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Abstract: In wireless multimedia networks, the Internet of Things (IoT) and visual sensors are used
to interpret and exchange vast data in the form of images. The digital images are subsequently
delivered to cloud systems via a sink node, where they are interacted with by smart communication
systems using physical devices. Visual sensors are becoming a more significant part of digital
systems and can help us live in a more intelligent world. However, for IoT-based data analytics,
optimizing communications overhead by balancing the usage of energy and bandwidth resources is
a new research challenge. Furthermore, protecting the IoT network’s data from anonymous attackers
is critical. As a result, utilizing machine learning, this study proposes a mobile edge computing
model with a secured cloud (MEC-Seccloud) for a sustainable Internet of Health Things (IoHT),
providing real-time quality of service (QoS) for big data analytics while maintaining the integrity
of green technologies. We investigate a reinforcement learning optimization technique to enable
sensor interaction by examining metaheuristic methods and optimally transferring health-related
information with the interaction of mobile edges. Furthermore, two-phase encryptions are used to
guarantee data concealment and to provide secured wireless connectivity with cloud networks. The
proposed model has shown considerable performance for various network metrics compared with
earlier studies.

Keywords: data analytics; machine learning; internet of health things; sustainable network; security;
data hiding; healthcare

1. Introduction

With the integration of IoT technologies and mobile networks, significant improve-
ments have been made in developing smart applications [1–3]. These applications en-
hance communication networks’ performances in various industries, including healthcare,
transportation, security monitoring, etc., in terms of coverage, costs, scalability, and data
gathering. Mobile computing supports IoT applications in healthcare, contributes to current
and future research projects brings data security among healthcare devices, and influences
IoT-based systems [4–6]. However, the majority of solutions are now having difficulties
with dependability and long-term connectivity for healthcare systems. Disease preven-
tion is a crucial component of healthcare due to the aging population and the increase in
chronic patients. The medical sensors sense the patients’ health and transmit the gathered
data to data servers on the cloud for processing and analysis [7–9]. Sensor-produced data
can assist patients and medical experts in better understanding symptoms, and promptly
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identifying needed treatments. However, the resource constraints of sensor networks
significantly increase the need for efficient solutions to route critical data and make reliable
decisions [10–12]. Moreover, securing IoT-based healthcare systems against internal or
external network threats is also a demanding research challenge. Many researchers have
offered cloud-based security algorithms for smart applications, increasing data scalability
with efficient information retrieval [13–15]. Big data in the context of e-health are trans-
ported from one site to another by utilizing a wireless communication and cloud network
in an IoT-based teleradiology system [16–18], as shown in Figure 1. This allows hospitals to
obtain quick input from radiologists, who perform the same responsibilities as if they were
on-site. Various optimization solutions for various data processing processes are constantly
being described in state-of-the-art techniques [19–21] for IoT networks. Because these small
sensor nodes constitute the backbone of today’s IoT-based applications [22–24], the primary
purpose of constraint networks is to save energy. On the other hand, these nodes perform
various services, such as data sensing, transmission, and aggregation, and operate in dan-
gerous settings solely on battery power. As a result, to extend the network’s operational
period, we must investigate and develop appropriate routing solutions. Medical data
security across unstable networks is also a prominent research topic. Because data are sent
across insecure pathways, hostile nodes can interfere and cause the communication system
to be compromised [25–27]. According to a recent study, solutions for IoT devices are
efficient and environmentally friendly, however, most of them need further improvement
in terms of energy and computing overheads. Additionally, reducing route breakages in
the presence of movable edges is seen as a critical challenge for prompt data response.
Furthermore, IoT sensors are inextricably linked to resource usage and play an essential role
in governing green technological systems. An efficient and secure mobile edge computing
solution must be proposed to reduce power consumption in communication networks
while preserving cloud computing for digital systems.
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Figure 1. IoT-based communication system with e-health cloud.

In summary, the MEC-Seccloud model delivers the following contributions:

i. It employs a reinforcement learning technique to explore QoS and assist green com-
puting technologies;

ii. It achieves an intelligent methodology based on global optimal solutions for IoHT-
based systems and offers effective resource usage with edge computing;

iii. In addition, it secures the cloud environment by providing encryption and integrity
verifications to enhance the consistency of massive amounts of data. The proposed
model is compared to existing work in terms of energy- and security-related indicators.

The research paper is organized as follows: Section 2 discusses the literature; Section 3
provides an explanation of the proposed model and its related components; Section 4
describes the network model and performance analysis; finally, the conclusion is presented
in Section 5.
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2. Related Work

IoT is a wireless network made up of various sensors, devices, and smart objects that
communicate with each other through telecommunication services [28–30]. In recent years,
machine learning and deep learning algorithms have broadly explored different areas with
the support of IoT networks to monitor and track remote environments; however, provid-
ing network coverage with better connectivity and reliability are some important research
objectives for IoT technologies [31–33]. The authors of Ref. [34] provide dynamic spectrum
sensing methods for two-way information exchange to increase energy efficiency for data
transmission in licensed channels. They also offer an energy-efficient optimal transmit
power allocation technique to improve dynamic spectrum sensing and data throughput.
This addresses the question of energy consumption in dynamic spectrum sensing and
switching. According to the simulations, the proposed dynamic spectrum sensing tech-
nique can significantly reduce energy usage in cognitive radio-based IoT networks. In
recent decades, the development of optimization schemes is playing a significant part
in delivering medical data over wireless communication systems. However, due to the
unpredictable factors of constraint devices and transmission routes, most of the solutions
still lack the time-delivery and management efficiency of the transmission model. Addi-
tionally, medical data are very sensitive and should be safely forwarded to cloud services
for processing. The authors in Ref. [35] provide a technique for robust data transmission
for the Internet of Things (RDDI) using Harris hawks optimization (HHO), a safe data
diffusion mechanism that accompanies a fuzzy hierarchical network model for IoT based
on a wireless sensors network (WSN). RDDI notifies users of assaults and monitors in-
formation exchange operations on nodes. The method seeks to combine routing skills,
energy-aware and geographic data circulation, and fuzzy clustering to create a dependable,
nature-inspired, optimized routing algorithm for IoT termed Harris hawks optimization
(HHO). The performance of RDDI in multi-cluster settings is evaluated using five met-
rics: dependability, end-to-end latency, energy consumption, computational overhead,
and packet forwarding distance. The authors in Ref. [36] proposed a transmission data
dissemination system with a multiple-load-balancing approach. This research leverages an
ant-colony-optimization-inspired approach to create transmission lines for nodes located
in diverse locations. Their approach is distinguished by three load-balancing systems
that aid in constructing transmission lines arranged in a path tree. The first is the load
decentralization strategy, which establishes many route subtrees early on and distributes
the whole load among them to prevent excessive load concentration. The second is the
load maintenance strategy, which utilizes an appropriate pheromone update mechanism to
preserve previously successful pathways, resulting in great next-generation solutions. The
last one is the load diversion scheme, which uses the heuristic factor to redirect traffic to
routes with low traffic volumes to remove inefficient solutions. Finally, detailed simulations
are applied to ensure the novel transmission strategy’s efficacy and benefits. A unique
cluster-based data aggregation approach based on the male lion optimization algorithm
(DA-MOMLOA) is presented in Ref. [37]. It analyzes the network’s energy, latency, density,
and distance. The data aggregation approach is implemented using a cluster head, which
forwards consolidation data from comparable clusters to the sink node, where intelligent
methods are applied. Consequently, the suggested technique exhibits promising results,
as it dramatically improves network efficiency and decreases packet loss rates due to
the reduction in the number of consolidation procedures. The software-defined wireless
sensor networks (SDWSNs) controller is trained using reinforcement learning in Ref. [38]
to improve the routing paths. The authors merged reinforcement and SDN to construct
routing tables on the SDN controller. To enhance network performance, the proposed
solution offered four different reward functions. Compared with reinforcement-based
routing algorithms, the proposed solution significantly increases network performance in
terms of lifetime.

Moreover, compared to existing work, it offers a faster network convergence rate.
For WSNs, the authors in Ref. [39] proposed a reinforcement-based routing system and
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achieved global optimization without any additional cost. The proposed solution considers
these aspects, such as hop count, link distance, and remaining energy, to compute the
reward function. Using the proposed reward function decreases energy consumption
and improves data delivery for WSN. It also handles communication problems inside the
clusters and among cluster heads. Table 1 summarizes the research contributions of the
related work along with their shortcomings.

Table 1. Summary of related work.

Comparative
Approaches Contributions and Limitations

Existing solutions

• The majority of the technologies improved communication systems
by increasing energy efficiency and ensuring consistent delivery;

• However, the majority of systems lack cognitive data re-transmission
detection and resource allocation across IoT-enabled sensors;

• Due to the presence of network threats, most current solutions dealt
with the issue of a network compromise, which harmed the integrity
of green computing;

• It was also discovered that the majority of the solutions ignored the
concept of edge cloud computing to reduce latency without taking
any security insurance when retrieving critical data.

Proposed model

To support the secured cloud, a machine learning-based solution is
provided that uses edge computing and provides an intelligent
decision-making approach for massive data management. It also ensures
cloud data security by guaranteeing authentication, data concealing with
integrity, and protection against malicious access.

3. Exploring Machine Learning-Enabled Mobile Edge Computing Model with Secured
Sustainable IoHT

In this section, we present the development flow of the proposed model with a network
model and discussion. It is comprised of the following sub-sections.

3.1. Network Model and Assumptions

The proposed efficient and secured cloud model is based on visual sensors that interact
with each other using edges. The visual sensors are randomly placed in the region to capture
the IoT data and, after processing, forward them toward the sink node. Let us consider that
N denotes the set of visual sensors s1, s2, . . . .., and sn, and E denotes the set of edges e1, e2,
. . . .., and en. Accordingly, the consecutive nodes are connected using an undirected graph
by G. The following is a summary of our network assumptions:

i. The visual sensors have limited resources and are immobile;
ii. The sink node has no limited resources and is rotated around the edge boundary;
iii. IoT data can only be received to sink nodes using the edge boundary;
iv. Malicious nodes can generate false information and compromise the communica-

tion system;
v. Each node has enough memory to store its neighbor’s information.

3.2. Proposal

Currently, medical applications are obtaining significant growth in the development
of their smart services. IoT technologies offer fast functionalities in the healthcare industry
for better remote monitoring, treatment, and telemedicine. However, the number of
devices connected to collaborate and transfer the patients’ data requires a high level of
connectivity with a robust forwarding mechanism. Moreover, most healthcare solutions do
not ensure data security standards and end-to-end trusted communication. Thus, providing
security is another important research challenge for implementing IoT in the medical field.
Therefore, in this work, we proposed a model that is comprised of forwarding schemes in
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e-health applications. It formulates a fitness function based on a machine learning-based
optimization technique and explores a multi-heuristic function. The function integrates
energy re, hops to edge boundary he, and link consumption lc factors. The proposed model
utilizes the reinforcement learning optimization algorithm [40] to learn the behavior of
the nodes for data forwarding and optimizes the green computing system accordingly.
Firstly, the sensor nodes create a local scheme by storing their neighbors’ information.
The local scheme contains identity, transmission power, and residual energy information.
Such a scheme is created at the beginning of the transmission; however, its information is
updated at the end of the round timer. Moreover, the proposed model also provides the
securing algorithm for cloud networks to attain information hiding and integrity using
the collaboration of edge boundaries. Figure 2 depicts the designed components of the
proposed MEC-Seccloud model. It consists of three main sub-blocks. The first block
is comprised of e-health data and fitness parameters—this phase is utilized for system
initialization. The second block combines weighted analysis, computing rewards, and
states identification. Its main aim is to apply reinforcement learning by exploring fitness
parameters and assigning rewards. In the end, security against threats with verification
and data hiding is performed.
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3.3. Discussion

This section presents a detailed discussion of the proposed model and its stages.
Energy efficiency is the key fitness parameter in sending the data using the sensors node si
as it depletes based on transmission tx, receiving rx and aggregation ax operations on data
packets n, as given in Equation (1):

si= tx+rx+ax , where i ≤ n (1)

Let us consider that total available energy is denoted by N, and consumed energy in
the formation of the route is denoted by r′, then the consumed energy re at time t can be
defined as given in Equation (2):

re(t)=
si
N
+r′ (2)

Moreover, the link consumption lc also performs a significant role in the timely delivery
of large-size IoT data and supports the selection of robust channels. To attain efficient
utilization of the routing process, the proposed MEC-Seccloud model set a threshold T for
the forwarding of maximum data rates by sensor node i, as given in Equation (3):

T = lim
0≤B≤S

node(i) (3)
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where B is the size of transmitted data bits and S is the maximum size. Using Equation (4),
the proposed MEC-Seccloud model evaluates the link consumption at time interval
t = [t0, t1, . . . , tk]:

lc =∑t
i=0 Bi (4)

After computing all the fitness parameters, weighted fitness w( f ) is determined using
Equation (5):

w( f ) = α ∗ re(t)+β ∗ 1/lc +γ ∗ 1/ he (5)

The proposed MEC-Seccloud model executes the reinforcement learning optimization
algorithm for the source node, and selects the optimal node as a forwarder for sensors’
data, as given in Equation (6), and it shifts to the next state, S′, whose reward R is higher.

R =max ∑n
i=1(S, w( f )) (6)

In Equation (6), the reward for all neighboring nodes n is computed and the highest
priority is assigned to the maximum-rewarded node. Accordingly, the source node selects
that node for forwarding sensor data that scored the highest reward and shifts it to the
new state. Before forwarding the sensor data toward the cloud network, the edge devices
announce the formulation of the mapping table, and accordingly, nodes Si that fall in the
predefined transmission range interact with each other and transmit their identities and
secret keys Sk toward particular edge devices es. Additionally, the transmitted information
is encrypted with the public key Eu of the edge devices, as given in Equation (7). Edge nodes
generate public keys on their own and are stored inside the memory of edge devices. They
flood them into the network so other devices can use them for performing cryptographic
operations.

Si → es : Eu(ID, Sk) (7)

Upon receiving the information, the edge device decrypts it using the private key,
obtaining the nodes’ identities and secret keys. In the proposed MEC-Seccloud model, the
sensor data attained its privacy and integrity using the CBC-MAC algorithm [41]. Our
proposed model is tested for e-health images and they are divided into various blocks
of fixed sizes. The security process is divided into two main stages. Firstly, the CBC
processing is executed to maintain the information hiding in the form blocks, as defined in
Equation (8):

Hi ← ESk (xor( Hi−1 , di) (8)

where Hi is the cipher block and E is the encryption process based on a secret key Sk.
Afterward, it uses the second secret key Sk

′ and computes the MAC for a block, as given in
Equation (9):

Hi
′ ← ESk′

( Hi) (9)

In the proposed MEC-Seccloud model, the sink node is mobile and collects the sensor
data from the edge boundary. The sink node is periodically rotated with a fixed speed
in the clockwise direction. It sends its latest location to edge devices and receives the
network data after successful verification from the edge boundary. Moreover, the sink node
maintains a local data management process and records all the information for authorized
edge devices. When any data come from the edge boundary, the sink node first verifies the
authenticity of the edge nodes, and after declaring it authentic, the sink node collects the
sensor data.

Moreover, the sink node communicates with the cloud network to facilitate remote
users. It also provides comfort to connected users to attain network information with
high trust and security against anonymous attacks. Two steps in the proposed MEC-
Seccloud model are provided before accessing the e-health records from the cloud network.
Firstly, the requester sends the request packet to the cloud system and, upon passing the
verification process, is allowed to access the database server ds for data access. Secondly,
the MEC-Seccloud model begins lightweight encryption and decryption processes after
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the successful verification process. In the security phase, the cloud system cs generates
a digital certificate cer for each requestee, which needs to be provided to access e-health
records, as defined in Equation (10):

Req(Cer)x → cs= id, Na (10)

where id is the identity of the requestee node. Upon successful verification of the requestee,
the cloud system generates the session key Ks for the interaction with x, which is digitally
signed with its private key Pr, as provided in Equation (11):

Cx ↔ cs= Pr (Ks ), Nb (11)

In Equations (10) and (11), Na and Nb are system-generated nonces. Based on the ob-
tained Ks, e-health records Dn are encrypted E. Additionally, the result of encryption is xor
with ID to retain authentication. On the other side, firstly, the encrypted data are decrypted
D, and the outcome is xor with ID to verify the identity, as given in Equations (12) and (13).

E = ((ks ⊕ Dn)⊕ ID) (12)

D = (ep ⊕ ID) (13)

where ep denotes the encrypted packet using ks ⊕ Dn in Equation (12). Figure 3 illustrates
the developed procedures for the MEC-Seccloud model. It has three main components.
First, health data are collected using sensors, and using wireless transmission standards
the devices collaborate. Secondly, the proposed model utilizes the fitness function with the
values of the nodes and accordingly announces the neighboring states. Finally, security is
applied to dual communication paradigms. The security stage provides the consistent and
reliable delivery of health data to remote users for treating patients’ conditions.
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Figure 3. Developed flow of the proposed efficient and secure IoT-based big data analytics.

The flowchart of the proposed schemes in the proposed model is illustrated in Figure 4.
It is comprised of many modules: the first is for computing weighted fitness using a
reinforcement learning optimizing algorithm, the second is for selecting neighboring states
for the transmission of the IoT sensors’ data, and the third is for securing the e-health
cloud. The fit is dependent on metaheuristics parameters, and their values are updated
by evaluating the communication system. The process of evaluating neighboring states
is continued intelligently until network data are obtained by the edge boundary. Using
reinforcement learning, the proposed model learns how to optimize the network and
provide rewards. The edge devices are further associated with the cloud structure for
robust health data delivery and reliability. All error messages that occur because of the
existence of network threats are stored in log files. Algorithm 1 shows the pseudocode for
the proposed model.
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Algorithm 1: Sustainable model using machine learning with secured data connections

1. procedure network registration (R) //nodes and devices declaration
2. devices initialization and sensing
3. fitness parameters
4. foreach (neighbors) do //weighted function with network metrics
5. determine the weighted fitness w( f )
6. w( f ) = α∗re(t) + β ∗ 1/lc + γ ∗ 1/ he
7. end for
8. if w( f ) of node i is maximum then //assigned rewards
9. execute reward function R
10. end if
11. foreach (selected forwarder j) do //nodes-edges connection
12. collaborate with edges in multi-hop paradigm
13. end for
14. end procedure
15. procedure connections_secured //end-to-end secured connections
16. share the identities and secret keys
17. each forwarder validates its identity on the edges
18. if identity is acceptable then
19. call CBC for data chaining
20. end if
21. foreach (blocks) do
22. verified its integrity
23. end for
24. end procedure
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4. Simulations

This section presents the network setup configuration and evaluates the proposed
model’s performance against the existing solution. The experiments are performed using an
NS-3 simulator with different network metrics, such as network throughput, data delivery
performance, packet drop ratio, energy consumption, and data integrity. The proposed
model is trained and tested on the Kaggle data sets by extracting medical images. The
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20 simulations were executed. Medical sensors are deployed on a preset location to conduct
the experiments and are set as 100 in number. The transmission radius of each sensor is
fixed to 5 m. Additionally, to evaluate the performance of the proposed model against
security attacks, 20 malicious nodes are randomly deployed. The sink node is mobile and
is rotated around the edge boundary. The edge devices comprise 10 nodes. Initially, the
energy resource of all the nodes is set as 5 J. Table 2 illustrates the simulation parameters
for the experiments.

Table 2. Simulation parameters.

Parameters Values

Simulation area two-dimensional

Sensor nodes 50–250

Malicious nodes 20

Transmission power 5 m

Initial energy 5 J

Simulation time 5000 s

Data flow CBR

Sink node 1

Edge nodes 10

Cloud devices 4

Size of public key 512 bits

Comparison with Existing Schemes

Table 3 shows the simulation tests of various performance metrics for the proposed
MEC-Seccloud model and existing solutions. The results are recorded after the series of
simulations for network throughput, energy consumption, packet drop ratio, and data
integrity. The evaluation criteria are based on the varying numbers of nodes and data
generation rates.

Table 3. Tests result in performance metrics under two scenarios.

Proposed Model
and Existing Work

Network Throughput (%) Energy Consumption (j) Data Drop Ratio (%) Data Integrity (%)

Number of Nodes: 50 to 250

MEC-Seccloud 87.5 1.21 7.9 85.2

RDDI 72.4 1.63 15 73.1

DA-MOMLOA 70 2.07 17.8 63.8

Data Generation Rates: 100 to 500 bits/sec

MEC-Seccloud 88 1.3 9.4 85.8

RDDI 77.4 1.65 15.6 74.4

DA-MOMLOA 73 1.83 18.6 71.9

In Figure 5a, b, the performance of the proposed MEC-Seccloud model is compared
with other solutions for network throughput. The network throughput defines the suc-
cessful delivery of data packets from sensors to the sink node. Based on the experiments,
it is seen that the proposed model significantly improved the performance of network
throughput against RDDI and DA-MOMLOA because of the nature-inspired optimization
model, which utilized machine learning techniques for the optimal selection of neighboring
states. The metaheuristic parameters judge the conditions of the nodes and environment,
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and the weighted fitness function provides a uniform contribution for each parameter.
Moreover, the boundary of the edges collaborates with the sink node and reduces the
communication distance from the medical sensors to the sink node. Our proposed MEC-
Seccloud model balances the sensors’ energy depletion and explicitly provides the most
stable communications link for green computing technologies.
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generation rates from 100 to 500 bits/s. (a) Network throughput with varying nodes. (b) Network
throughput with varying data generation rates.

Figure 6a,b illustrate the performance of the proposed MEC-Seccloud model with
other solutions for energy consumption. It is observed that with the increasing number
of nodes and data generation rates, the value for energy consumption is also increased.
However, based on the experimental results, the proposed MEC-Seccloud model has
efficiently improved the utilization of energy resources compared with RDDI and DA-
MOMLOA. This is because of its efficient computation of the weighted fitness function
by exploring the metaheuristic parameters. Additionally, the selection of neighboring
states using a machine learning algorithm imposes the least communication overheads and
trains the model using updated conditions. Moreover, to avoid overloaded links based on
a fitness function, the proposed MEC-Seccloud model reduces the high amount of data
re-transmissions and ultimately efficiently manages energy consumption. The proposed
MEC-Seccloud model divides the e-health data into chunks and ensures prompt delivery
without imposing additional energy costs on the IoT-enabled network system by utilizing
the CBC-MAC algorithm.

Figure 7a,b illustrate the performance of the proposed MEC-Seccloud model in terms
of packet drop ratio against the existing solution. Based on the experiments, it is observed
that the number of nodes and random deployment of malicious nodes increase the ratio of
the lost packets. This is because of fake data forwarding requests by malicious nodes. Ad-
ditionally, with high congestion traffic over the transmission channels, the communication
link is overloaded and there is no free space for the routing of medical data. However, the
proposed MEC-Seccloud model remarkably improves the packet drop ratio compared with
RDDI and DA-MOMLOA. Furthermore, unlike the existing solution, the proposed model
periodically utilizes the consumption data flow and selects the optimal channel based on
a machine learning algorithm. Furthermore, only those extracted sensors whose reward
values are higher than their neighbors are gaining high priority. Additionally, securing
the algorithm of the proposed model improves the consistency of medical data against
inauthentic processes.
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In Figure 8a,b, the performance analysis of the proposed MEC-Seccloud model is
presented in terms of data integrity compared with other solutions. It is observed that with
increasing the number of malicious nodes, the data integrity reduces. However, the pro-
posed MEC-Seccloud model improves the data consistency with integrity compared with
the existing solutions. This is because it efficiently manages false route requests and avoids
malicious nodes from being a part of the communication system by utilizing the machine
learning algorithm. Moreover, using two-phase CBC-MAC security from edge-boundary
sensors eliminates the non-normal processes for e-health data and attains lightweight
encryption. Two separate keys are utilized by the proposed model for maintaining data
encryption and integrity. Furthermore, the verified process is also maintained from the
edge boundary to the cloud network in a controlled manner.
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5. Conclusions

With the integration of IoT communication and cloud networks, optimization ap-
proaches are increasingly being used for the growth and development of sustainable
systems. Sensor nodes, unlike other communication systems, are resource-constrained
and have an impact on energy usage in data management techniques. Therefore, machine
learning algorithms significantly improved big data analytics delivery performance and
lowered costs. On the other hand, the strategies of intelligent edge computing should be
used in conjunction with metaheuristic variables to control QoS parameters. Furthermore,
in the context of e-health, an edge cloud network requires hiding and integrity for massive
data. This paper provides an efficient, sustainable, and secure machine learning-based
cloud network optimization model. It uses reinforcement learning to optimize neighboring
states for managing data analytics and energy efficiency. The weighted fitness is uniform
to the routing system and provides a manageable cost by utilizing the network edges.
Furthermore, two steps of the CBC-MAC algorithm strengthened the proposed machine
learning model’s resistance to harmful traffic while also ensuring data security in the edge
cloud network. In the future, we intend to examine distributed denial of service (DoS)
threats and train the proposed model using a real-time data set.
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