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Abstract—Rapid developments in deep learning (DL) and the 

Internet-of-Things (IoT) have enabled vision-based systems to 

efficiently detect fires at their early stage and avoid massive 

disasters. Implementing such IoT-driven fire detection systems 

can significantly reduce the corresponding ecological, social, and 

economic destruction; they can also provide smart monitoring for 

intelligent transportation systems (ITSs). However, deploying 

these systems requires lightweight and cost-effective convolutional 

neural networks (CNNs) for real-time processing on artificial 

intelligence (AI)-assisted edge devices. Therefore, in this paper, we 

propose an efficient and lightweight CNN architecture for early 

fire detection and segmentation, focusing on IoT-enabled ITS 

environments. We effectively utilize depth-wise separable 

convolution, point-wise group convolution, and a channel shuffling 

strategy with an optimal number of convolution kernels per layer, 

significantly reducing the model size and computation costs. 

Extensive experiments on our newly developed and other 

benchmark fire segmentation datasets reveal the effectiveness and 

robustness of our approach against state-of-the-art fire 

segmentation methods. Further, the proposed method maintains a 

balanced trade-off between the model efficiency and accuracy, 

making our system more suitable for IoT-driven fire disaster 

management in ITSs.  

Index Terms—Convolutional Neural Networks, Deep Learning, 

Edge Intelligence, Fire Segmentation, Intelligent Transportation 

Systems, Internet of Things (IoT), Semantic Segmentation. 

I. INTRODUCTION 

 ecent advancements in cutting-edge camera 

technologies have empowered today’s surveillance 

cameras with next-level processing capabilities, offering 

real-time processing of video streams and other artificial 

intelligence (AI) algorithms for a variety of applications, 

including abnormal activities recognition [1, 2], fire detection 

[3], safety [4, 5], traffic management [6, 7], intelligent 

transportation of unmanned vehicles [8-10], and scene 

classification [11]. Such intelligent cameras play vital roles in 

Internet-of-Things (IoT)-enabled smart surveillance systems, 

e.g., for processing the real-time visual data of any disaster 

(e.g., fires, floods, and earthquakes) and instantly notifying the 

appropriate disaster management departments. Among 

disasters, fire is the most severe threat to densely populated 

areas, airports, and forests, owing to its high frequency and 

destructive nature. Therefore, edge-driven smart monitoring is 

urgently needed to prevent fire disasters in their early stages, 

i.e., before they lead to massive damage in terms of human lives 

and financial losses.  

Aiming to save human lives, researchers have been working 

for the past two decades on both conventional sensors and 

vision-based fire and smoke detection methods. Conventional 

sensors often include smoke, fire, and temperature sensors [12, 

13], which are economical and easy to deploy for real-time fire 

detection. However, these sensors are restricted to small 

geographical areas and cannot detect fires in large areas, such 

as large industrial sectors, intelligent transportation systems 

(ITSs), and outdoor IoT environments. Researchers have 

presented several vision-based approaches, including 

traditional handcrafted features and learning-based methods, to 

detect fires in outdoor and large geographical areas. Current 

literature reports that traditional methods [14-21] use motion, 

texture, and color features of flames for fire region detection. 

For instance, Celik et al. [22] presented an enhanced variant of 

a generic color model by adding fuzzy logic to their fire-specific 

pixel classification method [19]. The replacement of heuristic 

rules with fuzzy logic significantly improved the classification 

performance of their method, allowing them to effectively 

distinguish the colors between fire flames and other flames-like 

objects. Byoung et al. [23] presented a probabilistic color-

driven method using the YUV color space and a support vector 

machine (SVM). Their proposed approach first detected fire-

specific pixels in the moving regions of an image using high 

luminance information. Subsequently, they created a temporal 

fire model with wavelet coefficients and employed a binary-

class SVM for the final fire-specific pixel classification. The 

main issue with this method was the high false-alarm rate in 

non-fire regions, which requires further reduction. In general, 

the performance of the above methods relies on the quality of 

the manually engineered handcrafted features, thereby 

restricting them from more challenging scenarios. Therefore, 
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obtaining a stable trade-off between the false-alarm rate and 

accuracy using traditional approaches remains challenging. 

Furthermore, these traditional methods cannot detect fires from 

afar or in small volumes in a video stream. Moreover, they 

cannot detect high volumetric fires from near distances and 

often fail to detect flames with varying colors. 

Several deep learning-based fire detection and segmentation 

methods have been presented to address the limitations of 

traditional color-based approaches. For example, Sharma et al. 

[24] proposed a learning-based approach and investigated two 

pre-trained deep convolutional neural network (CNN) 

architectures (VGG16 and ResNet50) for fire detection. Their 

proposed method obtained a reasonable classification accuracy, 

but its higher computational complexity makes it infeasible for 

real-time fire detection. Mao et al. [25] explored a multi-

channel CNN for fire scene classification, where they analyzed 

each channel of the input image at multiple convolutional layers 

and chose the most discriminative feature maps for accurate 

classification of the flames. However, owing to the high time 

complexity, their method is limited to still images and cannot 

process videos for fire scene classification. Recently, a 

computationally efficient learning-based unified architecture 

was presented in [26] for fire-specific region detection and 

localization. Their system first performed fire scene 

classification and then inspected the fire image using multiple 

activation maps of the convolutional layer for localizing the 

fire-specific regions. 

Considering fire detection/segmentation literature, recent 

CNN-based studies have significantly improved the detection 

rate and localization performance relative to traditional fire 

detection methods. However, there remains a need to improve 

fire segmentation performance from both qualitative and 

quantitative perspectives, with a focus on deployment in edge-

centric IoT surveillance environments. With these motivations, 

we analyzed the existing CNN models for fire segmentation 

tasks and adopted a lightweight yet robust architecture as the 

backbone of our framework for an IoT-enabled surveillance 

environment. The key contributions of this study are as follows.  

1. We comprehensively analyzed various state-of-the-art 

semantic segmentation architectures in terms of their 

computational complexity, model size, and model 

performance for fire segmentation to perform fire 

recognition over an edge-centric computing platform. As a 

result, we proposed a computationally efficient framework 

for an IoT-enabled ITS environment. For the efficient 

segmentation of fire flames in the IoT environment, we 

proposed a segmentation architecture with minimal 

computational complexity and overwhelming 

segmentation results.  

2. Several benchmark datasets have been reported in the 

literature; however, these datasets have a limited number 

of images containing small volumes of fire as captured in 

normal environments. In this study, we created our own 

fire semantic segmentation dataset (pixel-wise annotation 

for fire regions) for benchmarking purposes. The dataset 

contained images of both street fire and wildfire 

environments, covering the scope of ITSs. Our newly 

created dataset is publicly available for research purposes 

for mature fire-segmentation systems. 

3. The proposed framework used depth-wise separable 

convolution, point-wise group convolution, and channel 

shuffling to optimize the size of the model, thereby 

significantly reducing computational complexity while 

maintaining a satisfactory level of accuracy. Our training 

strategy reduced the model size from 187 MB to 1.49 MB, 

making the proposed framework a better candidate for real-

time processing in an IoT-enabled surveillance 

environment for fire segmentation in ITSs. 

The rest of this article is organized as follows. Section II 

presents an overview of our proposed framework and its main 

components. Section III discusses the experimental settings, 

datasets, and critiques of the results. Finally, Section IV 

concludes the article with possible future research directions. 

II. PROPOSED FRAMEWORK  

This section describes the working procedure of the proposed 

framework and its major components. For better understanding, 

the proposed framework is divided into two sections. In the first 

section, we provide the architectural details of the proposed 

architecture for fire segmentation. The second section presents 

the details of our customized shuffleNetV1 architecture used as 

an encoder in the proposed framework. A detailed graphical 

outline of the proposed fire-segmentation approach is shown in 

Fig. 1. 

A. Architectural Details of Proposed Segmentation Method 

In this section, we present the details of the proposed 

segmentation network for fire segmentation on resource-

constrained devices. Our model was inspired by the UNet 

architecture, which was originally introduced as an improved 

version of a fully convolutional network (FCN) for the semantic 

segmentation of medical images. The overall UNet architecture 

comprises two subnetworks—encoder and decoder—

responsible for feature extraction and saliency prediction, 

respectively. The encoder part of the UNet architecture 

comprises four modules with two unpadded 3 × 3 2D 

convolutions, followed by rectified linear unit (ReLU) 

activation and a batch normalization layer. Next, a 2 × 2 max 

pooling layer downscales the receptive field of the extracted 

feature maps produced by the convolutional layers at different 

levels and encodes the image (2D representation) into a feature 

vector (1D representation) in the final layer. In contrast, the 

decoder part of the UNet architecture contains four distinct 

modules with 2 × 2 up-sampling (transpose convolution) and 3 

× 3 standard convolution layers, followed by a ReLU activation 

function. Each module in the decoder part is concatenated with 

its corresponding module in the encoder part to transfer the deep 

discriminative features learned by the encoder part of the UNet 

architecture. The decoder takes the latent feature vector as an 

input and reconstructs the image with the localized saliency of 

an object using transpose and standard 2D convolutions. 

Finally, the output of the last module in the decoder part of the 

UNet architecture is convolved with 1 × 1 (point convolution) 

to transform the number of output channels of the last layer into 

the total number of classes for segmentation. 
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Fig. 1. Proposed deep convolutional neural network (CNN) architecture for fire segmentation in surveillance videos with two tiers: 

encoder and decoder. The encoder takes an RGB image captured in uncertain environment having intensive fire as an input and 

processes it through four ShuffleNet units, which generate a latent representation. The latent representation of the given fire image 

from the architecture bottleneck is then forwarded to the subnetwork (decoder), which processes it on eight convolutional layers 

followed by four up-sampling layers. These layers are designed in such a way that after each two convolutional layers, there is an 

up-sampling layer. At the end, there is a pixel-wise classifier that generates the final binary mask for the fire. The predicted 

segmentation masks are then used to extract fire-specific regions from the input image as a final output of our proposed method. 

 

Considering the technical aspects of the UNet framework, it is 

worth noting that the encoder is the key component and plays 

an important role in the segmentation accuracy and 

computational complexity of the overall architecture. In 

addition, the encoder network has a set of convolutional blocks 

(containing several convolutional layers per block); these can 

be substituted with any lightweight pre-trained CNN network 

to boost segmentation performance and minimize the overall 

computational complexity of the proposed approach. Therefore, 

we investigated different CNN architectures in this study, 

including VGG16 [27], ResNet50 [28], MobileNetV1 [29], and 

shuffleNetV1 [30], as the encoder (backbone feature extractor) 

for the UNet architecture. The statistical details of each CNN 

are listed in Table I. We analyzed each CNN architecture from 

two different perspectives: computational complexity (number 

of training parameters and memory requirements for training) 

and segmentation performance (quantitative and qualitative 

evaluations). After extensive experimental evaluations, we 

found the shuffleNetV1 architecture to be the most 

computationally efficient yet accurate among all the 

investigated CNNs. Therefore, we replaced the encoder part 

(with standard CNN layers) of the UNet architecture with 

shuffleNetV1 units, except for the first convolution layer 

(consisting of depth-wise separable convolution, point-wise 

group convolution, and channel shuffling), significantly 

reducing the overall computational complexity while 

preserving the same level of accuracy. A detailed explanation 

of the proposed shuffleNetV1 encoder is provided in Section II 

(B).  

B. Proposed ShuffleNetV1 Encoder  

Considering the real-time task achievements required on 

embedded edge devices, the proposed fire segmentation 

framework should offer edge-based computing facilities by 

utilizing an efficient CNN to process the input stream in real-

time and segment the fire-specific regions. To obtain a 

computationally efficient segmentation network with reduced 

number of parameters, we replaced the encoder part of the UNet 

architecture with four shuffleNetV1 units. Each unit comprises 

three distinct modules, i.e., one for depth-wise separable 

convolution, point-wise group convolution, and channel 

shuffling, respectively. 
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TABLE I 

STATISTICAL COMPARISON OF SHUFFLENETV1 AGAINST 

OTHER ARCHITECTURES 

Backbone 
Architecture 

Number of 

parameters  

(millions) 

Accuracy (%) 
Top-1 

Accuracy (%) 
Top-5 

VGG16 [27] 138 70.5 91.0 

ResNet50 [28] 25 77.1 93.2 

MobileNetV1 [29] 4.2  70.9 89.9 

ShuffleNetV1 [30] 3.4 70.9 90.0 

The depth-wise separable convolution is introduced to factorize 

the standard convolution into a depth-wise convolution, 

followed by the point-wise convolution (1 × 1 convolution). 

The depth-wise separable convolution layer processes each 

channel of the input image individually and then combines the 

resultant feature maps of the depth-wise convolutions using the 

point-wise (1 × 1) convolution. In contrast, the point-wise group 

convolution performs a group operation using a 1×1 kernel, 

such that each convolution operates on the receptive field of the 

corresponding channel group, thus drastically reducing the 

computational complexity of the architecture. The channel 

shuffling unit is placed immediately after the first point-wise 

group convolution to help the information from the previous 

layer flow uniformly across all feature channels. Furthermore, 

we modified the internal structure of the shuffleNetV1 

architecture to further reduce the overall complexity of the 

proposed fire segmentation framework. In particular, the 

standard shuffleNetV1 utilizes five different groups to acquire 

the desired number of output channels. The formation of these 

groups is configurable and can be adjusted according to the 

problem to obtain an optimal, computationally efficient, and 

precise model. Therefore, we modified the shuffleNetV1 units 

in two different ways: 1) instead of five groups (g = 1,2,3,4,8), 

we used only one group (g = 2) with no repetition, and 2) we 

reduced the number of output channels of each layer while 

maintaining the same level of performance. In our approach, the 

shuffleNet unit initiates processing on the input with 1 × 1 

group convolution (GConv), followed by batch normalization 

(BN) and a ReLU layer. Next, the channel shuffling module 

performs a shuffling operation on the output channels of the 

feature maps of the previous layer and forwards them to the 3 × 

3 depth-wise separable convolution (DWConv) layer. The 

DWConv layer applies a computationally efficient 3 × 3 depth-

wise convolution with stride = 2 and BN on the feature maps 

from the channel shuffling layer. The second 1 × 1 GConv 

reshuffles the channel dimensions of the feature maps of the 

previous layer to match the output channel dimensions of the 3 

× 3 average pooling layer (AVG pool) at a shortcut path. 

Concatenation is used to form the final output by combining the 

shortcut path channel and 1×1 GConv layer output channel. 

Table II lists the statistical details of the backbone feature 

extractor employed in the UNet architecture. 

III. EXPERIMENTS, RESULTS, AND DISCUSSION 

This section provides the details of the implementation setup, 

followed by a detailed overview of our annotated and existing 

benchmark datasets used in the experimental evaluations. 

Following this, we present a detailed comparative analysis of 

our method with conventional and state-of-the-art fire-

segmentation methods. Finally, to validate the efficiency and 

generalization of our method, we evaluate the performance of 

our proposed system based on its computational and time 

complexity, focusing on suitability and deployment for smart 

surveillance settings in IoT-assisted ITS. 

TABLE II 

STATISTICAL OVERVIEW OF MODIFIED SHUFFLENETV1 

ARCHITECTURE 

Layer 
Output 

size 
KSize 

Strid

e 
Repeat 

Output channels 
(g groups) 

Original 

g = 2 

Our  

g = 2 

Input 224 × 224 - - - 3 3 

Conv1 112 × 112 3 × 3 2 1 24 24 

MaxPool 56 × 56 3 × 3 2 - - - 

Stage2 28 × 28 - 2 1 200 32 

Stage3 14 ×14 - 2 1 400 48 

Srage4 7 × 7 - 2 1 800 64 

A. Implementation Details  

All experiments were conducted on a computer system 

equipped with an NVIDIA graphic card GeForce GTX 1060 

(6GB), 16 GB of onboard memory, and a 3.60-GHz processor. 

The proposed framework was implemented in Python (version 

3) using the well-known deep learning framework Keras with 

TensorFlow running in the backend. We initialized the training 

process with a random normal weight initializer; the values of 

the hyperparameters were set to optimizer = Adam, learning 

rate = 0.0001, batch size = 32, and epochs = 50. As we were 

considering a pixel-wise classification problem, cross-entropy 

was used as the loss function. 

B. Details of the Datasets  

To investigate the quantitative and qualitative performance 

of our proposed system, we created a new fire segmentation 

dataset from 20 videos downloaded from YouTube containing 

outdoor fire scenes captured at different times of the day with 

varying lighting conditions. The newly created dataset 

contained 600 images of different fire incidents, including 

buildings, vehicles, and forest fires, with different levels of 

impairment. Each image in the dataset was manually annotated 

to obtain corresponding ground truth binary masks with fire-

specific information. We uploaded our dataset to GitHub, 

which can be used by the research community to further 

enhance fire segmentation models. During the experiments, we 

used 70% of the data for training, whereas the remaining 30% 

was used for testing purposes. Furthermore, to validate the 

generalization of our proposed method on other datasets, we 

collected a test set from two other benchmark datasets (given in 

[14] and [31]). The first test set comprised 8033 images 

randomly selected from [14], with 1845 fire-incident images 

and 6188 without fires. The second test set [31] consisted of 

226 images, with 119 fire images and 107 normal images with 

fire-like visuals, including sunlight reflecting off clouds and 

sunset, and street lights at night. The statistical details of the 

training and testing sets are listed in Table III. 

TABLE III 

STATISTICAL DESCRIPTION OF THE DATASETS USED FOR 

TRAINING AND EVALUATING OUR PROPOSED METHOD 

 Dataset Fire Non-fire Total data 

Train set Our dataset 600 500 1100 

Test set Chino et al. [31] 119 107 226 
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C. Effectiveness of Our Method with Different Convolutional 

Neural Network (CNN) Baselines for Fire Segmentation  

This section presents a detailed comparative evaluation of 

our proposed architecture with other CNNs, under the setting of 

the UNet for fire segmentation. We used two different 

performance evaluation schemes to evaluate the performance of 

our proposed CNN architecture against others. The first 

evaluation scheme used four different performance assessment 

metrics—pixel accuracy (Pixelaccuracy), mean accuracy 

(Meanaccuracy), mean intersection-over-union (MeanIoU), and 

frequency-weighted intersection-over-union (FWIoU)—

commonly used for semantic segmentation performance 

evaluations based on pixel-wise accuracy and region 

intersection-over-union. Pixelaccuracy computes the total number 

of pixels correctly classified, as given in (1). Meanaccuracy is 

defined as the number of correctly classified pixels over the 

total number of classes, as shown in (2). MeanIoU first estimates 

the intersection-over-union (IoU) value for each class and then 

approximates the average IoU over the total number of classes, 

as formulated in (3). FWIoU is an extended version of MeanIoU, 

where IoU is weighted based on the frequency of each object 

class, as given in Equation (4). 

iii

accuracy

ii

n
Pixel

t
=



        (1) 

1
ii

accuracy

icl i

n
Mean

n t
=        (2)  

1

( )j ji
ii

ii

IoU

icl i
n n

n
Mean

n t + −

=      (3) 

1

( )j ji
ii

i ii

IoU

k ik i
n n

t n
FW

t t + −

=      (4) 

In the above, nii indicates correctly classified pixels, and ti is 

the total number of pixels in class i. nij indicates the number of 

pixels belonging to class i but predicted as class j. ncl represents 

the total number of classes. In our case, we had two classes: 0) 

background and 1) fire. We compared the adopted CNN 

(shuffleNetV1) with other state-of-the-art CNNs using the 

aforementioned evaluation metrics, and the results are listed in 

Table IV. The results presented in Table IV compare the 

performance of the proposed CNN architecture with those of 

three classification CNNs for fire segmentation, namely, 

VGG16, ResNet50, and MobilenetV1. It can be seen that 

VGG16 attains reasonable results in terms of Pixelaccuracy and 
FWIoU; however, its Meanaccuracy and MeanIoU scores are lower 

than those of the other architectures. Although ResNet50 and 

MobileNetV1 obtain identical scores for Pixelaccuracy, 
MobileNetV1 performed better than ResNet50 for Meanaccuracy, 

MeanIoU, and FWIoU. Compared to the other three architectures, 

our proposed method performs better and obtained the highest 

Pixelaccuracy, Meanaccuracy, MeanIoU, and FWIoU scores of 

89.54%, 74.27%, 67.39%, and 82.64%, respectively, 

demonstrating its superiority. 

D. Comparison of our Method with other State-Of-The-Art 

Semantic Segmentation Architectures 

To analyze the effectiveness of our method for fire 

segmentation tasks relative to those of existing methods, we 

conducted a comparative analysis of different state-of-the-art 

segmentation networks, including SegNet [32], FCN [33], and 

PSPNet [34]. The results obtained from the comparative 

analysis are presented in Table V. Notably, SegNet obtains 

comparatively lower Pixelaccuracy, Meanaccuracy, and FWIoU values 

than FCN and PSPNet. However, its MeanIoU is higher than 

those of the FCN and PSPNet. The FCN and PSPNet obtain 

nearly similar FWIoU values; however, PSPNet is better than the 

FCN in terms of Pixelaccuracy, Meanaccuracy, and MeanIoU. The 

proposed system obtains the highest Pixelaccuracy, Meanaccuracy, 

MeanIoU, and FWIoU values among all the deep learning-based 

segmentation methods. A set of visual segmentation results 

obtained by our approach and those from other fire 

segmentation approaches are depicted in Fig. 2.  

TABLE IV 

COMPARATIVE RESULTS OF OUR METHOD AND OTHER STATE-

OF-THE-ART CNN ARCHITECTURES ON OUR NEWLY CREATED 

FIRE SEGMENTATION DATASET  
Model Pixelaccuracy Meanaccuracy MeanIoU FWIoU 

UNet+VGG16 85.22 61.30 56.19 76.84 

UNet+ResNet50 88.43 69.17 62.47 79.92 

UNet+MobileNetV1 88.29 71.05 63.56 80.15 

Proposed 89.54 74.27 67.39 82.64 

 

E. Fire Region Extraction Qualitative Analysis  

In this section, we present a detailed discussion of the fire-

specific region extraction results relative to those of other fire 

segmentation methods. For illustration purposes, we visualize 

the results of seven images randomly picked from the test set, 

along with their corresponding methods. The fire-specific 

regions from the original image were extracted using the 

corresponding pixel retrieval method; the obtained visual 

results are shown in Fig. 3. For each foreground pixel of the 

binary segmented image, we selected the pixel value per 

channel from the original image using the corresponding pixel 

location. The obtained fire-specific region extraction results 

were visually compared with those of state-of-the-art fire 

localization methods, including Chino et al. [31], Rossi et al. 

[35], Celik et al. [19], Rudz et al. [36], Chen et al. [17], and 

CNNFire [26], as shown in Fig. 4. As shown, the visual results 

obtained by Rossi et al. [35] and Chen et al. [17] are affected by 

a high misclassification rate, whereas the results of Chino et al. 

(BoWFire) and color classification [31], Celik et al. [19], Rudz 

et al. [36], and CNNFire [26] are approximately similar, with 

minor differences in the boundary regions. Fig. 5 illustrates a 

comparative analysis of the results obtained by our method and 

those of other fire segmentation methods based on another 

sample from the test set. It can be perceived from the results 

that the methods of Rossi, Rudz, and Chen fail to extract fire 

regions; however, Chen’s method is better than Rossi’s and 

Rudz’s in terms of the false positive rate. Chino’s method 

extracts fire-specific regions with no false positive predictions, 

but its results suffer from misclassifications of fire pixels. The 

results obtained using our proposed method, Celik’s method, 

color classification, and CNNFire have similar fire regions. 
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However, based on the false-positive rate, our proposed 

approach outperforms the other three fire segmentation 

methods. The visual comparisons in Figs. 4 and 5 validate the 

effectiveness of our proposed method over the existing 

traditional and deep learning-based methods. In addition, we 

compared our results with those obtained from state-of-the-art 

segmentation networks, as depicted in Fig. 6. By analyzing the 

presented visual results depicted in Fig. 6, it can be seen that 

our method obtains comparatively better results than those of 

the other segmentation networks, including SegNet, FCN, and 

PSPNet. 

F. Running Time Analysis and Feasibility Assessment 

Experiments were conducted on a machine equipped with the 

specifications given in Section III (Implementation Details) to 

verify the effectiveness and robustness of our proposed system 

for real-time scenarios in IoT environments. Our proposed 

method obtained 27 frames per second (FPS), thereby enabling 

real-time processing of fire videos/streams. An average running 

time comparison of our proposed method and existing methods 

for five selected fire videos from the Foggia et al. [14] dataset 

is shown in Fig. 7. It can be observed that UNet+ResNet50 has 

the worst average running time of 88.99 ms for processing a 

single frame. UNet+VGG16 performs comparatively better 

than UNet+ResNet50 with a 73.81-ms average running time but 

is dominated by UNet+MobileNetV1, with the second-lowest 

average running time of 50.67 ms. The proposed method 

obtains the lowest average running time of 47.13 ms compared 

to the other CNN-based fire segmentation/localization 

approaches. Furthermore, to analyze the feasibility of our 

method in real-time environments, we used the model size, 

FPS, and mega floating-point operation per second (MFLOPS) 

parameters. The quantitative results are reported in Table VI, 

where it can be seen that UNet+ResNet50 performs a lower 

number of MFLOPS per image than UNet+VGG16; however, 

in terms of the model size and FPS, UNet+VGG16 is better than 

UNet+ResNet50. UNet+ MobileNetV1 is comparatively better 

than UNet+ResNet50, and the model size of CNNFire is better 

than that of EFDNet. Unlike the other comparative methods, 

our proposed system maintains a better tradeoff between 

MFLOPS/image, model size, and FPS by obtaining values of 

140, 1.49, and 27, respectively. Its characteristics, including the 

low computational requirements, low storage requirements, and 

real-time processing capability, make our method sufficiently 

efficient to run over edge devices in IoT-enabled environments 

in real time. 

TABLE V 

COMPARATIVE RESULTS OF OUR PROPOSED METHOD AND 

OTHER STATE-OF-THE-ART SEGMENTATION NETWORKS ON 

TEST SET (Chino et al. [31]) 
Method  Pixelaccuracy Meanaccuracy MeanIoU FWIoU 

SegNet [32] 84.63 75.92 80.41 87.66 

FCN [33] 85.76 75.47 72.65 89.20 

PSPNet [34] 88.17 78.62 74.19 89.58 

Proposed  94.54 85.27 83.35 93.96 

 
Fig. 2. Visual comparison of segmentation results obtained by our proposed approach and other comparative fire segmentation 

approaches (a) Input image. (b) SegNet [32], (c) fully convolutional network (FCN) [33], (d) PSPNet [34], and (e) Proposed. 
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Fig. 3. Visual results obtained by our method for fire-specific region extraction, where the first row represents input images and 

the second and third rows contain segmentation and fire-specific region extraction results, respectively. 

 

 
Fig. 4. Visual fire region extraction results obtained by our approach and other comparative fire segmentation approaches. (a) Input 

image (fire021), (b) Ground truth, (c) Chino [31], (d) Rossi [35], (e) Celik [19], (f) Color classification [31], (g) Rudz [36], (h) 

Chen [17], (i) CNNFire [26], and (j) Proposed. 

 
Fig. 5. Visual comparison of fire-specific region extraction results obtained by our method and other fire segmentation approaches. 

(a) Input image (fire092), (b) Ground truth, (c) Chino [31], (d) Rossi [35], (e) Celik [19], (f) Color classification [31], (g) Rudz 

[36], (h) Chen [17], (i) CNNFire [26], and (j) Proposed.  
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Fig. 6. Visual comparison of fire-specific region extraction results obtained by our method and other state-of-the-art segmentation 

networks. (a) Input image. (b) SegNet [32], (c) FCN [33], (d) PSPNet [34], and (e) Proposed. 

 
Fig. 7. Average running time per frame in milliseconds taken by our method and other fire segmentation methods using five videos 

from Foggia et al. [14] dataset. 

TABLE VI 

COMPARATIVE QUANTITATIVE RESULTS OF OUR METHOD AND 

OTHER FIRE SEGMENTATION METHODS BASED ON 

MFLOPS/IMAGE, MODEL SIZE, AND FRAMES PER SECOND 

(FPS) 
Method MFLOPS/image Model Size (MB) FPS 

UNet+ResNet50 3860 74.2 21 

UNet+VGG16 15300 62.9 22 

UNet+MobileNetV1 569 17.2 26 

EFDNet [37] - 4.80 63 

CNNFire [26] 833 3.06 20 

Proposed 140 1.49 27 

IV. CONCLUSION AND FUTURE WORK 

Instant fire detection and analysis using computer vision 

techniques is an effective approach to saving human lives and 

properties, with recent CNNs exhibiting astonishing 

performance for vision-based fire detection and localization. 

However, deploying these networks on edge nodes is a 

challenging task for researchers focusing on edge devices 

functional in IoT networks of ITSs because these require real-

time processing. These challenges are resolved by proposing a 

framework suitable for efficient fire detection and 

segmentation. The proposed CNN is lightweight, with an 

optimal number of convolutional kernels per layer to reduce the 
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model size and ensure real-time processing. Extensive 

experiments over benchmark datasets and our newly created 

dataset demonstrate that our proposed model can be 

implemented in real time with trustworthy accuracy, validating 

its deployment in IoT surveillance environments and ITSs. 

Although our current system has the best trade-off between 

model performance and complexity, it is dominated by EFDNet 

[33] in terms of the FPS score. Thus, further improvements can 

be made in terms of the FPS by enhancing the inference time of 

the proposed system. In addition, our system struggles with fire-

like visuals, which can be solved by introducing more effective 

feature-discrimination techniques inside the network. Our 

future studies will focus on intelligent decision-sharing in 

industrial IoT setups by employing 5G technologies for 

interconnectivity in public places and industries, extending to 

forests by employing more data using generative networks [38] 

and efficient and economical hardware [39]. 
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