
Received 9 March 2023, accepted 20 March 2023, date of publication 23 March 2023, date of current version 29 March 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3261130

Optimized Scheduling of Periodic Hard Real-Time
Multicore Systems
JOSÉ MARÍA ACEITUNO 1, ANA GUASQUE 1, PATRICIA BALBASTRE 1,
FRANCISCO BLANES 1, AND LUIGI POMANTE 2, (Member, IEEE)
1Instituto de Automática e Informática Industrial, Universitat Politècnica de València, 46022 València, Spain
2Center of Excellence DEWS, Università degli Studi dell’Aquila, 67100 L’Aquila, Italy

Corresponding author: Ana Guasque (anguaor@ai2.upv.es)

This work was supported in part by Ministerio de Ciencia e Innovación (MCIN)/Agencia Estatal de Investigación (AEI)/10.13039/
501100011033 under Grant PLEC2021-007609, in part by the European Union NextGeneration EU/Plan de Recuperación, Transformación
y Resiliencia (PRTR) [MOBILITY IN THE CITY OF THE FUTURE. PREPARING CITIES FOR THE NEW 2030 MOBILITY
THROUGH THE 4 SPANISH POLYTECHNIC UNIVERSITIES (METROPOLIS)], and in part by MCIN/AEI/10.13039/501100011033/
[Modelos y plataformas para sistema informáticos industriales predecibles, seguros y confiables (PRESECREL)] under Grant
PID2021124502OB-C41.

ABSTRACT Multicore systems were developed to provide a substantial performance increase over mono-
core systems. But shared hardware resources are a problem as they add unpredictable delays that affect the
schedulability of multicore hard real-time systems. In recent years much effort has been put into modelling
interference and proposing scheduling techniques to mitigate its negative effect. Using one of these models,
we propose a scheduling technique, based on Integer Linear Programming (ILP) that, in combination with
a task to core allocator, not only achieves a feasible schedule but also reduces the interference produced by
shared hardware resources in the context of hard real-time multicore systems. The evaluation shows how
interference is reduced (≈ 83.47%) and schedulability is increased (≈ 12.25%) compared to traditional
heuristics.

INDEX TERMS Integer linear programming, optimization, partitioned systems, real-time systems, static
scheduling.

I. INTRODUCTION
The use of embedded systems is widespread, not only in the
industrial sector, but in all aspects of modern life. The pro-
cessing power of multicore systems allows multiple embed-
ded applications to be used on a single shared hardware
platform.

In sectors where applications are highly critical, no failure
is allowed as it can have catastrophic consequences. In such
applications, due to certification requirements, the allocation
of all resources must be static [1]. In this paper we will focus
on the static allocation of temporal resources, i.e. on the
scheduling of multicore systems for highly critical applica-
tions.

Existing theory in the field of multicore systems shows
that scheduling on such systems is complex (NP-Hard). The
generation of cyclic plans from the temporal requirements of
several applications in a multicore system requires the use

The associate editor coordinating the review of this manuscript and

approving it for publication was Sergio Consoli .

of techniques and heuristics that attempt to achieve feasi-
ble schedules in limited time. A large number of additional
elements such as the different criticality of the applications,
the assignment of tasks to cores, the management of energy
consumption, the optimisation of the operating system per-
formance, etc., adds to the complexity and difficulty of gen-
erating feasible and efficient schedules.

But there is not only difficulty in generating a feasible plan
inmulticore systems, it is also difficult to estimate the compu-
tation time of the tasks. In multicore systems, there are some
sources of indeterminism due to the use of shared hardware
resources such as memory, memory bus or cache [2]. This
causes contention between tasks in different cores, which is
reflected in delays in task execution. These delays, also called
interferences, are non-deterministic and pose a challenge in
multicore scheduling techniques. The position paper CAST-
32A on multicore processors [1] identifies topics that could
impact the safety, performance and integrity of airborne soft-
ware systems and lists a set of objectives to help addressing
multicore certification challenges. One of these challenges is

VOLUME 11, 2023
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 30027

https://orcid.org/0000-0003-4044-6202
https://orcid.org/0000-0002-2900-8466
https://orcid.org/0000-0001-9458-4083
https://orcid.org/0000-0002-9234-5377
https://orcid.org/0000-0002-4137-3634
https://orcid.org/0000-0001-7357-5858


J. M. Aceituno et al.: Optimized Scheduling of Periodic Hard Real-Time Multicore Systems

interference due to contention, that is absorbing considerable
research efforts in both real-time industry and academic com-
munity.

In recent years much effort has been put into modelling
interference and proposing scheduling techniques to mitigate
its negative effect. Two different approaches are commonly
used to model interference: using a model specific to the type
of shared hardware or proposing a general model that is valid
for any type of hardware. The former gives a more accurate
interference value but it is only valid for the hardware for
which it has been calculated. Moreover, this interference
value is added to the Worst Case Execution Time (WCET),
making it a very pessimistic solution. The latter obtains a
higher value of the interference but by adding this parameter
to the temporal model independently of the WCET, it is pos-
sible to obtain a less pessimistic model. But it is necessary to
propose a temporalmodel to incorporate this new interference
parameter.

Regarding the scheduling of such systems, there are also
numerous works that have addressed the scheduling and
schedulability of partitioned real-time multicore systems
(migration is not allowed, as the allocation must be static).
This scheduling is done in two phases: first, the tasks are
assigned to the cores, and then each core schedules its tasks.
If interference is not taken into account, the scheduling of
each core is independent. But if interference is taken into
account, the execution of tasks in one core affects the schedul-
ing of the other cores. This way, the timing correctness of the
hard real-time system becomes more complex.

The main objective of this work is to obtain a static plan
for critical multicore systems that is not only able to execute
tasks within their deadlines but also to reduce interference as
much as possible. To do this, we will use ILP techniques in
the scheduling phase.

A. CONTRIBUTION AND OUTLINE
The main contributions of this work are:

• Proposal of a general ILP formulation for scheduling
multicore systems with the goal of reducing interference
due to shared hardware resources.

• Improvement of the above proposal to schedule indepen-
dently each busy period to improve efficiency of the ILP
technique (rolling horizon approach).

• Proposal of a heuristic (combined scheduler) that, based
on known schedulers, chooses the best in terms of inter-
ference reduction for each busy period.

• Proposal of combination of the rolling horizon approach
and the combined scheduler to achieve a reduction of the
interference.

• Evaluation of our proposal in combination with two allo-
cators in order to know which combination of allocator
and scheduler achieves the best performance in terms of
schedulability and interference reduction.

This paper is organised as follows: Section II briefly com-
ments relevant papers in the area, Section III defines the

temporal model used and the problem to solve while in Sec-
tion IV a first approximation of the ILP model is presented.
In order to improve the presented model, Section V presents
the concept of busy period in partitioned multicore systems
and Section VI proposes a scheduling technique to reduce
interference. With the results of the previous sections, in Sec-
tion VII, we present a ILP technique that obtains a scheduling
plan that minimizes interference. The evaluation is presented
in Section VIII and conclusions and further work is detailed
in Section IX.

II. RELATED WORKS
There has been a trend towards using multicore platforms due
to their high computing performance. From the key results in
the field in 2006, there is a lot of research about real-time
multicore systems. Some of the main surveys in the area are
[3] and [4].

This work is focused in partitioned hard real-time systems
that take into account interference due to contention. The
most recent survey about interference and mitigation of its
effect in the scheduling can be found in [5] (until 2021).

Regarding contention models (specific or general), many
works consider a specific hardware shared resource: mem-
ory bus ([6], [7]), scratchpad memories and DRAM ([8],
[9]), etc. For example, in [10], it is performed an analysis
of interference due to accesses to DRAM in heterogeneous
commercial-off-the-shelf (COTS) MPSoC platforms focused
on mixed-criticality systems. Our approach, on the contrary,
is to consider a general model, independent and valid for any
kind of shared hardware.

The works that consider a general model are closer to our
work. Altmeyer et al. [11] presented a Multicore Response
Time Analysis (MRTA) framework, that provides a general
approach to timing verification for multicore systems. They
omit the notion of WCET and instead directly target the
calculation of task response times through execution traces.
They start from a given mapping of tasks to cores and assume
fixed-priority preemptive scheduling. Other works as [12]
or [13] come from theMRTA framework. In [14], a schedula-
bility test and response time analysis for constrained-deadline
systems is proposed. They analyse the amount of time for
shared resource accesses and the maximum number of access
segments, which is out of the scope of this work. They
also assume that task priority levels are assigned a priori.
Choi et al. in [15] propose a conservative modeling tech-
nique of shared resource contention supporting dependent
tasks, in contrast to our work, that considers independent
tasks. They also assume fixed-priority scheduling. The work
presented in [16] considers constrained-deadline sporadic
task sets and a fixed priority scheduling. Here, tasks are
represented by a sequence of segments, each of which has
execution requirements and co-runner slowdown factors with
respect to sets of other segments that could execute in parallel
with it. Our model is more general, in the sense that we do not
split tasks into segments.

30028 VOLUME 11, 2023



J. M. Aceituno et al.: Optimized Scheduling of Periodic Hard Real-Time Multicore Systems

In [17], the interference due to contention is added to
the temporal model. Instead of adding it to the WCET, they
propose a scheduling algorithm that computes the exact value
of interference and an allocator that tries to reduce this total
interference. This model considers implicit deadlines in the
system and both fixed or dynamic priorities can be used.
However, no action is taken in the scheduling phase to reduce
interference, only in the phase of allocating tasks to cores.
Our aim is to extend this work to obtain a schedule that
minimizes interference. A similar work is presented in [18].
They define the Multicore Resource Stress and Sensitivity
(MRSS) task model that characterises how much stress each
task places on resources and its sensitivity to such resource
stress. This work also considers a general model to cope with
different hardware resources but only fixed priority schedul-
ing policies are considered (preemptive and non-preemptive).
They propose a schedulability analysis and a priority assign-
ment to maximize schedulability but no actions are taken to
reduce interference.

All of the above works are based on a specific scheduling
algorithm (fixed priority most of the time). This conditions
the amount of interference that can occur. Our approach is
to use an ILP technique, so that we do not depend on a
specific scheduling algorithm and decisions about which task
to execute at which time are made with the aim of reducing
interference.

Regarding the use of ILP techniques in real-time systems,
Guasque et al. [19] proposes a technique based on rolling
horizons for monocore systems. In multicore systems, most
works that use ILP for scheduling do so with the objective
of minimising power consumption [20], [21]. In [22] a new
method for solving complex scheduling problems of real-time
in multicore platforms is proposed using a directed acyclic
graph (DAG) to represent the scheduling of the workload,
where each vertex represents a processor of the system. Our
model differs from this work in the sense that we assume a
periodic temporal model.

III. TASK MODEL AND PROBLEM STATEMENT
A. PERIODIC TASK MODEL
Let us suppose amulticore systemwithm homogeneous cores
(M0,M1,M2, . . . ,Mm−1) where a task set τ of n independent
preemptive periodic or sporadic tasks should be allocated to.
Each task τi is represented by the tuple:

τi = (Ci,Di,Ti, Ii) (1)

where Ci is the WCET, Di is the relative deadline, Ti is
the period, and Ii is the interference factor over other tasks.
Constrained deadlines are considered, so Di ≤ Ti ∀i.
The term Ii is the time spent by a task in accessing some

shared hardware resource. A typical case is memory read and
write operations. Although Ii is part of Ci, during the time
the task accesses the shared resource, other tasks on other
cores will be delayed if they try to access the shared resource.
Therefore, this interference time is defined independently of

FIGURE 1. Example of chronogram under EDF.

Ci, as it will be used to represent the delay caused to other
tasks.

A more detailed description of the interference factor
parameter can be found in [17] but, because of its importance,
we will illustrate how to schedule the task model with a
simple example. First, we need the following definitions:
Definition 1 [17]: A task is defined as a receiving task

when it accesses shared hardware resources and suffers an
increase in its computation time due to the interference pro-
duced by other tasks allocated to other cores.
Definition 2 [17]: A task is defined as a broadcasting task

when it accesses shared hardware resources and provokes an
increase in computation time in other tasks allocated to other
cores due to contention.

If Ii = 0, τi is neither broadcasting nor receiving task.
If Ii > 0, τi will be a broadcasting and receiving task if there
is at least one task τj in other core whose Ij > 0.
Then, let us proceed with the simple example. Let us

assume a system with 2 cores: M0 and M1, and 3 tasks: τ0,
τ1 and τ2 with the following parameters: τ0 = (1, 3, 3, 1),
τ1 = (1, 7, 7, 1), τ2 = (1, 21, 21, 0). We say that τ0 and
τ1 are broadcasting tasks since its Ii ̸= 0. Tasks τ0 and τ2 are
allocated to core M0 and τ1 is allocated to core M1. Figure 1
shows the scheduling of the example under Earliest Deadline
First (EDF) algorithm. The novelty is that when two tasks in
different cores coincide in execution, they cause each other
a delay that is the interference factor, if it is not 0. That is
why τ0 suffers 1 unit of interference (blue dash lines) that
corresponds with I1. And vice versa, τ1 suffers 1 unit of
interference (red dash lines) that corresponds with I0.
The theoretical utilisation of a coreMk ,UMk , is the fraction

of processor time spent executing the tasks allocated to this
core. It is calculated by summing up the theoretical utilisation
of each task τi that belongs to that core (Ui = Ci/Ti).
In a multicore system, the utilisation of a core does not only
depend on the processor time spent executing the computa-
tion time of the tasks but also on the interference produced
when tasks are executed simultaneously on different cores.
For this reason, this paper defines the actual utilisation of a
core Mk , U ′Mk

, as the sum of the actual utilisations (U ′i ) of
the tasks that belong to that core. Therefore, the theoretical
system utilisationUτ is the sum of the utilisations of all cores

VOLUME 11, 2023 30029



J. M. Aceituno et al.: Optimized Scheduling of Periodic Hard Real-Time Multicore Systems

FIGURE 2. Example of chronogram.

and the actual system utilisation is denoted by U ′τ and takes
into consideration the interference.

The hyperperiod of the task set is the smallest interval
of time after which the periodic patterns of all the tasks
are repeated. It is calculated as the least common multiple
of the tasks’ periods and it is denoted as lcm. During the
hyperperiod, each task τi is activated Ni = lcm/Ti times.

B. PROBLEM STATEMENT
As explained in the previous section, tasks can suffer delays
due to interference of other co-runners tasks. This interfer-
ence is unpredictable in the sense that depends on the tasks
that are running in different cores at each instant of time.
We model this delay in the worst case, so it can cause that
a system becomes unfeasible if not taken into account. Dif-
ferent scheduling decisions can cause different amounts of
interference. For example, Figure 2 shows the same example
of Figure 1 but with a slightly different order of execution.
Specifically, τ2 is executed before τ0. This means that now,
τ0 and τ1 are not co-runners so they do not caused interference
to each other. The result is that, by slightly changing the
execution order, we have reduced the interference to 0. The
resulting schedule does not correspond to any optimal priority
assignment.

The aim of this work is to generate a static scheduling plan
for multicore systems. Integer Linear Programming (ILP)
techniques will be used to find a scheduling plan that reduces
as much as possible the total system interference due to
accesses to the shared hardware. We will assume that tasks
are already allocated to cores and they cannot migrate. The
solution obtained by ILP is the static scheduling plan that it
is made off line so there is not overhead due to the time needed
to find a solution.

IV. MULTICORE LP SCHEDULING
The first approximation to generate a static scheduling plan
for multicore systems is to propose a complete LP model.
This model addresses the multicore scheduling problem,
assuming that the allocation phase has already been done.

Every optimization model has an objective function, which
is the function on the decision variables that we wish (in this
case) to minimize. The decision variables capture the results
of the optimization. In a feasible solution, the computed
values for the decision variables satisfy all of the model

constraints. Finally, constraints capture a restriction on the
values that a set of variables may take.

If we now apply it to our problem, the decision variables
are: the tasks that are executed at each time on each core
(binary, executed or not), the interference (binary, exists or
not), and the response time of each task (continuous, time
units). Then, the model we are dealing with is of the mixed
integer type because it copes with integer and continuous
variables. Our constraints are based on schedulability criteria:
tasks must end before the arrival of their deadlines, multiple
tasks can not be executed simultaneously in the same proces-
sor, etc. All constraints are linear and therefore, the problem
is categorized as Mixed Integer Linear Problem (MILP).

In the following, we propose a complete MILP model that
solves the multicore scheduling problem with interference.
First, in Table 1 the notation is proposed.
The objective function to be solved is to minimize the

interference and the response time of the tasks. The reason
why the combination of two parameters has been chosen is
because if we minimise interference alone, plans with many
context switches could be produced:

min Obj =
1

maxI

∑
∀i,k∈τ
∀a∈Ni
∀b∈Nj

miakb +
∑
∀i,a

wia
Di

(2)

According to the problem statement, the objective function
is defined in Equation 2, which is minimizing the total num-
ber of interferences (first term) and the total response time for
all tasks in all system executions (second term). The problem
is considered as multiobjective because it tries to reduce both
interferences and response times.

Therefore, it is important to note that minimization is not
only about interference, but also about optimising interfer-
ence and response times. Therefore, it would not be correct to
talk about interference minimisation because we could obtain
a plan with less interference but with many context switches,
which is not desirable. Moreover, as we will see below, there
will be cases where a solution cannot be found in a reasonable
time, which is why alternatives are proposed in the following
sections.

The range of values of interferences and response times are
different. Thus, we need to normalize both variables to be of
a similar scale. We scale response times by dividing by dead-
lines for each activation and task. The sum of interferences
is scaled by the maximum possible interferences. In this way,
both values are in the range [0,1] and there is a fair trade-off
between competing objectives.

The maximum possible interference in the system is calcu-
lated from the array−−→vj→i, which is the activation pattern from
a broadcasting task τj to a receiving task τi and was defined
in [23]. Let us use this definition to obtain a pessimistic value
called maxI, so that dividing the real number of interferences
between maxI scales the interference objective in the range
[0,1]. maxI (Equation 3) sums the interference that all the
receiving tasks (Ii ̸= 0) receive from broadcasting tasks

30030 VOLUME 11, 2023



J. M. Aceituno et al.: Optimized Scheduling of Periodic Hard Real-Time Multicore Systems

TABLE 1. Model notation of the MILP problem.

(Ij ̸= 0) in other cores (Mτi ̸= Mτj ) in all its activations a,
which are in the range a ∈ [0,Ni − 1].

maxI =
∑
∀i,j∈τ

Mτi ̸=Mτj
Ii,Ij ̸=0

∑
0≤a≤Ni−1

−−→vj→i[a] · Ij (3)

In the following sections we explain the constraints of the
problem, dividing them according to their purpose.

A. ASSURANCE OF COMPUTATION TIME CONSTRAINTS
Constraint 4 ensures that all activations a of τi are executed
in its activation intervals Ria. Inside each of these intervals,
the sum of the WCET (first term) and (if exists) the received
interference (second term) must be executed.∑

t∈Ria

xiajt = Ci · oij +
∑
k∈τ
k ̸=i

oij ̸=okj

miakb · Ik · oij

∀i, a, j, k, b|k ∈ τ, b ∈ Nk if Ii, Ik ̸= 0 (4)

B. REAL-TIME CONSTRAINTS
This includes restrictions to ensure the temporary compliance
of the system. In this sense, constraint 5 ensures that all tasks
end before the arrival of their deadlines. Constraint 6 ensures
that only one task is being executed at each point in time at
each core. Constraint 7 ensures that tasks are not executed
outside their activation intervals. Constraint 8 reduces some
variables because of the known information. As the allocation
is known a priori, x matrix can be reduced, assuming that
if a task i is not allocated to a core Mj, (oij = 0), then the

execution of that task in that core is not possible (x = 0).

t
∑
∀j

xiajt ≤ dia − 1 ∀i, a, t|t ∈ Ria (5)

∑
∀i,a

xiajt ≤ 1 ∀j, t (6)

xiajt = 0 ∀i, a, j, t|t /∈ Ria (7)

xiajt = oij ∀i, a, j, t if oij = 0 (8)

C. INTERFERENCE CONSTRAINTS
This computes the total interference between each pair of
activations and tasks, for all the tasks in the system. Con-
straints 9 and 10 calculate the produced interference. When
activation a of τi and activation b of τk do coincide in execu-
tion at any time t, thenmiakb is equal to one.With constraint 11
we assure that miakb is equal to zero when tasks τi and τk
do not coincide in execution. Because of the periods, there
are activations that can not possibly overlap. In particular,
this can not happen when the execution times for τi at acti-
vation a do not intersect with the execution times for τk at
activation b.

miakb ≥ xiajt + xkblt − 1 ∀i, a, k, b, j, t|∀k ∈ τ,

b ∈ Nk , t ∈ Ria ∩ Rkb,

if i ̸= k and if j ̸= l (9)

miakb = mkbia ∀i, a, k, b|k ∈ τ, b ∈ Nk ,

if k ̸= i (10)

miakb = 0 ∀i, a, k, b|k ∈ τ, b ∈ Nk
if k > i and if Ria ∩ Rkb = ∅ (11)

D. RESPONSE TIME CONSTRAINT
Constraint 12 calculates the response time (wia ∈ N+) of each
activation of all tasks, as a function of the variable x.

wia ≥ t · xiajt − aTi + 1 ∀i, a, j, t|t ∈ Ria (12)

E. DECISION VARIABLE DOMAIN
Constraints 13 and 14 represent the decision variable
domains.

xiajt ,miakb ∈ {0, 1} (13)

wia ≥ 0 (14)

Regarding the number of constraints, this is not always a
good metric of the complexity of the model. For example,
there are models with millions of variables and constraints
that are solved in a few seconds and, on the contrary, seem-
ingly simple models that take days to be solved. The com-
plexity depends on the sparsity on the constraint matrix
and the number of integer variables in linear or mixed-
integer models, as is the case. A more complicated scenario
happens with non-linear models or non-convex constraints.
So we can not conclude that our model is complex because
of the constraints. In fact, the proposed constraints only

VOLUME 11, 2023 30031



J. M. Aceituno et al.: Optimized Scheduling of Periodic Hard Real-Time Multicore Systems

FIGURE 3. Busy period definition.

assure the proper functioning of a periodic system and eval-
uate the produced interference. The objective function is in
charge of minimizing this interference.

The previous model solves the problem of scheduling a
multicore hard real-time system. However, as stated in [19]
the problem can become intractable, as its size is directly
proportional to the number of tasks, task utilisation and
hyperperiod. In this case, an additional dimension is added,
namely the number of cores.

To overcome this drawback, we propose an alternative
to efficiently solve the problem. The primary idea is to
decompose the whole scheduling window (hyperperiod) into
many short subproblems, called rolling horizons. The Rolling
Horizon approach is used to reduce the computational time
to solve big problems with many variables. In this work, each
of these rolling horizons corresponds with a busy period that
will be explained in the following section.

V. SYSTEM BUSY PERIODS
Abusy period BPi is an interval of time inwhich the processor
has ready tasks to execute. The concept was first introduced
in [24] for monocore. A way to calculate the busy periods in
EDF is presented in [25].

We extend the definition of busy periods applied to multi-
core systems:
Definition 3: In partitioned multicore systems, a busy

period (BPi) is the time interval in which there is no idle time
in all the cores simultaneously.

Note that this definition is different for global multicore
scheduling in [26] in which an all busy period is a consec-
utive time interval in which there are always ready jobs or
waiting to be executed on every core.

According to the above definition, busy periods can be
derived using the monocore busy periods.

For example, Figure 3 shows the characterization of the
busy periods for a specific scheduling plan. The end of each
busy period is the time in which all cores in the system are in
idle state simultaneously.

Algorithm 1 shows how to calculate the busy periods
in multicore systems from the busy periods1 in monocore
systems. It is obtained from all the execution intervals that
compose the plan, including the executions in all cores. It is a
matter of combining all intervals until a point in which there
is no execution. It is important to note that monocore busy
periods take into account the interference caused by other
cores.

1Each interval is characterised by a start and an end and it is denoted as
the following superscripts: BPi=[BPis,BPie].

Algorithm 1 Obtaining Busy Periods (BP)
1: INPUT: Monocore busy periods (MBP) of all tasks in all

cores from the scheduling plan→ [MBP0,MBP1,. . . ]
2: OUTPUT: Set of busy periods→[BP0,. . . ,BPH-1]
3: procedure Obtaining busy periods
4: Temporarily ordering of the execution intervals (by

starting times)
5: Initialise list of busy periods→ BP=[MBP0]
6: Initialise variables i←1, j←0
7: forMBPi ∈ Execution Intervals [MBP1,. . . ] do
8: if BPje ≥MBPis then
9: ifMBPie > BPje then
10: BPje = MBPie

11: else
12: j = j+ 1
13: BPj←MBPi
14: i = i+ 1

Therefore, during a complete hyperperiod, cores alternate
between idle and busy states that is, between busy and idle
periods. Busy periods are independent of each other. This
means that we can apply different scheduling strategies in
each busy period and this does not affect the others.

Now that we have split the hyperperiod into busy periods
and we know that we can schedule differently in each one
without affecting the rest of the intervals, we are going to
schedule each busy period with several conventional schedul-
ing algorithms and we will choose the one that obtains the
least interference. This is useful for two reasons:

• to have the calculation of each busy period that we
need to develop the rolling horizon method (INPUT of
Algorithm 2),

• to have a non-optimal solution in case the ILP method is
not able to find one.

Note that in multicore scheduling with interference, the
length of a busy period depends on the chosen scheduling
algorithm. In the following section, we explain the technique
of obtaining the scheduling of each busy period, which we
have called the combined scheduler.

VI. COMBINED SCHEDULER
The Combined Scheduler (CS) is a scheduling algorithm that
uses or combines different scheduling policies such as EDF
or Deadline Monotonic (DM) [27] in a single schedule. The
key of the CS is that it schedules interval by interval, and in
each interval it can apply a different scheduling policy. The
selected policy is the one that generates the best results for
that interval at certain temporal parameters.

In the present case, the CS selects the policy that reduces
the interference due to accesses to the shared hardware in
each busy period. The CS chooses between the following
scheduling policies: EDF, DM and their variants. The variants
covered in this work are:

30032 VOLUME 11, 2023



J. M. Aceituno et al.: Optimized Scheduling of Periodic Hard Real-Time Multicore Systems

• Variant 1: consists of non-preempting a running task
when a higher priority task is activated under certain
conditions. The task is not preempted if the remaining
time for the running task to finish is less than the com-
putation time of the higher priority task. In this case,
the running task would not be preempted, inheriting the
priority of the task that wants to preempt it.

• Variant 2: consists of non-preempting a running task for
N time units either in the case that the task is about
to start execution or that the task has been previously
preempted.

In sort, there are six schedulers to be chosen: classic EDF,
classic DM, EDF variant 1, DM variant 1, EDF variant 2 and
DM variant 2.

In [28], Salmani et al. propose MMUF algorithm, that
combines fixed and dynamic scheduling to feasible schedule
transition overloaded systems (load ≥ 100%). When the
processor utilization is less or equal to one, EDF is a special
case of the MMUF algorithm [29]. As our work is focused in
critical systems, we will not find the case of an overloaded
system. Therefore, EDF and its variants may be considered
as variants of MMUF algorithm.

For a better understanding of the combined scheduler,
an example is presented here. Let us assume a system with
2 cores: M0 and M1, and 4 tasks: τ0, τ1, τ2 and τ3 with the
following parameters: τ0 = (2, 6, 6, 0), τ1 = (3, 10, 10, 1),
τ2 = (2, 7, 7, 1) and τ3 = (3, 9, 9, 0). To simplify the
example, we will assume that CS can only choose between
classic EDF and EDF variant 1. As a first step, the CS
schedules the task sets with classic EDF for the first busy
period. As it can be seen in Figure 4, it obtains a busy period
from instant 0 to instant 5 and 0 units of interference. Thus,
the CS schedules the task sets for the same busy period again,
but now with EDF variant 1. The result is also 0 units of
interference as it can be seen in Figure 4, so in this busy period
both policies obtain the same result. Since all options have the
same result, the CSwill choose the assigned policy by default,
in this case, classic EDF. Once the first busy period is solved,
CS continues the scheduling at instant 6 and the process is
repeated again.

For the second busy period, we can see in Figure 5 that
classic EDF obtains 2 units of interference while in Figure 6
EDF variant 1 obtains 0 units of interference. It is relevant
to note that the size of the second busy period is different,
from instant 6 to 16 (instead of 17 of classic EDF), and
that is fully associated by the interference produced between
the tasks. Therefore, the CS chooses EDF variant 1 as the
appropriate policy for the second busy period. The CS would
then continue with the same process to solve the next busy
period in the schedule and so on until the hyperperiod is
reached.

VII. ROLLING HORIZON MILP MODEL
The previous approach basically applies different known
scheduling policies at each busy period and selects the one

FIGURE 4. Resulting chronogram after scheduling the first busy period
with EDF in variant 1 (left) and classic EDF (right).

FIGURE 5. Resulting chronogram after scheduling the second busy period
with classic EDF.

FIGURE 6. Resulting chronogram after scheduling the second busy period
with EDF in variant1.

that provides better results in terms of interference. As each
busy period is isolated from its neighbours by idle instants,
each one can be scheduled independently as the CS does.
However, the CS does not obtain an optimized solution in
terms of minimum interference and this interference could be
further reduced. In this section, we propose aMILP technique
to obtain a static schedule with the optimization criteria of
minimize interference.

We use the concept of rolling horizon. Figure 7 shows
the main idea. The goal is to find a schedule for all the
hyperperiod which is the scheduling horizon. As trying to
solve the problem for the entire horizon is computationally

VOLUME 11, 2023 30033



J. M. Aceituno et al.: Optimized Scheduling of Periodic Hard Real-Time Multicore Systems

FIGURE 7. Rolling horizon description.

FIGURE 8. Rolling horizon schema.

very expensive, the problem is divided into smaller horizons
in a ‘‘divide and conquer’’ strategy. In our case, each smaller
horizon is a busy period.

The methodology is depicted in Figure 8. As seen in the
Figure, once the CS computes the feasible scheduling plan
for the task set, we deduce the system busy periods or rolling
horizons.2 In each rolling horizon we will solve aMILP prob-
lem, the Rolling Horizon MILP Algorithm (RHMA) listed in
Algorithm 2.

The RHMA algorithm works as follows: it receives a task
set, with a known task-to-core allocation and the set of busy
periods from the plan generated by the CS. As the problem is
to be posed as MILP, different parameters and variables must
be introduced. They are defined in Table 2. For each rolling
horizon (BP), all parameters from Table 2 are calculated
from the data input (line 6). Then, the variable matrices are
declared. In order to improve the efficiency of the algorithm,
both variables and constraints are declared at the beginning
and removed at the end of the interval. In this way, the size of
the problem is significantly reduced. Moreover, some of the
variables may be simplified because of known information
from the input data, as happened in the complete model pre-

2The terms ‘‘busy periods’’ and ‘‘rolling horizons’’ are used interchange-
ably throughout this text.

Algorithm 2 Rolling Horizon MILP Algorithm (RHMA)
1: INPUT:Busy periods fromCS, Task set and task-to-cores

allocation
2: OUTPUT: Scheduling plan, σ
3: procedure Rolling horizon MILP algorithm
4: Temporarily ordering of busy periods →

[BP0,. . . ,BPH-1]
5: for BPh ∈ Busy Periods [BP] do
6: Calculate parameters
7: Define and reduce variable matrix x
8: Define and reduce variable matrix m
9: Define variable matrix w

10: add Constraints
11: set Objective and optimize
12: if Optimal or Feasible then
13: σh = xiajt (Save scheduling plan for BPh)
14: else
15: Usage of the CS schedule in this BP
16: if h < H-1 then
17: Remove constraints and variables
18: Update the model

TABLE 2. Model notation of the RHMA.

sented in Section IV. Then, the constraints and the objective
are added and the solver starts the optimization (lines 10
and 11). If it reaches the optimal or a feasible solution in
the specified time (a feasible scheduling plan in that rolling
horizon), the scheduling plan will be saved (line 13), all the
constraints and variables will be removed (line 17), the model
will be updated (line 18) and then the system will move to the
next rolling horizon. This is repeated in all rolling horizons.
If, at some point, the solver can not feasibly schedule the tasks
at any rolling horizon, this interval will be scheduled by the
combined scheduler (line 15).

30034 VOLUME 11, 2023



J. M. Aceituno et al.: Optimized Scheduling of Periodic Hard Real-Time Multicore Systems

It is important to note that the difference between the
methodology presented in Section IV and Algorithm 2 is that
in Algorithm 2 the optimisation is performed in each interval
and Section IV performs over the entire hyperperiod.

In the following, we are describing the objective function
and the constraints for the MILP model. As happened in the
complete model in Section IV, the objective function consists
of minimizing the total number of interferences and the total
response time for all tasks in all system executions.

min Obj =
1

maxI

∑
∀i,k∈τ
∀a∈Sih
∀b∈Skh

miakb +
∑
∀i,a∈Riah

wia
Di

(15)

The constraints of the problem are defined as follows,
similarly to the model presented in Section IV. The difference
lies in the fact that the previous problem covered the entire
hyperperiod and this model moves from interval to interval.
Then, for each busy period BPh:

xiajt = oij ∀i, a, j, t|i, a ∈ Riah, t ∈ Th , if oij = 0

(16)

miakb = 0 ∀i, a ∈ Riah,∀k, b ∈ Rkbh if k > i

and if Riah ∩ Rkbh = ∅ (17)∑
a∈Sih
t∈Riah

xiajt = len(Sih) · Ci · oij +
∑
k ̸=i
a∈Sih
b∈Skh

miakb · Ik · oij

∀i, j, if oij ̸= okj and if Ii, Ik ̸= 0

and if len(Sih), len(Sjh) > 0 (18)∑
t∈Riah

xiajt = Ci · oij +
∑
k ̸=i
b∈Skh

miakb · Ik · oij

∀i, j, a|a ∈ Sih, if oij ̸= okj and if Ii, Ik ̸= 0

and if len(Sih), len(Sjh) > 0 (19)

t
∑
j∈J

xiajt ≤ dia − 1 ∀i, a, t|a ∈ Sih, t ∈ Th (20)

∑
∀i

a∈Sih

xiajt ≤ 1 ∀j, t|t ∈ Th (21)

miakb ≥ xiajt + xkblt − 1

∀i, a, k, b, j, l, t|a ∈ Sih, b ∈ Skh, t ∈ Th,

if i ̸= k and if j ̸= l (22)

miakb = mkbia
∀i, a, k, b|a ∈ Sih, b ∈ Skh, if k ̸= i

(23)

wia ≥ t · xiajt − aTi + 1 ∀t, i, a, j|a ∈ Sih, t ∈ Th
(24)

xiajt ,miakb ∈ {0, 1} (25)

wia ≥ 0 (26)

Constraints 16 and 17 reduce some variables because of the
known information.

FIGURE 9. Rolling horizon with warm start schema.

Constraint 18 ensures that task τi completes all the com-
putation time in the BPh. At each busy period, a task can
execute 0, 1 or more activations. Therefore, it has to com-
plete its WCET as many times as activations occur plus the
produced interference in that busy period. Similarly, con-
straint 19 ensures that each activation of each task is executed
in its activation interval, including WCET and interference.
Equation 20 ensures that all tasks end before the arrival of
their deadlines. Constraint 21 ensures that only one task is
being executed at each point in time at each core. Equa-
tions 22 and 23 calculate the produced interference.

Constraint 24 calculates the response time of each activa-
tion of all tasks. Equations 25 and 26 represent the decision
variable domains.

A. RHMA WITH WARM START
A way of improving the RHMA performance is to make use
of the CS scheduling plan, using it as an input of the RHMA
(see Figure 9). The RHMA receives both the scheduling plan
and the busy periods from the CS.

Warm starting information is an additional input data that
allows the algorithm to speed up solving the problem, reduc-
ing fastly the distance from the optimality. In practice, it con-
sists on providing manually starting solution vectors of the
problem to the solver.

If the MILP solver finds that the input solution is feasible,
then the input solution provides an incumbent solution and
a bound for the branch-and-bound algorithm. If the solution
is not feasible, the MILP solver tries to repair it. When it
is difficult to find a good integer feasible solution for a
problem, a warm start can significantly reduce the solution
time. The effectiveness of the warm start in MILP solvers
depends onmany factors. Sometimes, warm starts do not help
the solver to find solutions more quickly. For example, if a
significant amount of time is expended proving optimality
of a good solution (as is often the case), then there will be

VOLUME 11, 2023 30035



J. M. Aceituno et al.: Optimized Scheduling of Periodic Hard Real-Time Multicore Systems

FIGURE 10. Experimental evaluation overview.

no noticeable change in run time by supplying a warm start.
However, authors may consider providing feasible starting
points to fix an upper bound on the objective value (in case
of minimization) and thus can be used to prune nodes during
the search [19].

The feasible starting point considered in this work is the
scheduling plan provided by the CS.

VIII. EVALUATION
In order to assess the scheduling method proposed, we have
conducted the evaluation with synthetic task loads. The
methodology is shown in Figure 10, which consists of four
main phases: load generation, allocation, scheduling and val-
idation.

The load is obtained using a synthetic task generator. The
inputs of this generator are: the number of coresM , the num-
ber of tasks n, the number of broadcasting tasks, the the-
oretical utilisation of the task set Uτ , and the interference
of broadcasting tasks as a percentage of the WCET. The
specific parameters used as inputs are shown in Table 3. Task
parameters are obtained randomly to achieve the theoretical
utilization.

The next step is the allocation of tasks to the differ-
ent cores. Two different approaches are used for the allo-
cation, Worst Fit Decreasing Utilisation (WFDU)[30] and
Wmin[17]. We choose these two allocators based on the
comparisonmade in [17] whereWmin showed the best results
in terms of interference reduction and WFDU presents the
best results results in terms of schedulability.

With the task set and the allocation, the CS schedules the
task set and calculates the BPs, being both an input for the
RHMA algorithm.

TABLE 3. Experimental parameters.

FIGURE 11. Percentage of schedulable task sets depending on the
number of cores, allocators and scheduling algorithms.

The results obtained with the proposed RHMA will be
compared with EDF scheduling. That is, wewill compare two
allocation algorithms with two schedulers resulting in four
schedulers:
• WFDU+EDF
• Wmin+EDF
• WFDU+RHMA
• Wmin+RHMA
The comparison will be done in terms of schedulability

and increased utilization. The schedulability measures the
percentage of schedulable sets out of the total number of
generated sets. The increased utilization is measured as:

1−
k=m−1∑
k=0

UMk

U ′Mk

= 1−
Uτ

U ′τ
(27)

that is, it is the ratio between the actual utilization and the
theoretical utilization.

In this work, we make use of Gurobi solver. It is available
for students, faculty, and researchers to work with mathemat-
ical optimization at no cost. The experiments are performed
on an Intel Core i7 3.2 GHz processor with 32 GB RAM,
using Gurobi 9.5 as the MILP solver.

The results are depicted for schedulability in Figure 11.
In this figure, it can be seen that the percentage of schedu-

lability decreases with the number of cores, as expected.
Comparing allocators, WFDU obtains better schedulability
rates than Wmin as concluded in [17]. With respect to the
scheduling algorithms, RHMA improves EDF results in the
sense that RHMA can schedule task sets that EDF is not

30036 VOLUME 11, 2023



J. M. Aceituno et al.: Optimized Scheduling of Periodic Hard Real-Time Multicore Systems

FIGURE 12. Increased utilisation of the task sets depending on the
number of cores, allocators and scheduling algorithms.

capable of. Therefore, WFDU+RHMA is the best choice.
As a conclusion, regarding schedulability, choosing the right
allocator is key rather than the scheduler algorithm.

Figure 12 depicts the increased utilisation with respect to
the theoretical utilisation.

As seen in this figure, to allocate tasks to cores using
WFDU algorithm means a higher increased utilisation over
using Wmin. This is due to the fact that Wmin tries to group
tasks with interference together in the same core, in order to
reduce the overall produced interference.WFDUbalances the
load considering only the theoretical utilisation of the tasks
and not the interference. Regarding to the proposed schedul-
ing algorithms, RHMA significantly reduces the increased
utilisation, specially when tasks have been allocated using
WFDU algorithm. That is because, as WFDU produces an
allocator with high interference, RHMA has a wider range of
action to reduce it. As Wmin already achieves an allocation
with less interference, RHMA is less likely to reduce it.

In terms of figures, Figures 13 and 14 depict the aver-
age values of schedulability and increased utilisation. From
Figure 13 it can be concluded that the combination of allo-
cator and scheduler which offers better schedulability rates
is WFDU and RHMA, 58.76%. These results are slightly
better thanWFDUwith EDF, i.e., there are task sets that EDF
can not schedule and RHMA can. The same happens with
Wmin. In general, Wmin schedulability rates are lower than
WFDU (52% vs 58%) but RHMA works better than EDF.
Figure 14 shows that Wmin and RHMA is the combination
that reduces the increased utilisation the most, only 1.213%.
This is logical, as we are applying interference reduction
techniques in both the allocator and the scheduler.

As it is said in previous sections, RHMA scheduler uses
the CS algorithm to obtain a solution in some busy periods
of large size, so it is relevant to make a comparison between
RHMA and CS. In terms of increased utilisation, as it can
be seen in Figure 15 the plans made by RHMA scheduler
have a lower increased utilisation index compared to the plans

FIGURE 13. Percentage of average schedulable task sets depending on
the allocators and schedulability algorithms.

FIGURE 14. Percentage of average increased utilisation of the task sets
depending on the allocators and schedulability algorithms.

strictly made by the CS. This happens regardless of which
allocator is used for assigning tasks to cores, in our case
with Wmin and WFDU allocators. It can be observed as well
that, in the same way as it can be seen in previous graphics,
with 8 cores the average of increased utilisation caused by
interference is higher than the cases of 2 and 4 cores and
the scheduling resulted after a Wmin allocation made less
interference than the resulted from a WFDU allocation.

Since the role of the CS is to assist RHMA in some busy
periods, it is interesting to know in howmany BPs the RHMA
is not able to find a solution and then, the CS schedule
is used. Figure 16 represents the percentage of BPs with
respect to the total number of BPs in a hyperperiod in which
the scheduling solution is the one provided by the CS. The
graphic shows that with 2 cores RHMA does not need to use
the CS in any case. This is due to the fact that the size of
the problem to be solved with 2 cores is much simpler than
with more cores. However, with 8 cores the complexity of the
scheduling problem increases a lot for each BP, so the RHMA
tends to use the CS help up to more than 25% of the busy
periods.

VOLUME 11, 2023 30037



J. M. Aceituno et al.: Optimized Scheduling of Periodic Hard Real-Time Multicore Systems

FIGURE 15. Comparison between RHMA and CS: Percentage of average
increased utilisation depending on the allocators and schedulability
algorithms.

FIGURE 16. Percentage of Busy Periods where RHMA needs the CS.

IX. CONCLUSION
In this paper, a new scheduling strategy is proposed with the
aim of reducing interference due to the contention of shared
hardware resources in the context of partitioned multicore
scheduling. To reduce interference, actions can be taken in
both phases of the plan generation, i.e. in the task-to-core
allocation and in the subsequent scheduling. Our proposal
reduces interference in the scheduling phase.

The first technique, the CS scheduler, is based on inde-
pendently schedule each busy period in order to apply in
each one the best scheduling heuristic in terms of interference
reduction. The second one is based on a MILP model. In this
case we have proposed the scheduling of all the hyperperiod
at once but, due to its disadvantages, we propose another tech-
nique that, as the CS does, independently finds the scheduling
plan that minimizes the interference. This technique based
on rolling horizons (RHMA) is able to obtain solutions in a
reasonable amount of time, as it divides the hyperperiod into
smaller independent busy periods.

The evaluation done has showed that RHMA reduces the
interference produced and it is the best solution when it is
combined with an allocator that also takes into account the
interference when allocating tasks to cores. If we compare
RHMAwith EDF, when no actions are taken in the allocation
phase (WFDU), the reduction is noticeable (about 25%).
But if we use in the allocation phase our previous proposal
(Wmin) together with RHMA, then the reduction between
EDF and RHMA is not so noticeable. However, Wmin has
a lower schedulability compared to WFDU. The conclusion
is that themost important factor in reducing interference is the
choice of the allocator. If we allocate tasks so tasks with high
interference factor do not coincide in the same processor, then
the effect of interference is very low and subsequent actions
in the scheduling phase do not have much impact. However,
in highly critical systems, often the choice of which task
is allocated in which core may not respond to interference
reduction criteria but to other criteria such as isolation of
highly critical tasks in specific cores (in the context of mixed
criticality systems). In these cases, when we are not free to
allocate tasks to cores as we wish, it is important to have an
interference reduction strategy in the scheduling phase, hence
the need for RHMA.

As future work, the use of MILP techniques to reduce not
only interference but also several parameters at the same time
is proposed.We also aim to find aMILP technique that is able
to plan the BPs where the CS solution is now needed.

REFERENCES
[1] C. A. S. T. (CAST). (Nov. 2016). Multi-core Processors—Position

Paper CAST-32A. [Online]. Available: https://www.cast32a.com/files/cast-
32a.pdf

[2] D. Dasari, B. Akesson, V. Nelis, M. A. Awan, and S. M. Petters, ‘‘Identi-
fying the sources of unpredictability in COTS-based multicore systems,’’
in Proc. 8th IEEE Int. Symp. Ind. Embedded Syst. (SIES), Jun. 2013,
pp. 39–48.

[3] R. I. Davis and A. Burns, ‘‘A survey of hard real-time scheduling for
multiprocessor systems,’’ ACM Comput. Surveys, vol. 43, no. 4, pp. 1–44,
Oct. 2011.

[4] G. Fernandez, J. Abella, E. Quiñones, C. Rochange, T. Vardanega, and
F. J. Cazorla, ‘‘Contention in multicore hardware shared resources: Under-
standing of the state of the art,’’ in Proc. 14th Int. Workshop Worst-Case
Execution Time Anal., vol. 39, 2014, pp. 31–42.

[5] T. Lugo, S. Lozano, J. Fernandez, and J. Carretero, ‘‘A survey of techniques
for reducing interference in real-time applications onmulticore platforms,’’
IEEE Access, vol. 10, pp. 21853–21882, 2022.

[6] D. Dasari, B. Andersson, V. Nelis, S. M. Petters, A. Easwaran, and
J. Lee, ‘‘Response time analysis of COTS-based multicores considering
the contention on the shared memory bus,’’ in Proc. IEEE 10th Int. Conf.
Trust, Secur. Privacy Comput. Commun., Nov. 2011, pp. 1068–1075.

[7] K. Lampka, G. Giannopoulou, R. Pellizzoni, Z. Wu, and N. Stoimenov,
‘‘A formal approach to the WCRT analysis of multicore systems with
memory contention under phase-structured task sets,’’ Real-Time Syst.,
vol. 50, nos. 5–6, pp. 736–773, Nov. 2014.

[8] H. Kim, D. de Niz, B. Andersson, M. Klein, O. Mutlu, and
R. Rajkumar, ‘‘Bounding memory interference delay in COTS-based
multi-core systems,’’ in Proc. IEEE 19th Real-Time Embedded Technol.
Appl. Symp. (RTAS), Apr. 2014, pp. 145–154.

[9] J. Xiao, S. Altmeyer, and A. Pimentel, ‘‘Schedulability analysis of non-
preemptive real-time scheduling for multicore processors with shared
caches,’’ in Proc. IEEE Real-Time Syst. Symp. (RTSS), Dec. 2017,
pp. 199–208.

[10] M. Hassan and R. Pellizzoni, ‘‘Analysis of memory-contention in hetero-
geneous COTS mpsocs,’’ in Proc. 32nd Euromicro Conf. Real-Time Syst.
(ECRTS), vol. 165, 2020, p. 23.

30038 VOLUME 11, 2023



J. M. Aceituno et al.: Optimized Scheduling of Periodic Hard Real-Time Multicore Systems

[11] S. Altmeyer, R. I. Davis, L. Indrusiak, C. Maiza, V. Nelis, and J. Reineke,
‘‘A generic and compositional framework for multicore response time
analysis,’’ in Proc. 23rd Int. Conf. Real Time Netw. Syst., Nov. 2015,
pp. 129–138.

[12] R. I. Davis, S. Altmeyer, L. S. Indrusiak, C.Maiza, V. Nelis, and J. Reineke,
‘‘An extensible framework for multicore response time analysis,’’ Real-
Time Syst., vol. 54, no. 3, pp. 607–661, Jul. 2018.

[13] H. Rihani,M.Moy, C.Maiza, R. I. Davis, and S. Altmeyer, ‘‘Response time
analysis of synchronous data flow programs on a many-core processor,’’ in
Proc. 24th Int. Conf. Real-Time Netw. Syst., Oct. 2016, pp. 67–76.

[14] W.-H. Huang, J.-J. Chen, and J. Reineke, ‘‘MIRROR: Symmetric timing
analysis for real-time tasks on multicore platforms with shared resources,’’
in Proc. 53rd Annu. Design Automat. Conf., 2016, pp. 1–6.

[15] J. Choi, D. Kang, and S. Ha, ‘‘Conservative modeling of shared resource
contention for dependent tasks in partitioned multi-core systems,’’ in Proc.
Design, Autom. Test Eur. Conf. Exhib. (DATE), 2016, pp. 181–186.

[16] B. Andersson, H. Kim, D. D. Niz, M. Klein, R. Rajkumar, and J. Lehoczky,
‘‘Schedulability analysis of tasks with corunner-dependent execution
times,’’ ACM Trans. Embedded Comput. Syst., vol. 17, no. 3, pp. 1–29,
May 2018.

[17] J. M. Aceituno, A. Guasque, P. Balbastre, J. Simó, and A. Crespo, ‘‘Hard-
ware resources contention-aware scheduling of hard real-timemultiproces-
sor systems,’’ J. Syst. Archit., vol. 118, 2021, Art. no. 102223.

[18] R. I. Davis, D. Griffin, and I. Bate, ‘‘Schedulability analysis for multi-
core systems accounting for resource stress and sensitivity,’’ in Proc. 33rd
Euromicro Conf. Real-Time Syst. (ECRTS), vol. 196, Jul. 2021, p. 7.

[19] A. Guasque, H. Tohidi, P. Balbastre, J. M. Aceituno, J. Simo, and
A. Crespo, ‘‘Integer programming techniques for static scheduling of hard
real-time systems,’’ IEEE Access, vol. 8, pp. 170389–170403, 2020.

[20] C. He, X. Zhu, H. Guo, D. Qiu, and J. Jiang, ‘‘Rolling-horizon scheduling
for energy constrained distributed real-time embedded systems,’’ J. Syst.
Softw., vol. 85, no. 4, pp. 780–794, Apr. 2012.

[21] J. F. Marquant, R. Evins, and J. Carmeliet, ‘‘Reducing computation time
with a rolling horizon approach applied to a MILP formulation of multiple
urban energy hub system,’’ in Proc. Int. Conf. Comput. Sci. (ICCS), vol. 51,
2015, pp. 2137–2146.

[22] S. Baruah, ‘‘An ILP representation of a DAG scheduling problem,’’ Real-
Time Syst., vol. 58, no. 1, pp. 85–102, Mar. 2022.

[23] A. Guasque, J. M. Aceituno, P. Balbastre, J. Simó, and A. Crespo,
‘‘Schedulability analysis of dynamic priority real-time systems with con-
tention,’’ J. Supercomput., vol. 78, no. 12, pp. 14703–14725, Aug. 2022,
doi: 10.1007/s11227-022-04446-y.

[24] J. P. Lehoczky, ‘‘Fixed priority scheduling of periodic task sets with arbi-
trary deadlines,’’ in Proc. 11th Real-Time Syst. Symp., 1990, pp. 201–209.

[25] I. Ripoll, A. Crespo, and A. K. Mok, ‘‘Improvement in feasibility testing
for real-time tasks,’’ Real-Time Syst., vol. 11, no. 1, pp. 19–39, Jul. 1996.

[26] F. Zhang and A. Burns, ‘‘A worst-case pattern of task load allocation and
execution for multiprocessor global real-time scheduling,’’ Int. J. Simul.–
Syst., Sci. Technol., vol. 17, p. 9, Jan. 2016.

[27] C. L. Liu and J. W. Layland, ‘‘Scheduling algorithms for multiprogram-
ming in a hard-real-time environment,’’ J. ACM, vol. 20, no. 1, pp. 46–61,
Jan. 1973.

[28] V. Salmani, S. T. Zargar, and M. Naghibzadeh, ‘‘A modified maximum
urgency first scheduling algorithm for real-time tasks,’’ World Acad. Sci.,
Eng. Technol., vol. 1, no. 9, pp. 2814–2818, 2007.

[29] D. Stewart, D. Schmitz, and P. Khosla, ‘‘Implementing real-time robotic
systems using CHIMERA II,’’ in Proc. IEEE Int. Conf. Syst. Eng., vol. 1,
Aug. 1990, pp. 598–603.

[30] Y. Oh and S. H. Son, ‘‘Allocating fixed-priority periodic tasks on multipro-
cessor systems,’’ Real-Time Syst., vol. 9, no. 3, pp. 207–239, 1995.

JOSÉ MARÍA ACEITUNO was born in Valen-
cia, Spain, in 1982. He received the B.S. degree
in computer management from the University of
Castellón, in 2012, and the M.S. degree in arti-
ficial intelligence from Universitat Politècnica de
València (UPV), in 2016, where he is currently
pursuing the Ph.D. degree in distributed systems.
From 2016 to 2019, he was a Teacher of high-level
web applications and multiplatforms with Ilerna
Online, Spain.

ANA GUASQUE was born in Valencia, Spain,
in 1987. She received the B.S. degree in indus-
trial engineering, the M.S. degree in automation
and industrial computing, and the Ph.D. degree
in industrial engineering from Universitat Politèc-
nica de València (UPV), in 2013, 2015, and 2019,
respectively. She is currently a Researcher with
UPV. Her main research interests include real-time
operating systems, scheduling, and optimization
algorithms and real-time control.

PATRICIA BALBASTRE received the degree in
electronic engineering from Universitat Politèc-
nica de València (UPV), in 1998, and the Ph.D.
degree in computer science, in 2002. She is
an Associate Professor of computer engineering
with UPV. Her main research interests include
real-time operating systems, dynamic schedul-
ing algorithms, and real-time control, which have
resulted in publications in prestigious journals (20)
and conferences (57) in the field.

FRANCISCO BLANES received the Ph.D. degree
in computing sciences from Universitat Politèc-
nica de València (UPV). From 2012 to 2020,
he was the Director of Instituto de Automática e
Informática Industrial, UPV, where he is currently
teaching distributed and embedded real-time sys-
tems. He has more than 90 scientific publications.
During the last ten years, he has combined his
research and teaching activities with innovation
and collaboration with companies. He is responsi-

ble for many technology transfer projects in the area of smart manufacturing.
His research interests include real-time embedded systems applied to robot
control and distributed industrial control systems.

LUIGI POMANTE (Member, IEEE) received the
Laurea (B.Sc. and M.Sc.) degree in computer sci-
ence engineering fromPolitecnico diMilano, Italy,
in 1998, the second-level university master degree
in information technology from CEFRIEL (a Cen-
ter of Excellence of ‘‘Politecnico di Milano’’),
in 1999, and the Ph.D. degree in computer science
engineering from Politecnico di Milano, in 2002.
Since 2006, he has been an Academic Researcher
with the Center of Excellence DEWS, Università

degli Studi dell’Aquila, Italy. Since 2010, he has been in charge of scientific
and/or technical issues on behalf of DEWS inmore than ten funded European
and national research projects. His research interests include electronic
design automation (in particular, electronic system-level HW/SW co-design)
and networked embedded systems (in particular, wireless sensor networks).
In such a context, he was the author (or coauthor) of more than 100 articles
published in international and national conference proceedings, journals, and
book chapters.

VOLUME 11, 2023 30039

http://dx.doi.org/10.1007/s11227-022-04446-y

