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Abstract. This work deals with the real-time robot control implementation. In this paper, one 
algorithm for solving Inverse Dynamic Problem based on the Gibbs-Appell equations is  proposed and 
verified. It is developed using mainly vectorial variables and the equations are expressed in a recursive 
form, and it has a computational complexity of O(n). This algorithm will be compared with one based 
on Newton-Euler equations of motion, formulated in a similar way, and using mainly vectors in its 
recursive formulation. This algoritm was implemented  in an industrial robot: the PUMA manipulator. 
For the robot control a new and open architecture based on PC had been implemented. The 
architecture used has two mains advantages: first it provides a total open control architecture, and 
second it is not expensive. Because the controller is based on PC, any control technique can be 
programmed and implemented, and in this way the PUMA can work on high level tasks such as 
automatic trajectory generation, task planning, control by artificial vision, etc.  
 
Keywords: Robotic Manipulators, Inverse Dynamic Problem, Gibbs-Appell formulation, Robot 
Control, Computer Control, Digital Computer Applications 
 
 
1. Introduction 
 
One of the main problems that can be found when attempting to establish the control of an industrial 
robotic system is in its own control unit, since this unit is generally a totally closed subsystem. Due to 
the fact that it uses its own operating system and since it is impossible to modify this control system  
(not even the gain values), users have serious problems to implement conventional as well as advanced 
control strategies such force control, cooperative control of several robots. It is also important 
programming automatic trajectory generation, control based on external sensing (such as vision), 
control strategies etc. 

In order to solve these kind of problems we can find some solutions at (Moreira, et al., 1996), 
where the control hardware is modified, but generally it is neither trivial nor a cheap task. In (Valera, 
et al., 1998) shows a solution for these drawbacks since it presents a very simple, economical and total 
open architecture for the robot control. 

This paper shows the real-time robot control using this architecture. The control algorithms are 
based on the Inverse Dynamic Problem (IDP) implementation using the Gipps and Appell notation. 
Literature about the IDP in robots is vast. The interest of its potential applications (verification that the 
torques needed to execute a proposed trajectory do not exceed the capabilities of the actuators, IDP as 
part of the Inverse Dynamics Control etc.) has contributed to it.  

In order to increase their computational efficiency, many algorithms for solving the IDP have been 
proposed in the last thirty years. These algorithms are based on different Principles of Dynamics 
(Lagrange, Newton-Euler, Kane), the equations of motion are expressed in a closed-form or recursive 
formulation, and using different types of variables to express physical quantities. These algorithms can 
be implemented by means of symbolic programs or strictly numerical ones. Finally, according with the 
computer architecture where they will be processed, the algorithms can be sequential or parallel. 

In the following table are shown some of the proposed algorithms for solving the IDP on robots 
with rigid links and ideal joints. 



Table 1. Several algorithms for solving the IDP 
 

Authors Dynamic 
Principle 

Formulation Type of  
variables 

Type  of 
resolution 

Type of 
processing 

(Hollerbach, 1980) Lagrange-Euler Recursive Matricial Numerical Sequential 
(Luh et al, 1980) Newton-Euler Recursive Vectorial Numerical Sequential 
(Angeles, et al, 1989) Kane Recursive Tensorial Numerical Sequential 
(Balafoutis and Patel, 1991) Newton-Euler Recursive Tensorial Numerical Sequential 
(Khalil and Kleifinger, 1987) Newton-Euler Recursive Vectorial Symbolic Sequential 
(Lee and Chang, 1986) Newton-Euler Recursive Vectorial Numerical Parallel 
 
 

Custom-made algorithms, which take advantage of the special characteristics of particular 
industrial robots, must be specially mentioned. Examples of these are proposed in (Murray and 
Newman, 1988), based on the Newton-Euler formulation, expressed in a recursive way and with 
vectorial variables. 

Several authors (Balafoutis and Patel, 1991) have made evident that the computational efficiency of 
the dynamic algorithms depends fundamentally on the way the calculations are arranged rather than 
the dynamic principle in which they are based. This idea was already proposed by (Hollerbach, 1980), 
in which the dynamic problem was reformulated for robots by using the Principle of Lagrange in a 
recursive way and using rotation matrix 3x3 instead of a 4x4 homogeneous transformation matrix. By 
this method, the computational complexity could be reduced from O(n4)  to O(n). Nevertheless, the 
computational complexity of the Hollerbach algorithm was as three times larger than the Luh, Walker 
and Paul algorithm. 

On the other hand, it must be pointed out that important differences can be noticed about the 
computational efficiency assigned to algorithms of the same characteristics applied to robots of the 
same type.  An algorithm based on Newton-Euler formulation, implemented in a recursive way, using 
vectorial variables and solved in a numerical and sequential way, can be found in (Luh, et al, 1980) 
which had been assigned by Hollerbach a computational complexity of 150n-48 multiplications and 
131n-48 additions, where n is the number of degrees of freedom of the robot. (Fu, et al, 1987) 
provided a version of the same algorithm with a complexity of 117n-24 multiplications and 103n-21 
additions. (Zomaya, 1992) gave a complexity of 150n multiplications and 116n additions. Finally, 
(Craig, 1986) gave a complexity of 126n-99 multiplications and 106n-92 additions.  

The observed differences come fundamentally from the criteria used for counting operations, for 
instance, if operations, that involve multiplications by variables with 0 or 1 values, are detected. 
Therefore, it seems necessary to indicate clearly the criteria that are going to be used for counting the  
operations when comparing the efficiency of algorithms.  

The Gibbs-Appell equations were introduced by Gibbs in 1879 and formalised by Appell twenty 
years later. However, in the robot dynamics field there are few published references to works based on 
them. (Renaud, 1975) stands out among the first references to the application of the Gibbs-Appell 
equations to dynamic modelling of robots, in which he made remarkable commentaries on the 
previous work of E.P. Popov. (Vukobratovic and Kircanski, 1985) developed a closed-form algorithm 
with O(n3) computational complexity. (Desoyer and Lugner, 1989) developed a recursive algorithm 
for solving the IDP in robots using the Jacobian matrix in order to avoid algebraic or numerical 
derivatives. The computational complexity of the proposed algorithm is O(n3). 

In the present work the Gibbs-Appell equations are applied to solving the inverse dynamic 
problems of robots that have rigid links and ideal pairs. The algorithm proposed has a computational 
complexity of O(n). This algorithms is formulated in a recursive way, using vectors to express most of 
the physical magnitudes involved in them (angular velocity, angular acceleration, etc.). In order to 
achieve a higher computational efficiency, the involved magnitudes in the Gibbs function are 
expressed with respect to local reference systems in the links. The computational efficiency of this 
algorithm will be compared with that of the Luh, Walker and Paul algorithm. That can be done since 
the same type of formulation is used in both (recursive) and the common physical magnitudes are 



expressed in the same way. It must be stated that the criteria to evaluate the number of operations will 
be the same in both algorithms. 

This paper is organised as follows. In section 2, the proposed algorithm is developed and an 
analysis, comparing them with the Luh, Walker and Paul algorithm, of its computational complexity is 
provided. Section 3 presents a proposed control architecture for industrial robots based on PC. In 
section 4, the inverse dynamic control is addressed and is applied to a PUMA-type industrial robot. 
Finally, section 5 summarises the development of the paper and suggest directions for future research. 
 
 
2. The Gibbs-Appel Formulation Applied to the Inverse Dynamic Problem in Robots  
 
In this section, the Gibbs-Appell equations are described, and two different formulations are presented 
to solve the Inverse Dynamic Problem on robot manipulators. The robots are modelled following the 
Denavit-Hartenberg modified notation, which considers four parameters θi, αi, ai, and di, as it is shown 
in Figure 1. In the mentioned notation, the reference system corresponding to link i is located on joint 
i, and the z-axis is located on the axis in the same node, which connects links i-1 and  i. 

The reference system i is related to the i-1 reference system by means of the rotation matrix i-1R i 
and the position vector 
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Figure 1. Modified Denavit-Hartenberg notation 

 
The Gibbs-Appell dynamic equations come from the Gibbs function definition (also know as the 

energy of the accelerations). When we written in its original form for an arbitrary solid composed of  
n-elemental particles with masses mi an acceleration ai is (considering an inertial reference system): 
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The Gibbs function for the i-th rigid solid is given by 
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where mi is the mass of the i-th link, IGi is the 3x3 matrix representing the centroidal matrix of inertia 
of the i-th link, iω

r  y iω&
r

are the three-dimensional vectors representing the angular velocity and 

acceleration of the i-th link and 
iGr&&

r is the three-dimensional vector representing the acceleration of  the 
mass centre of the i-th link. An inertial reference system is considered to express these magnitudes. 



It is possible for these tensorial and vectorial magnitudes to be expressed considering a reference 
system located in the i-th link, so that the previous expression could be expressed as follows: 
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the expression (2) could rewritten as follows: 
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(3) 

 
and taking into account the orthogonal nature of the rotation matrix, the scalar Gi  would be given by: 
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where 

iG
i r&&r , i

i ω
r , i

i ω&
r  and 

iG
i I  are expressed in the i-th reference system. 

 
For a system consisting of n-bodies, the Gibbs function of the system would be given by 
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The Gibbs-Appell equations of motion are obtained from deriving the Gibbs function with respect 

to the generalised accelerations jq&& , obtaining in this way the generalised inertial forces that are to 
equate to the generalised external forces,τj 
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(7) 

 
The formulation for the solution of the Inverse Dynamic Problem in robots would be obtained by 

reorganizing and identifying two different terms in expression (7) as follows: 
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It is remarkable that expression below is similar to the proposed by (Angeles, et al, 1989) for 
solving the IDP based on the Kane’s dynamic formulation. 

For obtaining the generalised forces, the angular velocities, angular accelerations, the accelerations 
of the origin of reference system of links and the accelerations of the centre of masses of the links can 
be obtained using the following  known recursive expressions: 
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where  [ ]Ti
i z 100=
r

, and the variable ρi allows us to distinguish between the revolute joints 
(ρ i=1) and the prismatic ones (ρ i = 0). 
 

Developing the Aj term: 
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To obtain the 
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∂
∂ ω  term, we start from expression (10). This derivative could be obtained by a 

recursive procedure as follows: 
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Taking into account the expressions in (14), the Aj term could be rewritten as follows: 
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In this last expression, it can be seen that there are concurrent terms which could reduce the 

calculation complexity. Next, an expression that allows the terms to be obtained in a backward 
recursive way is presented: 
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Bj term can be obtained using the development of 
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∂  term for revolute joints is obtained using the expression (11): 
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In a similar way, for prismatic joints we could obtain:  
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Notice that there is an additional term in expression (20) in relation with (19), which must be 

included if the i-th  joint is a prismatic one: 
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To develop the Bj term, considering expressions (18) and (19), the following expression is used 
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This expression, when substituted in the above description of every Bj term, would give: 
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Applying  vectorial products properties and using again expression (14), would give: 
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where 
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This expression could be calculated in a recursive way as follows: 
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This formulation leads to an algorithm to solve the Inverse Dynamic Problem in robots of 
computational complexity of O(n). The algorithm description and the analysis of its computational 
complexity will be shown now. It’s composed by 6 steps (note that in order to compare the 
computational complexity with other algorithms, only revolute joints are considered and the robot base 
is considered fixed).  

In the step 1, there are the computation of  the rotation matrices i-1Ri and translation vectors 

ii OO
i r ,

1
1−

− r . The velocities and accelerations are computed in the step 2. Step 3 derives i
iω&r   with respect 

to the generalised accelerations iq&& , and the Ai and Bi terms are obtained in the steps 4 and 5. Finally, 
step 6 computes the generalised forces τi. 

 The computational complexity of the proposed algorithm is summarised in Table 2. Furthermore,  
the computational complexity of the Luh, Walker  and  Paul algorithm is reported in Table 3.  
 

Table 2. Proposed algorithm complexity 
 

 

Step Complexity 
 (×) (+) 

Step 1 4n 0 
Step 2 62n-75 46n-61 
Step 3 0 0 
Step 4 24n-23 18n-18 
Step 5 31n-38 26n-37 
Step 6 0 n 

 
Table 3. Computational complexity for robots with n ≥ 3 

 

Algorithm  Complexity n = 6 
Luh, Walker y Paul (×) 

(+) 
121n – 112 

90n – 82 
614 
458 

Proposed algorithm (×) 
(+) 

121n – 136 
91n – 116 

590 
430 

 
 

 
As can be appreciated from Table 3, the computational complexity of the proposed algorithm is very 
close to the Newton-Euler based algorithm. It is also remarkable that using  the Denavit-Hartenberg 
notation under Paul’s convention, no substantial differences are observed, being in this case the 
computational complexity 133n – 74 (×) and 97n – 71 (+) for a robot with only rotational joints, so 
that,  for a six degree of freedom robot, the computational complexity would be 724 (×) and 511 (+).  
 
 
3. A Proposed Control Architecture for Industrial Robots 
 
Increasing demands on the robot systems performance has led to the development of advanced control 
methods. If the robotic system has an open control stage, the implementation and the use of any of the 
control methods are very easy since it can use any high level programming language (for instance the 
C language has been used to program the new control system). In this work a new control architecture 
was used. This control unit is based on PC, and was implemented to control a 6-joint industrial robot, 
the PUMA 600.  

The original control module consists of one processor LS-11/ 02, which interprets VAL-II 
statements and  generates trajectories that are sent to the six digital servos (each of them containing a 
Rockwell 6503 processor). These digital servos generate analog signals through a series of Digital to 
Analog converters, which are sent to the amplifiers panels connected to the arm. The control loop is 
closed with the potentiometers and the encoders. Each robot joint has associated a potentiometer that 
gives the joint absolute position, while the signals of the incremental encoders  (200 counts per 
revolution for the 2 first joints and 250 for the remainder) to provide a more precise motion 
measurement. 

In order to avoid the original control unit limitations (high level tasks implementation, modification 
of the control algorithm etc.), the control stage has been substituted by a module based on  PC. In this 
way the PC has access to the positions and generates the adequate control actions in order to move the 
different elements of the robot. This proposed architecture is specified in Figure 2. 
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Figure 2. New control architecture used in this work 

 
In order to implement this control architecture, four data acquisition cards have been used: a card, 

Advantech™ PCL-818, has been used in order to obtain the analog outputs; another one, PCL-726, has 
been used for supplying the control actions; and the two others, PCL-833, have been used for reading 
encoders. The proposed control architecture gives two advantages, first the simplicity and second the 
low cost (the total cost of all these cards doesn’t exceed $2.000 dollars). In addition, this open 
architecture gives a powerful platform for programming a higher level tasks. 
 

Technically this control architecture works as follows: 
• Analog inputs: these are the potentiometers signals that give the absolute position of each 

robot joint. Since it is had six elements in the robot it is necessary 6 analog inputs to obtain the 
potentiometers voltages (0-5volts). These analog inputs are provided by the PCL-818 card. 

• Digital inputs: the robot supplies some thermo signals which indicate the joint motors 
overtemperature. These signals are digital, so it is necessary 6 digital inputs to read them. 
These digital inputs are also provided by the PCL-818 card. 

• Encoder signals: the encoders used by the robot are incremental encoders, and each of them 
provides three signals: the channel A, the channel B and the index pulse. Since each PCL-833 
card can control 3 encoders, it is needed 2 cards in order to get the robot position  

• Analog outputs: once the 6 control actions have been calculated by the control strategy, it will 
be necessary to make a digital to analog conversion. Although the power amplifiers of the 
robot could be fed with 12 volts, we had limited it to 10 volts due to the robot and the PCL-
726 card features, therefore 6 channels of the PCL-726 card are used. 

• Digital outputs: in order to activate the robot tool it is necessary 2 digital outputs. This digital 
outputs are also provided by the PCL-726. 

 
 
4. Inverse Dynamic Control 
 
With the control architecture depicted previously some controllers, based on inverse dynamic method, 
have been implemented. This control approach makes a regular static state feedback that transforms 
the nonlinear system into a linear one (this is knows as the inverse dynamics or feedback linealization 
problem). Potentially this technique is very useful because it reduces the nonlinear control problem to 
the control problem of a linear system, for which many tools are available. Assuming the dynamic 
model as: 
 

uxbxfx n )()()( +=  
 

 
 

where f(x) is a nonlinear state function and u is the control input. If you use as the control input the 
expression:  
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(27) 



the nonlinearities will be cancelling, and the simple input-output relation will be obtained: 
 

 x(n)=v 
 
where v is a new input vector to be defined below. In the robot case, the dynamic model can be 
expressed with the next equation: 

 

qqMqGqqqC &&&& )()()( ++= ,τ  
 

(28) 
 
where ),( qqC & is the vector of centrifugal and Coriolis terms, G(q) is the vector of gravity terms, and 
M(q) is the mass matrix. Working with this equation: 
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so, we have the next terms: 
 

( ))()()()( 1 qGqqqCqMxf −−≡ − &&,  
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using the general expression (27): 
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so, the controllers based on the inverse dynamics could be viewed such as particular cases of the next 
general control law: 
 

vqMqGqqqCc )()()( ++= &&,τ  
 

(29) 
 

The inverse dynamics control (29) shows how the nonlinearities such as Coriolis terms as well as 
gravity terms can be simply compensated by adding these forces to the control input. Depending on 
the v expression, different controllers can be obtained (Valera, 2000): 

 
Table 4. Inverse dynamics controllers implemented 

 

Controller v 
 

Point to point control eKqK pd −− &  
 

Tracking Control eKqKq pdd −− &&&  
 

Tracking Control with 
integral action ∫−−−

t

ipdd duueKeKqKq
0

)(&&&  

 
 
The first controller implemented was the point to point controller. In this case a proportional and 

derivative terms compose the linear auxiliary control input v, and the robot system is exponentially 
stable by a suitable choice of the matrices Kd and Kp.  

The second controller is very similar to the first, but in this case the robot must follow a given time-
varying trajectory qd(t) and its successive derivatives dq& and dq&& which respectively describe the desired 
velocity and acceleration. This tracking control is very simple but it has several drawbacks: any error 
in the robot dynamics estimation can cause a variation in the equilibrium point and therefore a position 
error.  The second problem that can occur is related to the dead-zone phenomenon: in this case the 
static friction at the motor shafts can also provoke a position error. A practical solution to attempt to 
solve these problems is to insert an integral action in the control law. This is the case of the last 
controller, where it has been added the integral of the error. 

All these controllers need the dynamic elements of the robot. In this work we used the Gibbs-
Appell equations presented before to calculate the control action because is a very efficient way to 



calculate these elements. In this way, some functions were programmed to calculate with the Aj term 
the mass matrix M(q) using equation (15), to obtain the vector bias )()( qGqqqC +&&,  employing the Bj 
term of equation (23), etc. 

On the other hand, because the robot parameters can vary along the time (deformation or wear on 
the elements, robot payload etc.), in order to implement the robot control, a precise real robot dynamic 
model is required. A dynamic parameters identification can be obtained rewritten the robot equations:  
 

mmm qqqK Φ⋅= ),,( &&&τ  
 
where τm is the generalized torques, Km is the observation matrix, and Φm is the robot parameters 
 

 

[ ]
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Parameters vector Φi can be obtained using less squares or any other matrix technique. In our work, 
QR decomposition, Singular Values decomposition, pseudo-inverse calculation or Ridge regresion 
have been implemented. In this way, the robot parameters used are the following: 

  
 Table 5. Denavit-Hartenberg parameters  
  

Joint α (rad) a (m) D (m) 
1 0 0 0 
2 -π/2 0 0 
3 0 0.432 - 0.15 
4 π/2 - 0.02 - 0.433 
5 -π/2 0 0 
6 π/2 0 0 

 
 

 

Table 6. Masses of the links  
 

 Joint Mass (kg) 
1 10.521 
2 15.781 
3 8.767 
4 1.052 
5 1.052 
6 0.351 

 
 
 

Table 7. Coordinates in local reference system   
 

   

Link i Centre of masses (m) 
ii GO

i r ,
r

 

1 [0.0  –0.054  0.0]T 
2 [0.1398  0.0  0.1491]T 
3 [-0.32.10-3  –0.197  0.0]T 
4 [0.0  0.0  -0.057]T 
5 [0.0  -0.007  0.0]T 
6 [0.0  0.0  0.0372]T 

 
 

The inertial tensor of links (kg.m2), defined with respect to parallel axes to the local links and 
passing through their centre of masses are: 
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Before the implementation in the new control unit, some simulations have been carried out with the 

symbolic algebra software MACSYMA. In the next example, a straight-line trajectory has been 
considered. The start point has coordinates [0.6 0.175 0.250]Tm and the end point [0.018 0.757 0]Tm, 
the constant orientation given by Euler angles ZYZ is (45º 60º 90º). The constant linear velocity 
prescribed for the robot end-effector is 0.1m/s, the total time needed for the prescribed robot motion is 
8.6 seconds (s). In Figure 3 the initial configuration of the robot, an intermediate and the final one are 
depicted. The torques required in each joint are depicted in Figure 4 as a function of time.  

Figure 5 will show positions of the real robot controlled by the inverse dynamic strategies with a 
ramp and splines references. In both cases the joint positions follow without problems the input 
references. Several types of computers have been used to obtain the execution times of these control 
algorithms. If a Pentium 150Mhz. is employed, the execution time was 0.225 ms, and with a Pentium 
II 350Mhz. the time required was 0.061 ms. 



 
Figure 3. Prescribed trajectory for the Puma robot 
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Figure 4. Torques required per joint 
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Figure 5.  Real robot positions for ramp and splines references 

 
 

5. Conclusions 
 

This paper has shown the implementation of the inverse dynamics controllers using an open control 
system for the PUMA industrial robot arm. Due to the components used (PC and conventional data 
acquisition cards), the control stage is very economic and flexible. This flexibility allows for instance, 
programming and comparing advanced control strategies, control algorithms based on artificial vision 
as well as integrating the PUMA in a flexible manufacturing system, etc.  

In this open control unit, several algorithms based on the Gibbs-Appell equations have been 
proposed and verified for solving the Inverse Dynamic Problem and the control problem. These 
algorithms have computational complexities slightly lower than the algorithm based on Newton-Euler 



equations of motion, formulated in a similar way, and using mainly vectors in its recursive 
formulation. This fact confirms the conclusion from other authors who claim that the efficiency of the 
dynamic algorithms arises from the type of formulation used, rather than the Principle of Dynamics 
considered. In this way, it can be expected that further reductions in computational complexity may be 
achieved by using tensorial notation rather than vectorial notation. For instance, important savings 
could be obtained developing the term corresponding to the Moment of Inertia (Euler equation) in the 
A terms in a tensorial form. 

The paper showed the robot response in the simulation and in the real execution, working with the 
point to point and the tracking problem. Several aspects of the overall robot response can be analysed 
easily. In addition, the PC environment has allow us to connect the data structure with commercial 
CADCS packages such as MATLAB, MATHEMATICA etc. 
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