

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

http://hdl.handle.net/10251/202000

Belda Ortega, R.; Arce Vila, P.; De Fez, I.; Guerri Cebollada, JC. (2022). Performance
evaluation and testbed for delivering SRT live content using DASH Low Latency streaming
systems. ACM. 115-121. https://doi.org/10.1145/3551663.3558674

https://doi.org/10.1145/3551663.3558674

ACM

Performance evaluation and testbed for delivering SRT live
content using DASH Low Latency streaming systems

Román	Belda,	Pau	Arce,	Juan	Carlos	Guerri†	

Institute	of	Telecommunications	and	
Multimedia	Applications	

Universitat	Politècnica	de	València,	Spain		
robelor@iteam.upv.es,	paarvi@iteam.upv.es,	

jcguerri@iteam.upv.es	

Ismael	de	Fez	
		Universidad	Internacional	de	Valencia,	Spain	

	idefez@universidadviu.com	
	

ABSTRACT	
The	 work	 presented	 in	 this	 paper	 focuses	 on	 the	
implementation	 of	 a	 testbed	 for	 the	 evaluation	 of	 content	
distribution	 systems	 using	 LL-DASH	 (Low	 Latency	 DASH	 -
Dynamic	 Adaptive	 Streaming	 over	 HTTP-)	 and	 devices	 that	
provide	real-time	sources	or	servers	using	real-time	protocols,	
such	as	RTSP	 (Real	Time	Streaming	Protocol)	or	SRT	 (Secure	
Reliable	 Transport).	 These	 protocols	 are	 widely	 used	 by	 IP	
(Internet	Protocol)	cameras	or	by	production	and	transmission	
systems,	such	as	OBS	Studio	or	vMix.	The	objective	is	to	show	
the	necessary	processes	in	detail	(so	they	can	be	reproduced	in	
future	works	related	to	low	latency	services)	and	to	minimize	
the	end-to-end	delay,	obtaining	values	in	the	order	of	2	seconds	
or	 less.	 The	 implementation	 has	 been	 done	 using	 FFmpeg	
software,	 players	 like	 Dash.js	 or	 Shaka-Player	 and	
implementing	a	Python	web	server	with	LL-DASH	support	to	
optimize	the	transmission	delay.	

CCS	CONCEPTS	
•	Network	 •	Network	 performance	 evaluation			 •	Network	
performance	analysis	

KEYWORDS	
DASH	 Low	 Latency,	 Live	 streaming,	 Testbed,	 Multimedia	
Software	Open	Source	

1	 Introduction	
The	DASH	(Dynamic	Adaptive	Streaming	over	HTTP)	standard	
has	become	the	most	popular	and	widely	used	protocol	in	VoD	
(Video	on	Demand)	streaming	platforms	[1]	for	several	reasons:	

1)	scalability,	since	the	content	server	can	be	a	standard	web	
server	and	 the	distribution	 is	done	over	HTTP,	being	able	 to	
take	 full	 advantage	of	 the	benefits	 of	CDNs	 (Content	Delivery	
Network);	2)	universality,	since	web	technology	can	be	played	
from	browsers;	and	3)	compatibility	with	network	equipment,	
since	the	widespread	use	of	HTTP	(Hypertext	Transfer	Protocol)	
in	Internet	browsing	makes	multimedia	traffic	transparent	to	
intermediate	routers.	

In	this	context,	there	are	more	and	more	streaming	platforms	
(Youtube	Live,	Twitch,	…)	that	offer	live	content	as	well,	such	
as	in	the	e-learning	sector,	online	conferences,	or	the	gaming	
world,	 along	with	 other	 use	 cases	 that	 require	 some	 kind	 of	
interactivity.	For	these	cases,	low	latency	solutions	are	needed.	
There	 are	 low-latency	 adaptive	 HTTP	 streaming	 proposals	
such	as	Low-Latency	HLS	(HTTP	Live	Streaming)	[2]	and	Low-
Latency	DASH	[1][3],	which	try	to	reduce	the	delay	as	much	as	
possible	from	video	packetization	to	playback.	However,	there	
are	 also	 other	 added	 delays,	 such	 as	 encoding	 delay	 or	
acquisition	delay	if	the	ingest	is	done	through	protocols	such	as	
RTMP	 (Real	 Time	 Messaging	 Protocol),	 SRT	 or	 RTSP,	 widely	
used	 in	 commercial	 IP	 cameras	 and	 in	 real-time	 content	
distribution	 systems	 (Teams,	 Zoom,	 IPTV,	 OBS,	 vMix,	 …).	
Moreover,	in	DASH,	it	is	the	client	who	requests	video	segments	
while	the	technique	used	in	LL-DASH	is	based	on	the	pushing	
of	content	while	it	is	being	generated,	so	the	server	cannot	be	a	
standard	 web	 server	 [4].	 In	 the	 literature	 and	 online	
repositories,	 proposals	 for	 server	 and	 encoder	
implementations	 can	 be	 found	 [5],	 although	 there	 are	 no	 IP	
cameras	that	support	the	DASH	standard	at	a	commercial	level,	
let	alone	LL-DASH,	making	the	study	and	development	in	this	
field	interesting.	

In	order	to	delve	into	the	many	factors	that	take	part	in	the	end-
to-end	delay,	this	paper	presents	a	testbed	for	LL-DASH	testing	
as	well	as	an	evaluation	of	the	latency	for	different	video	origins	
and	manifest	parameters.		

The	rest	of	the	paper	is	organized	as	follows:	Section	2	presents	
the	 state	 of	 the	 art	 of	 the	 available	 open	 source	 tools	 for	
developing	 LL-DASH	 streaming;	 Section	 3	 presents	 the	main	

†Corresponding	author	
Permission	to	make	digital	or	hard	copies	of	part	or	all	of	this	work	for	personal	
or	classroom	use	is	granted	without	fee	provided	that	copies	are	not	made	or	
distributed	for	profit	or	commercial	advantage	and	that	copies	bear	this	notice	
and	the	full	citation	on	the	first	page.	Copyrights	for	third-party	components	of	
this	work	must	be	honored.	For	all	other	uses,	contact	the	owner/author(s).	

	

factors	and	protocols	related	to	latency;	Section	4	describes	the	
communication	 architecture;	 Section	 5	 introduces	 the	
proposed	 testbed,	 while	 Section	 6	 presents	 the	 evaluation	
carried	out	using	the	aforementioned	testbed;	finally,	Section	7	
summarizes	the	main	conclusions	as	well	as	the	future	work.	

2	 State	of	the	art	
LL-DASH	 technology	 is	 based	 on	 sending	 the	 segments	 in	 a	
different	way	than	the	DASH	technology	used	in	VoD	systems.	
This	 is	 called	 "chunked	 transfer	 encoding".	 However,	 the	
disadvantage	 of	 using	 this	 type	 of	 transfer,	 which	 allows	
segments	 to	 be	 generated	 and	 sent	 simultaneously,	 is	 that	
traditional	adaptation	algorithms	do	not	correctly	calculate	the	
available	 bandwidth.	 Therefore,	 in	 [7]	 authors	 present	 the	
ACTE	 (Adaptive	 Streaming	 with	 Chunked	 Transfer	 Encoding)	
algorithm	 (using	 a	 sliding	 window	 and	 an	 online	 linear	
adaptive	 filter)	as	an	alternative	 to	overcome	 this	drawback.	
And	in	[8],	also	published	by	the	same	authors,	the	Automated	
Model	for	Prediction	(AMP)	algorithm	is	presented.	Along	the	
same	lines,	the	authors	of	[9]	present	a	new	algorithm	called	
Llama	(Low	Latency	Adaptive	Media	Algorithm).	This	algorithm	
uses	 two	 independent	 measures	 of	 throughput	 on	 different	
time	 scales.	 The	 algorithm	 is	 compared	 with	 the	 typical	
algorithms	 used	 by	 DASH,	 showing	 its	 advantages	 using	 the	
measurements	made	with	the	P.1203	standard.		

In	[10]	the	authors	review	the	performance	of	protocols	such	
as	 DASH	 and	 real-time	 protocols	 (RTP/RTCP,	 SRT).	 In	 this	
article	authors	implement	an	adaptive	bitrate	algorithm	for	the	
SRT	protocol.	 In	 this	way,	 they	manage	 to	 include	one	of	 the	
advantages	of	DASH	technology,	which	is	the	adaptation	of	the	
bitrate	depending	on	the	state	of	congestion.	The	same	authors	
focus	 the	 study	 in	 [11]	 considering	 the	 need	 to	 use	 the	
"chunked	transfer	encoding"	transmission	proposed	in	CMAF	
(Common	Media	Application	Format)	to	reduce	the	delay	in	5G	
network	applications.	On	 the	other	hand,	 the	authors	of	 [12]	
also	 focus	 on	 the	 evaluation	 of	 the	 delay	 improvement	
introduced	by	the	use	of	HTTP	chunked	delivery.	To	do	so,	they	
carry	 out	 a	 study	 on	 a	 real	 implementation	 and	 through	
simulations.	

From	the	point	of	view	of	the	most	widely	used	DASH	players,	
Dash.js	is	one	of	them.	It	is	the	result	of	an	initiative	of	the	DASH	
Industry	Forum.		In	[13]	it	is	presented	an	implementation	of	
an	algorithm	called	SARA	(Segment	Aware	Rate	Adaptation),	in	
which	 VBR	 (Variable	 Bitrate)	 coding	 is	 considered	 and	
therefore	with	a	different	size	of	the	generated	segments.	

Regarding	 the	 different	 low	 latency	 solutions,	 in	 [14]	 an	 in-
depth	 comparison	 is	made	between	 the	 low	 latency	 solution	
proposed	by	Apple	 (HLS	LL)	 in	2019,	 the	 standard	LL-DASH	
solution	of	2019	and	Low-latency	HTTP	Live	Streaming	(LHLS)	
that	was	 first	 introduced	by	Twitter's	Periscope	 in	2018	and	
then	 improved	 by	 Twitch	 in	 2019,	 also	 describing	 the	
differences	between	the	different	solutions.		

From	the	point	of	view	of	end-to-end	delay,	in	[15]	the	authors	
focus	on	providing	an	end-to-end	solution	through	what	they	
call	 HxL3	 architecture	 (HTTP/x-based	 Low-Latency	 Live	
streaming	architecture).	This	solution	is	agnostic	to	the	codecs	
(H.264,	 H.265,	 ...),	 application	 protocols	 (HTTP/1.1	 or	
HTTP/2.0),	streaming	format	(DASH,	HLS),	transport	protocol	
(TCP	 -Transport	 Control	 Protocol-	 or	 UDP	 -User	 Datagram	
Protocol-)	and	CDNs.	And	in	[16],	the	authors	focus	primarily	
on	the	study	of	the	overhead	introduced	by	streaming	content	
using	 LL-DASH.	 The	 use	 of	 transmission	 using	 "chunked	
transfer	 encoding"	 introduces	 an	 increase	 in	 headers	 and	
therefore	overhead	in	the	network.	

Unlike	 other	 papers	 that	 also	 present	 results	 based	 on	 their	
own	test-beds	[12][15][16],	this	work	presents	an	open-source	
web	 service	 that	 supports	 chunked	 transmissions	 as	well	 as	
FFmpeg	 scripts	 to	 quickly	 deploy	 a	 LL-DASH	 evaluation	
scenario.	 In	 addition,	 this	 work	 is	 an	 extension	 of	 previous	
work	carried	out	by	the	authors	regarding	the	DASH	protocol,	
specifically	on	the	evaluation	of	QoE	(Quality	of	Experience)	in	
DASH	 [17]	 and	 the	 impact	 of	 DASH	 streaming	 on	 Energy	
Efficient	Ethernet	[18].	

3	 Low	Latency:	factors	and	protocols	
According	to	a	report	by	Bitmovin	[19],	on	the	main	concerns	
of	 companies	 in	 the	 video	 streaming	 sector,	 the	 problem	 of	
latency	comes	first	(41%),	second	is	the	controlling	cost	(e.g.,	
bandwidth,	storage,	…)	(33%),	and	third	is	device	compatibility	
(32%).	

Low	 latency	 definition	 depends	 to	 a	 large	 extent	 on	 the	
application	in	which	the	distribution	system	is	framed.	In	fact,	
depending	 on	 the	 application	 (video	 on	 demand,	 live	
streaming,	 videoconferencing,	 etc.)	 the	 latency	 requirements	
(in	 addition	 to	 bandwidth	 requirements,	 loss	 tolerance,	 etc.)	
are	different.	To	give	an	example	at	each	end	of	the	multimedia	
applications,	it	can	be	seen	how	video	conferencing	or	security	
applications	need	much	 lower	 latency	 than	VoD	applications	
(such	as	Netflix,	HBO,	Youtube...)	since	video	conferencing	is	an	
interactive	 and	 real-time	 application	 with	 very	 demanding	
delay	requirements	(around	150-200	ms).	

Generally,	 real-time,	 ultra-low	 latency	 and	 low	 latency	
solutions	involve	using	protocols	such	as	WebRTC,	RTP/RTSP	
or	SRT	(protocols	used	by	applications	such	as	Teams,	Zoom,	
Skype,	 or	 IPTV	 services).	While	 at	 the	other	 extreme	we	 can	
find	HLS	and	DASH	protocols	that	offer	latencies	in	the	order	of	
20-30	seconds	typically	(used	by	applications	such	as	Netflix,	
Youtube,	HBO,	etc.).	However,	we	can	see	how	in	the	1-5	second	
range	there	is	the	possibility	of	using	all	protocols.	At	this	point	
it	 is	 important	 to	 note	 that	 while	 WebRTC	 or	 RTP/RTSP	
protocols	 are	 implicitly	 designed	 to	 offer	 these	 low	 latency	
performances,	HLS	or	DASH	protocols	need	new	functionalities	
both	on	the	encoding	and	packaging	side.	

	

Some	aspects	 that	contribute	to	 the	 final	 latency	observed	 in	
the	player	are	discussed	below.	

First	 of	 which	 is	 the	 encoder.	 Currently	 there	 are	 different	
encoders	widely	used	by	devices	(cell	phones,	cameras,	tablets,	
etc.)	 such	 as	 H.264/AVC	 (Advanced	 Video	 Coding)	 and	
H.265/HEVC	 (High	Efficiency	Video	Coding),	 and	 recently	 the	
specifications	of	other	encoders,	such	as	H.266/VVC	(Versatile	
Video	Coding),	have	been	published.	From	the	point	of	view	of	
the	 R-D	 (rate-distortion)	 curve,	 it	 is	 possible	 to	 make	 an	
evaluation	and	check	how	each	encoder	fulfills	its	announced	
improvements.	 For	 example,	 Figure	 1	 shows	 the	 result	 of	
measuring	 the	 VMAF	 (Video	MultiMethod	 Assessment	 Fusion)	
parameter	with	respect	to	the	bitrate	for	Blender's	Agent327	
sequence	 (www.blender.org),	with	 a	 resolution	 of	 1280x720	
pixels	and	encoded	at	24	fps.	It	can	be	seen,	for	example,	that	
for	a	VMAF	value	equal	 to	90,	we	need	about	190	kbps	with	
H.266,	 420	 kbps	 with	 H.265	 and	 790	 kbps	 with	 H.264.	
However,	 if	 we	 consider	 the	 encoding	 delay,	 we	 obtain	 a	
difference	in	the	encoding	time	of	1180	times	in	H.266	and	3	
times	 in	 H.265,	 with	 respect	 to	 the	 encoding	 time	 of	 H.264	
(currently	 making	 unfeasible	 the	 use	 of	 H.266	 for	 the	
transmission	of	events	in	real	time).	

	

Figure	1:	R-D	curve	for	different	video	encoders	

Moreover,	the	GoP	(Group	of	Pictures)	represents	the	pattern	of	
appearance	of	the	frames	(I,	P,	B)	in	the	encoded	video.	There	
are	 multiple	 possible	 GoP	 configurations:	 periodic/non-
periodic;	with	B	frames/without	B	frames;	open/closed;	large	
size/small	size;	etc.	Regarding	latency,	whether	to	use	B-frames	
and	 the	 size	 of	 the	 GoP	 are	 of	 great	 importance	 in	 the	 GoP	
configuration.	And	regarding	GoP	size	and	latency,	this	feature	
has	less	influence	on	RTP-based	protocols	(WebTRTC)	than	on	
HLS	or	DASH	protocols.	The	reason	 is	 that	protocols	 such	as	
RTP	 transmit	 frame	 by	 frame,	while	HLS	 or	 DASH	 protocols	
transmit	segments	(groups	of	frames)	that	usually	consist	of	a	
whole	number	of	GoPs.	

DASH	and	HLS	are	based	on	the	transmission	of	segments	using	
the	HTTP	protocol	and	adaptive	algorithms.	The	fact	of	using	
segments	introduces	an	intrinsic	delay	in	the	system,	since	it	is	
necessary	to	wait	for	the	generation	of	the	segment	in	order	to	
be	able	to	transmit	 it.	Typical	values	for	the	duration	of	such	

segments	are	2	s,	4	s,	6	s	or	10	s.	Without	considering	the	fact	
of	 having	 to	 use	 a	 buffer	 in	 the	 receiver,	 the	 segmentation	
process	 already	 introduces	 an	 unacceptable	 delay	 for	 many	
interactive	 or	 real-time	 applications.	 Figure	 2	 shows	
schematically	 the	 structure	 of	 a	 6	 s	 segment	 in	 the	 fMP4	
(fragmented	MP4)	 format.	When	 using	 fMP4	 file	 format,	 the	
encoded	file	is	divided	into	segments	that	can	be	downloaded	
and	played	back.	However,	to	start	playback,	it	is	necessary	for	
the	player	to	download	the	complete	segment	(mdat).	

	

Figure	2.	Traditional	fMP4	segment	(e.g.	6	seconds)	

To	reduce	playback	delay,	a	new	container	format	called	CMAF	
(Common	Media	Application	Format)	has	been	specified,	which	
allows	 the	 segment	 to	 be	 divided	 into	 chunks	 and	 to	 start	
playback	while	new	chunks	are	still	being	generated.	Figure	3	
shows	how	a	segment	has	been	split	into	one	chunk	per	frame,	
ideal	 for	 real-time	applications.	However,	 there	 is	a	 trade-off	
between	the	latency	reduction	achieved	and	other	aspects	such	
as	 the	 probability	 of	 interruptions	 due	 to	 congestion	 or	 the	
increase	in	requests	for	access	to	the	chunks.	

	

Figure	3.	CMAF	chunked	segment	(e.g.	180	chunks)	

Finally,	 to	 minimize	 the	 effect	 of	 congestion,	 all	 players	 use	
buffers	to	store	a	certain	number	of	frames	or	segments	before	
starting	playback	(Figure	4).	Again,	there	is	a	trade-off	between	
buffer	size	and	the	probability	of	service	interruptions.	Typical	
values	are	in	the	range	of	30	s	buffer.	However,	depending	on	
the	 applications	 (and	 specifically	 for	 real	 time)	 these	 values	
must	be	reduced	to	obtain	a	valid	service.	

	

Figure	4.	Segments	in	player	buffer	(e.g.	30	seconds)	

Once	 the	 factors	 that	 affect	 latency	 have	 been	 analyzed,	 the	
protocols	used	for	video	transmission	must	be	considered,	as	
well	 as	 the	 protocols	 used	 for	 distribution	 to	 the	 end	
customers.	 In	 fact,	 each	 option	 will	 have	 different	 answers	
regarding	latency,	scalability,	etc.	that	should	be	evaluated.	

	

4	 Real-time	 multimedia	 content	 distribution	
scenarios	
The	 starting	 point	 of	 the	 presented	 work	 is	 based	 on	 the	
advantages	 of	 real	 time	 protocols	 (SRT,	 RTSP,	 ...)	 for	 live	
content	 ingest,	 and	 the	 advantages	 of	 using	 DASH	 (and	
specifically	 LL-DASH)	 as	 a	 technology	 for	 the	 distribution	 of	
multimedia	 content	 to	 end	 users.	 These	 advantages	 are	well	
known	and	can	be	summarized	as	follows:	

-	Reduced	management	complexity:	By	allowing	HTTP	video	
transmission	using	TCP	ports	80	and	443	and	eliminating	the	
need	to	deploy	and	manage	a	separate	caching	infrastructure.	
In	 addition,	 in	 most	 corporate	 networks,	 some	 level	 of	
restriction	at	the	protocol	and	port	level	is	used	to	minimize	the	
likelihood	 of	 attacks.	However,	 ports	 80	 and	 443	 are	 almost	
always	 open	 for	 generic	 web	 traffic	 flow	 and	 therefore	 for	
HTTP	 video.	 On	 the	 other	 hand,	 ports	 using	 other	 video	
streaming	 protocols	 such	 as	 RTMP,	 SRT,	 RTSP,	 etc.	 are	 not	
always	open,	hindering	or	blocking	these	protocols.	

-	Cost	reduction:	Non-HTTP	transmission	protocols	increase	
the	cost	of	the	infrastructure	as	they	require	specific	hardware	
and	software	in	the	server,	forming	a	parallel	infrastructure	to	
the	network	of	the	rest	of	the	services.	In	addition,	inefficient	
content	 caching	 can	 increase	 the	 amount	 of	 bandwidth	
required	 to	 transmit	 popular	 videos	 over	 the	 network.	
However,	HTTP	technology	leverages	the	existing	HTTP	server	
network,	 allowing	 organizations	 to	 save	 costs	 that	 would	
otherwise	be	spent	on	specialized	hardware	and	software.	And	
as	 access	 to	 video	 content	 increases,	 HTTP	 caching	 proxies	
dramatically	reduce	bandwidth	costs	over	accessing	uncached	
video.	

-	Improved	Scalability:	The	ubiquity	of	HTTP	servers	and	the	
protocol's	native	support	for	perimeter	caching	make	HTTP	the	
ideal	 choice	 for	 streaming	 large-scale	 live	 events	 and	 on-
demand	content	for	very	frequent	access.	

To	summarize,	we	are	faced	with	a	situation	in	which	protocols	
designed	 for	 real-time	 transmission	 (from	 cameras,	
transmission	 equipment	 or	 production	 software	 (OBS	 [20],	
vMix	 [21],	 etc.))	 such	 as	 RTSP	 or	 SRT	 protocols,	 and	 the	
advantages	 of	 using	 LL-DASH	 technology	 for	 content	
distribution	must	coexist.	Therefore,	it	is	necessary	to	integrate	
both	 technologies	 to	 take	 advantage	 of	 the	 benefits	 of	 both.	
Figure	5	depicts	schematically	the	proposed	scenario	for	this	
purpose.	

	

Figure	 5:	 Scenario	 -	 Real	 Time	 Production	 –	 LL-DASH	
Distribution	

Figure	 5	 shows	 video	 content	 sources	 (cameras	 or	 content	
servers).	The	output	of	 these	sources	uses	RTSP	or	SRT.	The	
server	includes	the	developed	processes	that	take	care	of	the	
reception	of	 these	 streams	and	 their	efficient	 transformation	
into	video	segments	complying	with	the	CMAF	format	for	their	
use	 by	 the	 LL-DASH	 technology.	 On	 the	 other	 hand,	 a	 Web	
server	 has	 been	 implemented	 in	 Python	 that	 supports	 the	
distribution	of	content	using	the	LL-DASH	standard	by	sending	
chunks.	 Finally,	 the	 devices	 play	 the	 contents	 through	DASH	
clients	(such	as	DASH.js,	Shaka-Player,	...).	

5	 Low	Latency	DASH	testbed	
The	use	of	standard	HTTP	servers	for	DASH	is	a	key	benefit	of	
the	technology	but	imposes	a	defined	sequence	of	events	where	
segment	 files	 must	 be	 available	 on	 the	 server	 prior	 to	 any	
request	could	be	successfully	handled.	This	sequence	poses	no	
inconvenience	for	VoD,	where	segments	can	be	available	on	the	
servers	 in	advance,	or	even	on	 live	streaming,	where	players	
can	 be	 playing	 some	 segments	 behind,	 but	 generates	 a	
minimum	delay	between	the	generation	and	the	consumption	
of	the	content.	Figure	6	shows	how	DASH	clients	must	request,	
at	least,	a	segment	behind	the	sequence	of	generated	segments	
(Y<X)	in	order	to	avoid	HTTP	errors.	

	

	

Figure	6:	DASH	client-server	sequence	

This	requirement	generates	a	minimum	delay	equal	to	the	sum	
of	the	time	length	of	the	segment,	the	time	of	the	transmission	
to	 the	 server	 and	 the	 backoff	 time	 to	 avoid	 HTTP	 errors	 as	
Figure	7	depicts.	

	

Figure	7:	DASH	minimum	client	delay	

As	previously	stated,	 this	minimum	delay	may	suit	some	 live	
streaming	scenarios	but	not	those	which	require	low	latency.	
For	achieving	low	latency	when	using	DASH	HTTP	servers	can	
no	 longer	 be	 static	 content	 servers	 but	 dynamically	 handle	
segment	requests.	

Figure	 8	 shows	 the	 required	 behavior	 of	 HTTP	 servers	 to	
handle	 LL-DASH	 clients.	 First,	 manifest,	 and	 initial	 segment	
must	be	uploaded	 to	 the	 server	 (events	1	and	2)	before	 it	 is	
accessible	to	the	client	(events	3	and	4).	In	live	DASH,	manifest	
is	periodically	generated	and	uploaded	to	the	HTTP	server,	but	
it	 is	 omitted	 from	 the	 figure	 for	 clarity.	 Next,	 the	 client	will	
begin	 to	 request	 segments	 based	 on	 the	manifest,	 the	 target	
latency,	 and	 the	 current	 time.	 In	 LL-DASH	 those	 segment	
requests	will	reach	the	HTTP	server	even	before	the	segment	
transmission	 to	 the	 server	 has	 started.	 In	 this	 scenario,	 the	
HTTP	server	must	retain	the	HTTP	request	long	enough	to	wait	
the	 incoming	 segment	 or	 timeout	 otherwise,	 as	 represented	
between	events	5	and	6	in	Figure	8.	

	

Figure	8:	DASH	client-server	sequence	

The	 HTTP	 server,	 when	 the	 requested	 segment	 reception	
begins	(event	6),	starts	sending	the	content	of	the	segment	to	
the	 pending	 requests,	 as	 it	 arrives,	 in	 the	 form	 of	 chunked	
transmission.	

Aiming	to	test	the	described	behavior,	it	has	been	developed	a	
Python	HTTP	server	for	LL-DASH	based	on	FastAPI	framework	
called	Fast-ll.	Figure	9	shows	an	excerpt	of	the	server	where	a	
generator	is	created	to	add	received	chunks	to	the	response	of	
clients	while	they	are	being	received.	Fast-ll	handles	manifest	
and	 segments	 in-memory	 so	 no	 copy	 is	 stored	 on	 disk.	 The	
HTTP	 server	 must	 be	 fed	 using	 HTTP	 PUT	 requests,	 to	 add	
content,	 and	DELETE	 requests	 to	 remove	 content	 (when	 the	
segments	exceed	the	windows	defined	in	the	manifest	thus	no	
client	will	request	 it).	The	process	of	using	HTTP	methods	to	
manage	the	content	on	the	Fast-ll	can	be	done	by	the	FFmpeg	
tool	 Error!	 Reference	 source	 not	 found.	 when	 the	
appropriate	set	of	parameters	is	provided.	

async def generate_partial_segment(seg):
 aux = 0
 chunks = seg["chunks"]
 while not seg["complete"]:
 size = len(chunks)
 r = range(aux, size)
 for i in r:
 aux += 1
 yield chunks[i]
 await asyncio.sleep(5e-3)

Figure	9:	Fast-ll	generate_partial_segment	function	

For	 reference,	 Figure	 10	 includes	 a	 complete	 command-line	
that	uses	FFmpeg	to	access	an	SRT	or	RTSP	stream,	recodes	the	
video	 stream,	 generates	 a	 low	 latency	 DASH	 stream	 and	

	

uploads	 the	different	objects	 (manifest	 and	 segments)	 to	 the	
locally	running	Fast-ll	server.	

ffmpeg \
-fflags nobuffer \
-flags low_delay \

SRT source
-i "srt://127.0.0.1:5000" \

or RTSP source
-avioflags direct \
-f rtsp \
-i rtsp://root:pass@10.0.0.96:554/\
axis-media/media.amp \

-c:v libx264 \
-x264opts keyint=25:minkeyint=25:scenecut=-1 \
-tune zerolatency \
-profile:v baseline \
-preset veryfast -bf 0 -refs 3 \
-b:v 500k -bufsize 500k \
-utc_timing_url "https://time.akamai.com/?iso" \
-use_timeline 0 \
-format_options "movflags=cmaf" \
-frag_type duration \
-adaptation_sets "id=0, seg_duration=1, \
frag_duration=0.1, streams=v" \
-streaming 1 \
-ldash 1 \
-export_side_data prft \
-write_prft 1 \
-target_latency 0.5 \
-window_size 5 \-extra_window_size 10 \
-remove_at_exit 1 \
-method PUT \
-f dash \
http://localhost:8000/test/manifest.mpd

Figure	10:	FFmpeg	command	line	to	transform	RTSP	into	
LL-DASH	

Specifications	for	all	parameters	in	Figure	10	can	be	found	in	
[22].	 Among	 all	 parameters,	 there	 are	 three	 of	 particular	
relevance:	 1)	 -ldash 1:	 Specifies	 the	 LL-DASH	 mode;	 2)	 -
target_latency 0,5:	 The	 latency	 that	 the	 client	 will	 try	 to	
achieve;	 and	 3)	 -format_options "movflags=cmaf":	 The	
container	format.	

The	source	code	of	Fast-ll	server	and	scripts	used	in	the	work	
can	 be	 found	 in	 the	 git	 repository	
https://github.com/robelor/fast-ll		[22].	

6	 Evaluation	
With	 the	 development	 introduced	 in	 this	 work	 it	 is	
straightforward	 to	 setup	 a	 test	 environment	 to	 evaluate	 LL-
DASH	tools	and	clients.	

To	demonstrate	the	suitability	of	the	testbed	an	evaluation	of	
the	 parameter	 “target	 latency”	 when	 generating	 LL-DASH	
content	using	FFmpeg	has	been	performed.	The	evaluation	is	
carried	 out	 using	 three	 different	 sources:	 an	 RTSP	 camera	
(RTSP),	 an	 FFmpeg	 test	 source	 (Gen)	 and	 SRT	 source	 (SRT)	
generated	 also	 using	 FFmpeg.	 Regarding	 the	 target	 latency	
parameter,	 we	 have	 evaluated	 values	 of	 0.2,	 0.5,	 1	 and	 2	
seconds.	

FFmpeg	 uses	 the	 value,	 in	 seconds,	 of	 this	 parameter	 to	
generate	 the	 media	 presentation	 description	 (MPD)	
accordingly.	 For	 example,	 when	 0.5	 is	 specioied	 as	 target	
latency	 parameter	 the	 resulting	 MPD	 will	 incorporate	
"<Latency target="500"/>"	inside	the	"ServiceDescription"	
tag	as	the	MPD	deoines	the	value	to	be	in	milliseconds.	

Figure	11	shows	a	screenshot	of	the	testbed.	Labeled	as	1	it	is	
the	 system	 clock.	 Label	 2	 locates	 the	 system	 log	 of	 Fast-ll	
service	and	number	3	labels	the	Dash.js	4.4.0	player	properly	
conoigured	to	use	LL-DASH.	The	screenshot	depicts	one	of	the	
tests	with	the	RTSP	IP	camera	pointed	to	the	system	clock	to	
quickly	identify	the	overall	system	delay.	

	

	

Figure	11:	Screenshot	of	the	testbed	

Figure	 12	 shows	 the	 average	 delay	 identioied	 by	 Dash.js	 for	
each	protocol	and	target	delay.	Numeric	values	can	be	seen	in	
Table	1.	This	measured	delay	refers	 to	 the	 time	between	 the	
segmentation	 process	 and	 the	 display	 time	 of	 the	 frames.	
Naturally,	 the	overall	delay	will	 include	delays	 introduced	by	
the	video	sources,	transport,	and	segmentation.	

	 0.2	s	 0.5	s	 1	s	 2	s	

Gen	 0.21078	 0.41942	 0.95998	 1.87212	

RTSP	 0.35892	 0.48984	 0.97928	 1.98286	

SRT	 0.20634	 0.49404	 1.01040	 2.02898	

Table	1:	Latency	measured	by	the	Dash.js		

	

	

Figure	 12:	 Latency	 measured	 by	 the	 Dash.js	 client	 for	
different	target	latency	values	and	source	protocols	

7	 Conclusions	
Currently,	 integration	 of	 real-time	 sources	 (using	 protocols	
such	 as	 SRT	 or	 RTSP)	 for	 distribution	 over	 the	 Internet	 or	
CDNs,	using	LL-DASH	technology,	is	an	interesting	topic	from	a	
performance	 analysis	 point	 of	 view.	Although	 solutions	have	
been	proposed,	it	is	difficult	to	find	a	complete	system	that	can	
be	 replicated	 to	 compare	 adaptation	 mechanisms,	 measure	
delay,	 and	 evaluate	 QoE.	 This	 paper	 presents	 a	 system	 that	
includes	 all	 the	 necessary	 and	 tested	 processes	 (available	 at	
[22])	to	have	a	LL-DASH	streaming	system	with	SRT	or	RTSP	
sources.		

An	 interesting	 future	 work	 is	 to	 develop	 a	 content	 source	
agnostic	measurement	system	to	be	able	to	measure	delay	in	
an	automated	way.	

ACKNOWLEDGMENTS	
This	 work	 is	 supported	 by	 the	 Centro	 para	 el	 Desarrollo	
Tecnológico	 Industrial	 (CDTI)	 from	 the	Government	of	 Spain	
under	the	project	“Nueva	plataforma	a	bordo	basada	en	redes	
5G	y	Wi-Fi	6	para	medios	de	transporte	terrestre”	(CDTI	IDI-
20210624).	

REFERENCES	
[1] Abdelhak	 Bentaleb,	 Bayan	 Taani,	 Ali	 C.	 Begen,	 Christian	 Timmerer,	 and	

Roger	 Zimmermann.	 2019.	 A	 survey	 on	 bitrate	 adaptation	 schemes	 for	
streaming	media	over	HTTP.	IEEE	Communications	Surveys	and	Tutorials,	vol.	
21,	no.	1,	pp.	562–585.	DOI:	https://doi.org/10.1109/COMST.2018.2862938	

[2] Roger	Pantos.	2022.	HTTP	Live	Streaming	2nd	Edition	(Internet-Draft).	
[3] Thomas	 Stockhammer,	 Chris	 Poole,	 Thomas	 Swindells,	 Will	 Law,	 Iraj	

Sodagar,	 Ali	 Begen,	 Thorsten	 Lohmar,	 and	 Kilroy	 Hughes.	 2017.	 	 DASH-
IF/DVB	Report	on	Low-Latency	Live	Service	with	DASH.	

[4] DASH	 Industry	 Forum.	 2018.	Guidelines	 for	 Implementation:	 DASH-IF	
Interoperability	Points.	

[5] Will	Law.	2020.	Meeting	live	broadcast	requirements	–	the	latest	on	DASH	
Low	Latency.	DASH	Industry	Forum.	

[6] DASH	Industry	Forum.	2020.	Low-latency	Modes	for	DASH.	Retrieved	from	
https://dashif.org/docs/CR-Low-Latency-Live-r8.pdf.	

[7] Abdelhak	 Bentaleb,	 Christian	 Timmerer,	 Ali	 C.	 Begen,	 and	 Roger	
Zimmermann.	 2019.	 Bandwidth	 Prediction	 in	 Low-Latency	 Chunked	
Streaming.	In	29th	ACM	SIGMM	Workshop	on	Network	and	Operating	Systems	
Support	for	Digital	Audio	and	Video	(NOSSDAV’19),	Amherst,	MA,	USA.	ACM,	
New	York,	NY,	USA,	7	pages.	https://doi.org/10.1145/	3304112.3325611.	

[8] Abdelhak	 Bentaleb,	 Ali	 C.	 Begen,	 Saad	 Harous,	 and	 Roger	 Zimmermann.	
2021.	 Data-Driven	 Bandwidth	 Prediction	 Models	 and	 Automated	 Model	

Selection	for	Low	Latency.	IEEE	Transactions	on	Multimedia,	23,	2588–2601.	
DOI:	https://doi.org/10.1109/TMM.2020.3013387.	

[9] Tomasz	 Lyko,	 Matthew	 Broadbent,	 Nicholas	 Race,	 Mike	 Nilsson,	 Paul	
Farrow,	 and	 Steve	 Appleby.	 2020.	 Llama	 -	 Low	 Latency	 Adaptive	 Media	
Algorithm.	Proceedings	-	2020	IEEE	International	Symposium	on	Multimedia,	
ISM	2020,	113–121.	https://doi.org/10.1109/ISM.2020.00027.	

[10] Roberto	 Viola,	 Ad ngel	 Martıń,	 Juan	 F.	 Mogollón,	 Ad lvaro	 Gabilondo,	 Javier	
Morgade,	Mikel	Zorrilla,	Jon	Montalbán,	and	Pablo	Angueira.	2020.	Adaptive	
rate	 control	 for	 live	 streaming	 using	 SRT	 protocol.	 IEEE	 International	
Symposium	 on	 Broadband	 Multimedia	 Systems	 and	 Broadcasting,	 BMSB.	
https://doi.org/10.1109/BMSB49480.2020.9379708.	

[11] Roberto	 Viola,	 Ad lvaro	 Gabilondo,	 Ad ngel	 Martıń,	 Juan	 F.	 Mogollón,	 Mikel	
Zorrilla,	 and	 Jon	 Moltalbán.	 2019.	 QoE-based	 enhancements	 of	 Chunked	
CMAF	 over	 low	 latency	 video	 streams.	 IEEE	 International	 Symposium	 on	
Broadband	 Multimedia	 Systems	 and	 Broadcasting,	 BMSB.	
https://doi.org/10.1109/BMSB47279.2019.8971894.	

[12] Ali	El	Essaili,	 Thorsten	Lohmar,	 and	Mohamed	 Ibrahim.	2018.	Realization	
and	 Evaluation	 of	 an	 End-to-End	 Low	 Latency	 Live	 DASH	 System.	 IEEE	
International	 Symposium	 on	 Broadband	 Multimedia	 Systems	 and	
Broadcasting,	BMSB.	https://doi.org/10.1109/BMSB.2018.8436922.	

[13] Ali	C.	Begen,	Mehmet	N.	Akcay,	Abdelhak	Bentaleb,	and	Alex	Giladi.	2022.	
Adaptive	 Streaming	 of	 Content-Aware-Encoded	 Videos	 in	 dash.js.	 SMPTE	
Motion	 Imaging	 Journal,	 131(4),	 30–38.	 DOI:	
https://doi.org/10.5594/JMI.2022.3160560.	

[14] Kerem	Durak,	Mehmet	N.	Akcay,	Yigit	K.	Erinc,	Boran	Pekel,	and	Ali	C.	Begen.	
2020.	Evaluating	the	Performance	of	Apple’s	Low-Latency	HLS,	IEEE	22nd	
International	 Workshop	 on	 Multimedia	 Signal	 Processing	 (MMSP).	
https://doi.org/10.1109/MMSP48831.2020.9287117.	

[15] Farzad	 Tashtarian,	 Abdelhak	 Bentaleb,	 Alireza	 Erfanian,	 Hermann	
Hellwagner,	 Christian	 Timmerer,	 and	 Roger	 Zimmermann.	 2022.	 HxL3:	
Optimized	 Delivery	 Architecture	 for	 HTTP	 Low-Latency	 Live	 Streaming.	
IEEE	 Transactions	 on	 Multimedia.	 DOI:	
https://doi.org/10.1109/TMM.2022.3148587.	

[16] Nassima	Bouzakaria,	Cyril	Concolato,	and	 Jean	Le	Feuvre.	2014.	Overhead	
and	performance	of	low	latency	live	streaming	using	MPEG-DASH.	IISA	2014	
-	 5th	 International	 Conference	 on	 Information,	 Intelligence,	 Systems	 and	
Applications,	92–97.	https://doi.org/10.1109/IISA.2014.6878732.	

[17] Paola	Guzmán,	Pau	Arce,	and	Juan	Carlos	Guerri	Cebollada.	2019.	Automatic	
QoE	Evaluation	of	DASH	Streaming	using	ITU-T	Standard	P.1203	and	Google	
Puppeteer.	 In	 Proceedings	 of	 the	 16th	 ACM	 International	 Symposium	 on	
Performance	 Evaluation	 of	 Wireless	 Ad	 Hoc,	 Sensor,	 &	 Ubiquitous	
Networks	(PE-WASUN	'19).	Association	for	Computing	Machinery,	New	York,	
NY,	USA,	79–86.	https://doi.org/10.1145/3345860.3361519.	

[18] Tito	R.	Vargas,	Juan	Carlos	Guerri,	and	Pau	Arce.	2021.	Study	on	the	Impact	
of	DASH	Streaming	Services	using	Energy	Efmicient	Ethernet.	In	Proceedings	
of	the	18th	ACM	Symposium	on	Performance	Evaluation	of	Wireless	Ad	Hoc,	
Sensor,	&	Ubiquitous	Networks	 (PE-WASUN	 '21).	Association	 for	Computing	
Machinery,	 New	 York,	 NY,	 USA,	 89–94.	
https://doi.org/10.1145/3479240.3488527.	

[19] Bitmovin	 Video	 Developer	 Report.	 2021.	 Retrived	 from	
https://bitmovin.com.	

[20] OBS	studio.	2022.	Retrieved	from	https://obsproject.com.	
[21] vMix.	2022.	Retrieved	from	https://www.vmix.com.	
[22] Jean-Baptiste	 Kempf.	 2020.	Implementing	 DASH	 low	 latency	 in	 FFmpeg.	

DASH	Industry	Forum.	
[23] Git	 repository	 –	 robelor.	 2022.	 Fast-II.	 Retrieved	 from	

https://github.com/robelor/fast-ll.	

