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Abstract—The development of robotic-assisted rehabilitation
exercises involving physical human-robot interaction requires
extreme care since an injured limb may be in physical contact
with the robot, so compliant behavior is imperative for these
tasks. Typical approaches involve force control schemes like
admittance controllers that allow humans to adapt the motion.
However, when the patient’s limb has limited mobility or is
potentially injured, unintentional forces may occur during the
robot’s trajectory that could be incompatible with these con-
trollers. This paper addresses a new way of generating compliant
trajectories for passive rehabilitation exercises, considering that
previous positions of the trajectory are attainable for the patient,
so reversing the trajectory is a safe operation. Since there is
no clear way to optimize such a goal due to the physiological
variability among patients, the condition of reversal is based
on imitation learning by taking the analogous healthy limb
of the patient as a reference and encoding the forces using
Gaussian Mixture Regression, and reversibility is accomplished
by means of Reversible Dynamic Movement Primitives. The
system allows for self-paced rehabilitation exercises by back-and-
forth movements along the trajectory according to the patient’s
reaction, and it has been successfully applied to a 4-DOF parallel
robot for lower-limb rehabilitation.

Index Terms—Rehabilitation robotics, Learning from demon-
strations, Reversible Dynamic Movement Primitives, Gaussian
Mixture Regression, Parallel robot.

I. INTRODUCTION

APPLICATIONS of robotics are evolving toward their use
in non-structured environments such as households or

hospitals. However, there is a big gap in domain knowledge,
safety, and dependability that needs to be solved, especially
in physical human-robot interaction settings, as stated in [1].
In the medical field, rehabilitation robotics is an emerging
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discipline that can involve either physical interaction or tele-
operation, and [2] describes some advances in this topic.

Within the area of rehabilitation with physical human-
robot interaction, many typologies of robots can be employed,
such as exoskeletons [3], [4], and parallel robots (PRs) [5].
Likewise, many types of exercises can be performed with the
assistance of robots, namely: active exercises, in which the
robot and the patient exchange forces; and passive exercises,
where the human needs to reach certain positions with no need
of force exchange. There are also other variants in-between,
such as active-assisted exercises [6].

Active exercises usually make use of force control [7],
from which impedance and admittance-like controllers are
the predominant ones for interaction between humans and
other surfaces [8]. Passive exercises seem simpler in terms
of control since they are meant for mobility augmentation by
progressively reaching a goal position, so a position controller
is apparently enough, and thus less literature is devoted to
this topic (for an example, see [9]). However, reaching those
positions may not be possible for the patient since the injury
may reduce their motor skills, making it impossible to extend
the limb beyond a limit position. In the attempt, the patient
will likely exert unpredictable forces on the robot, both in
magnitude and direction, which is incompatible with previ-
ously commented force controllers. There is an added problem
related to the morphological variability among patients, which
makes it hard to clearly define an objective suitable for all of
them, even with the same impairment. This is why we resort
to imitation learning to customize the goal to each patient.

This paper proposes the implementation of an algorithm for
passive exercises accounting for unexpected forces due to the
limited mobility of the patient. The method presented in this
study performs the reversal of the trajectory when such forces
from a human’s limb occur. It can be used either for arms or
legs and can be applied to any kind of robot that interacts with
limbs. This setup assumes that positions experienced earlier in
a trajectory are acceptable in terms of motor skills and effort
for the patient, so they won’t exert a considerable force on the
robot in a regular regime until the trajectory leads the limb
to a position incompatible with the injury. The baseline force
for comparison is obtained via imitation learning from the
analogous healthy limb, to extrapolate the features and allow
customization. The trajectories are defined beforehand by a
physiotherapist, so they are suitable for the rehabilitation.

A survey of imitation learning techniques can be found in
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[10]. One of the leading techniques is Dynamic Movement
Primitives (DMPs), which were pioneered by [11], [12] and
advanced in [13]. They are inspired in biological systems and
encode a reference signal using a set of differential equations
with attractor properties and an adjustable nonlinear term.

The major extension of DMPs that is exploited in this
paper is the possibility to add the reversibility property, which
is a recent application that was first suggested by [14] but
lacked asymptotic stability and reversibility, and [15] then
improved the formulation. The last constitutes the basis of
the reversibility mechanism proposed in this paper.

The trigger for reversing the trajectory in this work is de-
fined by comparing the force exerted by the injured limb with
a previously encoded threshold defined with the healthy limb,
given as a baseline using Gaussian Mixture Regression (GMR)
for the same exercise. This technique uses the properties of
the multivariate gaussian distribution [16], [17].

The connection between the Reversible DMP (RDMP) and
the GMR in this work is realized by means of the (reversible)
phase variable of the RDMP, which replaces time and keeps
the coordination during the exercise. When the limit encoded
in the GMR is exceeded by the patient’s force, the phase is
reverted according to a heuristic function until the patient can
relax the limb back and retry the exercise. This leads to self-
paced and automatic progress of the patient. The application
was tested on an actual lower-limb rehabilitation PR [18].

Therefore, the main contribution of this paper is the use
of force feedback to intelligently decide the direction of
the evolution of a predefined rehabilitation trajectory (i.e.,
backward or forward), and the velocity required to keep the
exercise adjustable for the motor skills of the user.

After the related work in Section II, we present a back-
ground in Section III comprising the formulation of the DMP
employed in our application and the GMR system. In Section
IV, the robotic architecture and the combined system are
explained and the experiment is defined. Section V shows the
results and evaluation of the experiment. Finally, Section VI
presents the conclusions.

II. RELATED WORK

Lower limb rehabilitation robotics is currently an active
research area. [19] discusses the importance, frequency, and
treatment of strokes from a robotic and control perspective.

The use of force feedback for changing the robot’s position
by imitating an impedance model was pioneered by [20]. Most
works on rehabilitation robotics use force feedback for any
variant of force-position control. An example is the Lokomat
robot for gait restoration described in [21].

Passive exercises have been reported for ankle rehabilitation
in [9] based on Iterative Learning Control (ILC) and a phase
stopping mechanism of the DMP. Using an emergency button,
they moved the robot to a rest position. However, the path to
reach that position was defined automatically by the algorithm
using a straight line, which may not be the best solution
since the patient may experience new compromising positions
along the path. Moreover, that stopping mechanism led to the
end of the exercise, removing the possibility of resuming it

and forcing them to start over. Freezing the position with an
emergy stop is also not an option since that ending position
is presumably inadmissible for the user.

Regarding other imitation learning techniques, [22] employ
probabilistic methods like GMR in humanoid robots to define
behaviors based on multiple demonstrations by extracting rele-
vant features from tasks to generalize the learned skills. In our
case, those features are extracted from several demonstrations
of forces exerted by the healthy limb. Another similar method
for learning features is Gaussian Process Regression (GPR), an
example of which was described by [23], where they combined
it with the DMP in tasks of reaching and grasping using vision.

III. THEORETICAL FOUNDATION

This Section provides an intuition about the two coexisting
mechanisms: RDMP and GPR. The former encodes the tra-
jectory tracked by the robot and allows flexible manipulation
of the trajectory by means of the phase variable. The latter
encodes the force profile of the healthy limb along different
demonstrations and allows establishing statistical criteria to
make decisions regarding the evolution of the trajectory.

A. Reversible Dynamic Movement Primitives

The attractor dynamics present in conventional Dynamic
Movement Primitives [13] prevents the system from achieving
reversibility. [15] proposed a new formulation based on a linear
system with a global asymptotically stable origin that can be
expressed for 1 degree of freedom (DOF) as follows:

ÿ = ÿx −D(ẏ − ẏx)−K(y − yx) (1)

where K,D define the dynamics of the system so that it is
overdamped or critically damped, and yx is the desired scaled
trajectory that is learned:

yx = ks(fp(x)− fp(x0)) + y0 (2)

where ks is the scaling factor defined as:

ks =
g − y0

fp(xf )− fp(x0)
(3)

The trajectory evolves from the initial position y0 to the
goal position g according to a canonical system governed by
the variable phase x, which monotonically decreases from its
initial value x(0) = x0 to a final value x(tf ) = xf . The
canonical system is usually selected as a first-order system:

τ ẋ = −αxx (4)

with τ the temporal factor equal to the temporal length of the
trajectory, and αx the positive time constant or exponential
decay. If x(0) = 1, the phase tends to 0 exponentially.

The term fp(x) encodes the scaled trajectory through a
linear combination of N radial basis functions dependent on
the phase as follows:

fp(x) =

∑N
i=1 wiΨi(x)∑N
i=1 Ψi(x)

(5)
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Ψi(x) = exp(−hi(x− ci)
2) (6)

where ci are the centers of the radial basis functions distributed
along the canonical system, and hi the bandwidths. The
weights wi are learned to best fit equation (2), usually em-
ploying regression techniques such as Locally Weighted Re-
gression (LWR), [24]. The derivatives of the phase-dependent
desired positions are obtained through equation (2): ẏx =
ksḟp(x), ÿx = ksf̈p(x), with:

ḟp(x) =
∂fp
∂x

ẋ (7)

f̈p(x) =
∂2fp
∂x2

ẋ2 +
∂fp
∂x

ẍ (8)

After learning the weights, the system can be set in motion
by integration of equations (1,4) from their initial conditions.
By default, the canonical system monotonically decreases,
reproducing the forward trajectory. Some existing mechanisms
slow down the trajectory during integration [25]. In this paper,
we propose a new slight modification in the canonical system
during integration by defining a relative velocity variable
ν ∈ [−1, 1] leaving the canonical system as:

τ ẋ = −ναxx (9)

The concept of relative velocity comes from the fact that
leaving ν = 1 makes the system evolve with the default ve-
locity (sampled from the references file at a given frequency),
and decreasing ν in absolute value decreases the velocity
as a fraction of the nominal. A negative relative velocity
makes the phase evolve in the opposite direction, and so
does the trajectory by virtue of the reversibility capabilities
of this formulation. Therefore, if ν = −1, the trajectory goes
backward at nominal velocity. Theoretically, the range of ν can
be of choice, but in our study, the nominal velocity will not
be exceeded. This novel approach offers much more control
than the slow-down mechanism.

With this new formulation, special care must be taken since
now the second derivative ẍ to plug in equation (8) must take
this new time-dependent variable into account:

ẍ = −αx

τ
(νẋ+ ν̇x) (10)

In this study, we obtain ν̇ as the discretized derivative by
calculating the increment between two samples: ν̇ ≈ νk−νk−1

Ts
,

where Ts is the sample time of the control system.
The phase x should also be clipped to the allowed range

x ∈ [x0, xf ] such that it lies within the valid region of the
definition of the trajectory. For several DOFs, each of them
has its associated DMP but shares the common phase and the
canonical system to allow synchronization.

By choosing a reasonable law for ν (without severe jumps),
the phase evolves without discontinuities, and stability is
ensured as described in [15]. The rest of the study focuses
on the definition of ν based on the forces exchanged between
the user and the robot.

B. Gaussian Mixture Regression

Gaussian mixture regression (GMR) is a technique that
uses the well-known properties of multivariate gaussian dis-
tributions to perform a probabilistic regression in an indirect
way: first, it encodes both inputs and outputs together with
a Gaussian mixture model (GMM), and then it performs
the regression fitting the model to the outputs using the
conditioning property of the gaussian distribution [16].

Given time-distributed input and output datapoints sIt, s
O
t ,

the data can be characterized by centers µi and covariances
Σi, with i = 1 . . .M and M the number of gaussians:

st =

[
sIt
sOt

]
µi =

[
µI
i

µO
i

]
Σi =

[
ΣI

i ΣIO
i

ΣOI
i ΣO

i

]
(11)

After obtaining the probability density function P(st) with
the GMM [26], the model is fed with new incoming input
data sIt to compute the multimodal conditional distribution
P(sOt |sIt) as follows:

P(sOt |sIt) =
M∑
i=1

hiN (sOi |µ̂O
i , Σ̂

O
i ) (12)

µ̂O
i = µO

i +ΣOI
i ΣI−1

i (sIt − µI
i ) (13)

Σ̂O
i = ΣO

i −ΣOI
i ΣI−1

i ΣIO
i (14)

hi =
πiN (sIt|µI

i ,Σ
I
i )∑M

m=1 πmN (sIt|µI
m,Σ

I
m)

(15)

where N (sIt|µI
i ,Σ

I
i ) is the multivariate normal distribution:

N (sIt|µI
i ,Σ

I
i ) = (2π)−

L
2 |ΣI

i |−
1
2

exp

(
−1

2
(sIi − µI

i)
TΣI−1

i (sIt − µI
i )

) (16)

with L defining the dimension of the gaussian distribution,
and πi are the mixing coefficients from the GMM. According
to equations (12-15), the output is characterized using M
means and covariances. Nevertheless, the use of a unimodal
approximation P(sOt |sIt) = N (sOt |µ̂O

t , Σ̂
O
t ) gives a better

understanding and can be realized employing the law of total
mean and variance:

µ̂O
t =

M∑
i=1

hiµ̂
O
i (17)

Σ̂O
t =

M∑
i=1

hi(Σ̂
O
i + µ̂O

i µ̂OT

i )− µ̂O
t µ̂OT

t (18)

The choice of GMR over GPR lies in the way they interpret
the variance: while GMR contemplates the variability in the
training data, GPR measures the degree of uncertainty, i.e.,
the presence or absence of data in the region around the
query point (see [16]). In this study, we collect different
demonstrations with shared input data, and the variability
among the outputs is processed, so GMR is more suitable.
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(a) (b)

Fig. 1: (a) PR for rehabilitation and force sensor, and (b)
experimental setup.

IV. SELF-PACED PASSIVE REHABILITATION SYSTEM

This Section describes the 4-DOF PR and the proposed
mechanism combining the previous ideas to perform self-
paced passive rehabilitation exercises.

A. 4-DOF parallel robot for lower-limb rehabilitation

The 4-DOF PR was designed at the Universitat Politècnica
de València [18] for lower-limb rehabilitation, involving tasks
such as flexion-extension, internal-external rotation, and hip
flexion. Its four DOFs include two translational movements
(Xm, Zm) in the tibiofemoral plane, one rotation (ψ) around
the coronal plane, and one rotation (θ) around the tibiofemoral
plane (see Figure 1a).

Its structure is 3UPS+RPU, where the letters U, P, S, and
R stand for universal, prismatic, spherical, and revolute joints,
respectively, and the underline format indicates the actuated
joints. Therefore, the connection between the mobile and fixed
platform involves three external limbs in UPS configuration
and a central limb in RPU configuration. The four actuated
(prismatic) joints are collected in a vector q.

The interaction between the user and the robot is measured
with an FTN-Delta sensor manufactured by Schunk, which is
attached on top of the mobile platform. It provides six-axis
force/torque measurements, and its streaming data is sent via
UDP. The user’s foot can be attached to the sensor using a
boot or some straps. Figure 1b shows the complete system.
Since the experiments are performed with a healthy user, the
orange strap allows the simulation of mobility constraints by
exerting external forces, affecting the passive exercise.

The system is implemented in an industrial computer using
Robot Operating System 2 (ROS2) and the C++ programming
language, with a sample time of Ts = 10ms.

B. Description of the system

This work proposes a novel mechanism to perform passive
rehabilitation exercises involving a lower limb with potentially
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+ -+ -

F/T SENSOR

ROBOT
CONTROL

COLLECT 

DATA

COLLECTED 

DATA

GMR

μF(x), σF(x)

GMR
+ -+ -
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Fig. 2: Parts of the experiment. Stage 1: demonstrations using
the healthy limb. Stage 2: offline data processing. Stage 3:
performance using the limb with mobility constraints.

reduced mobility. The robot is aware of such reduced mobility
by comparison with the performance using the analogous
healthy limb through several demonstrations. To this end, the
exercise is divided into three stages (see Figure 2). The input
is a desired trajectory in cartesian coordinates, designed with
the help of a physiotherapist:

pd = [Xmt, Zmt, θmt, ψmt]
T
t=1 (19)

where t = 1 . . . T are the samples. The cartesian positions
can be converted to joint coordinates: qd = IK(pd), where
IK(·) is the Inverse Kinematics operator.

1) Stage 1: The first step involves performing the passive
exercise with the healthy limb. Being passive does not mean
that the interaction forces are zero, since the resting limb at-
tached to the robot exchanges forces (e.g., gravity) depending
on the position of the platform. Moreover, even with the limb
relaxed, the interaction forces from one iteration to the next
change since muscle relaxation is also subject to variability,
provoking the appearance of residual forces that can depend
on the position, but also vary from one patient to another. To
capture this force variability, n demonstrations are employed.

In this stage, the joint trajectory qd is first encoded with
the RDMP, and then it outputs the current phase x and
reference to follow qref (x) (note that we make the distinction
between the initial desired trajectory qd from the file and the
actual trajectory that is tracked qref , subject to change by
the RDMP). The position tracking is performed by a simple
joint PID control, which accepts the reference and measured
positions (qmeas) and outputs the control action.

During this stage, the trajectory is not reversed, and the
measured force is collected, composed of six terms expressed
in cartesian coordinates with respect to the mobile platform:
Fmeas = [Fx, Fy, Fz,Mx,My,Mz]

T (blue vectors in Figure
1a). These are calibrated (set to 0) at the beginning of each
experiment to avoid drifts. From these data, we establish a
scalar indicator of the force F as follows:

i) The torques are mapped to forces by using equivalent
distances leqx , leqy , leqz which, according to Figure 3,
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Fig. 3: Mapping of measured torques to equivalent forces in
each axis. Lengths are in red, torques are in cyan, equivalent
forces are in dark blue.

are equal to the length of the foot, the width of the foot,
and the length of the tibia, respectively. These allow
us to obtain the equivalent forces due to the torques:
Feqx =

My

leqz
, Feqy = Mz

leqx
, and Feqz = Mx

leqy
.

ii) The norm of the new vector of forces F =
||[Fx, Fy, Fz, Feqx , Feqy , Feqz ]

T || is calculated and se-
lected as a representative scalar of the overall force.

The use of the norm in calculating the scalar representative
force makes the algorithm robust to movements or forces that
are symmetric but opposite in direction between the healthy
and injured limb, such as the rotation ψ around the coronal
plane. Additionally, the sensor calibration at the beginning of
the experiment disregards the gravitational force of the limb,
providing extra robustness in cases of little variations in limb
weight. Together, these measures ensure the valid comparison
of the representative forces of both limbs.

Using the norm has another benefit, since it reduces all
force components into a single effect that is straightforward
to understand and implement (as opposed to considering all
individual forces separately). This simplicity is supported by
the fact that we are dealing with passive exercises, which al-
lows the design of an algorithm that can accurately distinguish
between normal and abnormal forces using this metric.

On the other hand, the conversion from torques to forces in
the first step allows us to create a standardized set of variables
with consistent units. This way, we are able to work with a
single variable (force) throughout the entire analysis.

The phase x of the RDMP and the representative force F
of the n demonstrations are stored for processing in Stage 2.

2) Stage 2: This offline step builds a GMR model with
M gaussians using the collected data. Traditionally, the input
to the GMR is the time variable. However, this would fail
since, in the case of trajectory reversal, time would keep
evolving forward while the trajectory progresses backward,
leading to the desynchronization between the position and the
corresponding force outputted by the GMR.

To achieve the desired synchronization, the encoded input
is the phase x, so sIt = x, sOt = F . After the training is
performed according to equations (12-18), the model is able

to output the mean µ̂O
t = µF and standard deviation Σ̂O

t = σF
when fed with the phase.

The GMR does not include the velocity as an input because
the velocities used in rehabilitation with robotic devices are
typically not high enough to require consideration of velocity-
dependent or inertial forces. Moreover, including velocity
as an input would require an increase in the number of
demonstrations to compensate for the added dimension.

3) Stage 3: This is the final stage that is performed with
the impaired limb. The RDMP works with the same trajectory
and outputs a joint reference to be tracked by the robot as
before, but this time it receives the relative velocity as input
ν, which allows it to control the evolution of the trajectory.
The definition of ν depends on:

i) The output of the learned GMR model, (i.e., the ex-
pected force µF and its uncertainty σF ).

ii) The force read from the sensors, which is processed as
in Stage 1 to obtain the representative force F .

iii) The previous value of the output νk−1.

The law to define νk is based on the calculation of the z-
score, which reveals its distance from the mean, measured in
standard deviation units:

zF =
F − µF

σF
(20)

The algorithm sets a threshold for this number zlim and
calculates the output νk with the following law:

νk =


max(νk−1 − c1ν

2
k−1−

c2(zF − zlim),−1), if |zF |≥ zlim

min(νk−1 + c3ν
2
k−1 + c4, 1), otherwise

(21)

The first case occurs when the force exerted by the impaired
limb is abnormally different from those of the demonstrations.
Then, the relative velocity decreases (clipped to −1, corre-
sponding to complete reversal) quadratically with respect to
the previous velocity, weighted with the coefficient c1, and
linearly with respect to the excess of force with coefficient c2.
When the force is within the limit (second case) ν tends to
increase up to a maximum of 1, but now the term related to
the force disappears because it fulfills the threshold, leaving a
constant c4. The constants are positive.

We have chosen to use the quadratic term because we want
the robot to have a slow velocity during the transitions, like
when it switches from moving backward to moving forward.
This gives the user a few seconds to adapt. The sensitivity
zlim is also variable to adjust the trigger of the mechanism.

Our algorithm does not set a limit on the duration of the
exercise. Instead, it allows the physiotherapist to determine the
appropriate endpoint for each session based on the patient’s
individual needs and progress. This endpoint can be based on
various factors such as the patient’s physical capacity, level of
fatigue, degree of completion of the exercise, or pain tolerance.
This procedure also offers a self-paced passive rehabilitation
exercise since the user can go back and forth as many times
as needed without external intervention.
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Fig. 4: Cartesian coordinates of the knee extension exercise.
The arrow indicates the starting point and evolution of the
exercise.

C. Trajectory and exercise

The chosen exercise for this experiment is a knee extension
in the tibio-femoral plane, which uses the translations Xm

and Zm and has a semicircumferential shape, starting at
[Xm, Zm] = [−0.18, 0.9]T and finishing at [Xm, Zm] =
[0.0, 0.9]T (see Figure 4). The orientations θ and ψ are 0.
The nominal velocity is 0.015 m

s , and the total duration of the
trajectory is 21.5 s.

The trajectory is encoded using n = 5 demonstrations with
a GMR model with M = 8 states. These values were selected
empirically according to the duration of the trajectory and the
variability of the demonstrations. For the reproduction with
the impaired limb, we set the value of zlim to 5 to ensure
that the robotic device changes direction only when the force
is significantly abnormal. We first determined the appropriate
order of magnitude based on the concept of the z-score applied
to a pure gaussian distribution. However, since our method
involves a combination of gaussians, we then extrapolated
this concept and empirically tuned the value through several
experiments with the healthy limb, ensuring that the robot
did not change direction unexpectedly. This approach strikes
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Fig. 5: Original trajectory expressed in temporal domain for
the coordinates a) Xm and b) Zm.

a good tradeoff by ensuring that the trajectory is not reversed
during normal conditions but the robot responds promptly
when the force becomes abnormal.

The value of ν0 was set to 1, indicating that it starts with
the nominal velocity, and the constants for the νk law are
c1 = 0.05, c2 = 0.01, c3 = 0.005, c4 = 0.001. Note that
the constants c1 and c2 are 10 times higher than c3 and c4.
The intended effect is to make the dynamics of the transition
from forward to backward movement faster than the opposite
situation. This is because when the robot is going forward and
the force exceeds the limit, the robot should quickly change
the direction since the position may not be compatible with the
patient’s motor skills. On the contrary, when the robot changes
from backward to forward motion, the slow dynamics allows
the patient to space out the repetitions.

Regarding the parameters of the RDMP, the spring coeffi-
cient (K) and damping (D) were assigned values of 1.0 and
2.0, respectively, making the system critically damped. The
time constant of the canonical system αx was set to 2.0. The
chosen number of basis functions to accurately encode the
trajectory is N = 1000. The centers of the basis functions
were defined as ci = exp(−αx

i−1
N−1 ). The bandwidths hi were

constant for all the basis functions, with a value of 0.75. We
provide unitless values since it is a virtual system.

The experiment was carried out with one healthy male
subject, who was informed about the experiment and provided
his consent. He performed Stage 1 of the experiment with
the right lower limb, and Stage 3 with the left limb, with a
simulated muscular impairment using a strap (Figure 1b).
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Fig. 6: a) Force demonstrations during stage 1 and result of
the predictions using GMR (in terms of mean and standard
deviation). The input is the phase x, plotted in b).
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V. RESULTS AND EVALUATION

Figure 5 depicts the cartesian reference and measured
position of the translational coordinates through time during
the initial demonstrations of Stage 1 (the plot corresponds to
one of them), so they are not altered and evolve according to
the reference file to produce the spatial trajectory of Figure 4.

The forces and the phase of the system are collected for
the 5 demonstrations. Figure 6a represents the value of F
for all the demonstrations and the mapped µF and threshold
using σF . Specifically, the green shaded region corresponds
to the separation of the amount zlimσF from the mean, and
expresses the limit of exerted force tolerated before changing
the direction. The estimated gaussians of the underlying GMM
model are also depicted, where the shape and orientation of
the ellipses are defined by the variances and covariances of the
input phase x and output force F jointly. The clustering of the
gaussians allows for the probabilistic prediction of forces after
learning the model, by combining the effect of all the gaussians
according to equations (12-18). The centers are dependent on
the phase x, but they have been mapped to the time domain for
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Fig. 7: a) Evolution of the exerted force in the experiment of
Stage 3, and comparison with the output of the GMR model.
b) Calculation of the z-score zF , together with the thresholds.
c) Evolution of the phase resulting from the exerted forces.

visualization purposes. The result shows that the 8 gaussians
are approximately equidistant in time to better capture the
variability of the force along the complete interval. The phase
x used as input by the GMR is also depicted in Figure 6b. It
exhibits the exponential behavior from the first-order system.

After learning the model, the trajectory is performed with
the impaired limb. Using this setup, the user met mobility
restrictions in several stages of the trajectory, and a total
of three attempts were performed in which the user exerted
force greater than the limit (Figure 7a), activating the reversal
mechanism. Figure 7b shows the force exceedance in terms
of the z-score zF , which reaches values around 15 during the
execution. Finally, Figure 7c plots the evolution of the phase,
which gets reversed when the force goes out of range.

The reversal mechanism becomes clearer observing the
cartesian coordinates along the new trajectory, which are
depicted in Figures 8a-b, where the new Xm and Zm are
plotted (both references and measurements) together with the
changes in direction caused by the forces exchanged during
the trajectory. The black vertical lines delimit these changes.

Figure 8c shows the effect of the relative velocity ν on
the system. Starting from a value of 1 (forward evolution
with nominal velocity), at instant t = 16 s (when the force

0 20 40 60 80

Time (s)

-0.2

-0.1

0

X
m

 (
m

)

F B F B F B F

ref

meas

Forward (F), Backward (B)

(a)

0 20 40 60 80

Time (s)

0.82

0.84

0.86

0.88

0.9

0.92

Z
m

 (
m

) F B F B F B F

ref meas Forward (F), Backward (B)

(b)

0 20 40 60 80

Time (s)

-1

-0.5

0

0.5

1

 (
u

n
it

le
s
s
)

(c)

Fig. 8: Evolution of the cartesian references and measured
positions a) Xm and b) Zm for the exercise of Stage 3 with the
corresponding progress (forward or backward), and c) relative
velocity causing the inversion.
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exceeds the threshold according to Figure 7) the velocity drops
immediately down to -1 in just one second, obeying the law of
equation (21). This allows a quick trajectory reversal to meet
the user mobility requirements, and this immediate effect can
be seen in the transitions F → B of Figures 8a-b. The transition
B → F, however, is much slower and it starts when the patient
recovers during the backward motion, which is detected by
a decrease in the exerted force to lie within the limits. The
convenient quadratic effect of equation (21) is clearly visible
since the robot tends to slow down for a larger time interval
around the point of null velocity, giving the user some time
until next attempt.

A video with the execution of this exercise can be found in
the URL: http://roboprop.ai2.upv.es/wp-content/uploads/202
3/02/DMP retroceso.mp4

VI. CONCLUSION

This paper presented a novel approach to performing passive
rehabilitation exercises that provides the flexibility to execute
self-paced compliant trajectories, where the compliance comes
from the possibility of reversing the trajectory to keep the
movements compatible with the user’s motor skills. This
methodology is robot-agnostic as long as it interacts with
human limbs, with straightforward extrapolation.

The reversibility was achieved through the RDMP, which
inherently incorporates this mechanism. In this study, we
worked with the novel concept of relative velocity applied to
the RDMP, which allows controlling the desired velocity, and
the rest of the work focused on how to define it.

The chosen approach involves the comparison of the force
exerted with the impaired limb with a customized baseline for
each patient. This baseline comes from the execution of the
same exercise with the analogous healthy limb, which allows
extracting features regarding the variability through several
force demonstrations and the encoding of the data using GMR,
which is linked to the RDMP through its phase.

We also discussed the selection of the relevant parameters
that characterize the reversal to achieve the intended behavior,
and the results show how the system successfully reacts to the
mobility restrictions of the user during the exercise.

In future research, some other features can be implemented
for diagnosis. For example, a score based on the produced data
can be designed to assess the evolution of the patient, together
with other unused signals such as electromyography. Also, the
thresholds and parameters of our algorithm can turn variable
among attempts or experiments to account for the changes in
the performance of the patient. Finally, an emergency button
held by the patient or the physiotherapist can be added to our
system for increased safety during rehabilitation, reversing the
trajectory in case of any misbehavior.
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