
Procedia Computer Science 00 (2010) 1–10

Procedia Computer
Science

International Conference on Computational Science, ICCS 2010

A Hybrid Mutiresolution Representation for Fast Tree Modeling
and Rendering

Javier Llucha, Emilio Camahorta, Jose Luis Hidalgoa, Roberto Vivoa

aUniversity Institute of Control Systems and Industrial Computing, Universidad Politecnica de Valencia, Spain

Abstract

We introduce a new representation for modeling and rendering plants and trees. The representation is multiresolu-
tion and can be automatically generated and rendered in an efficient way. For the trunk and branches we procedurally
build a multiresolution structure that preserves the visual appearance of a tree, when rendered at different levels of
detail. For the leaves we build a hierarchy of images by pre-processing the botanical tree structure. Unlike other rep-
resentations, the visual quality of our representation does not depend on viewing position and direction. Our models
can be applied to any computer graphics area that requires modeling outdoor scenes like interactive walkthroughs and
fly-by’s, realistic rendering, simulation and computer games.

Keywords: L-Systems, Procedural Multiresolution, Image-Based Modeling and Rendering, Levels of Detail, Plant
and Tree Modeling, 3D Rendering, Computer Graphics

1. introduction

Plants and trees are an integral part of outdoor scene modeling in real-time graphics applications like virtual
reality, simulation, navigational aids and computer games. Their representation is commonly made of procedural
models based on L-systems. Most graphics applications convert those models to polygon-based representations for
hardware-accelerated rendering on graphics engines.

Accurate modeling of trees requires large numbers of polygons. A typical outdoor scene contains many trees, each
of them made of hundreds of thousands of polygons. Even on modern graphics hardware, the number of polygons
greatly exceeds the per-second polygon rate of the graphics engine, we aim to reduce the amount of geometry rendered.

Multiresolution modeling reduces the polygon count by using geometry-based simplification methods, but most
of these methods fail to capture the nature of plants and trees. Image-based tree models replace geometry by images
called impostors, but they require a lot of storage and introduce artifacts at close views. However, introducing geome-
try and image-based simplification methods at the procedural level leads to more natural simplification methods, what
we call procedural multiresolution.

We introduce a new multiresolution representation for plant and tree modeling and rendering. Our representation
is a hybrid procedural and image-based representation. Trunk and branches of a tree are modeled using procedural

Email addresses: jlluch@dsic.upv.es (Javier Lluch), camahort@dsic.upv.es (Emilio Camahort), jhidalgo@ai2.upv.es (Jose Luis
Hidalgo), rvivo@dsic.upv.es (Roberto Vivo)

c⃝ 2012 Published by Elsevier Ltd.

Procedia Computer Science 1 (2012) 485–494

www.elsevier.com/locate/procedia

1877-0509 c⃝ 2012 Published by Elsevier Ltd.
doi:10.1016/j.procs.2010.04.052

Open access under CC BY-NC-ND license.

Open access under CC BY-NC-ND license.

http://www.elsevier.com/locate/procedia
http://dx.doi.org/10.1016/j.procs.2010.04.052
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

J. Lluch et al. / Procedia Computer Science 00 (2010) 1–10 2

multiresolution which preserves the visual appearance of the tree. The leaves of a tree are modeled using a hierarchical
image-based technique. The representation requires a small amount of storage and provides a realistic sense of depth
and is able to generate different levels of detail (LOD) on demand.

We can render scenes with more than a thousand trees at 20 frames per second. Such a scene only takes 250Kbytes
of storage in compressed form and the generation of geometry and images takes a few seconds at load time. Trees can
be as leafy as desired because the increase in rendering time is negligible. Our method is also suited for transmitting
a scene from a server to a client with very little bandwidth use.

This article is organized as follows. Section 2 surveys interactive tree rendering and multiresolution modeling.
Section 3 explains how to model trees using L-systems. The following section describes in detail our representation
and the algorithms required to build it. Section 5 presents some results obtained with our representation.

2. Background

Our work is primarily related to two areas of computer graphics: plant and tree modeling and multiresolution
representations.

2.1. Plant and Tree Modeling

The simplest tree models are made of a few impostors, texture-mapped polygons that represent the tree. One
approach uses two orthogonal rectangular impostors forming a cross. A different approach, called billboard, uses a
single rectangle that always faces the viewer. Both techniques are inadequate for rendering trees from above and at
close range.

A different representation used in computer games uses both geometry and impostors, modelling the trunk with
tubes and sets of branches with billboards. SpeedTree [1] is a commercial application that uses this approach, it
supports rendering of landscape and tree wind movement. However, relatively expert skill is necessary to build trees
from scratch and it uses discrete LODs, lacking realism in short distances.

The most commonly used modeling technique for plants and trees is parametric L-systems. Lindenmayer first
introduced L-systems for modeling cellular division [2]. Later, Prusinkiewicz et al. applied L-systems to the repre-
sentation of plants and trees [3]. Parametric L-systems were reported in the works by Prusinkiewicz and Lindenmayer
[4] and by Hanan [5].

A different modeling approach is modeling by components introduced by Lintermann and Deussen [8]. Models
have also been built using images of real plants [9] and real trees [10] [11].

2.2. Level-of-Detail Techniques for Plants and Trees

New techniques have been proposed in the literature that introduce LOD modeling and advanced image-based
representations. LOD modeling techniques include degradation at range and pixel-based LODs [15], BSP-tree space
partitioning and multiresolution [16], cluster-based hierarchical polygon decimation and compression [17], and LOD
foliage with continuous multiresolution and hardware-assisted rendering [18]. Image-based representations include
layered depth images [19] [20], volumetric textures [21] and bidirectional textures [22].

2.3. Multiresolution Modeling

Multiresolution is a modeling technique that was first introduced to accelerate rendering of complex geometries
[23] [24].

A multiresolution model represents an object using different levels of detail (LODs). The finest LOD represents the
full-resolution model. Coarser LODs represent lower resolution versions of the model suitable for faster rendering.
For example, when using a geometric representation, coarser LODs typically contain smaller numbers of vertices,
edges and polygons.

A good multiresolution model is characterized by the following four properties: (i) The size of the model must not
increase with the number of LODs.(ii) Extraction of the LODs must be fast enough to support interactive rendering.
(iii) There must be no loss of information: the finest LOD must reproduce the original model at its full resolution.(iv)
The changes between LODs must be smooth.

486 J. Lluch et al. / Procedia Computer Science 1 (2012) 485–494

J. Lluch et al. / Procedia Computer Science 00 (2010) 1–10 3

Geometry-based simplification methods have been successfully applied to many areas of computer graphics. How-
ever, they fail to maintain the general structure of a tree: (i) they may join vertices belonging to independent branches,
(ii) they may insert geometry in otherwise empty space, and (iii) they eliminate smaller terminal branches first, result-
ing in smaller trees as the simplification proceeds. During the process, the tree’s volume diminishes and it loses its
visual appearance.

2.4. Discussion

Current tree representations typically need a large amount of storage to produce good quality visual results. Ad-
ditionally, they require an expert designer to build them and several hours to generate a scene suitable for rendering.
We propose an alternative representation that can be automatically built given a simple L-system. Our tree generation
algorithm runs in a few seconds and produces tree models whose rendering quality does not depend on viewing posi-
tion or direction. We divide the problem of modeling a tree into two sub-problems: modeling the trunk and branches
and modeling the leaves.

For the trunk and branches we introduce a new multiresolution representation based on parametric L-systems. For
the leaves we build an image-based representation that is both hierarchical and multiresolution. Once both represen-
tations are generated, we combine them into a hybrid model suitable for rendering at interactive rates.

3. Modeling Plants and Trees using L-Systems

Our hybrid representation is based on parametric L-systems. Parametric L-systems are the most commonly used
method for modeling plants and trees. In this section we describe the process of derive and interpret an L-System.

3.1. L-Systems: Definition and Derivation

A parametric L-system is given by an axiom and a set of derivation rules, also called productions. The axiom is
made of a chain of bracketed modules. Each module contains a symbol and a list of parameters. Productions can be
guarded by Boolean conditions on the parameters of a module. When a production is applied to the axiom, a module
is replaced by a new set of bracketed modules, thus resulting in a new derived chain. A set of bracketed modules
represents a branch and its descendants. A choice of axiom and derivation rules determines the features of a given
species.

For example, the following L-system generates a tree whose branches have each two children, and each child is
half the length of its parent. All other branch-related information (thickness, position, orientation, etc.) has been
omitted for simplicity.

Axiom : A(length)

Rule1 : A(l) : itNum < maxIt → B(l)[A(l/2)A(l/2)] (1)

Rule2 : A(l) : itNum = maxIt → B(l)

Here itNum is the number of derivations that have been applied so far, and maxIt is the total number of derivations
to be applied. Note that B is a terminal symbol, since modules containing B cannot be further derived.

The characteristics of a specific tree are given by the initial value of length and by the application of the derivations.
After a certain number of derivations, the derived chain only contains terminal symbols. That chain represents a tree
specimen. We call it output chain. For instance, the following output chain represents a specimen of the above species:

B(1)[B(.5)[B(.25)B(.25)]B(.5)] (2)

We have briefly introduced L-systems. L-systems may also contain logical expressions, stochastic productions and
context-sensitive derivation rules. The reader is referred to [4] and [5] for a detailed description of these extensions.

J. Lluch et al. / Procedia Computer Science 1 (2012) 485–494 487

J. Lluch et al. / Procedia Computer Science 00 (2010) 1–10 4

3.2. Chain Interpretation

We obtain the geometric representation of a tree by interpreting its output chain. The process is based on the turtle
metaphor, commonly used in graphics applications based on the LOGO programming language [29].

Turtle’s state is composed by current position, and current orientation. The state can be saved and and recovered
from a stack. Position and orientation can be changed by one of two types of modules:advance and rotate. Advance
modules also has a graphical interpretation, typically a cone or cylinder representing a branch.

The turtle stack allows storing the state of the turtle. It is used to traverse the branching structure of the tree, as
given by the bracketed structure of the output chain. If the interpreter finds an opening bracket ”[”, it pushes the turtle
state onto the stack. After parsing the next module, the interpreter generates the module’s geometry as a child branch
stemming from the current position. When the closing bracket ”]” is reached, the turtle pops its state from the stack
and continues from the same position where the branch was started, possibly generating a sibling branch for the next
module.

4. A Hybrid Tree Representation

Given a parametric L-system designed with our authoring tool, we generate a hybrid tree representation that uses
procedural multiresolution for the trunk and branches and image-based modeling for the leaves.

4.1. Trunk and Branch Modeling: Procedural Multiresolution

We want to model the trunk and branches using a multiresolution representation. Our goal is a procedural-based
multiresolution representation that maintains the structure of the tree. The first question is: given the output chain of
an L-system, how do we choose a simplification method?

The obvious choice is to undo the derivations in the opposite order that they were applied. However, the output
chain is generated following growth rules and is not appropriate for extraction of visual LODs. The results produce
images of the tree at successive growth stages.

An alternative is to construct the LODs using some metric on its branches that preserves the structure of the tree.
For example, consider the following output chain:

We can construct the LODs using some metric on its branches that preserves the structure of the tree. For example,
consider the following output chain:

C1[C2[C3[C4][C5[C6][C7]]][C9[C11][C10]][C8]][C12[C13][C14][C15[C16]]] (3)

where Cn represents the chain of modules that generates branch n (see Figure 1(a) for a possible interpretation).
Associated to each branch Cn we have a set of features, like length, texture or distance to the ground. We select the
features that are quantifiable and use them to determine which branches of the tree best represent its visual structure.
Once we have that information, we simplify the model by eliminating the least relevant branches.

Figure 1: (a)A possible interpretation of chain (3). (b)T-ADT obtained from chain (3) assuming that all the branches are of unit length.

In practice, our LOD generation method works incrementally, adding a new set of branches in each iteration. First,
we parse the output chain and build an intermediate data structure we call tree abstract data type or t-ADT. The t-ADT

488 J. Lluch et al. / Procedia Computer Science 1 (2012) 485–494

J. Lluch et al. / Procedia Computer Science 00 (2010) 1–10 5

Create the root of the t-ADT and make it the current node
for all module in the input chain do

if module = [then
add a child to the current node and make it the current
node

else if module =] then
add the branching length of the current node to its parent’s
set the current node to the current node’s parent

else
add the module’s length to the current node’s branching
length
add the module to the current node’s chain

end if
end for

(a) t-ADT

for all module of the chain do
if module = PUSH then

create a new box
give initial values to min, max
mark the box as last and open
increment level

else if module = POP then
close last box
save box

else if module = GEOMETRIC SHAPE then
update max, min of all open boxes

else if module = FORWARD then
modify turtle position

end if
end for

(b) Bounding Box

Figure 2: Algorithm to compute the t-ADT (a) and the algorithm to compute the bounding box hierarchy(b).

represents the tree and contains the required metric information. With the metric, we establish an order relation on the
set of branches. Traversal of the t-ADT in that order generates the procedural LODs. They are the re-ordered modules
of the output chain with an enhanced bracketed structure. We call this chain the multiresolution chain or multi-chain.

At rendering time, we extract and interpret those modules of the multi-chain needed to obtain the desired visual
quality. We can do it efficiently, because the modules are sorted from most relevant to least relevant. Progressive
transmission and rendering are also possible with this representation. Given a limited time or bandwidth budget, we
only transmit, interpret and render a limited-length prefix of the multi-chain.

4.1.1. Selecting a Metric
Consider an input chain S . We construct a t-ADT T containing a node for each branch resulting from the interpre-

tation of S . We assign a weight to each node by applying a metric to each branch. We want a metric that associates
larger values to those branches that better reflect the visual structure of the tree. There are a number of possible met-
rics, but we are only interested in metrics that induce an order relation on the nodes of the t-ADT. We consider four of
metrics: (a) number of children, (b) number of descendants, (c) longest path to a leaf node, and (d) branching length.
All these metrics quantify the relevance of the branches of a tree.

Given a node n ∈ T , the metrics are formally expressed as:

a) B(n) = car {n}
b) R(n) = car d(n)
c) P(n) = l(n) +max

m∈{n}
(P(m))

d) L(n) = l(n) +
∑

m∈{n}
L(m) = l(n) +

∑

m∈{n}
l(m)

where {n} is the set of children of n, d(n) is the set of descendants of n and l(n) is the length of the branch that n
represents. This length is calculated adding the distances associated to the advance symbols in the chain contained in
the node. All these metrics quantify the relevance of the branches of a tree.

We prefer the branching length because it reflects the density of the descendants of a branch. The idea is to give
higher precedence to branches with larger ramification. The branching-length satisfies this property and produces the
best visual results.

4.1.2. Building the t-ADT
The t-ADT contains a node for each branch of the tree. Each node contains the chain of modules that generate

the branch and its branching length as given by the above metric. The Figure 2(a) shows the algorithm that parses the
input chain and builds the t-ADT.

Figure 1(b) shows the result of applying the algorithm to output chain (3). Each node contains its associated chain
followed by a period and its branching length. For simplicity, we assume that all the branches are of unit length.

J. Lluch et al. / Procedia Computer Science 1 (2012) 485–494 489

J. Lluch et al. / Procedia Computer Science 00 (2010) 1–10 6

4.1.3. Generating the Multiresolution Chain
Given the t-ADT, we traverse it to generate the multi-chain. The multi-chain contains the modules of the output

chain plus two new types of modules, SAVE(id) and RESTORE(id). They define the LODs and control their extraction.
SAVE(id) modules instruct the turtle to store its state with a unique identifier id. RESTORE(id) modules recover the
state of the turtle stored with identifier id. We generate the multi-chain’s LODs by extracting paths from the t-ADT.
Each new path is chosen according to the branching length of its nodes.

When an LOD is extracted, we update the branching length of the nodes in the path. Let X(n,m) be the extracted
path, and let the path-length lX(n,m) be the sum of every length in the path X(n,m) (between node n and its descendant
m). If k.L is the branching length of node k. We update the branching lengths as follows:

∀k ∈ X(root,m) − X(n,m) k.L← k.L − lX(n,m)

∀k ∈ X(n,m) k.L← k.L − lX(k,m)
(4)

For the nodes up to the parent of the first node n, we reduce the branching length by the path length lX(n,m). For
all the other nodes, we reduce the branching length by the length of the path from that node to the leaf node m.

We create the first LOD by traversing the tree from the root to one of its leaves. At each step, we choose the node
with the largest branching length. When we visit a new node, we append its chain to the multi-chain and mark it as
output. If the node is an intermediate node, we also append a SAVE module with the same id as the node’s. Later, we
use the saved state to generate a new finer LOD starting with one of its children. Once the LOD has been output, we
update the branching lengths of all the nodes visited.

To generate the next LOD we start at the root and search for the first non-output node with the largest branching
length. Once we find it, we append to the multi-chain a RESTORE module with its parent’s id. Later, we use that
module to restore the turtle’s state, so that we can generate a new set of branches stemming from the parent branch.
The LOD is generated by traversing the t-ADT from the node to a leaf in the same way that we generated the first
LOD. Afterwards, we update the branching lengths of all the nodes between the root and the leaf. We continue this
process until all the leaves of the t-ADT have been output.

For example, given the t-ADT of Figure 1(b), the algorithm generates the following multi-chain:

C1 SAVE(1) C2 SAVE(2) C3 SAVE(3) C5 SAVE(5) C6

RESTORE(2) C9 SAVE(9) C11 RESTORE(1) C12

SAVE(12) C15 C16 RESTORE(3) C4 RESTORE(5) C7

RESTORE(9) C10 RESTORE(12) C13 RESTORE(2) C8

RESTORE(12) C14

(5)

Note that it contains roughly the same number of modules as the input chain. However, the modules of the multi-
chain are sorted depending on how relevant their branches are to the visual structure of the tree. Each LOD, except
the coarsest one, starts with a RESTORE module and ends with a terminal module. The coarsest LOD is given by the
prefix of the chain up to the first RESTORE module. Finer LODs follow. We can extract the entire tree by traversing
the multi-chain up to the last module.

4.2. Hierarchical Textures for Foliage Rendering

We present now a hierarchical data structure to store the geometry and images of the leaves. The data structure
can be easily generated from an L-system, and it can be used to represent any branched structure. It is organized as a
directed acyclic graph where each node contains a geometric primitive, like a cylinder, a sphere or a polygon.

Associated to each node we also store a bounding box that encloses all the geometry of that node and its de-
scendants. The orientation of the bounding box is the same as the turtle’s orientation for that node. To build our
representation for the leaves we render images of the leaves contained in each bounding box. Then we organize them
in the same hierarchy as the bounding box hierarchy.

490 J. Lluch et al. / Procedia Computer Science 1 (2012) 485–494

J. Lluch et al. / Procedia Computer Science 00 (2010) 1–10 7

Figure 3: Top: Diagonal plane divisions used for leaves(a). Bottom: Multiresolution trees in a landscape(b).

4.2.1. Generating Bounding Boxes
The bounding box hierarchy is built at same time as the graph. PUSH and POP modules delimit the beginning

and the end of a new branch and its new bounding box. The number of bounding boxes is controlled by a threshold
called top detail level. During the interpretation of a chain, an open box is a bounding box whose dimensions are still
being computed by traversing its sub-graph. The most recent box created is called last box. Finally, the level gives the
current depth in the graph. In the Figure 2(b) is the algorithm that computes a bounding box hierarchy.

The algorithm runs as follows. When the interpreter finds a PUSH module, a new open box is created, initialized,
and marked as the last box. As geometry nodes are encountered, the dimensions of all the open boxes are updated
until a POP module appears. When the algorithm ends, each node has an associated bounding box containing some
of the tree’s geometry. Now we compute a set of images of the leaves located in each box. Later these images will be
used as textures to draw impostors.

4.2.2. Generating Pre-computed Textures
We have to decide how to compute the impostor textures. First, we tried using six images. We computed six

orthographic projections of the leaves of a box, one for each side of the box.
The problem of this solution is that the geometry does not look deep when the images are rendered as impostors.

So we tried a modified version of the representation proposed in [21]. We divided the volume of the box into parallel
slices and computed an image for each slice. With this approach, a better sense of depth was achieved, and we
obtained smoother transitions between LODs. However, we had to use large amounts of storage for the textures and
this substantially limited the number of different trees that could be rendered in a scene.

We finally decided to store six images obtained by projecting the leaves onto the six diagonal planes that cross a
bounding box (see Figure 3(a)). This still requires a lot of storage, especially if the textures have an inadequate size or
the number of bounding boxes generated is too large. An additional problem is texture memory in graphics cards, a
limited resource. To reduce the amount of texture memory used by the representation, we limit the size of the texture
images and the number of levels of the bounding box hierarchy.

J. Lluch et al. / Procedia Computer Science 1 (2012) 485–494 491

J. Lluch et al. / Procedia Computer Science 00 (2010) 1–10 8

4.2.3. Texture Size
Bounding boxes at the same level in the graph belong to the same LOD, and boxes in a level include all the boxes

in higher levels. If the textures of a bounding box are rendered, then the boxes of its descendants are not rendered. So,
if the observer is located far enough, the tree foliage is rendered using the images computed for the bounding box that
includes the whole tree. Since the tree is far away its impostors only cover a few pixels. As the observer gets closer to
the tree, smaller bounding box images are rendered. As the tree size grows on the screen, textures replacing the leaves
are smaller; so they cover a number of pixels similar to the lower levels of detail at closer distances.

For this reason we decided to make the size of the textures constant for all levels. We use textures of 64x64 and
128x128 pixels. Texture size does not depend on the size of the box it represents. Suppose that we set the size to
128x128 pixels. If we want to store the images of a balanced binary tree with 10 levels, then we need 96Mbytes of
memory. So we look for ways of reducing the number of levels.

4.2.4. Number of Levels
Consider the projected area of a set of leaves compared to the projected area of the texture replacing those leaves.

If it covers more pixels than the texture covers, then the texture must be scaled up resulting in blurring or aliasing
depending on whether texel colors are interpolated or not. To avoid this, we descend one more level in the hierarchy
and generate textures for its children bounding boxes. To reduce the spatial cost of the model, we limit the number of
texture levels taking into account the tree’s topology. We compute the ratio of a node’s bounding box volume to the
root node’s bounding box volume. If the result is smaller than a threshold, then images are not generated for that node
and its descendants.

At rendering time we use blending to obtain smooth transition between the different impostors of a box. Otherwise,
seams appear when rendering more than one impostor. To solve this problem we adjust the alpha channel of the
polygons progressively, depending on the viewer’s position.

4.3. Combining Both Representations

We describe how to obtain a tree model combining the two representations. We start designing an L-system using
GREEN. The system is then derived and an output chain is obtained. This chain is used as input to two processes.
The first process interprets the chain and generates the hierarchy of bounding boxes that represent the leaves. It then
renders the images associated to each bounding box and stores them in compressed format. At rendering time the
images will be used to replace the geometry of the leaves.

The second process takes the output chain and generates a multiresolution chain. The multiresolution chain is then
interpreted as follows. Advance and rotate modules are interpreted in the same way they are interpreted in the output
chain. SAVE modules store the turtle state in a vector indexed by id. RESTORE modules update the turtle state with
the vector element given by id. To interpret the first n LODs of the multi-chain, we parse all the modules until the
n-th is found. The next LOD can be progressively generated by interpreting the following sub-chain up to the next
RESTORE module. The interpretation process generates a vector whose elements contain the geometry associated
to each of the LODs of the multi-chain. The vector can be populated lazily depending on the requirements of the
renderer. LOD k is extracted by reading the geometry stored in the first k elements of the vector. Therefore, the LOD
extraction algorithm is very efficient.

5. Results

We tested our representation on a Pentium IV at 3.4 Ghz with 1 Gbyte of RAM and a GeForce Fx5700 graphics
card. Building our representation for a scene with a more than a thousand trees takes less than 8 seconds. The size of
the models is roughly 4 Mbytes. To transmit the model we compress the images using a standard format. As for the
geometry, we can send the definition file of the L-system instead, since it only requires less than 1 Kbyte.

Figure 4(a) shows a tree model rendered at different distances using different LODs. Note that the visual structure
of the tree is preserved by all four LODs. Furthermore, our representation satisfies all the multiresolution properties
outlined in Section 2.3, but the last one. Still, this is not a major problem since changes between LODs are barely
perceptible, especially if the tree is fairly leafy.

492 J. Lluch et al. / Procedia Computer Science 1 (2012) 485–494

J. Lluch et al. / Procedia Computer Science 00 (2010) 1–10 9

Figure 4: (a)A tree model rendered at different distances using different LODs: top, without leaves and bottom, with leaves. (b)Different LODs of
a tree model in a landscape.

In Figure 4(b) we show different LODs of the same tree. In the upper left image the individual leaves near the
viewer are represented by one polygon. The other leaves of the tree are rendered using the pre-calculated images.
Figure 3(b) shows a scene we used to time a walkthrough. The resulting frame rates are summarized in Table 1. The
tree model contains 2047 branches, 4085 leaves, and 10409 polygons. The reader is referred to [30] for different
animations that show the performance of our system.

Number of Trees 100 250 500 750 1000 1500 2000

Multiresolution Model
fps (min) 69 57 34 12 11 8 6
fps (max) 76 73 68 39 66 47 32
fps (average) 73,0 64,8 52,9 24,9 20,6 18,6 14,9

Geometric Model
fps (min) 3 1 0,1 0,1 0,1 0,1 0,1
fps (max) 30 18 10 8 5 2 1
fps (average) 14,3 6,3 2,4 1,5 0,6 0,1 0,1

Table 1: For a scene made of different numbers of trees, we compare the frame rates of our multiresolution representation with the frame rates of a
geometry-based representation: a) average fps, b) minimum fps and c) maximum fps.

6. Conclusions and Future Work

We have introduced a new representation for plant and tree modeling and rendering. Our representation separately
handles the branches and the leaves of a tree. To model the trunk and branches, we propose a new procedural
multiresolution representation that represents trees at different LODs using a chain of parameterized symbols.

We construct the chain by analyzing the tree and choosing those branches that best represent its visual structure.
The processing algorithm is based on a metric that quantifies the ramification of the branches of the tree. The length
of the resulting multiresolution chain is similar to the length of the original chain. It contains the LODs sorted from
coarsest to finest. An LOD builds on the sub-chain of the previous LODs, and can be progressively transmitted and
rendered. Interpretation of the multiresolution chain produces a geometry data structure that allows efficient LOD
extraction for rendering.

To model the leaves of a tree we propose an image-based multiresolution representation. Images are pre-computed
for sets of leaves enclosed in bounding boxes. The bounding boxes are generated following the structure of the tree.
Depending on viewer distance, the leaves can be rendered using their geometry or using one or more pre-computed
images. The amount of memory used for these images is independent of the leafiness of the tree.

J. Lluch et al. / Procedia Computer Science 1 (2012) 485–494 493

J. Lluch et al. / Procedia Computer Science 00 (2010) 1–10 10

Our hybrid representation can be generated automatically in a few seconds, given an L-system. Scenes made
of more than thousand trees can be rendered at interactive rates. Our models can be viewed from any position and
direction without noticeable changes in visual quality. The representation preserves the general structure of the tree
and supports variable multiresolution and progressive transmission. Any graphics application requiring rendering of
outdoor scenes can benefit from our representation. For example, virtual reality, simulation, navigational aids and
computer games would be good candidates.

We plan on improving our representation in three ways. We want to implement smooth the transitions between
LODs to remove the few popping artifacts that our representation produces. We also want to reduce the amount of
memory needed to store the images of the model. Finally, we want our representation to efficiently support wind
movement.

Acknowledgements

The work described in this paper was partially supported by grant TIN2009-14103-C03-03 and MICINN-P19/08
of the Spanish Ministry of Sciencie and Innovation.

References

[1] SpeedTree. [link].
URL http://www.idvinc.com/

[2] A. Lindenmayer, Mathematical models for cellular interactions in development ii. simple and branching filaments with two-sided inputs,
Journal of Theoretical Biology 18 (3) (1968) 300–315. doi:10.1016/0022-5193(68)90080-5.

[3] P. Prusinkiewicz, A. Lindenmayer, J. Hanan, Development models of herbaceous plants for computer imagery purposes, in: SIGGRAPH,
1988, pp. 141–150.

[4] P. Prusinkiewicz, A. Lindenmayer, The Algorithmic Beauty of Plants, Springer, 1991.
[5] J. S. Hanan, Parametric l-systems and their application to the modeling and visualization of plants, Ph.D. thesis, University of Regina (1992).
[6] Y. I. H. Parish, P. Müller, Procedural modeling of cities, in: SIGGRAPH, 2001, pp. 301–308.
[7] D. Schmalstieg, M. Gervautz, Modeling and rendering of outdoor scenes for distributed virtual environments, in: VRST, 1997, pp. 209–215.
[8] B. Lintermann, O. Deussen, Interactive modeling of plants, Computer Graphics and Applications, IEEE 19 (1) (1999) 56–65.
[9] L. Quan, P. Tan, G. Zeng, L. Yuan, J. Wang, S. B. Kang, Image-based plant modeling, ACM Trans. Graph. 25 (3) (2006) 599–604.

[10] A. R. Martinez, I. Martı́n, G. Drettakis, Volumetric reconstruction and interactive rendering of trees from photographs, ACM Trans. Graph.
23 (3) (2004) 720–727.

[11] P. Tan, G. Zeng, J. Wang, S. B. Kang, L. Quan, Image-based tree modeling, ACM Trans. Graph. 26 (3) (2007) 87.
[12] P. Prusinkiewicz, M. James, R. Mech, Synthetic topiary, in: SIGGRAPH, 1994, pp. 351–358.
[13] R. Mech, P. Prusinkiewicz, Visual models of plants interacting with their environment, in: SIGGRAPH, 1996, pp. 397–410.
[14] O. Deussen, P. Hanrahan, B. Lintermann, R. Mech, M. Pharr, P. Prusinkiewicz, Realistic modeling and rendering of plant ecosystems, in:

SIGGRAPH, 1998, pp. 275–286.
[15] J. Weber, J. Penn, Creation and rendering of realistic trees, in: SIGGRAPH, 1995, pp. 119–128.
[16] D. Marshall, D. S. Fussell, A. T. C. III, Multiresolution rendering of complex botanical scenes, in: Graphics Interface, 1997, pp. 97–104.
[17] X. Zhang, F. Blaise, M. Jaeger, Multiresolution plant models with complex organs, in: VRCIA ’06: Proceedings of the 2006

ACM international conference on Virtual reality continuum and its applications, ACM, New York, NY, USA, 2006, pp. 331–334.
doi:http://doi.acm.org/10.1145/1128923.1128980.

[18] C. Rebollo, I. Remolar, M. Chover, O. Ripolls, An efficient continuous level of detail model for foliage, in: U. of West Bohemia (Ed.), Journal
of WSCG, Plzen (Czech Republic), 2006, iSBN 80-86943-05-4.

[19] N. L. Max, Hierarchical rendering of trees from precomputed multi-layer z-buffers, in: Rendering Techniques, 1996, pp. 165–174.
[20] N. May, O. Deussen, B. Keating, Hierarchical image-based rendering using texture mapping hardware, in: Rendering Techniques, 1999, pp.

57–62.
[21] A. Meyer, F. Neyret, Interactive volumetric textures, in: Rendering Techniques, 1998, pp. 157–168.
[22] A. Meyer, F. Neyret, P. Poulin, Interactive rendering of trees with shading and shadows, in: Rendering Techniques, 2001, pp. 183–196.
[23] P. S. Heckbert, M. Garland, Multiresolution modeling for fast rendering, in: Proc. Graphics Interface ’94, Canadian Inf. Proc. Soc., Banff,

Canada, 1994, pp. 43–50.
[24] E. Puppo, R..Scopigno, Simplification, lod and multiresolution principles and applications, in: EUROGRAPHICS 97, Vol. 16 of Computer

Graphics Forum, 1997.
[25] K. Perlin, L. Velho, Live paint: painting with procedural multiscale textures, in: SIGGRAPH, 1995, pp. 153–160.
[26] A. Rosenfeld, Multiresolution Image Processing and Analysis, Springer-Verlag, 1984.
[27] M. Eck, T. DeRose, T. Duchamp, H. Hoppe, M. Lounsbery, W. Stuetzle, Multiresolution analysis of arbitrary meshes, in: SIGGRAPH, 1995,

pp. 173–182.
[28] T. He, L. Hong, A. E. Kaufman, A. Varshney, S. W. Wang, Voxel based object simplification, in: IEEE Visualization, 1995, pp. 296–303.
[29] A. A. diSessa, H. Abelson, Turtle Geometry: the computer as a medium for exploring mathematics, MIT Press, Cambridge, MA, 1981.
[30] J. Lluch. [link].

URL http://www.sig.upv.es/evergreen

494 J. Lluch et al. / Procedia Computer Science 1 (2012) 485–494

