

p
o
t
e
p

s
g
d
l
a
f
r
o
s
r
a
c
e
c
w
i

t
c
P

3

i
p

i
t
u
t
a

E
m
p
r
i
c

b
(
i

2
t
a
r
T
i
p
j
o
{
i
S
(
s

• a GRASP metaheuristic, which finds good feasible solutions in
short CPU times.

The remainder of this paper is organized as follows. In Section 2,
he related literature is analysed. In Section 3, a formal definition of
he problem is given. Two mixed integer mathematical models and an
xact method with three steps are introduced in Section 4. In Section 5,
GRASP algorithm for the PFSR-S is presented. Section 6 explains the

omputational experiments carried out to analyse the performance of
he designed methods. Finally, in Section 7 some conclusions and future
esearch avenues are given.

. Literature review

The permutation flowshop scheduling problem has been widely
tudied in the literature over the last 70 years, starting with the
ioneering work of Johnson (1954). Both exact methods and heuris-
ic algorithms have been proposed to tackle this problem. Some of
he most recent works related to heuristic algorithms for the PFSP
re Baskar and Xavior (2021), Öztop et al. (2020), Kurdi (2020), Wu
t al. (2020), Fernandez-Viagas et al. (2020), Fernandez-Viagas and
raminan (2019), Dubois-Lacoste et al. (2017), Amirghasemi and Za-
ani (2017) and Liu et al. (2017). The interested reader can find recent

eviews on the PFSP in Fernandez-Viagas et al. (2017) and Neufeld
t al. (2016). As for exact methods, Sadjadi et al. (2008) reviews
athematical models for scheduling problems.

The literature that considers setup times in machine scheduling
roblems is extensive. The interested reader is referred to the reviews
f Allahverdi et al. (2008) and Allahverdi (2015). More specifically,
he following references consider setups in flowshop problems: Lu
t al. (2018) and Ríos-Mercado and Bard (1998). A review of flowshop
roblems with setup times is found in Cheng et al. (2000).

The literature regarding flowshop problems with additional re-
ources is less extensive. Janiak (1988) deals with a version of the
eneral non-permutation flow-shop scheduling problem in which the
uration of each operation on certain machines depends on the al-
ocated amount of a constrained resource. Figielska (2009) develops

heuristic algorithm to solve a scheduling problem in a two-stage
lowshop, with parallel unrelated machines and additional renewable
esources during the first stage and a single machine during the sec-
nd stage, with the objective of makespan minimization. Later, the
ame author proposes the same problem but with modifications to the
esources in Figielska (2014). In this paper, the renewable resources
re shared among the stages so some quantities of the same resource
an be used at different stages at the same time. More recently, Benda
t al. (2019) developed a machine learning approach to solve a real-life
ase that can be classified as a hybrid flow shop scheduling problem
ith alternative resources, sequence-dependent setup times, limited

ntermediate buffers and blocking.
Although the literature on flowshop problems is quite extensive, to

he best of our knowledge it contains no references to the problem
onsidered in this paper, that is, the Permutation Flowshop Scheduling
roblem with additional Resources during Setups (PFSR-S).

. Formal definition

This section formally defines the Permutation Flowshop Schedul-
ng problem with additional Resources during Setups (PFSR-S). This
roblem takes the following input data:

• A set of jobs 𝑁 = {1,… , 𝑛}. Jobs are indexed by 𝑗, 𝑘,𝓁. For
modelling purposes a dummy job, indexed as 0, is considered. Let
𝑁0 = 𝑁 ∪ {0}.

• Each job needs to be sequentially processed on each of the follow-
ing machines 𝑀 = {1,… , 𝑚}. We assume that all jobs follow the
same route on the machines, which is (without loss of generality)
2

1 − 2 −⋯ − 𝑚. o
Table 1
Processing times for each job on each machine.
𝑝𝑖𝑗 1 2 3 4

1 6 3 2 1
2 2 2 4 2

Table 2
Setup times for each job on each machine.
𝑠1𝑖𝑗 1 2 3 4

0 3 4 1 7
1 0 5 3 2
2 5 0 3 1
3 2 1 0 5
4 3 2 5 0

𝑠2𝑖𝑗 1 2 3 4

0 2 3 1 6
1 0 6 3 5
2 4 0 3 1
3 3 4 0 1
4 7 8 4 0

• The processing of job 𝑗 on machine 𝑖 takes 𝑝𝑖𝑗 ∈ Z+ units of time.
• Machine 𝑖 needs a setup time of 𝑠𝑖𝑗𝑘 ∈ Z+ time units between the

processing of jobs 𝑗 and 𝑘 (if no other job is processed between
them).

• There are 𝑅max ∈ Z+ units of an additional resource.
• The setup of machine 𝑖 between jobs 𝑗, 𝑘 needs 𝑟𝑖𝑗𝑘 ∈ Z+ units

of the additional resource, during the 𝑠𝑖𝑗𝑘 units of time that the
setup lasts.

The PFSR-S looks for a sequence of jobs, processed on all machines
n a given order, so that no machine processes more than one job at
he same time, no more than 𝑅max units of the additional resource are
sed at any time and the makespan (defined as the completion time of
he last job to be processed) is minimized. To illustrate, we now show
n example of the PFSR-S.

xample 3.1. Consider an example with 𝑛 = 4 jobs and 𝑚 = 2
achines (modified from that in Rios-Mercado and Bard, 1999). The
rocessing times and setups times are given in Table 1 and Table 2
espectively. Note that the first row (labelled 0) in Table 2 shows the
nitial setup time for each machine if the first job to be processed is the
olumn job.

An optimal solution to the PFSP without additional resources would
e the sequence (3, 1, 2, 4), with a makespan of 24, as shown in Fig. 1
top graph). We represent the processing of jobs in red, and the setups
n grey. Blank areas represent idle times.

If the number of resources needed is constant for each setup, 𝑟𝑖𝑗𝑘 =
∀ 𝑖, 𝑗, 𝑘, and the available number of resources is 𝑅max = 3, we note

hat the previous solution would not be feasible, because four resources
re needed in time unit 1 and in time units 14 − 16 as well (the last
ow of the figure shows the resource consumption in each time unit).
he infeasibility relating to time unit 1 can easily be solved without

ncreasing the makespan by postponing the setup of machine 2 before
rocessing job 3 by one or two units of time (before the processing of
ob 3 actually starts). However, the excess of resources caused by the
verlap of the machine setups between jobs 𝑗 = 1 and 𝑗 = 2 (time units
14, 15, 16}) may need a new sequence, which would possibly imply an
ncrease in makespan. An optimal solution to this new problem (PFSR-
) is the sequence shown in Fig. 1, the bottom graph, with sequence
3, 2, 4, 1), and a makespan of 26. Note that, in general, the optimal
equence for the problem without resources is not the same as the
ptimal sequence for the problem with resources.

Computers and Operations Research 154 (2023) 106192J.C. Yepes-Borrero et al.

c
p
p

D
t
a
c
o

s

m

Fig. 1. Solution to Example 3.1.
4. Exact algorithms

In this section, three exact methods to solve the PFSR-S are pre-
sented: Two mixed integer linear programming models (MILP1 and
MILP2) and one exact algorithm with three different steps (TPE) are
considered. TPE combines the solution to the problem without taking
into account the resource constraint for other solutions where resource
constraints are satisfied.

4.1. MILP1: time index

In this section an initial mathematical programming model for the
PFSR-S is shown, adapted from that found in Yepes-Borrero et al.
(2020) for the parallel machine scheduling problem with resources
during setups. Besides the sets introduced in Section 3, we need the
set 𝑇 = {1,… , 𝑡max} to represent the time units, indexed by 𝑡. It
an be noted that 𝑡max is an upper bound on the makespan for the
roblem which needs to be computed. The concepts of consecutive jobs,
redecessor and successor are now defined.

efinition 4.1. Given a solution (𝑗1, 𝑗2,… , 𝑗𝑛) to a PFSR-S, we say that
wo jobs 𝑗, 𝑘 ∈ 𝑁 are consecutive if 𝑗 is before 𝑘 in the permutation,
nd no other job is between them. If the ordered job pair (𝑗, 𝑘) is
onsecutive, we say that 𝑗 is the predecessor of 𝑘, and 𝑘 is the successor
f 𝑗.

The model proposed uses the following variables:

• 𝑋𝑗𝑘 = 1 if the ordered job pair (𝑗, 𝑘) is consecutive, zero otherwise.
Note that, as opposed to the model in Yepes-Borrero et al. (2020),
subindex 𝑖 is not needed as the sequence is the same for all
machines.

• 𝑊𝑖𝑗𝑘𝑡 = 1 if the setup of machine 𝑖 between jobs 𝑗 and 𝑘 finishes
at time 𝑡, zero otherwise.

• 𝐶max denotes the makespan.

Once we have defined these variables, model MILP1 can be de-
cribed as follows:

in 𝐶max (1)

s.t.:
∑

𝑗≠𝑘
𝑋𝑗𝑘 = 1, 𝑘 (2)

∑

𝑘≠𝑗
𝑋𝑗𝑘 = 1, 𝑗 (3)

∑

𝑡
𝑊𝑖𝑗𝑘𝑡 = 𝑋𝑗𝑘, 𝑖, 𝑗, 𝑘 ∶ 𝑘 ≠ 𝑗 (4)

∑

𝑡
𝑡𝑊𝑖,0,𝑘,𝑡 ≥ 𝑠𝑖,0,𝑘𝑋0,𝑘, 𝑖, 𝑘 ∶ 𝑘 ∈ 𝑁 (5)

∑

𝑡
𝑡𝑊𝑖𝑗𝑘𝑡 ≥

∑

𝓁

∑

𝑡
𝑊𝑖𝓁𝑗𝑡(𝑡 + 𝑝𝑖𝑗 + 𝑠𝑖𝑗𝑘) −𝑀(1 −𝑋𝑗𝑘),

𝑖, 𝑗, 𝑘 ∶ 𝑘 ≠ 𝑗 (6)
3

∑

𝑡
𝑡𝑊𝑖+1,𝑗,𝑘,𝑡 ≥

∑

𝑡
𝑡𝑊𝑖𝑗𝑘𝑡 − 𝑠𝑖𝑗𝑘 + 𝑝𝑖+1,𝑗 + 𝑠𝑖+1,𝑗,𝑘 −𝑀(1 −𝑋𝑗𝑘),

𝑖, 𝑗, 𝑘 ∶ 𝑖 < 𝑚, 𝑗 ≠ 𝑘, (7)
∑

𝑖,𝑗,𝑘∈𝑁,𝑘≠𝑗,𝑡′∈{𝑡,…,𝑡+𝑠𝑖𝑗𝑘−1}
𝑟𝑖𝑗𝑘𝑊𝑖𝑗𝑘𝑡′ ≤ 𝑅max, 𝑡 (8)

∑

𝑡
𝑡𝑊𝑚𝑗𝑘𝑡 ≤ 𝐶max, 𝑗, 𝑘 ∶ 𝑗 ≠ 𝑘 (9)

When no domain is specified for an index, all the values in the
corresponding set are considered (𝑁0 for 𝑗, 𝑘,𝓁, 𝑀 for 𝑖, 𝑇 for 𝑡, 𝑡′).

Constraints (2) ensure that any job 𝑘 has a predecessor. Analo-
gously, (3) ensures that any job 𝑗 has a successor. Constraints (4) dictate
that, if 𝑗 precedes 𝑘, then 𝑊𝑖𝑗𝑘𝑡 takes a value of one for exactly one time
instant 𝑡, for each machine 𝑖. (5) sets a lower bound on the time when
the initial setup of machine 𝑖 should finish. (6) ensures that, for any
machine 𝑖, the end of the setup between any consecutive ordered job
pair (𝑗, 𝑘) has to finish, at least, when the setup on the previous machine
finishes, plus the processing time of job 𝑗, plus the setup time between
𝑗 and 𝑘. Note that, by abuse of notation, we use 𝑀 both to denote this
constant and to denote the set of machines. Constraints (7) impose that,
if 𝑗 precedes 𝑘, the time the setup on machine 𝑖+ 1 between these two
jobs finishes must be, at least, the time the setup on the machine before
(𝑖) finishes, minus the setup of 𝑖, plus the processing time of 𝑗 on 𝑖+ 1,
plus the setup of machine 𝑖 + 1. Constraints (8) ensure that no more
than 𝑅max resources are used at any point of time 𝑡. Finally, (9) defines
the makespan (note that the makespan of the schedule will always be
given by the last machine). 𝑀 is a big-M constant.

The number of variables and constraints in this model is enormous,
partly due to the time index. Therefore, in the next section we propose
another formulation which does not rely on a time index, but rather on
formulations based on two-dimensional bin-packing problems.

4.2. MILP2: bin packing

In this section another MILP model is proposed. This second model,
denoted as MILP2, is based on bin-packing models. Bin-packing ap-
proaches have proven to be successful in other scheduling problems
with additional resources, see Fanjul-Peyro et al. (2017) and Fanjul-
Peyro (2020). In MILP2, we assume that for each consecutive ordered
job pair (𝑗, 𝑘), there are 𝑚 boxes (corresponding to the setups needed
between them in each of the 𝑚 machines), which are denoted as the
3-tuple (𝑖, 𝑗, 𝑘). Such boxes will be placed on a two-dimensional chart,
where the horizontal axis corresponds to time and the vertical axis
corresponds to resources. Fig. 2 shows how the boxes in the two
solutions given in Example 3.1 would be. It can be noted that in the first
solution the maximum height of the boxes exceeds the horizontal line
𝑅max = 3, which is the availability of resources. This implies that the
corresponding solution is infeasible. However, in the second solution
the maximum height of the boxes is always below 𝑅max, which implies
that the resource constraint is satisfied.

The following sets of variables are needed for this model:

Computers and Operations Research 154 (2023) 106192J.C. Yepes-Borrero et al.
Fig. 2. Boxes in the two solutions given in Example 3.1.
• 𝑋𝑗𝑘 = 1 if the ordered job pair (𝑗, 𝑘) is consecutive, zero otherwise.
• 𝐻𝑖𝑗𝑘 ≥ 0 is the time when the setup of machine 𝑖 between jobs 𝑗, 𝑘

finishes, that is, the horizontal coordinate of the top right corner
of the box (𝑖, 𝑗, 𝑘).

• 𝑌𝑖𝑗𝑘 ≥ 0 is the vertical coordinate of the top right corner of the
box (𝑖, 𝑗, 𝑘), which is associated with the use of resources.

• 𝑈𝑖𝑗𝑘𝑖′𝑗′𝑘′ is a binary variable that takes a value of zero if a no-
overlap constraint on the horizontal axis needs to be activated
between the boxes (𝑖, 𝑗, 𝑘) and (𝑖′, 𝑗′, 𝑘′), being (𝑖, 𝑗, 𝑘) right of
(𝑖′, 𝑗′, 𝑘′), and 1 otherwise.

• 𝑉𝑖𝑗𝑘𝑖′𝑗′𝑘′ is a binary variable that takes a value of zero if a no-
overlap constraint on the vertical axis needs to be activated
between the boxes (𝑖, 𝑗, 𝑘) and (𝑖′, 𝑗′, 𝑘′), being (𝑖, 𝑗, 𝑘) top of
(𝑖′, 𝑗′, 𝑘′), and 1 otherwise.

In addition, the following set of indexes will be applied:

 = {(𝑖, 𝑗, 𝑘, 𝑖′, 𝑗′, 𝑘′) ∶ 𝑖 ≠ 𝑖′, 𝑗 ≠ 𝑘, 𝑗′ ≠ 𝑘′, 𝑗′ ≥ 𝑗, 𝑘 ≠ 0, 𝑘′ ≠ 0}. (10)

From these variables, model MILP2 consists of:

min 𝐶max (11)

s.t.:
∑

𝑗≠𝑘
𝑋𝑗𝑘 = 1, 𝑘 (12)

∑

𝑘≠𝑗
𝑋𝑗𝑘 = 1, 𝑗 (13)

𝐻𝑖𝑗𝑘 ≤ 𝐶max, 𝑖, 𝑗, 𝑘 (14)

𝑌𝑖𝑗𝑘 ≤ 𝑅max, 𝑖, 𝑗, 𝑘 (15)

𝑠𝑖𝑗𝑘𝑋𝑗𝑘 ≤ 𝐻𝑖𝑗𝑘, 𝑖, 𝑗, 𝑘 (16)

𝑀𝑈𝑖𝑗𝑘𝑖′𝑗′𝑘′ +𝐻𝑖𝑗𝑘 ≥ 𝐻𝑖′𝑗′𝑘′ + 𝑠𝑖𝑗𝑘, (𝑖, 𝑗, 𝑘, 𝑖′, 𝑗′, 𝑘′) ∈ (17)

𝑀𝑈𝑖′𝑗′𝑘′𝑖𝑗𝑘 +𝐻𝑖′𝑗′𝑘′ ≥ 𝐻𝑖𝑗𝑘 + 𝑠𝑖′𝑗′𝑘′ , (𝑖, 𝑗, 𝑘, 𝑖′, 𝑗′, 𝑘′) ∈ (18)
𝑀(1 −𝑋𝑘𝑘′) +𝐻𝑖𝑘𝑘′ ≥

∑

𝑗
𝐻𝑖𝑗𝑘 + 𝑝𝑖𝑘 + 𝑠𝑖𝑘𝑘′ , 𝑖, 𝑘, 𝑘

′ ∶ 𝑘 ≠ 𝑘′, 𝑘 ≠ 0

(19)
𝑀(1 −𝑋𝑗𝑘) +𝐻𝑖+1,𝑗,𝑘 ≥ 𝐻𝑖𝑗𝑘 − 𝑠𝑖𝑗𝑘 + 𝑝𝑖+1,𝑗 + 𝑠𝑖+1,𝑗,𝑘, 𝑘 ≠ 𝑗, 𝑖 < 𝑚

(20)

𝑟𝑖𝑗𝑘𝑋𝑗𝑘 ≤ 𝑌𝑖𝑗𝑘, 𝑖, 𝑗, 𝑘 (21)

𝑀𝑉𝑖𝑗𝑘𝑖′𝑗′𝑘′ + 𝑌𝑖𝑗𝑘 ≥ 𝑌𝑖′𝑗′𝑘′ + 𝑟𝑖𝑗𝑘, (𝑖, 𝑗, 𝑘, 𝑖′, 𝑗′, 𝑘′) ∈ (22)

𝑀𝑉𝑖′𝑗′𝑘′𝑖𝑗𝑘 + 𝑌𝑖′𝑗′𝑘′ ≥ 𝑌𝑖𝑗𝑘 + 𝑟𝑖′𝑗′𝑘′ , (𝑖, 𝑗, 𝑘, 𝑖′, 𝑗′, 𝑘′) ∈ (23)
𝑈𝑖𝑗𝑘𝑖′𝑗′𝑘′ + 𝑈𝑖′𝑗′𝑘′𝑖𝑗𝑘 + 𝑉𝑖𝑗𝑘𝑖′𝑗′𝑘′ + 𝑉𝑖′𝑗′𝑘′𝑖𝑗𝑘 ≤ 3 + 2((1 −𝑋𝑗𝑘)

+ (1 −𝑋𝑗′𝑘′)), (𝑖, 𝑗, 𝑘, 𝑖′, 𝑗′, 𝑘′) ∈ (24)

(12) ensures that each job 𝑘 has exactly one job which precedes it.
Analogously, (13) ensures that each job 𝑗 precedes exactly one job. (14)
properly defines the makespan. (15) ensures that no more resources
than 𝑅max are used at any time.

The next sets of constraints model the time axis (horizontal). (16)
4

sets a lower bound on the end of the setup of (𝑖, 𝑗, 𝑘). This is needed if
𝑗 = 0. For other values of 𝑗 this represents a feasible cut. (17) states that,
if variable 𝑈𝑖𝑗𝑘𝑖′𝑗′𝑘′ takes a value of zero, then (𝑖, 𝑗, 𝑘) is on the right of
(𝑖′, 𝑗′, 𝑘′) and does not overlap on the horizontal axis. Conversely, (18)
states that, if variable 𝑈𝑖′𝑗′𝑘′𝑖𝑗𝑘 takes a value of zero, then (𝑖′, 𝑗′, 𝑘′) is
on the right of (𝑖, 𝑗, 𝑘) and does not overlap on the horizontal axis. (19)
ensures that for each machine 𝑖, if 𝑘 precedes 𝑘′, their setup on 𝑖 cannot
finish before the end of the setup before 𝑘, plus the processing time of
𝑘, plus the setup time between 𝑘 and 𝑘′. (20) states that, if 𝑗 precedes
𝑘, their setup on machine 𝑖 + 1 cannot finish before the beginning of
their setup on machine 𝑖, plus the processing time of 𝑗 on 𝑖 + 1 plus
their setup time on machine 𝑖 + 1.

The next constraints model the resources axis (vertical axis). (21)
sets a lower bound on 𝑌 variables for consecutive jobs. (22) states that,
if 𝑉𝑖𝑗𝑘𝑖′𝑗′𝑘′ takes a value of zero, then (𝑖, 𝑗, 𝑘) is on top of (𝑖′, 𝑗′, 𝑘′) and
does not overlap on the vertical axis. Conversely, (23) states that, if
𝑉𝑖′𝑗′𝑘′𝑖𝑗𝑘 takes a value of zero, then (𝑖′, 𝑗′, 𝑘′) is on top of (𝑖, 𝑗, 𝑘) and
does not overlap on the vertical axis.

Combining both axis, (24) ensures that if 𝑗 precedes 𝑘 and 𝑗′

precedes 𝑘′, then at least one of the four no-overlap constraints should
be activated between setups (𝑖, 𝑗, 𝑘) and (𝑖′, 𝑗′.𝑘′), and therefore, they
should not overlap on at least one dimension.

4.3. Three-phase exact algorithm (TPE)

The two previous models do not solve instances with more than 10
jobs, as demonstrated in Section 6.1. In order to improve the makespan
of the best solution found by the MILP, and to reduce the GAPs, we
design a three-phase exact (TPE) algorithm consisting of the following
steps:

1. Solving the problem without resources by means of a MILP
(denoted as MILP-NR). Store 𝑋𝑁𝑅, 𝐶𝑁𝑅

max , the optimal sequence
found and makespan respectively. Note that this solution may
be infeasible for PFSR-S.

2. Solving the problem with resources, imposing that the sequence
is 𝑋𝑁𝑅, and that 𝐶𝑁𝑅

max is a lower bound for 𝐶max, by means
of MILP2 (the new model is denoted as MILP-Restricted). The
solution to this problem (𝑋𝑅, 𝐶𝑅

max) is a feasible solution for
PFSR-S. Note that if 𝐶𝑅

max = 𝐶𝑁𝑅
max , then we are certain that

(𝑋𝑅, 𝐶𝑅
max) is an optimal solution for PFSR-S, since 𝐶𝑅

max is a lower
bound.

3. If (𝑋𝑅, 𝐶𝑅
max) is not optimal for PFSR-S, solving the problem with

resources by means of MILP2, without imposing any value on
any variable, but providing the solver with the feasible solution
found in step 2 (this model is denoted as MILP-Aided).

These steps are summarized in Algorithm 1.
Despite the improvement provided by the TPE with respect to the

MILPs proposed, the PFSR-S seems to be too complex to be addressed
by exact algorithms. Therefore, in the next section a metaheuristic
algorithm is proposed, which aims to find (good) feasible solutions in

short CPU times.

Computers and Operations Research 154 (2023) 106192J.C. Yepes-Borrero et al.

U
S
i

e

a
u
p
r

c
t
r
t
G

a
m
i
c
c

5

y
s
i
l
a

a
p

b

b

𝜆

w

Algorithm 1: Three-Phase Exact algorithm.
𝑇 𝑖𝑚𝑒𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒;
Solve MILP-NR ⇒ (𝑋𝑁𝑅, 𝐶𝑁𝑅

max);
pdate 𝑇 𝑖𝑚𝑒𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒;
olve MILP-Restricted ⇒ (𝑋𝑅, 𝐶𝑅

max);
f 𝐶𝑁𝑅

max = 𝐶𝑅
max then

(𝑋∗, 𝐶∗
max) = (𝑋𝑅, 𝐶𝑅

max);
lse

Update 𝑇 𝑖𝑚𝑒𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒;
Solve MILP-Aided with allowed CPU time
𝑇 𝑖𝑚𝑒𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 ⇒ (𝑋∗, 𝐶∗

max) ;
end
Return the solution (𝑋∗, 𝐶∗

max).

5. GRASP algorithm

To find solutions to the PFSR-S in reasonable times, we propose
a GRASP (Greedy Randomized Adaptive Search Procedure) algorithm.
GRASP algorithms were introduced by Feo and Resende (1995) and
are one of the most commonly used multi-start methods. A complete
GRASP iteration has two phases:

• a constructive phase that consists of building a partial solution
(see Section 5.1).

• a local search phase in order to improve on the solution found in
the constructive phase (see Section 5.2)

However, due to the nature of the PFSR-S, the solution obtained
fter these two phases might be a non-feasible solution, because it
ses more resources those available. Therefore, a repairing phase is
roposed, in which the previous solution is evaluated and (if necessary)
epaired so that it satisfies the resource constraints.

In short, the aim of this algorithm is to build good solutions in the
onstructive phase (not necessarily feasible), try to improve on them in
he local search, and then, if the solution obtained is not feasible, to
epair it by making it feasible (satisfying the resource constraints) in
he repairing phase. Algorithm 2 shows the general procedure of our
RASP algorithm.

Algorithm 2: General GRASP algorithm procedure
𝐵𝑒𝑠𝑡𝑆𝑜𝑙 ← 𝐿𝑎𝑟𝑔𝑒𝑁𝑢𝑚𝑏𝑒𝑟
while 𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛𝑇 𝑖𝑚𝑒 < 𝑡𝑖𝑚𝑒𝐿𝑖𝑚𝑖𝑡 do

𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑜𝑙 ← Constructive phase;
𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑜𝑙 ← Local search(𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑜𝑙);
𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑜𝑙 ← Repairing phase(𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑜𝑙);
if 𝐵𝑒𝑠𝑡𝑆𝑜𝑙 > 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑜𝑙 then

𝐵𝑒𝑠𝑡𝑆𝑜𝑙 ← 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑜𝑙
end

end
Return 𝐵𝑒𝑠𝑡𝑆𝑜𝑙;

In the rest of this section we detail each of the phases of our GRASP
lgorithm. Two constructive phases are proposed. In the first one, infor-
ation about the resources is used and the resulting GRASP algorithm

s denoted as GRASP_R. At the end of this section we propose another
onstructive phase in which information about the resources is not
onsidered. The resulting GRASP algorithm is denoted as GRASP_NR.

.1. Constructive phase

To build the initial solution, a list with all the jobs not assigned
et is created (not-assigned jobs are called pending jobs). Initially, the
et of pending jobs is 𝑁 , and the partial solution is empty. At each
teration, one candidate is randomly chosen from a restricted candidate
ist (RCL), which is assigned to the partial solution. The RCL is created
t each iteration by testing the insertion of each pending job into
5

all possible positions in the partial solution built so far (the solution
with all assigned jobs until the current iteration). At each insertion,
we evaluate a value based on the 𝜆 value proposed in Yepes-Borrero
et al. (2020). The insertions with lower 𝜆 are the best candidates (see
Section 5.1.1). Note that each candidate is a job-position pair with its
respective 𝜆 value.

The size of the RCL depends on a parameter 𝛼 ∈ [0, 1] as follows:

𝑅𝐶𝐿(𝛼) = {(𝑗, 𝑘) ∶ 𝜆𝑗𝑘 ≤ 𝐵𝑒𝑠𝑡𝑉 𝑎𝑙𝑢𝑒+𝛼(𝑊 𝑜𝑟𝑠𝑡𝑉 𝑎𝑙𝑢𝑒−𝐵𝑒𝑠𝑡𝑉 𝑎𝑙𝑢𝑒)}, (25)

where 𝐵𝑒𝑠𝑡𝑉 𝑎𝑙𝑢𝑒 is the minimum value of 𝜆 and 𝑊 𝑜𝑟𝑠𝑡𝑉 𝑎𝑙𝑢𝑒 is the
maximum value of 𝜆, that is

𝐵𝑒𝑠𝑡𝑉 𝑎𝑙𝑢𝑒 = min
𝑗,𝑘

𝜆𝑗𝑘, 𝑊 𝑜𝑟𝑠𝑡𝑉 𝑎𝑙𝑢𝑒 = max
𝑗,𝑘

𝜆𝑗𝑘. (26)

If 𝛼 = 1, 𝑅𝐶𝐿(𝛼) contains all possible insertions, and therefore the
algorithm is completely random. If 𝛼 = 0, 𝑅𝐶𝐿(𝛼) contains only the best
candidate (or all candidates which attain the best 𝜆 value), therefore,
the algorithm is completely greedy. The value of 𝛼 is calibrated in
Section 6. Algorithm 3 summarizes this constructive phase.
Algorithm 3: Summary of the constructive phase
𝑃𝑒𝑛𝑑𝑖𝑛𝑔𝐽𝑜𝑏𝑠 ← 𝑁 ;
𝑃𝑎𝑟𝑡𝑖𝑎𝑙𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 ← ∅;
while 𝑃𝑒𝑛𝑑𝑖𝑛𝑔𝐽𝑜𝑏𝑠 ≠ ∅ do

foreach 𝑗 ∈ 𝑃𝑒𝑛𝑑𝑖𝑛𝑔𝐽𝑜𝑏𝑠 do
foreach 𝑘 ∈ {1, ..., 𝑛 − |𝑃𝑒𝑛𝑑𝑖𝑛𝑔𝐽𝑜𝑏𝑠| + 1} do

Calculate 𝜆𝑗𝑘;
end

end
𝐵𝑒𝑠𝑡𝑉 𝑎𝑙𝑢𝑒 = min𝑗𝑘 𝜆𝑗𝑘, 𝑊 𝑜𝑟𝑠𝑡𝑉 𝑎𝑙𝑢𝑒 = max𝑗,𝑘 𝜆𝑗𝑘;
𝑅𝐶𝐿(𝛼) = {(𝑗, 𝑘) ∶ 𝜆𝑗𝑘 ≤
𝐵𝑒𝑠𝑡𝑉 𝑎𝑙𝑢𝑒 + 𝛼(𝑊 𝑜𝑟𝑠𝑡𝑉 𝑎𝑙𝑢𝑒 − 𝐵𝑒𝑠𝑡𝑉 𝑎𝑙𝑢𝑒)};

Randomly choose (𝑗∗, 𝑘∗) ∈ 𝑅𝐶𝐿(𝛼);
Update 𝑃𝑎𝑟𝑡𝑖𝑎𝑙𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛: Assign job 𝑗∗ in position 𝑘∗;
Remove 𝑗∗ from 𝑃𝑒𝑛𝑑𝑖𝑛𝑔𝐽𝑜𝑏𝑠;

end

5.1.1. Computation of 𝜆
As in Yepes-Borrero et al. (2020), the idea of the 𝜆 value is to

evaluate both the makespan and the resource consumption that would
result when inserting one pending job 𝑗 into one specific position 𝑘,
over a partial solution already created by the algorithm during that
iteration. Note that, if the current partial solution already has 𝑛∗ jobs
ssigned, then there are 𝑛∗ +1 possible positions where we can insert a
ending job 𝑗. Besides, note that when doing such insertions generally,

new setups will be done, and some setups will no longer be done. Fig. 3
shows an example of inserting a new job 𝑗 into position 𝑘, which is
between jobs 𝑙 and 𝑙′. In Fig. 3 (a), in the partial solution jobs 𝑙− 𝑙′ are
consecutive, which implies that setup 𝑠𝑖𝑙𝑙′ is needed. In Fig. 3 (b) job 𝑗
is inserted between jobs 𝑙 and 𝑙′. Note that setup 𝑠𝑖𝑙𝑙′ should no longer
e done, but two new setups should be done (𝑠𝑖𝑙𝑗 and 𝑠𝑖𝑗𝑙′).

This information, when inserting job 𝑗 in position 𝑘, is summarized
y 𝜆𝑗𝑘 as follows:

𝑗𝑘 =
∑

𝑖∈𝑀
(𝑝𝑖𝑗 + (𝜃𝑠𝑖𝑗𝑘𝜃𝑟𝑖𝑗𝑘) − (𝛾𝑠𝑖𝑗𝑘𝛾𝑟𝑖𝑗𝑘)) (27)

here:

• 𝜃𝑠𝑖𝑗𝑘 is the sum of all new setup times when inserting job 𝑗 in
position 𝑘 on machine 𝑖. Note that in general, if a job is inserted
into a partial solution, more than one new setup must be done.
In the example in Fig. 3, we have 𝜃𝑠𝑖𝑗𝑘 = 𝑠𝑖𝑙𝑗 + 𝑠𝑖𝑗𝑙′ .

• 𝜃𝑟𝑖𝑗𝑘 is the sum of all new resources needed to do the new setups
required when inserting job 𝑗 into position 𝑘 on machine 𝑖. In the
example, we have 𝜃 = 𝑟 + 𝑟 .
𝑟𝑖𝑗𝑘 𝑖𝑙𝑗 𝑖𝑗𝑙′

Computers and Operations Research 154 (2023) 106192J.C. Yepes-Borrero et al.
Fig. 3. Example of job insertion.
• 𝛾𝑠𝑖𝑗𝑘 is the setup time that should no longer be done when insert-
ing job 𝑗 into position 𝑘 on machine 𝑖. Note that if a job is inserted
into a partial solution, in general, the setup that was previously in
that position should no longer be done. In the example, we have
𝛾𝑠𝑖𝑗𝑘 = 𝑠𝑖𝑙𝑙′ .

• 𝛾𝑟𝑖𝑗𝑘 is the number of resources needed to do the setup that should
no longer be done when inserting job 𝑗 in position 𝑘 on machine
𝑖. In the example, we have 𝛾𝑟𝑖𝑗𝑘 = 𝑟𝑖𝑙𝑙′ .

It is important to note that there is a summation in the calculation
of 𝜆, this is because the insertion of a job on all the machines must be
tested. In short, with this value we are seeking sequences with a good
makespan which do not require too many resources.

5.2. Local search

After the constructive phase, a local search phase on the sequence
generated is applied. Given a sequence of jobs {1, 2,… , 𝑗 − 1, 𝑗, 𝑗 +
1,… , 𝑗′−1, 𝑗′, 𝑗′+1,… , 𝑛}, each pair of jobs 𝑗, 𝑗′ is swapped, in this way
creating the new sequence {1, 2,… , 𝑗−1, 𝑗′, 𝑗+1,… , 𝑗′−1, 𝑗, 𝑗′+1,… , 𝑛}.
𝜆𝑗𝑗′ is computed as explained before. The swap with lower 𝜆 value
(more negative) is kept and the process is repeated. If no swap has 𝜆
< 0, the local search ends. Algorithm 4 summarizes the local search
procedure.
Algorithm 4: Summary of the local search.
𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 ← 1;
while 𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 ← 1 do

𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 ← 0;
𝐵𝑒𝑠𝑡𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 ← 0;
foreach 𝑗 ∈ 𝑁 do

foreach 𝑗′ ∈ 𝑁 ⧵ {𝑗} do
Calculate 𝜆𝑗𝑗′ ;
if 𝜆𝑗𝑗′ < 𝐵𝑒𝑠𝑡𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 then

𝐵𝑒𝑠𝑡𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 = 𝜆𝑗𝑗′ ;
𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 ← 1;
𝐵𝑒𝑠𝑡𝑆𝑤𝑎𝑝 ← (𝑗, 𝑗′);

end
end

end
Do 𝐵𝑒𝑠𝑡𝑆𝑤𝑎𝑝;

end

5.3. Repairing phase

It is important to note that the solutions obtained in the constructive
phase are not necessarily feasible solutions. In fact, the aim in the con-
struction phase is to find solutions which are not necessarily feasible,
but rather solutions with shorter setup times and lower consumption of
resources in order to make it easy to repair them in the repairing phase.
The reader should note that, after the Local Search phase, solutions are
not necessarily feasible either.

In this repairing phase, the consumption of resources at each instant
𝑡, denoted as 𝑅𝑡, is evaluated. If 𝑅𝑡 > 𝑅max for some 𝑡 ∈ {0,… , 𝐶max},
the solution is not feasible and must be repaired. When an instant 𝑡 is
found in which the resource constraint is not satisfied, we postpone the
6

beginning of the setup by one time unit on the last machine that is do-
ing setups at instant 𝑡. Afterwards, the start time of the processing of the
jobs on the following machines must be evaluated because it is possible
that by postponing the beginning of a setup, the processing start time of
some jobs may also change. Remember that in the flowshop problem,
the start time of job 𝑗 on machine 𝑖 must be greater than the completion
time of that job on the previous machine 𝑖−1. After evaluating the start
time of the jobs on the following machines, the evaluation of resources
is repeated from the instant where the feasibility problem appeared.
This process is repeated until the resource constraints are met for all
𝑡 ∈ {0,… , 𝐶max}. Note that 𝐶max may change during the process and,
therefore, 𝐶max is updated at each iteration. Algorithm 5 summarizes
the repairing phase procedure.
Algorithm 5: Summary of the repairing phase.
𝑡 = 0;
while 𝑡 < 𝐶max do

Calculate 𝑅𝑡;
if 𝑅𝑡 > 𝑅max then

Postpone the beginning of the setup that is being done at
instant 𝑡 and starts the setup the latest;

Update 𝐶max;
else

𝑡 + +;
end

end

5.4. GRASP without resources in the constructive phase

The reader may note that, when computing 𝜆 (see Eq. (27)), the
information about the resources is considered by means of 𝜃𝑟𝑖𝑗𝑘 and 𝛾𝑟𝑖𝑗𝑘 .
The resulting algorithm is denoted as GRASP_R. In order to evaluate
if such a use of information about resources is effective in the final
GRASP algorithm, a different computation of 𝜆 is proposed in which
information about resources is not considered. In other words, in order
to find the best candidates for insertions (job 𝑗 and position 𝑘), only the
makespan of such an insertion is evaluated. To do this, the computation
of 𝜆 is modified in such a way that 𝜃𝑟𝑖𝑗𝑘 and 𝛾𝑟𝑖𝑗𝑘 are fixed to 1. In
this way, resource needs do not affect the assessment of each potential
insertion. The resulting algorithm will be denoted as GRASP_NR, and
will be tested together with the other algorithms in the next section.

6. Computational experiments

To assess the performance of the models and algorithms proposed in
this paper, an experimental study was performed accross a benchmark
of instances. First, the proposed benchmark is explained in detail and
then the results of each study are shown and discussed.

All experiments are run on virtual machines with 2 virtual proces-
sors and 8 GB of RAM memory each under Windows 10 Enterprise 64
Bits. The GRASP algorithm has been coded in Microsoft Visual Studio
2019 using C#. The MILP models have been coded in GAMS and solved
with CPLEX 12.10. Instances and complete results are available from
the authors upon request.

Computers and Operations Research 154 (2023) 106192J.C. Yepes-Borrero et al.
6.1. Benchmark of instances

We test our algorithms over two sets of instances, named Set_1
and Set_2 respectively. Both are based on the one used in Vallada and
Ruiz (2011), originally proposed for the unrelated parallel machine
scheduling problem with setups without additional resources. Those
instances have been adapted to the PFSR-S and completed by adding
the resource needs (𝑟𝑖𝑗𝑘) and the number of available resources (𝑅max).

Set_1 has instances with number of jobs 𝑛 ∈ {5, 10} and number of
machines 𝑚 = 2. We set 𝑅max = 𝑚 = 2. Each combination of (𝑛, 𝑚)
is replicated 10 times as follows, where 𝑈{𝑎, 𝑏} denotes an integer
uniform distribution between 𝑎 ∈ Z and 𝑏 ∈ Z.

• Setup times: 𝑠𝑖𝑗𝑘 ∈ 𝑈{1, 9}.
• Resource needs: 𝑟𝑖𝑗𝑘 ∈ 𝑈{1, 𝑅max} = 𝑈{1, 𝑚}.
• Job processing times: 𝑝𝑖𝑗 ∈ 𝑈{1, 99}.

Therefore, Set_1 consists of 2 × 10 = 20 instances, which are used to
analyse the performance of the exact algorithms proposed in Section 4.

Set_2 has instances with 𝑛 ∈ {10, 20, 30, 40, 50, 60}, 𝑚 ∈ {5, 10, 15, 20}
and four different distributions for the generation of setup times,
namely 𝑈{1, 9}, 𝑈{1, 49}, 𝑈{1, 99} and 𝑈{1, 124}. By combining the
six different values of 𝑛, the four different values of 𝑚 and the four
different distributions for the setup times we have 6×4×4 = 96 different
configurations. In all of them 𝑅max = 𝑚. Each configuration has been
randomly replicated 10 times, generating 𝑝𝑖𝑗 and 𝑟𝑖𝑗𝑘 as in Set_1. Then,
Set_2 has in total 96 × 10 = 960 instances.

In order to compare the proposed algorithms, the Relative Percent-
age Deviation (𝑅𝑃𝐷) is computed for each algorithm and instance,
according to (28).

𝑅𝑃𝐷 =
𝐶max(𝑎𝑙𝑔) − 𝐶max(𝑏𝑒𝑠𝑡)

𝐶max(𝑏𝑒𝑠𝑡)
⋅ 100, (28)

where 𝐶max(𝑎𝑙𝑔) is the makespan for the solution obtained with the
tested algorithm and 𝐶max(𝑏𝑒𝑠𝑡) is the best known makespan for the
instance.

6.2. Results of exact approaches

The set of instances Set_1 is used to analyse the performance of the
three exact methods: MILP1, MILP2 and TPE. These three approaches
can optimally solve instances with 𝑛 = 5 in less than 10 s. However 10-
job instances are much harder to solve optimally. After two hours of
computational time, the worst model is the time-index model (MILP1).
This model is not able to even find a feasible solution for instances
with 10 jobs. Therefore, only the performance of MILP2 and TPE will
be further analysed.

Table 3 shows for each 10-job instance the value of the objective
function (Z) and the lower bound (LB) for MILP2 and each step of
the TPE algorithm (pointing out that the solution after Step 1 is, in
general, infeasible). Both MILP2 and TPE algorithm were run for two
hours (7200 s) without proving any optimal solutions. It can be noted
that the average value of the solutions obtained by MILP2 is 351.9
(columns MILP2), whereas the average for the TPE algorithm is 328.2
(columns TPE step3), which implies an improvement of 7% on average.
However, it should also be highlighted that the third step of the TPE
algorithm did not improve on any of the solutions found in the second
step (columns TPE step2). This second step is a matheuristic (optimal
solution assuming the sequence is that given by the permutation in the
flowshop scheduling problem without resources). The first two steps
of TPE solve the corresponding MILPs to optimality (the lower bounds
are equal to the objective function values achieved). In addition, it was
shown that MILP2 achieved almost the same results in one hour of
CPU time as in two hours of CPU time, meaning that the model is not
expected to improve on results even if more CPU time was allowed.
MILP1 was not tested, as it did not even yield a feasible solution in the
7

time available.
Table 3
Objective function value (Z) and lower bound (LB) for MIPL2 and each step of TPE
method for 10-job instances. Both methods are run for two hours.

MILP2 TPE step1 TPE step2 TPE step3

Z LB Z LB Z LB Z LB

ID1 328 65 273 273 325 325 325 273
ID2 342 47 295 295 376 376 372 295
ID3 359 70 283 283 357 357 357 283
ID4 318 58 263 263 298 298 298 263
ID5 356 65 251 251 278 278 278 251
ID6 375 51 292 292 308 308 308 292
ID7 373 65 299 299 350 350 350 299
ID8 343 73 275 275 331 331 331 275
ID9 379 62 288 288 322 322 322 288
ID10 346 75 269 269 341 341 341 269

Average 351.9 63.1 278.8 278.8 328.6 328.6 328.2 278.8

Table 4
CPU time in seconds for each step of TPE method for 10-job instances.

TPE step1 TPE step2 TPE step3

ID1 605 5 6590
ID2 877 5 6318
ID3 693 4 6502
ID4 679 3 6518
ID5 588 3 6609
ID6 793 4 6403
ID7 937 4 6259
ID8 724 4 6472
ID9 642 3 6555
ID10 740 4 6456

Average 727.7 4.1 6468.2

Table 4 shows the computational time, in seconds, spent by each
step of the TPE algorithm. It can be observed that most of the CPU
time is devoted to the third phase (10% for the first phase, 0.05% for
the second and 89.95% for the third). While step 1 (finding the optimal
solution to the problem without resources) is relatively hard to solve,
and step 3 (improving the solution given by step 2) is very hard, we
note that step 2 (repairing the sequence given by step 1) is very fast. As
seen above, in the third phase the algorithm did not manage to improve
on the lower bound found in the first phase, nor the upper bound found
in the second. The solutions after step 2 are 7% better than the solutions
given by MILP2, using around 10.05% of the computational time.

6.3. Results of GRASP

The instances in Set_1 and Set_2 are solved with the two versions
of our GRASP algorithm, named GRASP_NR (which does not con-
sider information about resources during the constructive phase, see
Section 5.4) and GRASP_R (which does consider information about
resources during the constructive phase, see Section 5) respectively. For
both GRASPs the stopping criterion is CPU time, which depends on the
size of the instance and is equal to 𝑛 × 𝑚 seconds.

6.3.1. Calibration of the RCL size
It is necessary to calibrate the value of the 𝛼 parameter to run

both versions of the GRASP because it directly affects the size of the
restricted candidate list (RCL). With this aim, 96 instances from Set_2
(one for each combination of 𝑛, 𝑚 and the different distributions for the
setup times) have been selected as a calibration set.

Table 5 shows the average RPD for the different 𝛼 levels for both
algorithms (GRASP_R and GRASP_NR). We observe that there are dif-
ferences among the different 𝛼 levels, with 𝛼 = 0.25 being the best value
in both algorithms.

These values suggest that the value of 𝛼 does affect the average
𝑅𝑃𝐷. However, in order to check if these differences are statistically

significant, a statistical analysis is needed. An analysis of variance

Computers and Operations Research 154 (2023) 106192J.C. Yepes-Borrero et al.

i
r

p
t

M
f
t
s
s
p
o
i

6

i
a
G
d

7

s
f

Table 5
Average 𝑅𝑃𝐷s for different values of 𝛼 in both GRASP algorithms.

Algorithm 𝛼 = 0 𝛼 = 0.25 𝛼 = 0.5 𝛼 = 0.75 𝛼 = 1

GRASP_R 0.088 0.005 0.075 0.140 0.167
GRASP_NR 0.088 0.007 0.084 0.141 0.166

Table 6
Performance of GRASP_R and GRASP_NR in 5-job instances, with 𝛼 = 0.25.

Z* GRASP_R GRASP_NR

Z RPD (%) Z RPD (%)

ID1 198 205 3.5 255 28.8
ID2 209 211 1.0 368 76.1
ID3 204 217 6.4 358 75.5
ID4 123 125 1.6 196 59.3
ID5 138 140 1.4 269 94.9
ID6 178 204 14.6 351 97.2
ID7 227 231 1.8 370 63.0
ID8 161 180 11.8 276 71.4
ID9 224 238 6.3 389 73.7
ID10 150 166 10.7 217 44.7

Average 181.2 191.7 5.9 304.9 68.5

(ANOVA, see Montgomery 2019), cannot be applied, since for our data,
the assumptions of normality and homoscedasticity are not fulfilled.
Therefore, a non-parametric Kruskal–Wallis is performed (see Kruskal
and Wallis 1952). In this analysis, 𝑅𝑃𝐷 is the response variable and the
only factor considered is 𝛼 ∈ {0, 0.25, 0.5, 0.75, 1}, while a different test
is done for each algorithm. For both algorithms, the 𝑝-value obtained
n the test is less than 2 × 10−16. Therefore, the equality of means is
ejected, and we conclude that different levels of 𝛼 yield significantly

different average 𝑅𝑃𝐷s.
The previous analysis confirms that not all values of 𝛼 yield the same

average 𝑅𝑃𝐷. In order to find the best level for this factor, a non-
arametric Wilcoxon test (see Wilcoxon 1992) is performed between
he two values of 𝛼 that returned the lowest average 𝑅𝑃𝐷 in the sample

analysed, namely 𝛼 = 0.25 and 𝛼 = 0.5. For both algorithms, the 𝑝-value
obtained in this test is less than 2 × 10−16. Therefore, we can state that
there are significant differences between 𝛼 = 0.25 and 𝛼 = 0.5, with
𝛼 = 0.25 being the best value in both cases.

6.3.2. Performance of GRASP in Set_1 instances
Tables 6 and 7 show the performance of both GRASP_NR and

GRASP_R for each 5-job and 10-job instance respectively. In Table 6,
column 𝑍∗ is the optimal solution for each 5-job instance. In Table 7,
column 𝑍𝑏𝑒𝑠𝑡 is the best solution found by any of the following methods:

ILP2, TPE, GRASP_R and GRASP_NR. In both tables, the third and
ourth columns show the value of the objective function provided by
he GRASP_R and its RPD, and the fifth and sixth columns show the
ame for the GRASP_NR. Both tables show that including resource con-
umption information provides better solutions. In addition, GRASP_R
rovides 50% of the best solutions for 10-job instances in 20 s, as
pposed to the 7200 s employed by the exact algorithms introduced
n this paper.

.3.3. Performance of GRASP in Set_2 instances
Tables 8 and 9 show the average RPD (%) over the 960 instances

n Set_2 for GRASP_R and GRASP_NR, according to the number of jobs
nd machines respectively. As before, GRASP_R performs better than
RASP_NR. Figs. 4 and 5 show that as the problem size increases, the
ifference between the two methods becomes more evident.

. Conclusions and future research

In this paper, the aim is to reduce the gap between academic re-
earch and real-life scheduling in flow shop problems. The permutation
lowshop scheduling problem with additional resources during setups
8

Table 7
Performance of GRASP_R and GRASP_NR in 10-job instances, with 𝛼 = 0.25.

𝑍𝑏𝑒𝑠𝑡 GRASP_R GRASP_NR

Z RPD (%) Z RPD (%)

ID1 325 349 7.4 482 48.3
ID2 342 349 2.0 518 51.5
ID3 332 332 0.0 555 67.2
ID4 298 298 0.0 524 75.8
ID5 278 302 8.6 524 88.5
ID6 304 304 0.0 606 99.3
ID7 345 345 0.0 576 67.0
ID8 331 352 6.3 553 67.1
ID9 318 318 0.0 585 84.0
ID10 341 355 4.1 464 36.1

Average 321.4 330.4 2.9 538.7 68.5

Table 8
Average RPDs of GRASP_R and GRASP_NR depending on the number of jobs for
𝛼 = 0.25.

10 20 30 40 50 60 Total

GRASP_R 0.51 0.04 0.00 0.00 0.00 0.00 0.09
GRASP_NR 3.26 8.91 10.99 12.38 13.51 14.43 10.58

Table 9
Average RPDs of GRASP_R and GRASP_NR depending on the number of machines for
𝛼 = 0.25.

5 10 15 20

GRASP_R 0.10 0.07 0.07 0.12
GRASP_NR 7.99 11.17 11.42 11.74

(PFSR-S) is introduced for the first time. Efficient smart tools have been
designed to solve the PFSR-S: mixed integer programming models, an
exact algorithm and a metaheuristic. Simulation using a benchmark
adapted from the scheduling literature allows us to state that exact
methods do not perform well in this problem due to its enormous
complexity. On the other hand, a metaheuristic such as the GRASP
algorithm designed in this paper seems like a reasonable option, since
it yields good quality solutions in reduced computational times. For
the GRASP algorithm, it has been confirmed that information about
resources should be considered during the constructive phase, because
the solutions returned yield lower relative percentage deviations with
respect to best solutions known. Additionally, the size of the RCL
(controlled by means of a parameter 𝛼 ∈ [0, 1]), should be reduced,
but not by too much. More specifically, it has been empirically verified
that 𝛼 = 0.25 yields the best results in terms of relative percentage
deviations. Future research on this topic will focus on bi-objective
approaches to simultaneously minimize the makespan and the use of
resources.

CRediT authorship contribution statement

Juan C. Yepes-Borrero: Methodology, Software, Writing – review
& editing. Federico Perea: Conceptualization, Methodology, Software,
Writing – review & editing. Fulgencia Villa: Methodology, Data cura-
tion, Writing – review & editing. Eva Vallada: Methodology, Investi-
gation, Writing – review & editing.

Data availability

Data will be made available on request.

Acknowledgements

Juan C. Yepes-Borrero acknowledges financial support by Colfuturo
under program Crédito-Beca grant number 201503877 and from El

Instituto Colombiano de Crédito Educativo y Estudios Técnicos en el

Computers and Operations Research 154 (2023) 106192J.C. Yepes-Borrero et al.
Fig. 4. Average RPDs of GRASP_R and GRASP_NR depending on the number of jobs for 𝛼 = 0.25.
Fig. 5. Average RPDs of GRASP_R and GRASP_NR depending on the number of machines for 𝛼 = 0.25.
Exterior - ICETEX under program Pasaporte a la ciencia - Doctor-
ado, Foco-reto país 4.2.3, grant number 3568118. This research has
been partially supported by the Agencia Estatal de Investigación (AEI)
and the European Regional Development’s fund (ERDF): PID2020-
114594GB-C21; Regional Government of Andalusia: projects FEDER-
US-1256951, AT 21_00032, and P18-FR-1422; Fundación BBVA: project
NetmeetData (Ayudas Fundación BBVA a equipos de investigación
científica 2019). The authors are partially supported by Agencia Va-
lenciana de la Innovación (AVI) under the project ‘‘ireves (innovación
en vehículos de emergencia sanitaria): una herramienta inteligente de
decisión’’ (No. INNACC/2021/26) partially financed with FEDER funds
(interested readers can visit http://ireves.upv.es), and by the Spanish
Ministry of Science and Innovation under the project ‘‘OPRES-Realistic
Optimization in Problems in Public Health’’ (No. PID2021-124975OB-
I00), partially financed with FEDER funds. Part of the authors are
supported by the Faculty of Business Administration and Management
9

at Universitat Politècnica de València.
References

Allahverdi, A., 2015. The third comprehensive survey on scheduling problems with
setup times/costs. European J. Oper. Res. 246 (2), 345–378.

Allahverdi, A., Ng, C.T., Cheng, T.C.E., Kovalyov, M.Y., 2008. A survey of scheduling
problems with setup times or costs. European J. Oper. Res. 187 (3), 985–1032.

Amirghasemi, M., Zamani, R., 2017. An effective evolutionary hybrid for solving the
permutation flowshop scheduling problem. Evol. Comput. 25 (1), 87–111.

Baskar, A., Xavior, M.A., 2021. New idle time-based tie-breaking rules in heuristics for
the permutation flowshop scheduling problems. Comput. Oper. Res. 133, 105348.

Benda, F., Braune, R., Doerner, K.F., Hartl, R.F., 2019. A machine learning approach
for flow shop scheduling problems with alternative resources, sequence-dependent
setup times, and blocking. OR Spectrum 41 (4), 871–893.

Cheng, T.E., Gupta, J.N., Wang, G., 2000. A review of flowshop scheduling research
with setup times. Prod. Oper. Manage. 9 (3), 262–282.

Dubois-Lacoste, J., Pagnozzi, F., Stützle, T., 2017. An iterated greedy algorithm with
optimization of partial solutions for the makespan permutation flowshop problem.
Comput. Oper. Res. 81, 160–166.

Fanjul-Peyro, L., 2020. Models and an exact method for the unrelated parallel machine

scheduling problem with setups and resources. Expert Syst. Appl.: X 5.

http://ireves.upv.es
http://refhub.elsevier.com/S0305-0548(23)00056-4/sb1
http://refhub.elsevier.com/S0305-0548(23)00056-4/sb1
http://refhub.elsevier.com/S0305-0548(23)00056-4/sb1
http://refhub.elsevier.com/S0305-0548(23)00056-4/sb2
http://refhub.elsevier.com/S0305-0548(23)00056-4/sb2
http://refhub.elsevier.com/S0305-0548(23)00056-4/sb2
http://refhub.elsevier.com/S0305-0548(23)00056-4/sb3
http://refhub.elsevier.com/S0305-0548(23)00056-4/sb3
http://refhub.elsevier.com/S0305-0548(23)00056-4/sb3
http://refhub.elsevier.com/S0305-0548(23)00056-4/sb4
http://refhub.elsevier.com/S0305-0548(23)00056-4/sb4
http://refhub.elsevier.com/S0305-0548(23)00056-4/sb4
http://refhub.elsevier.com/S0305-0548(23)00056-4/sb5
http://refhub.elsevier.com/S0305-0548(23)00056-4/sb5
http://refhub.elsevier.com/S0305-0548(23)00056-4/sb5
http://refhub.elsevier.com/S0305-0548(23)00056-4/sb5
http://refhub.elsevier.com/S0305-0548(23)00056-4/sb5
http://refhub.elsevier.com/S0305-0548(23)00056-4/sb6
http://refhub.elsevier.com/S0305-0548(23)00056-4/sb6
http://refhub.elsevier.com/S0305-0548(23)00056-4/sb6
http://refhub.elsevier.com/S0305-0548(23)00056-4/sb7
http://refhub.elsevier.com/S0305-0548(23)00056-4/sb7
http://refhub.elsevier.com/S0305-0548(23)00056-4/sb7
http://refhub.elsevier.com/S0305-0548(23)00056-4/sb7
http://refhub.elsevier.com/S0305-0548(23)00056-4/sb7
http://refhub.elsevier.com/S0305-0548(23)00056-4/sb8
http://refhub.elsevier.com/S0305-0548(23)00056-4/sb8
http://refhub.elsevier.com/S0305-0548(23)00056-4/sb8

Computers and Operations Research 154 (2023) 106192J.C. Yepes-Borrero et al.
Fanjul-Peyro, L., Perea, F., Ruiz, R., 2017. Models and matheuristics for the unrelated
parallel machine scheduling problem with additional resources. European J. Oper.
Res. 260, 482–493.

Feo, T.A., Resende, M.G., 1995. Greedy randomized adaptive search procedures. J.
Global Optim. 6 (2), 109–133.

Fernandez-Viagas, V., Framinan, J.M., 2019. A best-of-breed iterated greedy for the
permutation flowshop scheduling problem with makespan objective. Comput. Oper.
Res. 112, 104767.

Fernandez-Viagas, V., Molina-Pariente, J.M., Framinan, J.M., 2020. Generalised acceler-
ations for insertion-based heuristics in permutation flowshop scheduling. European
J. Oper. Res. 282 (3), 858–872.

Fernandez-Viagas, V., Ruiz, R., Framinan, J.M., 2017. A new vision of approximate
methods for the permutation flowshop to minimise makespan: State-of-the-art and
computational evaluation. European J. Oper. Res. 257 (3), 707–721.

Figielska, E., 2009. A genetic algorithm and a simulated annealing algorithm combined
with column generation technique for solving the problem of scheduling in the
hybrid flowshop with additional resources. Comput. Ind. Eng. 56 (1), 142–151.

Figielska, E., 2014. A heuristic for scheduling in a two-stage hybrid flowshop with
renewable resources shared among the stages. European J. Oper. Res. 236 (2),
433–444.

Garey, M., Johnson, D., Sethi, R., 1976. The complexity of flowshop and jobshop
scheduling. Math. Oper. Res. 1, 117–129.

Janiak, A., 1988. General flow-shop scheduling with resource constraints. Int. J. Prod.
Res. 26 (6), 1089–1103.

Johnson, S.M., 1954. Optimal two- and three-stage production schedules with setup
times included. Nav. Res. Logist. Q. 1, 61–68.

Kruskal, W.H., Wallis, W.A., 1952. Use of ranks in one-criterion variance analysis. J.
Amer. Statist. Assoc. 47 (260), 583–621.

Kurdi, M., 2020. A memetic algorithm with novel semi-constructive evolution operators
for permutation flowshop scheduling problem. Appl. Soft Comput. 94, 106458.
10
Liu, W., Jin, Y., Price, M., 2017. A new improved NEH heuristic for permutation
flowshop scheduling problems. Int. J. Prod. Econ. 193, 21–30.

Lu, S., Liu, X., Pei, J., Pardalos, P.M., 2018. Permutation flowshop manufacturing cell
scheduling problems with deteriorating jobs and sequence dependent setup times
under dominant machines. Optim. Lett. 1–15.

Montgomery, D.C., 2019. Design and Analysis of Experiments, tenth ed. John Wiley &
Sons, New York.

Neufeld, J.S., Gupta, J.N., Buscher, U., 2016. A comprehensive review of flowshop
group scheduling literature. Comput. Oper. Res. 70, 56–74.

Öztop, H., Tasgetiren, M.F., Eliiyi, D.T., Pan, Q.-K., Kandiller, L., 2020. An energy-
efficient permutation flowshop scheduling problem. Expert Syst. Appl. 150,
113279.

Ríos-Mercado, R.Z., Bard, J.F., 1998. Computational experience with a branch-and-
cut algorithm for flowshop scheduling with setups. Comput. Oper. Res. 25 (5),
351–366.

Rios-Mercado, R.Z., Bard, J.F., 1999. A branch-and-bound algorithm for permutation
flow shops with sequence-dependent setup times. IIE Trans. 31 (8), 721–731.

Sadjadi, S., Aryanezhad, M., Mohsen, Z., 2008. The general flowshop scheduling
problem: Mathematical models. J. Appl. Sci. 8.

Vallada, E., Ruiz, R., 2011. A genetic algorithm for the unrelated parallel machine
scheduling problem with sequence dependent setup times. European J. Oper. Res.
211 (3), 612–622.

Wilcoxon, F., 1992. Individual comparisons by ranking methods. In: Kotz, S., John-
son, N.L. (Eds.), Breakthroughs in Statistics: Methodology and Distribution. Springer
New York, New York, NY, pp. 196–202.

Wu, P., Yang, Q., Chen, W., Mao, B., Yu, H., 2020. An improved genetic-shuffled
frog-leaping algorithm for permutation flowshop scheduling. Complexity 2020.

Yepes-Borrero, J.C., Villa, F., Perea, F., Caballero, J.P., 2020. GRASP algorithm for the
unrelated parallel machine scheduling problem with setup times and additional
resources. Expert Syst. Appl. 141, 1–12.

http://refhub.elsevier.com/S0305-0548(23)00056-4/sb9
http://refhub.elsevier.com/S0305-0548(23)00056-4/sb9
http://refhub.elsevier.com/S0305-0548(23)00056-4/sb9
http://refhub.elsevier.com/S0305-0548(23)00056-4/sb9
http://refhub.elsevier.com/S0305-0548(23)00056-4/sb9
http://refhub.elsevier.com/S0305-0548(23)00056-4/sb10
http://refhub.elsevier.com/S0305-0548(23)00056-4/sb10
http://refhub.elsevier.com/S0305-0548(23)00056-4/sb10
http://refhub.elsevier.com/S0305-0548(23)00056-4/sb11
http://refhub.elsevier.com/S0305-0548(23)00056-4/sb11
http://refhub.elsevier.com/S0305-0548(23)00056-4/sb11
http://refhub.elsevier.com/S0305-0548(23)00056-4/sb11
http://refhub.elsevier.com/S0305-0548(23)00056-4/sb11
http://refhub.elsevier.com/S0305-0548(23)00056-4/sb12
http://refhub.elsevier.com/S0305-0548(23)00056-4/sb12
http://refhub.elsevier.com/S0305-0548(23)00056-4/sb12
http://refhub.elsevier.com/S0305-0548(23)00056-4/sb12
http://refhub.elsevier.com/S0305-0548(23)00056-4/sb12
http://refhub.elsevier.com/S0305-0548(23)00056-4/sb13
http://refhub.elsevier.com/S0305-0548(23)00056-4/sb13
http://refhub.elsevier.com/S0305-0548(23)00056-4/sb13
http://refhub.elsevier.com/S0305-0548(23)00056-4/sb13
http://refhub.elsevier.com/S0305-0548(23)00056-4/sb13
http://refhub.elsevier.com/S0305-0548(23)00056-4/sb14
http://refhub.elsevier.com/S0305-0548(23)00056-4/sb14
http://refhub.elsevier.com/S0305-0548(23)00056-4/sb14
http://refhub.elsevier.com/S0305-0548(23)00056-4/sb14
http://refhub.elsevier.com/S0305-0548(23)00056-4/sb14
http://refhub.elsevier.com/S0305-0548(23)00056-4/sb15
http://refhub.elsevier.com/S0305-0548(23)00056-4/sb15
http://refhub.elsevier.com/S0305-0548(23)00056-4/sb15
http://refhub.elsevier.com/S0305-0548(23)00056-4/sb15
http://refhub.elsevier.com/S0305-0548(23)00056-4/sb15
http://refhub.elsevier.com/S0305-0548(23)00056-4/sb16
http://refhub.elsevier.com/S0305-0548(23)00056-4/sb16
http://refhub.elsevier.com/S0305-0548(23)00056-4/sb16
http://refhub.elsevier.com/S0305-0548(23)00056-4/sb17
http://refhub.elsevier.com/S0305-0548(23)00056-4/sb17
http://refhub.elsevier.com/S0305-0548(23)00056-4/sb17
http://refhub.elsevier.com/S0305-0548(23)00056-4/sb18
http://refhub.elsevier.com/S0305-0548(23)00056-4/sb18
http://refhub.elsevier.com/S0305-0548(23)00056-4/sb18
http://refhub.elsevier.com/S0305-0548(23)00056-4/sb19
http://refhub.elsevier.com/S0305-0548(23)00056-4/sb19
http://refhub.elsevier.com/S0305-0548(23)00056-4/sb19
http://refhub.elsevier.com/S0305-0548(23)00056-4/sb20
http://refhub.elsevier.com/S0305-0548(23)00056-4/sb20
http://refhub.elsevier.com/S0305-0548(23)00056-4/sb20
http://refhub.elsevier.com/S0305-0548(23)00056-4/sb21
http://refhub.elsevier.com/S0305-0548(23)00056-4/sb21
http://refhub.elsevier.com/S0305-0548(23)00056-4/sb21
http://refhub.elsevier.com/S0305-0548(23)00056-4/sb22
http://refhub.elsevier.com/S0305-0548(23)00056-4/sb22
http://refhub.elsevier.com/S0305-0548(23)00056-4/sb22
http://refhub.elsevier.com/S0305-0548(23)00056-4/sb22
http://refhub.elsevier.com/S0305-0548(23)00056-4/sb22
http://refhub.elsevier.com/S0305-0548(23)00056-4/sb23
http://refhub.elsevier.com/S0305-0548(23)00056-4/sb23
http://refhub.elsevier.com/S0305-0548(23)00056-4/sb23
http://refhub.elsevier.com/S0305-0548(23)00056-4/sb24
http://refhub.elsevier.com/S0305-0548(23)00056-4/sb24
http://refhub.elsevier.com/S0305-0548(23)00056-4/sb24
http://refhub.elsevier.com/S0305-0548(23)00056-4/sb25
http://refhub.elsevier.com/S0305-0548(23)00056-4/sb25
http://refhub.elsevier.com/S0305-0548(23)00056-4/sb25
http://refhub.elsevier.com/S0305-0548(23)00056-4/sb25
http://refhub.elsevier.com/S0305-0548(23)00056-4/sb25
http://refhub.elsevier.com/S0305-0548(23)00056-4/sb26
http://refhub.elsevier.com/S0305-0548(23)00056-4/sb26
http://refhub.elsevier.com/S0305-0548(23)00056-4/sb26
http://refhub.elsevier.com/S0305-0548(23)00056-4/sb26
http://refhub.elsevier.com/S0305-0548(23)00056-4/sb26
http://refhub.elsevier.com/S0305-0548(23)00056-4/sb27
http://refhub.elsevier.com/S0305-0548(23)00056-4/sb27
http://refhub.elsevier.com/S0305-0548(23)00056-4/sb27
http://refhub.elsevier.com/S0305-0548(23)00056-4/sb28
http://refhub.elsevier.com/S0305-0548(23)00056-4/sb28
http://refhub.elsevier.com/S0305-0548(23)00056-4/sb28
http://refhub.elsevier.com/S0305-0548(23)00056-4/sb29
http://refhub.elsevier.com/S0305-0548(23)00056-4/sb29
http://refhub.elsevier.com/S0305-0548(23)00056-4/sb29
http://refhub.elsevier.com/S0305-0548(23)00056-4/sb29
http://refhub.elsevier.com/S0305-0548(23)00056-4/sb29
http://refhub.elsevier.com/S0305-0548(23)00056-4/sb30
http://refhub.elsevier.com/S0305-0548(23)00056-4/sb30
http://refhub.elsevier.com/S0305-0548(23)00056-4/sb30
http://refhub.elsevier.com/S0305-0548(23)00056-4/sb30
http://refhub.elsevier.com/S0305-0548(23)00056-4/sb30
http://refhub.elsevier.com/S0305-0548(23)00056-4/sb31
http://refhub.elsevier.com/S0305-0548(23)00056-4/sb31
http://refhub.elsevier.com/S0305-0548(23)00056-4/sb31
http://refhub.elsevier.com/S0305-0548(23)00056-4/sb32
http://refhub.elsevier.com/S0305-0548(23)00056-4/sb32
http://refhub.elsevier.com/S0305-0548(23)00056-4/sb32
http://refhub.elsevier.com/S0305-0548(23)00056-4/sb32
http://refhub.elsevier.com/S0305-0548(23)00056-4/sb32

	Flowshop with additional resources during setups: Mathematical models and a GRASP algorithm
	Introduction
	Literature review
	Formal definition
	Exact algorithms
	MILP1: time index
	MILP2: bin packing
	Three-Phase Exact algorithm (TPE)

	GRASP Algorithm
	Constructive phase
	Computation of λ

	Local search
	Repairing phase
	GRASP without resources in the constructive phase

	Computational experiments
	Benchmark of instances
	Results of exact approaches
	Results of GRASP
	Calibration of the RCL size
	Performance of GRASP in Set_1 instances
	Performance of GRASP in Set_2 instances

	Conclusions and future research
	CRediT authorship contribution statement
	Data availability
	Acknowledgements
	References

