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ABSTRACT The extended use of mobile multimedia devices in applications like gaming, 3D video and
audio reproduction, immersive teleconferencing, or virtual and augmented reality, is demanding efficient
algorithms and methodologies. All these applications require real-time spatial audio engines with the
capability of dealing with intensive signal processing operations while facing a number of constraints
related to computational cost, latency and energy consumption. Most mobile multimedia devices include
a Graphics Processing Unit (GPU) that is primarily used to accelerate video processing tasks, providing
high computational capabilities due to its inherent parallel architecture. This paper describes a scalable
parallel implementation of a real-time binaural audio engine for GPU-equipped mobile devices. The engine
is based on a set of head-related transfer functions (HRTFs) modelled with a parametric parallel structure,
allowing efficient synthesis and interpolation while reducing the size required for HRTF data storage. Several
strategies to optimize the GPU implementation are evaluated over a well-known kind of processor present in
a wide range of mobile devices. In this context, we analyze both the energy consumption and real-time
capabilities of the system by exploring different GPU and CPU configuration alternatives. Moreover,
the implementation has been conducted using the OpenCL framework, guarantying the portability of the
code.

INDEX TERMS Binaural synthesis, HRTF modeling, GPU, parallel filters, parametric model, interpolation.

I. INTRODUCTION
Applications using spatial audio rendering are gain-
ing popularity, mainly due to the widespread use of
multimedia-capable mobile devices such as phones and
tablets. These applications include gaming, immersive video-
conferencing systems, augmented and virtual reality, and
interactive 3D and 360◦ video and audio playback [1]. The
emergence of systems-on-chip (SoC) that contain a small
graphics accelerator (or GPU), provides a notable incre-
ment of the computational capacity of mobile multimedia
devices, while partially retaining the appealing low-power
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consumption of embedded systems. This is the case, for
example, of the Samsung Exynos 9820 SoC 1 that includes
a Mali-G76 MP12 GPU and is present, among others, on the
Samsung Galaxy Note 10. In fact, multiple current mobile
devices contain in their SoC a Mali-based GPU.2 Most of
these devices can be programmed using the popular OpenCL
framework [2], [3], which offers the possibility of implement-
ing parallel codes portable to a wide range of platforms, from
low-cost mobile devices to high-performance GPUs, modern
CPUs or FPGAs. The use of the GPU for applications beyond
image-processing allows taking profit of the GPU inherent

1https://en.wikichip.org/wiki/samsung/exynos/9820
2https://deviceatlas.com/blog/most-used-smartphone-gpu
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parallel architecture in compute-intensive applications so that
computational resources of the CPU can be used for other
tasks. In fact, there exist multiple audio applications that use
the GPU for carrying out their digital signal processing, such
as [4]–[6].

Head-related transfer functions (HRTFs) are often used for
binaural sound synthesis in those applications that require a
spatial audio rendering engine. HRTFs collect all the modifi-
cations that a free-field sound wave suffers from its original
source to the receiver’s tympanic membrane. These modifi-
cations on the wave include, among other effects, the inher-
ent acoustic path from source to listener, and the reflection
and diffraction patterns form the receiver’s own anatomy
(shoulders, head size and form, hair, pinna shape). The brain
compares the information received at both ears to locate the
sound source position [7]. In this context, the interaural level
differences (ILD) and the interaural time differences (ITD)
are relevant for the localization accuracy on the horizontal
plane. Other aspects like the frequency shading created by
the diffraction effect of the head (mainly at high frequencies),
and the reflection patterns in the pinna and torso depending
on the direction of arrival of the sound, play also an important
role in the horizontal and vertical planes. All of these details
are captured within the HRTFs for each ear and each sound
source direction.

There are different methods for obtaining the individ-
ual HRTFs sets. It is possible to measure them directly
with a specific and complex setup and post-processing
algorithms [8]–[10]. Alternatively, they can also be syntheti-
cally created by using analytical models or numerical simu-
lations of the complete head and torso [11]. Recently, it has
been proposed to construct the HRTFs from several pictures
of the head and pinna [12]. Actually, there are several HRTFs
databases publicly available for research purposes like the
CIPIC [13], LISTEN [14], ARI [15] or ITA [16].

The number of multimedia applications running over
mobile devices that are demanding binaural audio is con-
stantly increasing. However, there are some important con-
siderations to be taken into account in a mobile multimedia
context, where accurate and realistic low-order HRTFmodels
are desirable for several reasons. First, a low order model
requires a lower computational cost. Second, it will drain less
battery energy, a crucial aspect of portable devices. Finally,
the efficient implementation of low-order models on parallel
architectures like GPUs can also have a considerable impact
on the final computational cost and energy consumption.

Several approaches have been proposed in the literature
to build low-order HRTF models [11], [17], [18]. Some
methods employ an analytical model of the head and torso,
modeling the propagation delay and the diffraction effects
of the wave. Other approaches are based on the design of a
digital filter that models the behavior of the original HRTF,
such as the one implemented in this paper that was previ-
ously developed by the authors [19], [20], based on infinite
impulse response (IIR) filters. As will be seen, the HRTF
model implemented in this paper has several advantages

that makes it suitable to be executed in multimedia mobile
devices. On the one hand, it is constructed as a parallel
bank of second-order sections (SOS) that could be executed
efficiently on the parallel architectures included in mobile
devices. On the other hand, it is a parametric model. That
means that, instead of defining and storing the filter coeffi-
cients of each SOS, physical parameters (frequency, gains,
and quality factor Q) are used. This parametric approach,
as it will be seen, allows a simple interpolation method for
obtaining the HRTFs at azimuth and elevation angles that
have not been modeled, and it will need a lower database size
for storing the complete HRTF set.

In this paper we describe a new portable OpenCL imple-
mentation of the parallel parametric HTRF model. In our
development, we combine two levels of parallelism. On the
one hand, multiple sound sources are processed in parallel.
On the other hand, the processing of each SOS in a filter is
also carried out in parallel.We analyze the performance of the
algorithm on a low power SoC showing that we can leverage
its small GPU to process up to 32 sound sources in real-time
while freeing the CPU to run other applications. The scalabil-
ity shown by the algorithm can greatly increase this number
on the more powerful GPUs included on most modern mobile
devices. Energy consumption and battery life is a fundamen-
tal factor to take into account when designing applications for
this kind of devices. Therefore, we evaluated the possibility
of regulating the frequency of the CPU and GPU cores in
order to reduce the energy consumption of our algorithm.
Results show that by using the low power-consuming kind
of CPU core (Cortex-A7) as host and lowering the frequency
of the CPU and GPU cores, we can greatly reduce the energy
consumption, while still being able to process up to 16 sound
sources in real-time.

The rest of the paper is organized as follows. Section 2
describes the parametric HRTF model and its evolution from
an original SOS chain to a parallel SOS bank. In section 3,
several optimizations of the parallel model are presented.
These optimizations are carried out for reducing the total
computational cost and energy consumption, and for taking
the maximum profit of the parallel architecture of the GPU.
The details of the experimental environment are described in
section 4, while the OpenCL software architecture is detailed
in section 5. All the experimental results in performance
and energy consumption are presented in section 6. Finally,
the conclusions are summarized in section 7.

II. THE PARAMETRIC PARALLEL HRTF MODEL
The parametric HRTF model considered throughout this
paper was developed by the authors in a two-step
approach. The model, implemented as a SOS chain, was first
proposed in [19], demonstrating the benefits of the parametric
approach in terms of data storage needs and interpolation sim-
plicity. Later, a parallel adaptation was developed in [20] to
overcome the serial-to-parallel conversion while maintaining
the desirable properties of the original model. For the sake
of a self-contained presentation, the next subsections briefly
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FIGURE 1. HRTF parametric model as a SOS chain.

describe both models, with emphasis on the parallel one as it
is the final model optimized, implemented and evaluated in
this paper.

A. PARAMETRIC SECOND-ORDER SECTION CHAIN
MODEL
This section describes the basic parametric model based on
a low-order IIR filter implemented as a chain of SOS [19].
The idea resides in approximating the frequency response of
the target HRTFwith typical second-order audio digital filters
[21], [22], i.e. peak filters and low-frequency shelving filters.
The complete model is shown in Fig. 1.

The model consists of a first block that is a delay
line whose objective is to implement the ITD part of the
HRTF. The value of the number of delay samples, τ ,
is obtained from the lag corresponding to the maximum of the
cross-correlation between the original HRIRs (Head-Related
Impulse Responses, i.e. the time-domain equivalent of the
HRTF) of both ears at the target angles (azimuth φ and eleva-
tion θ ). For a more accurate localization, non-integer values
of τ could be implemented using, for example, one of the
efficient techniques described at [23] or [24]. After the delay
line, there is a N SOS chain that models the minimum-phase
frequency response of the HRTF. The first one SHL1 is a
second-order low-frequency shelving filter used to model the
low-frequency behavior of the HRTF. Due to the diffraction
effect, frequencies below 400 Hz vary mainly only in level,
and a low-frequency shelving can mimic this behavior. The
rest of the SOS elements in the chain, PKi (i = 2, . . . ,N ),
are conventional peak audio filters that model the peaks and
valleys present in the HRTF frequency response.

Each of the SOS elements is defined by the three param-
eters: digital center frequency ωi, gain Gi, and quality fac-
tor Qi. Thus, the complete HRTF at a specific direction
and ear is modeled with N sets of parameters (ωi, Gi, Qi),
(i = 1, . . . ,N ), and the value of τ , all of them with a direct
physical meaning. Each SOS has a transfer function Hi(z) in
the z-domain defined as

Hi(z) =
b(i)0 + b

(i)
1 z
−1
+ b(i)2 z

−2

a(i)0 + a
(i)
1 z
−1 + a(i)2 z

−2
. (1)

The relation between the parameters (ωi,Gi,Qi) and the filter
coefficients (b(i)k and a(i)k ) can be found at [19], [21], [22].
The parametric approach arises from the use of the set of
parameters instead of the five filter coefficients of each SOS.

FIGURE 2. Original HRTF(ω) and approximated response HRTFmodel (ω).

An off-line iterative method for obtaining the values of the
parameters of each SOS is detailed in [19], which is based on
a perceptually motivated cost function. Such cost function is
the absolute decibel error with respect to the original HRTF
smoothed 1/12th and evaluated over a discrete logarithmic
frequency axis, with a resolution of 1/48th octave. Fig. 2(a)
shows the iterative process for N = 2 where A1 to A4 are
the error areas (differences between the target HRTF and the
actual modeling filter state). For each SOS, first, a good set
of initial values of the parameters (ωi′ , Gi′ , Qi′ ) is specified
trying to fit the biggest error area. Then, these initial values
are later optimized iteratively. SHL1 (in blue) tries to cancel
A1. Then, once applied SHL1, the peak filter PK2 (in green)
continues with the next bigger error area A2, and so on. The
achieved model with N = 2 is displayed in red. Once all the
SOS have been designed, a final post-optimization stage is
carried out to improve the interaction among SOSwith neigh-
bouring frequencies. The obtained HRTFmodel withN = 12
is shown in red in Fig. 2(b), approximating the original HRTF.
Such a model would need only 37 parameters, 12 sets of (ωi′ ,
Gi′ ,Qi′ ), and the τ value, that have physical meaning, instead
of the 200 coefficients of the impulse response of the original
HRTF. More details can be found at [19].

To create the complete set of HRTFs, once the model is
obtained at φ = 0◦ and θ = 0◦, the parameters for the next
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FIGURE 3. Interpolated HRTFmodel (ω) at −25◦ form the models at −20◦
and −30◦ with N = 12.

directions in azimuth and elevation are obtained bymodifying
iteratively the already calculated parameters as a starting
point. This procedure works well because the frequencies of
the peaks and valleys of neighbouring positions do not change
abruptly.

One of the major benefits of this parametric approach is
the simplified interpolation procedure that can be used for
synthesizing HRTFs at directions that have not been modeled
before. This is a common problem, where different solutions
have been proposed, always with a significant increase in
computational cost [25], [26]. With the parametric approach,
this can be easily achieved by interpolating the values of
the model’s parameters. As an example, Fig.3 shows the
interpolated response at φ = −25◦ and θ = 0◦, obtained
from the modeled responses at φ = −20◦ and φ = −30◦,
both with θ = 0◦ and N = 12. Responses are scaled at the
figure 10dB for clarity. The vertical dashed lines display the
values of the frequencies of the SOS at the modeled HRTF.
Frequencies of each SOS at φ = −25◦ are obtained by
interpolation. The same for the gains, Qs, and the value of τ .
This parametric approach has proven with subjective

tests [19] that withN = 12 (i.ei. 37 parameters per direction),
it is possible to maintain the perceptual characteristics of
the original HRTFs (with 200 stored coefficients). Even with
N = 6 (19 parameters per direction), satisfactory results are
reached for most applications. At the same time, as the inter-
polation procedure is efficient and simple, it is even possible
to decrease the number of directions to be modeled at least to
a half. As a consequence, an order-of-magnitude reduction
in the total database size can be obtained, guarantying the
perceptual quality.

B. PARALLEL MODEL BY PARTIAL FRACTION EXPANSION
The previous parametric HRTF model implemented with a
second-order chain performs well considering both the com-
putational cost involved and the perceptual quality. However,
the data dependencies arising from its serial structure does
not allow to implement it efficiently on parallel architectures
such as GPUs. The simplest way to overcome this problem is
transforming the already designedN SOS chain into a mathe-
matically equivalent parallel filter bank using the well-known
partial-fraction-expansion (PFE) [27]. To accomplish that,
the coefficients b(i)k and a(i)k , k = 0, 1, 2, can be extracted

from the parameters of each SOS and normalized by a(i)0 .
Then, the parallel conversion is carried out by transforming
the original transfer function H (z), a product of SOS, into an
addition of a constant K and biquadratic sections

H (z) =
N∏
i=1

b(i)0 + b
(i)
1 z
−1
+ b(i)2 z

−2

1+ a(i)1 z
−1 + a(i)2 z

−2

= K +
N∑
i=1

b′(i)0 + b
′(i)
1 z−1

1+ a′(i)1 z−1 + a′(i)2 z−2
. (2)

Resolving PFE, the new coefficients K , b′(i)k , (k = 0, 1),
and a′(i)k , (k = 0, 1, 2) are calculated, obtaining a mathe-
matically equivalent transfer function expressed in a parallel
form. The data dependence between the consecutive stages
in the SOS chain is not present in the resulting parallel
form. By following such an approach, it is possible now to
calculate in parallel all the sections on a parallel processor.
The structure of this parallel model is shown in Fig. 4.

The sequential implementation of Fig. 1, and its direct
conversion to parallel by PFE of Fig. 4, are, by definition,
mathematically identical. Also, their computational cost is
similar, being slightly lower in the parallel model due to
the fact that it only needs 4 multiplications per biquadratic
section instead of five in the sequential one. However, one
of the major benefits of the parametric approach is lost in this
serial to parallel conversion, as the responses can not be easily
interpolated anymore with the new structure.

To illustrate this problem, an example extracted from [20]
is shown in Fig. 5(a), where the red line indicates the result of
the parallel model by PFE obtained from the sequential model
with N = 6. The original response corresponds to the left
HRTF of subject 003 in the CIPIC database [13] for φ = 5◦

and θ = 0◦. The value of K from Eq. 2 is displayed in green,
while the contributions of each biquadratic section are in blue.
Changing themodeled position fromφ = 5◦ toφ = 10◦ gives
the frequency responses of 5(b). Although the responses are
quite similar due to the slight change in azimuth, significant
changes of up to 20 dBs are obtained for the K values and the
gains of the individual biquadratic sections. In contrast to the
sequential implementation, now the phase relations between
the parallel biquads are relevant. These large differences do
not allow us to synthesize new responses by using a direct
interpolation of the parameters, as in the case of the sequential
parametric model.

C. PARAMETRIC PARALLEL MODEL
As previously discussed, while PFE provides a parallel equiv-
alent of the sequential model that can be efficiently imple-
mented on a GPU, synthesizing new responses frommodeled
directions by direct interpolation of the parameters is not
possible. To solve this issue, the authors proposed in [20]
a parallel version for HRTF modeling following the same
parametric philosophy of the serial implementation. Paral-
lel filter bank implementations in audio applications are
common [28]–[31], being one of their benefits their better
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FIGURE 4. Parallel conversion by PFE.

FIGURE 5. Partial-fraction-expansion with N = 6 SOS at two consecutive
positions.(a) φ = 5◦. (b) φ = 10◦.

signal-to-noise ratio properties [32]. This parametric parallel
implementation adds the advantage of allowing for a simple
interpolation while reducing, even more, the computational
cost and storage needs of the binaural rendering engine.

The structure of the parametric parallel filter is displayed
at Fig. 6. Compared to the sequential structure of Fig. 1,
the delay line for the ITD part remains identical, but the
serial SOS chain, now it is a parallel SOS bank. LP1 is a
second-order low-pass filter that, in parallel connection with
the direct signal path, replaces the low-frequency shelving
filter SHL1 of the serial implementation. The same happens
with the new band-pass filters BPi (i = 2, . . . ,N ). They
replace the previous peak filters PKi (i = 2, . . . ,N ). A peak
filter can be described as a band-pass filter added to a direct
signal path. This parallel model of Fig. 6 follows the para-
metric approach of the original sequential model, as all the
SOS depend again on the sets of parameters (ωi, Gi, Qi). The
ITD value τ remains the same as in the original sequential
implementation. As a result, the simple interpolation feature
is preserved, but now with a parallel filter bank structure that

can be readily implemented on a GPU architecture. As will
be seen, another benefit of this parallel implementation is
that the band-pass SOS filters need two multiplications and
accumulations (MACs) less than the peak SOS filters.

Fig. 7 shows in red the achieved HRTF parallel model with
N = 12, for the same HRTF response of Fig. 2 at φ = 0◦.
As observed, the quality of the approximation is similar to the
one of the sequential model, with deviations of only ±1 dB,
but the newmodel offers an efficient parallel implementation.
The individual SOS responses are also displayed, with a solid
line when having positive gains (for creating peaks on the
frequency response), or with a dashed line (if the gain is
negative, creating valleys in the frequency response).

Compared to the parametric sequential HRTF model with
N = 12, this parallel implementation needs to increase the
number of SOS to N = 16 in order to be able to model the
HRTF response properly at extreme angles. This is because of
the relevance of the phase relation between the parallel SOS,
which has no impact on the serial model. Nonetheless, both
models have a similar computational cost [20].

To analyze the behavior of the interpolation of the
responses in this parallel form, Fig. 8 displays in red the
parallel HRTF models obtained with N = 16 for θ = 10◦,
and φ from −30◦ to 30◦ in steps of 10◦. The model at 0◦

was created from scratch, evolving the rest of the responses
from it. The responses in blue are at multiples of 5◦ and
all of them have been created by interpolation from their
neighbouring modeled responses. Note that the tracking and
similitude respect to the original HRTFs is satisfactory, with
small narrow and local deviations. The dots of the vertical
lines represent the values of the frequencies of each SOS.
As before, neighboring responses are displayed with a 10 dB
offset for clarity.

III. OPTIMIZATION OF THE PARAMETRIC PARALLEL
MODEL FOR PARALLEL ARCHITECTURES
This section describes further optimizations developed over
the presented parametric parallel model with the aim of maxi-
mizing the computational efficiency on parallel architectures,
such as the GPUs found in current mobile devices. The idea
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FIGURE 6. Proposed parametric parallel implementation.

FIGURE 7. Parametric HRTF parallel model with N = 12 and the individual
SOS responses. Solid lines are SOS with positive gains. Dashed lines
represent SOS responses with negative gains.

is to execute in parallel (using OpenCL work-items) the same
algorithmic structure, in this case, each SOS of the proposed
model in Fig. 6. Thus, the objective is to reduce the number
of operations to be performed in each SOS.

Grouping the coefficients of Eq. (1) in vectors
b(i) = [b(i)0 , b

(i)
1 , b

(i)
2 ]T and a(i) = [a(i)0 , a

(i)
1 , a

(i)
2 ]T , for the

band-pass SOS BPi, their values could be calculated with the
next design formulas that are a function of their parameters
(ωi, Gi, Qi) [21]:

b(i)LP = Gi ·

 αi
0
−αi

 (3)

a(i)BP =

 1+ αi
−2 · cos(ωi)

1− αi

 (4)

where αi = sin(ωi)/(2Qi). Assuming from now on the
classical normalization of the coefficients by the term a(i)0 ,
the vector in (3) can be expressed as

b(i)LP = b
′(i)
0 ·

 1
0
−1

 (5)

with b
′(i)
0 = αi · Gi/(1 + αi). Now there is a scale factor b

′(i)
0

that multiplies the term (1 − z−2) in the numerator. On the

FIGURE 8. Modeled and interpolated HRTFs evolved from φ = 0◦. Lines
with dots represent SOS frequencies.

one hand, there is no b1 coefficient, so one MAC is saved.
On the other hand, as b(i)2 = −b

(i)
0 , the scaled numerator term,

(1− z−2), can be moved out after the addition of the outputs
of all of the band-pass SOS. This new structure is shown
in Fig. 9. All the BPi (i = 2, . . . ,N ) have their inputs scaled
by b

′(i)
0 before doing their accumulations. Then, the com-

mon (1 − z−2) is performed after this accumulation only
once. As a result, each band-pass SOS only requires three
MACs.

Regarding the low-pass SOS of Fig. 6 LP1, its a(i)LP are
identical to the band-pass ones a(i)BP. The vector with the
numerator coefficients is now

b(i)LP = Gi ·

(1− cos(ωi))/2
1− cos(ωi)

(1− cos(ωi))/2

 . (6)
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FIGURE 9. Parametric parallel HRTF optimized implementation. LP1 is a low-pass filter, and BP2 to BPN are band-pass filters.

In order to achieve an identical SOS filter structure as the
BPi, after normalization by a(1)0 equation (6) can be orga-
nized as

b(i)LP = b
′(1)
0 ·

1
2
1

 , (7)

b
′(1)
0 = Gi · (1− cos(ωi))/2)/(1+ αi). (8)

With this computational scheme of LP1, it is possible to
have the same structure as the band-pass ones with the three
MACs, allowing us to execute the calculus of all the SOS
sections concurrently. LP1 needs to be fed with the numerator
stage as seen in Fig. 9. The output of the LP1 must be added
at the final accumulator, not passing through the (1 − z−2)
that is for the band-pass sections only. Needless to say, that
all the calculus of the coefficients b(i)k and a(i)k (k = 0, 1, 2)
that are a function of the SOS parameter’s values (ωi, Gi,
Qi) will be executed in the CPU of the system and sent to
the parallel processing unit (like a GPU). They will vary
slowly, depending on the direction to be synthesized. These
variations occur at a much lower speed compared with the
sampling frequency of the audio signal, so the computational
cost demanded from the CPU will be negligible.

In comparison with the sequential implementation [19],
this optimized parallel structure provides a computational
cost-saving close to 40% and can be efficiently implemented
on parallel architectures. Each SOS needs only three MACs
instead of five, adding only the oneMAC and two additions to
pre-filter the LP1, and the final (1− z−2) part for all the BPi.

IV. EXPERIMENTAL ENVIRONMENT: GPU AND openCL
Besides the advantages provided by the proposed filtering
scheme, additional optimizations can be achieved using par-
allel processors such as GPUs. That is, not only the filtering
process is parallelized by computing independently the SOS
of a filter, but we can also filter multiple sound sources
simultaneously.

We use the Mali-T628MP6 GPU included on an ODROID
XU33 board to test the proposed parallel technique. This

3https://www.hardkernel.com/shop/odroid-xu3

GPU is also included in the Exynos 5422 SoC present in
the Samsung Galaxy S5 (SM-G900H). This is an older and
less powerful version of the Exynos 9820 SoC included
in the latest Samsung Galaxy S10, but the results can be
approximately extrapolated to the most modern Exynos SoC,
since they share the same architecture. Besides the GPU, this
specific SoC uses a big.LITTLE heterogeneous computing
architecture that combines a quad-core ARMCortex-A15 and
a slower and battery-saving quad-core ARM Cortex-A7. One
of the most interesting features of this platform is the pos-
sibility of adjusting its energy consumption by reducing the
frequency of the CPU cores or the GPU, or even by disabling
some of these components. In our experiments, we measured
the power dissipation of the Exynos 5422 using the pmlib
framework [33] to collect the instantaneous power readings
from the internal energy-monitoring sensors [34]. To this
end, we leverage the four real-time current sensors that can
be sampled to obtain the power consumption of four sep-
arate power domains of the ODROID XU3 board: Cortex-
A15 cores, Cortex-A7 cores, DRAM and Mali GPU.

In order to implement the proposed HRTF filter on the
Mali GPU, we use OpenCL (Open Computing Language)
framework [2], [3], which enables general-purpose parallel
programming across CPUs, GPUs and other kinds of proces-
sors. The OpenCL platform model describes the processors
as devices composed of different compute units (CU), each
of them containing multiple processing elements (PE). In the
OpenCL programming model, data-parallelism is achieved
by dividing the computation intomultiple work-items that can
run the same code in parallel on different processing elements
over different data.Work-items are combined onwork-groups
that are executed on different CUs. The code executed by each
work-item is included in kernels that are submitted by the
host to the devices. Regarding the OpenCL memory model,
the memory is divided into four distinct regions: global to
each device, constant, local to each work-group and private
to each work-item.

Depending on the CPU or GPU device, the distinct mem-
ory regions of the model may be mapped to different hard-
ware memories. The use of faster memory in the kernels may
drastically improve its performance. We should also take into
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account the cost of transferring information from the host
CPU to the GPU device and the cost of copying informa-
tion among different memory regions. The Mali-T628 GPU
includes two OpenCL devices, Dev0 with four CUs associ-
ated with four of its cores and the Dev1 consisting of two
CUs associated with the remaining two cores.

V. OpenCL IMPLEMENTATION
We have implemented two OpenCL kernels to carry out
the filtering process. Firstly, we launch kFilter, so that
M work-groups process in parallel M sound sources. Next,
we use kAcum to accumulate the processed samples in the
two output buffer of samples that correspond to the left and
right channels, respectively. The filter to be executed is com-
posed of a maximum of N = 16 SOS, as shown in Figure 9.
The sections Hi(z) of the model includes the low-pass LP1,
and the band-pass BP2 to BPN .
To renderM sound sources using kFilter, a total of 2M

IIR filters must be computed concurrently. Thus, M work-
groups are launched to run the kernel, one per source. Each
work-group contains 32 work-items and each of them com-
putes a SOS section Hi(z) of the model.

The first 16 work-items of the work-group are devoted
to the computation of the 16 sections corresponding to the
left-ear channel, whereas the second 16 work-items compute
the 16 sections that correspond to the right-ear channel.
We are using two-dimensional work-groups, each including
2 × 16 work-items. Thus, each work-group computes two
complete HRTF filters (left and right) associated with one
source. Every work-item computes one section and stores its
result in the local memory shared by all the work-items of its
work-group. Then, a synchronization barrier is set in order to
wait until all the work-items of the work-group have finished.
Afterward, a reduction is carried out, where one work-item
per channel (two in total, one for the left-channel and other
for the right-channel) sums up all the values of a vector
associated to its channel that is stored in the local memory.
Only the pre-FIR filter (shown as x ′0 in Fig. 9) for the low-pass
SOS, and the common (1 − z−2) for the band-pass SOSs
need to be executed before and after the parallel computation
of the SOS, respectively. Figure 10 depicts the described
operations for one input sound source. It is important to
highlight that besides the intrinsic parallelism found within
each filter, we are launching concurrentlyM work-groups that
can be executed in parallel on different CUs for M different
sound sources.

Once we have computed the two output samples per sound
source, we need to add them up in two final output samples
that will afterward render at the left-channel and the right-
channel, respectively. This computation is carried out by
the kernel kAcum launching in parallel one work-item per
sample.

VI. EXPERIMENTAL EVALUATION
This section discusses the experiments conducted to evaluate
the execution time and energy consumption of the proposed

FIGURE 10. Parallel execution carried out by a work-item inside a
work-group in the kernel kFilter.

FIGURE 11. Execution time of the algorithm to process 256 samples using
both GPU devices.

OpenCL implementation. It is assumed that the audio device
provides audio data in buffers of 256 samples per sound
source, with a sampling frequency of fs = 44.1 kHz, which
imposes a limit of 5.8 ms to process the sources in real-time.
It must be taken into account that we deal withM×256 input
samples to compute 2× 256 output samples.

The processing time depends on the GPU device as one
includes twice the cores of the other. As observed in Fig. 11,
the smaller device takes twice the time to process the same
number of cores. Therefore, if the more modern Mali G76 is
used, which includes 12 improved cores, we would be able
to process the same number of sources at least three times
faster than with the faster device included on the Mali-T628.
We can also see in Fig. 11 the stepped behaviour of the
execution time, where the time grows very slowly during
a fixed range of sources and then increases abruptly to the
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FIGURE 12. Execution time of the algorithm to process 256 samples from 8 sources using both kinds of CPU cores as host of the OpenCL
algorithm. The horizontal line represents the time to process the sources in real-time.

FIGURE 13. Maximum number of sources processed in real time using both kinds of CPU cores as host.

next value. The length of the steps depends on the device
and spans 4 sources per core. The stepped behaviour arises
from the fact that we have to synchronize all the work-items
of every work-group for every sample and also because two
threads per work-group perform additional computations,
which involves several divergent branches on the code of the
kernel. On the following experiments we use always Dev0,
the fastest GPU device including 4 cores.

We leverage the possibility of regulating the frequency of
the components of the platform to process as many sources
as possible in real time with a minimal energy consumption.
Obviously, by reducing the frequency of the CPU or GPU we
increase the execution time of the algorithm and reduce the
number of sources that we can process in real time. Fig. 12
shows the execution time required to process 8 sources. The
type of CPU core employed as host of the OpenCL program
has a small influence on the execution time and allows us to
use lower frequencies to process the sources regardless of the
CPU. The horizontal line defines the threshold imposed by
the real-time constraint and shows that it is not possible to
process 8 sources using the two lower frequencies of theGPU.
However, even without using the largest frequencies, we can

decrease the frequency of the CPU below 1,000 KHz and still
be able to process 8 sources in real-time.

The type of CPU core used as host, as well as the frequency
of the CPU and GPU cores, determine the maximum number
of sources that can be processed in real-time. Fig. 13 allows
us to analyze the effect of the frequencies on this number. The
graphics only show the number of sources when it is possible
to process at least one in real-time. Only by using medium
or large frequencies we are able to process 256 samples
of one or more sources in real-time. We can see also that
the results are very similar when using both kinds of CPU
cores. They only differ significantly with the highest CPU
and GPU frequencies as we can then process 17 sources
using a Cortex-A7 as host and up to 32 sources if we use a
Cortex-A15 core.

We can also see that for most frequencies, the maximum
number of sources that can be processed in real-time is 16.
This value arises from the stepped behaviour of the time
shown in Fig. 11.With the frequencies that allow us to process
at least one source in real-time, execution time is almost con-
stant and shorter than 5.80 ms with less than 16 sources and
then goes up one step, overcoming the real-time threshold.
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FIGURE 14. Energy consumption of the algorithm on the Exynos 5422 system-on chip to process 256 samples from 8 sources. Values are
only shown when the sources can be processed in real-time.

Very often, energy consumption is a priority when design-
ing applications for mobile devices, where saving battery life
is of utmost importance. We obtain the energy consumption
of our algorithm as the product of the measured power con-
sumption of the whole platform while running it and the time
taken by the algorithm to complete. We want to measure only
the consumption of the application and so we subtract the
power dissipated by the operating system processes, with the
platform at the default frequencies.

We explore in Fig. 14 different configurations of the
platform for minimizing the energy consumption needed to
process 256 samples from 8 sources in real-time. We do
not show values when it is not possible to render the
sound sources in real-time. Note that using one Cortex-
A7 core as host of the application is always more effi-
cient in terms of energy consumption than using the more
power-hungry Cortex-A15 cores. Besides, when using one
A7 core, the energy consumption always increases both with
the CPU and GPU frequencies. However, when using only
one A15 core, the energy increases with the CPU frequency
but decreases with the GPU frequency. That is, with this
kind of core, increasing the frequency means more power
dissipation, but it decreases the processing time so, when
multiplying both factors to obtain the energy consumption of
the algorithm the resultant value decreases.

Regardless of the CPU core employed as host, the most
energy-efficient scenario is reached when decreasing the
CPU frequency as much as possible while allowing the
real-time processing of the sources. As for the GPU, when
using a Cortex-A7 as host, the energy consumption is reduced
by lowering the GPU frequency. Note, however, that when
using a Cortex-A15, it is better to use the highest GPU
frequency.

VII. CONCLUSION
This work proposes an efficient implementation of a spatial
audio engine based on a parametric parallel filter bank for
binaural synthesis. The proposed implementation is derived
and optimized from the authors’ previous work, where a
low-order model based on a chain of SOS was shown

to be an efficient approach for modeling and interpolat-
ing HRTF datasets. The limitations of conventional series-
to-parallel conversion using partial-fraction-expansion have
been presented to motivate the use of the developed parallel
approach, which was designed to use efficiently the parallel
computation resources found in modern mobile multimedia
devices. The practical advantages of the model allows for
an OpenCL-based implementation that can be run in a wide
variety of platforms, including smartphones and tablets, con-
tributing to its general portability.

The proposed OpenCL implementation has been tested
on the GPU that is contained on a low-power and low-cost
SoC aiming different objectives. On the one hand, we could
render up to 32 sound sources in real-time without taking
into account the energy consumption of the GPU. On the
other hand, we combined two strategies to reduce energy
consumption and save battery life in the device. Firstly,
we used a low power-consuming Cortex-A7 core as host.
Secondly, by lowering the working frequencies of both the
CPU and GPU, we reduced the power required in the render-
ing. It was observed that the rendering of 16 sound sources
produces the best trade-off in terms of sources rendered
per watt. The results suggest that this value is achieved for
different combinations of GPU and CPU frequencies. It is
important to highlight that we are using GPU resources and
freeing up CPU resources that can be exploited for other
tasks, as this is an important consideration for mobile mul-
timedia devices. Finally, comparing the architecture of the
Mali-G76 MP12 GPU (Exynos 9820 SoC, released in 2019)
with the Mali-T628 MP6 GPU (Exynos 5422 SoC, released
in 2013) used in our experiments, we can conclude that
our scalable implementation would be able to render in the
modern GPU in real-time at least three times more sound
sources. However, we cannot argue about the power required
by carrying out such processing with the Mali-G76 GPU.
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