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Achieving high-quality translation between any pair of languages is not possible with the current
machine-translation (MT) technology being necessary a human post-editing of the outputs of

the MT system. Therefore, MT is a suitable area to apply the interactive pattern recognition (IPR)
framework and this application has led to the nowadays known as interactive machine translation
(IMT). IMT can predict the translation of a given source sentence, and the human translator can
accept or correct some of the errors. The text amended by the human translator can be used by
the system to suggest new improved translations with the same translation models in an iterative
process until the whole output is accepted by the human.

As in other areas where IPR is being applied, IMT offers a nice framework for adaptive learn-
ing. The consolidated translations obtained through the successive steps of the interaction process
can easily be converted into new, fresh, training data, useful for dynamically adapting the system
to the changing environment. On the other hand, IMT also allows to take advantage of some avail-
able multi-modal interfaces to increase of the productivity of high-quality translations. Multimodal
interfaces and adaptive learning in IMT will be covered in Ch. 7 and 8, respectively
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Chapter 6. Interactive Machine Translation

6.1 Introduction

The application of statistical pattern recognition techniques to the field of machine translation
(MT) has allowed the development of new MT systems with less effort than was previously re-
quired under the formerly dominant rule-based paradigm [22]. These systems (that are known as
statistical MT -SMT- systems) together with the memory-based ones constitute the data-driven
approach to MT. However, the quality of the translations produced by any (statistical, memory-
based or rule-based) MT system remains below that of human translation. This quality could be
enough for many applications, but for other, the output of the MT systems has to be revised in
a post-editing phase. An alternative to the use of pure post-editing is the approach proposed in
the TransType project [16, 25, 26] and its successor TransType2 (TT2) [9, 2]. In this approach,
a full-fledged MT engine is embedded in an interactive editing environment and used to generate
suggested completions of each target sentence being translated. These completions may be ac-
cepted or amended by the translator; but once validated, they are exploited by the MT engine to
produce further, hopefully improved suggestions. This new approach is known as interactive ma-
chine translation (IMT). TransType allowed only single-token completions, where a token could
be either a word or a short sequence of words from a predefined set of sequences. This idea was
extended to complete full target sentences in the TT2 project. This interactive approach offers a
significant advantage over traditional post-editing where there is no way for the system to benefit
from the corrections of the user.

Interactivity in translation (more precisely, in computer-assisted translation -CAT-) has been
explored for a long time to solve different types of ambiguities [2]. However, there are only few
research groups that have published, to our knowledge, contributions in this IMT topic. As we have
mentioned, the first publications are related with the TransType project [16, 25, 17, 26, 29, 34, 37].
The second group of publications are around the TransType2 project [15, 32, 12–14, 3, 38, 2, 9].
More recently other research groups have started to work on this topic [23].

In this section, we present a summary of the state-of-the-art in SMT. Sec. 6.2 is devoted to
the applications of IPR in MT. The specific search problem in IMT is presented in Sec. 6.3. In
Sec. 6.4.3 we discuss the evaluation measures that will be used in the experimental framework.
The adopted tasks and experimental settings, and the results obtained are presented in Sec. 6.4. All
the aspects related with adaptability and multi-modality in IMT are introduced in the next chapters.

6.1.1 Statistical Machine Translation

SMT is based on the application of the Bayes’ decision rule to the problem of conversion of a
source sentence x from a source language X to a target sentence h from a target language H.
This decision rule can be stated as the search for a target sentence ĥ that maximize the posterior
probability that a sentence h is a translation of a given x [5, 6]:

ĥ = arg max
h

Pr(h|x) (6.1)
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The state-of the art in SMT is based on bilingual segments or bilingual phrases as translation
units and log-linear models to approach Pr(h|x) [22]. Bilingual phrases are pairs of word se-
quences (x̃, h̃) in which all words within the source-language phrase x̃ are aligned only to words
of the target-language phrase h̃ and vice versa [22]. On the other hand, log-linear models [31] are
combinations of N different feature functions fi(x, h) for 1 ≤ i ≤ N :

Pr(h|x) ≈ P (h|x;λ) =
exp

∑N
i=1 λifi(x, h)∑

h′ exp
∑N

i=1 λifi(x, h
′)

(6.2)

A feature function fi(x, h) [22] can be any model that represents an important feature for the trans-
lation. N is the number of models (or features) and λi are the weights of the log-linear combination.

Some of these feature functions are based on the segmentation of the pair (x, h) in terms of a
sequence of phrases x̃1, . . . , x̃K (x = x̃1 . . . x̃K) and h̃1, . . . , h̃K (h = h̃1 . . . h̃K) for a given K.
If the correspondence (alignment) between source and target phrases is represented as a function
a : {1, . . . , K} → {1, . . . , K}, the Eq. (6.1) can be rewritten using a modified version of Eq. (6.2)
as:

ĥ = arg max
h

max
a

∑

i

λifi(x, h, a) (6.3)

One of these feature functions can represent the direct translation:

fi(x, h, a) =
K∑

k=1

(
log p(ak|ak−1) + log p(h̃k|x̃ak)

)
(6.4)

where p(ak|ak−1) is the probability that a source phrase in position k is aligned with a target phrase
in position ak, given that a previous source phrase in position k−1 was aligned with a target phrase
in position ak−1 and p(h̃k|x̃k′) is the probability that a target phrase h̃k is the translation of a given
source phrase x̃k′ . Another feature function is based on a target language model, typically a n-gram
model (trigrams for example for a target sentence of length J):

fi(x, h, a) =
J∑

j=1

log p(hj|hj−2, hj−1) (6.5)

Other feature functions are based on the inverse version of Eq. (6.4) and on other target lan-
guage models and diverse (target and/or source) length models. There is an interesting feature
function that is based on a language model (trigrams for example and with a(j) = j) of bilingual
phrases:

fi(x, h, a) =
K∑

k=1

log p(x̃k, h̃k|x̃k−2, h̃k−2, x̃k−1, h̃k−1) (6.6)

This model can also be efficiently implemented with stochastic finite-state transducers (SFSTs) [11,
10] or as another feature in the log-linear modeling [28].
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In the learning phase, all bilingual phrases are extracted from a bilingual training corpus and
the normalized counts of how often a bilingual phrase occurred in the aligned training corpus are
computed [33, 24, 22]. The parameters of the n-grams are estimated by a counting process on
a target training set. On the other hand, the weights of the log-linear combination in Eq. (6.2)
are computed by means of minimum error rate training (MERT) [30]. In the case that SFSTs are
adopted, the Grammatical Inference Algorithms for Transducer Inference (GIATI) algorithm can
be used [11].

The search for the best translation of a given source sentence x in is carried out by producing
the target sentence in left-to-right order using the log-linear model in Eq. (6.2). At each step of
the generation algorithm, a set of active hypotheses are maintained and one of them is chosen for
extension. A segment of the target language is then added to the chosen hypothesis and its costs
get updated [31, 22]. If SFSTs are adopted, the Viterbi algorithm can used for the generation of
the target sentence [10]. In both cases, the search space can be huge and prunning techniques have
to be used.

6.2 Interactive Machine Translation

The systems described in the Sec. 6.1.1 are still far from perfect. This implies that, in order
to achieve good, or even acceptable, translations, manual post-editing is needed. An alternative
to this serial approach (first MT, then manual correction) is given by the IMT paradigm. This
approach is exemplified in Fig. 6.1. Let us suppose that a source English sentence x =”Click OK
to close the print dialog” is to be translated into a target Spanish sentence h. Initially, with no user
information, the system provides a complete translation suggestion (s =”Haga clic para cerrar el
diálogo de impresión”). From this translation, the user marks a prefix as correct (”Haga clic”) and
begins to type the rest of the target sentence. Depending on the system or the user’s preferences, the
new input can be the next word or some letters from it (in our example, the input is the next correct
word “en”). A new target prefix p is then defined by the previously validated prefix together with
the new input the user has just typed (p =”Haga clic en”). The system then generates a new suffix
s to complete the translation: “ACEPTAR para cerrar el diálogo de impresión”. The interaction
continues with a new validation followed, if necessary, by new input from the user, and so on, until
such time as a complete and satisfactory translation is obtained.

In this problem, we can apply the concepts and ideas that have been developed in Sec. 1.4.2 in
the algorithm IPR-History of Sec. 1.3.2. More specifically, we can use the concepts of prefix and
suffix introduced in the left-to-right interactive-predictive processing: Given a source sentence x
and a target prefix p validated by the human, the optimization problem can be stated as the search
for a target suffix s that completes p as a translation of the source sentence x:

ŝ = arg max
s

Pr(s|x, p) (6.7)

This equation can be rewritten as

ŝ = arg max
s

Pr(p, s|x) (6.8)
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Input (x) Click OK to close the print dialog
0 System (ŝ) Haga clic para cerrar el diálogo de impresión
1 User (p) Haga clic en

System (ŝ) ACEPTAR para cerrar el diálogo de impresión
2 User (p) Haga clic en ACEPTAR para cerrar el cuadro

System (ŝ) de diálogo de impresión
3 User (p) Haga clic en ACEPTAR para cerrar el cuadro de diálogo de impresión #

Output (h) Haga clic en ACEPTAR para cerrar el cuadro de diálogo de impresión

Figure 6.1: An example of IMT with keyboard interaction. The aim is to translate the English sentence “Click
OK to close the print dialog” into Spanish. Each step starts with a previously fixed target language prefix p,
from which the system suggests a suffix ŝ. Then the user accepts a part of this suffix (in black colour) and
types some key-strokes (in red colour), possibly in order to amend the remaining part of s. This produces a
new prefix, composed by the prefix from the previous iteration and the accepted and typed text, to be used as
p in the next step. The process ends when the user enters the special keystroke "#". System suggestions are
printed in italics and user input in boldface typewriter font. In the final translation h, text that has been typed
by the user is underlined.

Since p s = h, this equation is very similar to Eq. (6.1). The main difference is that the maxi-
mization search now is performed over the set of suffixes s that complete p instead of complete
sentences (h in Eq. (6.1)). This implies that we can use the same models if the search procedures
are adequately modified [2].

The optimization problem in IMT have been reduced as a search problem constrained by the
prefix, obviously, there can be another alternatives, but this one has the advantage that in this
approach we used the same models as for SMT and therefore we use the same training algorithm
as for SMT [2]. On the other hand, the search for IMT is similar as for SMT but constrained by
a fixed prefix in each iteration. This search can be carried out by a modification of the available
search algorithms [2]. However, high speed is needed because typically a new system hypothesis
must be produced in real time after each user keystroke [32, 2], therefore, we use word graph that
represents all (or a selected) possible translations of the given source sentence.

6.2.1 Interactive Machine Translation with Confidence Estimation

Under the IMT paradigm, the user is asked to mark a correct prefix and, possibly, type some
corrections for each suffix provided by the system. To interact with the system, the user makes
use of his knowledge about the languages being translated, but, potentially, user effort reductions
could be achieved if information about the correctness of the suffixes provided by the system is
made available to the user. This information can be derived by estimating the confidence the system
has on their predicted suffixes, as introduced in Sec. 1.5.2. For a given source sentence x and a
validated target prefix p we compute the confidence measure CM(ŝ, x, p) for the target suffix ŝ
generated.
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Confidence estimation have been extensively studied for other natural language processing
(NLP) applications and more recently have been applied to SMT [18, 4, 39, 35, 40]. Confidence
information have been previously used in IMT to improve translation prediction accuracy [17,
18, 39]. Alternatively, confidence information can be used not only to improve the translations
provided by the system, but also to reduce the user effort.

The use of confidence information within the IMT scenario results in a modification of the
interaction protocol. In the IMT scenarios discussed so far, the operator was assumed to system-
atically supervise each system suffix and find the point where the next translation error appears.
As discussed in Sec. 1.4.1, within this “passive” protocols the system just waits for the human
feedback, without taking into account how the supervision is performed by the user. In contrast, in
an “active” protocol, the system is in charge of taking decisions about what needs user supervision
(See Sec. 1.4.3). Suffix confidence measures can be used to estimate which hypothesis may be
worth asking for user supervision in order to optimise the overall human-computer performance.

According to this “active“ protocol, we define an alternative IMT scenario where not all the
sentences are interactively translated by the user. Specifically, only those suffixes classified as in-
correct, according to a confidence measure, are interactively amended by the user [20, 19]. There-
fore, the quality of the final translations may depend on the system ability to select appropriate
suffixes for supervision. However, this “active” interaction may provide a better trade-off between
overall human interaction effort and translation accuracy.

This “active“ protocol can be seen as a generalisation of the IMT scenario in which confidence
estimation acts as a regulator of the effort required for the user. Depending on the confidence
threshold defined, the behaviour of the system can range from a fully automatic SMT system
where all suffixes are considered to be correct, to a conventional IMT system where all suffixes are
considered to be incorrect.

Confidence Measure for IMT

We estimate the reliability of the suffixes generated by the system by combining the confidence
scores of their individual words. We choose a word confidence measure based on the IBM model 1 [6].
The confidence score of a word ŝi of the suffix ŝ generated from the source sentence x given the
prefix p from Eq. (6.7) is computed as:

CM(ŝi, x, p) ≈ CM(ŝi, x) = max
0≤j≤J

P (ŝi|xj) (6.9)

where P (ŝi|xj) is a bilingual lexicon probability [6] and x0 is the empty source word.

We choose this confidence measure instead of using the posterior probability due to response-
time constrains. The confidence score based on the simplest model proposed in [6] (Model 1) is
much faster to compute than applying the forward-backward algorithm as described in Sec. 1.5.2.
Moreover, it performs similarly to the word confidence measures based on word-graphs as shown
in [4, 40, 35].

The confidence measure for the full suffix ŝ is computed as the ratio of its words classified as
correct by the word confidence measure. A word ŝi is classified as correct if its confidence score
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CM(ŝi, x) exceeds a word classification threshold τw.

CM(ŝ, x, p) ≈ CM(ŝ, x) =
|{ŝi | CM(ŝi, x) > τw}|

|ŝ| (6.10)

Each suffix is classified as either correct or incorrect depending on whether its confidence score
exceeds or not a suffix classification threshold τs. It is worth of notice that with a threshold value
τs = 0.0 all the suffixes will be classified as correct whereas with a threshold value τs = 1.0 all the
suffixes will be classified as incorrect.

6.3 Search in Interactive Machine Translation

As mentioned above, the search problem in IMT can be seen as a search constrained by the prefix
p validated by the user. Real-time user interaction dictates the need of efficient search techniques,
such as the word-graph representation and Viterbi algorithm presented in Sec. 1.5.1.

Analogously to the search procedure in CATTI and CAST (See Sec. 2.5), the first step is to
generate a word graph as a pruned version of the search space for the translation of the source sen-
tence x [2]. Once the word graph is constructed, error-correcting parsing is used to accommodate
the user-validated prefix to those prefixes available in the word graph. This step is followed by a
Viterbi suffix search to provide the most probable completion.

6.3.1 Word-graph Generation

For each source sentence, a word graph representing possible translations is generated. This word
graph is generated once for each source sentence, so it is repeatedly used to find the completions
of all the different prefixes provided by the user. Using the word graph in such a way makes the
system be able to interact with the user under tight real-time constraints [2].

A word graph may also be understood as a weighted directed acyclic graph, in which each node
represents a partial translation hypothesis, and each edge is labeled with the word or the segment
of the target sentence being expanded and is weighted according to the underlying models. Indeed,
if no pruning is applied in the production of the word graph, it represents all possible sequences of
target words for which the posterior probability is greater than zero, according to the models used.
An example of a word graph for the source Spanish sentence “seleccionar el siguiente” is shown
in Fig. 6.2.

However, due to the pruning performed in the word-graph generation for efficiency and response-
time constraints, the word graph only contains a subset of the possible translations. Moreover, it
is also possible that the user incorporates words unknown by the system. For these reasons, it
may occur that the prefix validated by the user is not present in the word graph. This problem
requires the application of error-correcting parsing to allow for user prefixes that may not exist in
the word-graph.
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