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Abstract 
Recent technological advances have eased the collection of big amounts of 
data in many research fields. In this scenario density estimation may represent 
an important source of information. One dimensional density functions 
represent a special case of functional data subject to the constraints to be non-
negative and with a constant integral equal to one. Because of these 
constraints, a naive application of functional data analysis (FDA) methods 
may lead to non-valid results. To solve this problem, by means of an 
appropriate transformation densities are embedded in the Hilbert space of 
square integrable functions where standard FDA methodologies can be 
applied. 
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1. Introduction 

This work deals with density modeling using functional data analysis. (Ramsay and 
Silvermann, 2005). In scenario with big amounts of data collection, probability density 
functions can provide more information than single summary statistics.  

One of the main goals in statistical data analysis is to associate the change of (a function of) 
some response variable y with a set of covariates x. The most common tool for this is mean 
regression which focuses on the conditional expectation of y given x. Quantile regression 
models investigate specific quantiles of the conditional distribution of the response. By 
modelling the entire probability distribution of the response, density regression methods 
consider the impact of the covariates on the entire distribution. Densities could represent the 
data atoms of interest such as yearly income distribution, population age and mortality 
distributions across different countries. 

Probability density functions (pdfs) represent a special case of functional data since they must 
satisfy the constraints of being non-negative everywhere and present a constant integral equal 
to one. Standard functional data analysis (FDA) methods cannot be naively applied without 
considering such constraints. To address this issue several strategies can be found in the 
literature. 

One strand of literature represents densities as elements of the so-called Bayes space starting 
from the Aitchison geometry valid for compositional data (Aitchison, 1982). In this setting, 
pdfs are represented by a centred log-ratio transformation which represents an isometric 
isomorphism between the Bayes space of pdfs and the Hilbert space (Hron et al, 2016).   

Another approach is envisaged by Petersen and Muller (2016) where the pdfs are mapped 
into a linear functional space through a suitably chosen transformation. Established methods 
for Hilbert space valued data can be applied to the transformed functions and the results are 
moved back into the density space by means of the inverse transformation. Examples of 
transformations are the log-hazard transformation and the log-quantile density 
transformation. The view is completed by considering the objected-oriented analysis of 
densities where spaces are equipped with metrics such as the Wasserstein or the Fisher-Rao 
providing a manifold structure on probability distributions. Within this framework, tangent 
space structures need to be defined to facilitate computations (Petersen and Muller, 2019). 

2. Density functions as constrained functional data 

A functional variable is defined as a random variable f, taking values in an infinite functional 
space, the Hilbert space of square integrable functions equipped with the usual inner product 
and norm: 
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𝐻(𝑡) = {𝑓: 𝑇 → ℝ  𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 ∫𝑓(𝑡)2 ⅆ𝑡

𝛤

< ∞}   (1) 

with ⟨𝑓, 𝑔⟩ = ∫ 𝑓(𝑡)𝑔(𝑡) ⅆ𝑡 and ‖𝑓‖ = {∫ 𝑓2(𝑡) ⅆ𝑡
𝑇

}
1

2. 

We are interested in the case where the observed functions are density functions. We denote 
with D the functional space of density functions. In this space functions are positive and 
integrate up to 1 as described in equation (2): 

 
𝐷(𝑡) = {𝑓: 𝑇 → ℝ  𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑓(𝑡) > 0 and ∫𝑓(𝑡) ⅆ𝑡

𝛤

= 1}   (2) 

 

We assume the data consists of a sample of n random density functions. In many situations, 
the densities themselves will not be directly observed. Instead, a sample of data that are 
generated by the random density is available. Thus, there are two random mechanisms at 
work: the first generates the sample of densities and the second generates the samples of data. 
Typically the first step in working with functional data is  the use of basis expansion and 
penalized smoothing. Estimation is developed, for example, in the natural cubic splines 
framework:   

 
∑[𝑦𝑗 − 𝑓(𝑡)]

2

𝑗

+ 𝜆 ∫[𝐷2𝑓(𝑡)]2ⅆ𝑡 (3) 

where 𝑦𝑗 are the observed discrete data points which must be converted to a functional data 
object f. The constant lambda is the smoothing parameter with larger values resulting in 
smoother fits. Now, imagine imposing on the estimated function f some constraints. The 
constrained curves cannot be treated as vectors in the Hilbert space since a plain basis 
expansion of the curves does not guarantee the fulfilment of the constraints. In other words, 
the problem is to simultaneously smooth nonlinear structure in data and incorporate 
constraints. 

3. The w-transform 

Let Y have an un unknown positive density function. Following Ramsay and Silvermann 
(2005) we can write its log-density function in the form 𝑤 − 𝐶(𝑤) where 

 
𝐶(ℎ) = 𝑙𝑜𝑔 ∫ 𝑒𝑥𝑝[𝑤(𝑦)]ⅆ𝑦 (4) 

The corresponding log-likelihood function is given by  
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 𝑙(𝑤, 𝒀) = 𝑤(𝒀) − 𝐶(𝑤) (5) 

Note that 𝑤(𝒚) is not constrained in any way. In this way a constrained problem is 
transformed into an unconstrained one that reduces to the modelling of 𝑤(𝒚). The modeling 
of 𝑤(𝒚) can be obtained by using a flexible nonparametric estimator based on spline basis 
functions. Once the estimator is obtained, we are able to map the densities into the Hilbert 
space since the functions 𝑤(𝒚) are free of constraints. Our proposal is to apply linear FDA 
methods in the transformed linear space and eventually results on the linear space are mapped 
back into the density space by means of an appropriate inverse map. 

4. Applications 

In many application fields, densities are the data atoms of interest such as yearly income 
distribution, population age and mortality distributions across different countries or 
distribution of cross-sectional financial returns of different firms or different markets. 

Data analysis frequently concerns itself with associating the change in a function of some 
response variable y with a set of covariates x. The most common tool for this is mean 
regression which focuses on the conditional expectation of y given x. This prevents inference 
about other parts of the conditional density. Quantile regression models investigate specific 
quantiles of the conditional distribution of the response. In such circumstances, individual 
quantiles are being targeted as proxies of the distribution. By modelling the entire probability 
distribution of the response, density regression methods perform a substantially harder task 
than mean and quantile regression. In doing so, one can consider the impact of the covariates 
on the entire distribution.  

A naïve application of the function-on-scalar regression or the function-on-function 
regression model (Ramsay and Silvermann, 2005) would not guarantee the estimated 
response to fulfill the definition of a density. Similarly, to compositional regression (Talskà 
et al., 2018), an alternative could be applying the functional regression model on the 
unconstrained functions w(t) in eq. (5) and then the parameters estimates are mapped back to 
the density space applying the inverse transformation. In contrast to the estimates resulting 
from the naïve functional regression model, the estimates are bona fide density function.  
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