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Abstract: Photovoltaic transformerless inverters are very efficient and economical options for solar-
power generation. The absence of the isolation transformer improves the converters’ efficiency, but
high-frequency voltage to ground can appear in the photovoltaic string poles. The high capacitance
to ground of the photovoltaic generator leads to undesirable high-leakage currents. Using half-bridge
topologies dramatically reduces the leakage to ground, and using a multilevel half-bridge inverters im-
proves the output quality compared with classical inverters. The neutral point clamped + generation
control circuit (NPC + GCC) topology is a multilevel single-phase transformerless inverter capable
of tracking the maximum power point of two photovoltaic sources at the same time. This paper
presents the control structure and the dynamic modeling of the NPC + GCC inverter. The pulse-width
modulated (PWM) switch model in continuous conduction mode (CCM) was used to obtain the
small-signal model of the two switching converters that make up the inverter. The resulting dynamic
model was used to quantify the stability margins of both converters’ current and voltage loops.

Keywords: photovoltaic inverter; MPPT; double MPPT; string inverter; photovoltaics; NPC + GCC
topology; transformerless

1. Introduction

Grid-connected photovoltaic (PV) inverters may be divided into two categories: PV
inverters with isolation transformer and transformerless PV inverters [1–3]. In power
converters for renewable energy sources (RES), especially in grid-connected PV inverters,
efficiency and cost are vital factors [4,5]. Transformerless inverters present high efficiency
and cost less than those with a transformer [6,7]. Hence, many PV transformerless inverter
topologies have been presented in the literature [1,8–11].

The main issue PV transformerless inverters must address is the common-mode
voltage. The commutation of inverter switches can produce an alternating common-mode
voltage between the PV-panel poles and the ground [12–14]. In PV power plants, the
parasitic capacitance to ground can reach high values due to the large surface of the PV
generator. Typical values vary between 50 and 150 nF/kW for crystalline-silicon cells and
reach up to 1 µF/kW for thin-film cells [1]. The alternating component of the common-
mode voltage generates a leakage current through these high capacitance values to ground,
which may produce serious problems (e.g., the activation of electrical protections, efficiency
degradation, and safety problems) [6,15,16]. Figure 1 depicts the parasitic capacitances and
the leakage current.

A simple way of reducing the leakage current to ground is the use of half-bridge
inverter topologies, in which the midpoint is connected to the neutral point [17]. However,
the half-bridge topologies usually present a high level of total harmonic distortion (THD)
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in their output. In [18], the NPC + GCC transformerless topology for a single-phase grid-
connected PV inverter was presented (Figure 2). In this topology, the midpoint of the
dc-link of a multilevel half-bridge neutral point clamped (NPC) inverter is used to reduce
the leakage current to ground. Using a multilevel topology improves the THD of the
output compared with a conventional half-bridge [19–22]. The more output voltage levels
a topology possesses, the lower the level of THD it presents. A variety of topologies, like
the cascaded H-bridge (CHB), the flying capacitor (FC), the diode-clamped inverter, the
neutral-point clamped (NPC), the Conergy NPC, or the active NPC inverter, were presented
in the literature [1]. Due to its cost and simplicity, the NPC is the most widely used topology
in low-power systems. Moreover, the use of the midpoint of the input voltage leads to
additional benefits in the leakage-current-to-ground reduction [1,21–24].
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Furthermore the generation control circuit (GCC) converter uses the midpoint to
provide the highly efficient double-maximum-power-point tracking of two series-connected
PV sources, improving the power generation under partial shadowing in PV modules.
In fact, the voltage control provided by the GCC converter solves the midpoint voltage
balancing, the main drawback of the NPC inverter [25,26]. Partial shadowing is problematic
in PV power plants, since a small shadow can dramatically reduce the overall power of a
large group of PV modules [27,28], and the GCC circuit improves the partial-shadowing
performance of the converter.

The NPC + GCC transformerless topology is formed by two parallel converters: the
NPC multilevel inverter (IGBT1 to IGBT4 and D1 to D2), which manages the current
injected over the grid; and the GCC DC/DC converter (IGBT5 and IGBT6), which adjusts
the midpoint voltage of the dc-link. This pair of converters tracks two different maximum
power points (MPP) in the converter’s input (VPV1 and VPV2). Compared with a double-
stage PV inverter (boost + inverter), the NPC + GCC has better efficiency [18] since the
GCC only manages the power difference between the strings and not the full power.

NPC and GCC converters share the input dc-link series-connected capacitors and
are connected to the total input voltage. The midpoint is connected to the NPC’s free-
wheeling diodes and the GCC’s inductance output port. This paper proposes a control
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structure and presents the procedure to obtain a small signal dynamic model to control
both converters independently. The objective is to control the input voltage in each dc-link
independently while the NPC injects a sinusoidal current into the mains grid. Hence, a
dual maximum-power-point tracking (MPPT) algorithm will run over the two inputs.

This paper is based on a 5 kW NPC + GCC photovoltaic inverter fed by a pair of
PV strings of 3 kW each. Section 2 describes the control structure of the whole system
in depth. Sections 2.1 and 2.2 detail the models of the NPC and the GCC converters.
Then, Sections 3 and 4 detail how the models obtained are used to adjust the current and
voltage regulators.

2. Transformerless PV Inverter Control Structure

Figure 3 shows the control structure of the NPC + GCC topology. It consists of a
double maximum-power-point tracking (MPPT) perturb and observe (P&O) algorithm and
independent control loops for the NPC and the GCC, organized as follows.

Electronics 2023, 12, x FOR PEER REVIEW 4 of 19 
 

 

 

Figure 3. NPC + GCC topology control structure. 

Table 1. Main parameters of the NPC + GCC PV inverter. 

Parameter Value 

Input voltage at MPP (VPV-MPP) 2 × 408.8 V 

Input current at MPP (IMPP) 7.54 ADC 

Maximum PV power (PPV-MAX) 2 × 3.08 kW 

GCC switching frequency (fSW-GCC) 16 kHz 

NPC switching frequency (fSW-NPC) 16 kHz 

Input capacitance (C1 and C2) 2 × 3 mF 

GCC inductance (LGCC) 15 mH 

NPC inductance (LNPC) 2 mH 

LC filter capacitance (COUT) 9.4 µF 

Damping resistor (rd) 1 Ω 

GCC IGBT switches IRG4PH40KDPBF (1200 V/15 A) 

NPC IGBT switches APTGL60TL120T3G (1200 V/60 A) 

RMS nominal grid voltage (VGRID-RMS) 230 VRMS 

Nominal grid frequency (fGRID) 50 Hz 

Anti-aliasing filters crossover frequency 16 kHz 

ADC sampling frequency 32 kHz 

Digital voltage regulators update frequency 32 kHz 

Digital current regulators update frequency 32 kHz 

MPPT update period 300 ms 

In this work, the NPC inverter regulates the total dc-link voltage (VPV1 + VPV2), 

whereas the GCC regulates the voltage VPV2. Many MPPT methods have been presented 

in the literature, among which the perturb and observe (P&O) method is a simple but 

robust MPPT one, being the preferred option in low-to-medium power converters [30]. A 

Figure 3. NPC + GCC topology control structure.

The GCC control block consists of a PWM modulator generating the switching signals
for IGBT5 and IGBT6, fed by a current compensator (GI-GCC), adjusting the inductance
current. The current reference (IGCC-REF) is generated by an input voltage compensator
(GV-GCC), which adjusts the voltage of the PV string number 2 (VPV2).

The NPC control block consists of an in-phase disposition (IPD) PWM modulator, but
other modulation multilevel techniques can be considered [29], generating the switching
signals for IGBT1 to IGBT4, fed by a current compensator (GI-NPC), adjusting the current
injection into the mains grid. The phase-locked loop (PLL) generates the sinusoidal shape
of the current reference (INPC-REF) to ensure unity power factor injection. The INPC-REF
magnitude is generated by the voltage compensator (GV-NPC), which adjusts the total
input voltage of the PV strings PV1 + PV2 (VDC-REF). Hence, the voltage of PV1 (VPV1) is
indirectly controlled.
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The current and control loops are digitally programmed in a Texas Instruments DSP
TMS320F28335. All the signals are fed to the DSP controller through analog low-pass filters
(LPF) and acquired through a 12-bit ADC running at 32 ksps. The two independent MPPT
algorithms are based on the classical perturb and observe (P&O) technique and run by
employing the PV input voltage and current values (VPV1, IPV1 and VPV2, IPV2).

Table 1 summarizes the most critical parameters of the power converter under study.
Regarding the voltage rating of the components, it must be noted that the MPP nominal
input voltage of each input is 408.8 V. Hence, since the worst-case open circuit voltage in
typical PV modules is usually 30% higher, the maximum input voltage is around 530 V.
The switches of the GCC must withstand a voltage twice this value. Hence, 1200 V IGBTs
are used. The switches in the NPC must withstand 530 V; therefore, a 950 V device is
sufficient. However, the limited commercial offer in NPC half-bridge modules leads to the
1200 V device.

Table 1. Main parameters of the NPC + GCC PV inverter.

Parameter Value

Input voltage at MPP (VPV-MPP) 2 × 408.8 V
Input current at MPP (IMPP) 7.54 ADC

Maximum PV power (PPV-MAX) 2 × 3.08 kW
GCC switching frequency (fSW-GCC) 16 kHz
NPC switching frequency (fSW-NPC) 16 kHz

Input capacitance (C1 and C2) 2 × 3 mF
GCC inductance (LGCC) 15 mH
NPC inductance (LNPC) 2 mH

LC filter capacitance (COUT) 9.4 µF
Damping resistor (rd) 1 Ω
GCC IGBT switches IRG4PH40KDPBF (1200 V/15 A)
NPC IGBT switches APTGL60TL120T3G (1200 V/60 A)

RMS nominal grid voltage (VGRID-RMS) 230 VRMS
Nominal grid frequency (fGRID) 50 Hz

Anti-aliasing filters crossover frequency 16 kHz
ADC sampling frequency 32 kHz

Digital voltage regulators update frequency 32 kHz
Digital current regulators update frequency 32 kHz

MPPT update period 300 ms

In this work, the NPC inverter regulates the total dc-link voltage (VPV1 + VPV2),
whereas the GCC regulates the voltage VPV2. Many MPPT methods have been presented
in the literature, among which the perturb and observe (P&O) method is a simple but
robust MPPT one, being the preferred option in low-to-medium power converters [30].
A double-MPPT P&O algorithm generates the voltage references VPV1-REF and VPV2-REF.
Figure 4 shows the flowchart algorithm of the implemented double MPPT algorithm. This
algorithm is based on the classic P&O with a fixed step size [30,31].

The GCC voltage regulator (GV-GCC) adjusts the current reference in the inductor
(IGCC-REF) to set the voltage VPV2 at the desired level. The voltage regulator of the NPC
inverter (GV-NPC) modifies the reference of the output current amplitude, IOUT-REF, to
regulate the total input voltage (VDC = VPV1 + VPV2) at the desired level. Since the GCC
regulates VPV2, this algorithm indirectly regulates the voltage VPV1.
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2.1. Model and Control Structure of the Multilevel Half-Bridge NPC PWM Inverter

In this section, the model and the control structure of the multilevel NPC PWM inverter
are described. Figure 3 introduces the NPC PWM inverter control structure. It comprises an
MPPT P&O algorithm, an output current control loop, and an input voltage control loop.

The MPPT P&O algorithm (Figure 4) perturbs the voltage reference for VPV1 (VPV1-REF).
If the power obtained from string PV1 (PPV1) increases, the next step value of VPV1-REF will
be applied in the same direction. However, if the power decreases, the next step value of
VPV1-REF will be in the opposite direction.

The voltage references (VPV1-REF, VPV2-REF) generated by the MPPT algorithms are
added to create VDC-REF, the input voltage reference for the NPC inverter voltage control
loop. The voltage regulator (GV-NPC) adjusts the input voltage to match that reference
value. Thus, the output of GV-NPC is the peak value of the output inductor reference
current (IOUT-REF_PK).

The phase-locked loop (PLL) module ensures that the output current is aligned with
the grid voltage phase based on an SRF-PLL [32]. It provides information about the phase
angle of the grid. The magnitude IOUT-REF_PK multiplied by the cosine of the phase angle
provides the instantaneous reference value for the output inductor current (IOUT-REF).
The current regulator (GI-NPC) adjusts the output current (IOUT) to match the reference.
Furthermore, the current regulator of the NPC inverter must provide a high-quality output
waveform, even under distorted grid voltages [33].

The modulator employed In the multilevel NPC inverter uses in-phase disposition
(IPD) carrier signals [34]. Figure 5 depicts the IPD modulator concept. The IPD modulator
drives the switches IGBT1 to IGBT4 to provide the required inverter output voltage (VAB).
Note that the output voltage waveform has three levels (VPV1, 0, and −VPV2).
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Different approaches have been published in the literature to obtain a switching con-
verter’s linear model and adjust its control loops. The equivalent matrix structure and
mixed logical dynamic (MLD) approaches are specially indicated for NPC inverters with
a high number of output voltage levels [35]. Model predictive control (MPC) has fewer
bandwidth limitations and a fast dynamic behavior but a variable switching frequency [36].
The modulated model predictive control (MMPC) combines the advantages of the MPC
with a constant switching frequency [37]. Fuzzy logic and neural networks controllers
can work from imprecise inputs and do not require a precise model [38], but their com-
plexity can be high. Fractional order PID and modulated hysteresis provide very fast
transient performance and are easy to implement [39]. The AC small-signal modeling
applied to multilevel converters [40] is a powerful technique to obtain a linear model of a
switching converter. In this technique, deciding the appropriate control loop structure and
determining the variables to be perturbed are essential.

However, when a reduced number of output voltage levels are used, and a constant
frequency is desired, the PWM switch model proposed by V.Vorperian for continuous
conduction mode (CCM) [41] is a widely used approach. It is a simple and robust method
to obtain a linear model of the switching converter, is easy to use and requires a reduced
number of equations, thus limiting the mathematical complexity of the model. Addition-
ally, it is unusual to require an ultra-fast dynamic response in PV applications; therefore,
Vorperian’s model suits most PV applications well.

In this model of the NPC + GCC inverter, the averaged variables are composed
of their operating point (OP) value, X, and their small-signal perturbation around the
OP, x̂, as shown in Equation (1). Note that, in a PWM inverter, some of the OP values
have a sinusoidal variation with time at a fundamental frequency much lower than the
switching frequency.

x = X + x̂ (1)

Figure 6 depicts the output current path during a switching period to be studied
to identify the active (Act), passive (Pas), and common (Com) terminals of Vorperian’s
model. Thus, the active, common and passive terminals are identified, as shown in Figure 7.
The inverter can be replaced during the positive half-cycle of the output voltage, VAB, by
the switching cell shown in Figure 7. The study of the negative cycle leads to a circuit
equivalent to that presented in this section; thus, only the positive cycle is studied.
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The impedance of the electrical grid, LGRID, must be considered for the dynamic study
of the inverter. The ratio between the short-circuit current (ICC) and the nominal current of
the grid (IN) permits the grid impedance to be estimated. This impedance, assumed to be
inductive, is then calculated in the range of 84 µH (strong electrical grid, ICC = 20·IN) to
337 µH (weak electrical grid, ICC = 5·IN).

Thus, by replacing the inverter with the PWM switch cell model and considering
the grid impedance, the model shown in Figure 8 is obtained. The model comprises the
operating point circuit (OP) and the small-signal circuit (AC). The previous figures’ points
labeled A and B are kept for clarity. In this model, the diodes and switches are considered
ideal devices with no voltage drop.
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The values of the parameters of the OP circuit are expressed in (2)–(12), and the small-
signal transfer functions are shown in (13)–(16), where ‘s’ is the variable of the Laplace
transform. The OP circuit provides the value for the parameters VAP, IC, and D to be used
in the small-signal equations.

The value of VAP is constant (2) since it is the DC value of the input voltage.

VAP = VPV1 (2)

The IC value is a 50 Hz sinusoidal alternating value. Thus, (3) calculates its precise
phasor value. Since the capacitor current in the LCL filter is designed to consume a low
current at 50 Hz, the IC current instantaneous value is almost equal to that injected into the
grid and, therefore, is commonly approximated as (4), with a minimum error in most cases.
Note that θ is the instantaneous phase value of the grid voltage.

→
IC =

→
VGRID
→
ZC

+


1 +

→
ZGRID
→
ZC


·

→
IGRID (3)

IC(θ) ≈
√

2·IGRID−RMS· cos(θ) (4)

Solving Figure 8a circuit, the precise phasor value for the duty cycle (D) is calculated
through (5). Assuming a pure inductive NPC inductor (ZL-NPC = LNPC) and grid impedance
(ZG = LGRID), the real and imaginary parts of D are easily calculated as in (6) and (7). Thus,
its magnitude is determined as (8) and its phase value as (9). Hence, the instantaneous
value of D is calculated as (10). Note that θ represents the phase value of the grid voltage,
and θD the phase delay between the duty cycle phasor and the grid voltage one. However,
if the phase delay introduced by the LCL filter at 50 Hz is neglected, the instantaneous
value of D can be estimated as in (11), with a minimum error in most cases. Note that θ is
the instantaneous phase value of the grid voltage.

→
D =

→
VGRID +

→
IC·
[ →

ZL1 +
→

ZGRID·
(

1 +
→

ZL1→
ZC

)]

VAP·
(

1 +
→

ZGRID→
ZC

) (5)

<e(D) =

√
2·VGRID−RMS

VAP·(1−ω2·LGRID·COUT)
(6)

Im(D) =

√
2·IC−RMS·

[
ω·(L1 + LGRID)−ω3·L1·LGRID·COUT

]

VAP·(1−ω2·LGRID·COUT)
(7)

∣∣∣∣
→
D
∣∣∣∣ =

√
(<e(D))2 + (Im(D))2 (8)

θD = tan−1

(
IC−RMS·

[
ω·(L1 + LGRID)−ω3·L1·LGRID·COUT

]

VGRID−RMS

)
(9)

D(θ) =
√

2·
∣∣∣∣
→
D
∣∣∣∣· cos(θ + θD) (10)

D(θ) ≈
√

2·VGRID−RMS· cos(θ)
VAP

(11)
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Once the OP parameters are obtained, the small-signal model is obtained by solving the
circuit of Figure 8b. First, the small-signal characteristic of the PV modules is determined.
It is modeled as a dynamic resistor, according to (12).

rPV =
VMPP
IMPP

(12)

From Figure 8b, the duty cycle-to-inductor current transfer function is obtained (15).
Additionally, the inductor current-to-input voltage transfer function is of interest (16). The
parameters defined in (13) and (14) help to simplify the mathematical functions’ transcription.

A(s) =
LGRID

s + rd·LGRID·COUT

1 + rd·COUT ·s + LGRID·COUT ·s2 (13)

B(s) =
rPV

1 + rPV ·CPV ·s
(14)

îC
d̂
(s) =

VAP − B(s)·IC·D
A(s)·s2 + L1·s + D2·B(s) (15)

v̂PV

îC
(s) = B· IC·

(
A(s)·s2 + L1·s + 2·D2·B

)
− D·VAP

VAP − B·IC·D
(16)

Figures 9 and 10 depict the Bode plots of the mathematical model presented in (2)–(17).
Figure 9 shows the Bode diagram of the duty-cycle to inductor current (îC/d̂) transfer
function, the power being 5 kW and the grid inductance LGRID = 337 µH. Figure 10 depicts
the Bode plots of the inductor current to PV-input voltage (v̂PV/ ˆiC) transfer function. In
both cases, the grid phase, θ, is a running parameter.
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îC
(s) = B· IC·

(
A(s)·s2 + L1·s + 2·D2·B

)
− D·VAP

VAP − B·IC·D
(16)

Figures 9 and 10 depict the Bode plots of the mathematical model presented in (2)–(17).
Figure 9 shows the Bode diagram of the duty-cycle to inductor current (îC/d̂) transfer
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2.2. Model and Control Structure of the GCC DC/DC Converter

Figure 3 shows the GCC DC/DC converter [42] and its control loops (current loop,
input voltage loop, and MPPT P&O algorithm). The MPPT P&O algorithm, shown in
Figure 4, perturbs the voltage reference for VPV2 (VPV2-REF). Similarly, as in the case of
VPV1-REF, if the power obtained from string PV2 (PPV2) increases, the next step in the value
of VPV2-REF will be applied in the same direction. If the power decreases, the sign of the
next step will be changed.

The voltage regulator (GV-GCC) adjusts the voltage VPV2 to match its reference value
(VPV2-REF). Then, the output of GV-GCC is the reference value of the inductor current
(IGCC-REF). The voltage of string 2 is adjusted by changing the value of IGCC-REF. The
current regulator, GI-GCC, must be able to regulate both positive and negative values of
IGCC to provide bidirectional power flow between strings.

Figure 11 shows the modulator used in the GCC converter. The converter switches
between the rails of the input voltage; therefore, the voltage at the inductor of the GCC
(VL-GCC) ranges between two voltage levels (VPV1 and −VPV2).
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The GCC PWM DC/DC converter is modeled using the PWM switch model proposed
by V. Vorperian for continuous conduction mode (CCM). To identify the Active (Act),
Passive (Pas) and Common (Com) terminals of the Vorperian’s model, the path of the
output current is studied (Figure 12) during a switching period (positive current in LGCC is
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2.2. Model and Control Structure of the GCC DC/DC Converter

Figure 3 shows the GCC DC/DC converter [42] and its control loops (current loop,
input voltage loop, and MPPT P&O algorithm). The MPPT P&O algorithm, shown in
Figure 4, perturbs the voltage reference for VPV2 (VPV2-REF). Similarly, as in the case of
VPV1-REF, if the power obtained from string PV2 (PPV2) increases, the next step in the value
of VPV2-REF will be applied in the same direction. If the power decreases, the sign of the
next step will be changed.

The voltage regulator (GV-GCC) adjusts the voltage VPV2 to match its reference value
(VPV2-REF). Then, the output of GV-GCC is the reference value of the inductor current
(IGCC-REF). The voltage of string 2 is adjusted by changing the value of IGCC-REF. The
current regulator, GI-GCC, must be able to regulate both positive and negative values of
IGCC to provide bidirectional power flow between strings.

Figure 11 shows the modulator used in the GCC converter. The converter switches
between the rails of the input voltage; therefore, the voltage at the inductor of the GCC
(VL-GCC) ranges between two voltage levels (VPV1 and −VPV2).
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Figure 11. GCC modulator.

The GCC PWM DC/DC converter is modeled using the PWM switch model proposed
by V. Vorperian for continuous conduction mode (CCM). To identify the Active (Act),
Passive (Pas) and Common (Com) terminals of the Vorperian’s model, the path of the
output current is studied (Figure 12) during a switching period (positive current in LGCC is
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assumed). Thus, the Act-Com-Pas terminals are identified, as shown in Figure 13, and the
DC/DC converter is replaced by the switching cell shown in Figure 13.

Electronics 2023, 12, x FOR PEER REVIEW 11 of 19 
 

 

assumed). Thus, the Act-Com-Pas terminals are identified, as shown in Figure 13, and the 

DC/DC converter is replaced by the switching cell shown in Figure 13. 

    

(a) (b) 

Figure 12. Current path for positive current in LGCC; (a) VL-GCC = +VPV1; (b) VL-GCC = −VPV2. 

  

Figure 13. Switching cell for positive current in LGCC. 

Thus, by replacing the GCC converter with the switching cell model, the GCC model 

shown in Figure 14 is obtained. The model is formed by the operating point circuit (DC) 

and the small-signal circuit (AC). The values for parameters of the operating point circuit 

are presented in (17)–(19), whereas (20)–(23) show the small-signal transfer functions. 

 
 

(a) (b) 

Figure 14. GCC (a) operating point circuit (OP); (b) small-signal circuit (AC). 

VAP = 𝑉𝑃𝑉1 + 𝑉𝑃𝑉2 (17) 

IC = 𝐼𝑃𝑉1 − 𝐼𝑃𝑉2 (18) 

Figure 12. Current path for positive current in LGCC; (a) VL-GCC = +VPV1; (b) VL-GCC = −VPV2.

Electronics 2023, 12, x FOR PEER REVIEW 11 of 19 
 

 

assumed). Thus, the Act-Com-Pas terminals are identified, as shown in Figure 13, and the 

DC/DC converter is replaced by the switching cell shown in Figure 13. 

    

(a) (b) 

Figure 12. Current path for positive current in LGCC; (a) VL-GCC = +VPV1; (b) VL-GCC = −VPV2. 

  

Figure 13. Switching cell for positive current in LGCC. 

Thus, by replacing the GCC converter with the switching cell model, the GCC model 

shown in Figure 14 is obtained. The model is formed by the operating point circuit (DC) 

and the small-signal circuit (AC). The values for parameters of the operating point circuit 

are presented in (17)–(19), whereas (20)–(23) show the small-signal transfer functions. 

 
 

(a) (b) 

Figure 14. GCC (a) operating point circuit (OP); (b) small-signal circuit (AC). 

VAP = 𝑉𝑃𝑉1 + 𝑉𝑃𝑉2 (17) 

IC = 𝐼𝑃𝑉1 − 𝐼𝑃𝑉2 (18) 

Figure 13. Switching cell for positive current in LGCC.

Thus, by replacing the GCC converter with the switching cell model, the GCC model
shown in Figure 14 is obtained. The model is formed by the operating point circuit (DC)
and the small-signal circuit (AC). The values for parameters of the operating point circuit
are presented in (17)–(19), whereas (20)–(23) show the small-signal transfer functions.

VAP = VPV1 + VPV2 (17)

IC = IPV1 − IPV2 (18)

D =
VPV2

VPV1 + VPV2
(19)

îC
d̂
(s)

∣∣∣∣∣
înpc=0

=

rPV
1+rPV ·CPV ·s ·IC·(2·D− 1)−VAP
rPV

1+rPV ·CPV ·s ·(1− 2·D + 2·D2)− LGCC·s
(20)

îC
îNPC

(s)

∣∣∣∣∣
d̂=0

=
D· rPV

1+rPV ·CPV ·s
rPV

1+rPV ·CPV ·s ·(−1 + 2·D− 2·D2)− LGCC·s
(21)

A =
rPV

1 + rPV ·CPV ·s
(22)

v̂PV2

îC
(s)
∣∣∣∣
înpc=0

=
A·
[
(VAP − A·D·IC)·(1− D)− IC·

(
LGCC·s + A·D2)]

VAP + A·(1− D)
(23)
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Figure 15 shows the Bode plots for the duty-cycle to inductor current (îC/d̂) transfer
function. Figure 16 depicts the Bode plots for the inductor current to input PV voltage
(v̂PV/îc) transfer function. In both cases, the dynamic resistance of the photovoltaic string,
rPV, is considered a running parameter. These Bode diagrams are obtained using the
mathematical model presented in (17)–(23).
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3. Control Design of NPC PWM Inverter

Figure 17 shows the closed-loop control structure designed using the small-signal
model of the NPC inverter. In this figure, several transfer functions blocks appear, which
are detailed as follows: GV-NPC represents the input voltage compensator and GI-NPC the
output current compensator for the NPC inverter; del(s) represents the PWM delay; Fm the
PWM modulator gain; îL/d̂ stands for the duty cycle-to-output current transfer function
and ˆvPV/îL for the output current-to-input voltage one; Ri represents the current sensor
gain (unitary, due to the digital conversion gain); β represents the voltage sensor gain
(unitary, due to the digital conversion gain); and Ant(s) represents the anti-aliasing ADC
filters. Table 2 defines several transfer functions of interest.
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Figure 17. Voltage and current loops for the NPC inverter.

The current regulator, GI-NPC, must provide a high gain at the grid frequency and its
harmonics, along with enough attenuation at the switching frequency and proper stability
margins. GI-NPC is based on a P + Resonant structure, implemented in a Texas Instruments
TMS320F28335 DSP processor. GI-NPC has been adjusted to obtain an open loop gain of
the current loop, whose Bode plots are shown in Figure 18. In the figure, Ti(s) presents a
high gain at the grid frequency and its 3rd, 5th, and 7th harmonics, and a low gain at the
switching frequency (16 kHz). The stability of the current loop is guaranteed by the stability
margins: 0 dB crossover frequency fCi = 1.6 kHz, phase margin 50◦, and gain margin 10 dB.
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Table 2. Gains and transfer functions of the NPC inverter.

Name Value/Expression

Digital delay of one sampling period
(TS = 31.25 µs), del(s) e−s·TS ≈ 1− s·TS

2 +
(s·TS)

2

12

1+ s·TS
2 +

(s·TS)
2

12

Modulator gain, Fm 1

Current sensor gain, Ri 1

Voltage sensor gain, β 1

Anti− aliasing filter, Ant(s)
(ω0 = 2·π·8kHz)

Ant(s) = 1
1+ s

Q·ω0
+ s2

ω2
0

Q = 1√
2

Current regulator, GI-NPC(s)
GI−NPC(s) = 0.05 + 10·s

s2+7·s+(100·π)2 +
25·s

s2+21·s+(300·π)2 +

30·s
s2+35·s+(500·π)2 +

35·s
s2+49·s+(700·π)2

Closed loop response of the output current to its reference Ti−lc(s) =
îL(s)

îL−REF(s)
= 1

Ri
· Ti(s)

1+Ti(s)

Voltage regulator, GV-NPC(s) GV−NPC(s) =
−4·(1+s/20)

s

Loop gain of the voltage loop, TV(s) TV(s) = GV−NPC(s)·Ti−lc(s)· v̂PV (s)
îC(s)

·β

Closed loop response of the output current to its reference ˆvPV (s)
v̂PV−REF(s)

= 1
β ·

TV (s)
1+TV (s)
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The voltage regulator, GV-NPC, must provide a high gain at DC and a low gain at the
grid frequency to minimize the distortion in the output current due to the low-frequency
voltage ripple at the DC link, whose frequency agrees with the grid frequency in an NPC
half-bridge inverter. The proposed structure for the voltage regulator is a proportional
integrator (PI). GV-NPC is adjusted to obtain the open loop gain (TV) shown in Figure 19.
The stability of the voltage loop is guaranteed by the stability margins: crossover frequency
fCV = 3.4 Hz to 9 Hz, phase margin > 65◦, and gain margin > 35 dB. The gain at 50 Hz is
−16 dB, thus attenuating the influence of the input voltage ripple in the output current.

Figure 18. NPC control: Bode diagram of Ti(s). POUT = 5 kW, LGRID = 337 µH. Grid phase value (ω·t)
in the legend. Note: pi = 3.14159.

The voltage regulator, GV-NPC, must provide a high gain at DC and a low gain at the
grid frequency to minimize the distortion in the output current due to the low-frequency
voltage ripple at the DC link, whose frequency agrees with the grid frequency in an NPC
half-bridge inverter. The proposed structure for the voltage regulator is a proportional
integrator (PI). GV-NPC is adjusted to obtain the open loop gain (TV) shown in Figure 19.
The stability of the voltage loop is guaranteed by the stability margins: crossover frequency
fCV = 3.4 Hz to 9 Hz, phase margin > 65◦, and gain margin > 35 dB. The gain at 50 Hz is
−16 dB, thus attenuating the influence of the input voltage ripple in the output current.
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Figure 19. NPC control: Bode diagram of TV(s). POUT = 5 kW, LGRID = 337 µH. Grid phase value
(ω·t) as a running parameter. Note: pi = 3.14159.

4. Control Design of GCC DC/DC Converter

Figure 20 shows the closed-loop control structure using the small-signal model of
the GCC converter, where several transfer functions of interest, defined in Table 3, can
be identified.
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Figure 19. NPC control: Bode diagram of TV(s). POUT = 5 kW, LGRID = 337 µH. Grid phase value
(ω·t) as a running parameter. Note: pi = 3.14159.

4. Control Design of GCC DC/DC Converter

Figure 20 shows the closed-loop control structure using the small-signal model of
the GCC converter, where several transfer functions of interest, defined in Table 3, can
be identified.
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Table 3. Cont.

Name Value/Expression

Loop gain of the current loop, Ti(s) Ti(s) =GI−GCC(s)·del(s)·Fm· îL(s)
d̂(s)
·Ri·Ant(s)

Closed loop response of the output current to its reference îL(s)
îL−REF(s)

= 1
Ri
· Ti(s)

1+Ti(s)

Voltage regulator, GV-GCC(s) GV−GCC(s) =
1+ s

5
s

Loop gain of the voltage loop, TV(s) TV(s) = GV−NPC(s)·Ti−lc(s)· v̂PV2(s)
îC(s)

·β

Closed loop response of the output current to its reference v̂PV2(s)
v̂PV2−REF(s)

= 1
β ·

TV (s)
1+TV (s)

In this case, the current regulator, GI_GCC, must provide a high gain at DC, enough
attenuation at the switching frequency, and proper stability margins. GI_GCC is a PI regula-
tor implemented in the digital controller and adjusted to obtain the open loop gain, Ti(s),
shown in Figure 21. The main stability margins observed from this figure are as follows:
crossover frequency 350–40 Hz, phase margin > 75◦, and gain margin > 20 dB.
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Figure 21. GCC control: Bode diagram of Ti(s). DC link voltage as a running parameter.

The voltage regulator, GV-GCC, adjusts the voltage VPV2 to match the reference value,
VPV2-REF. GV-GCC must provide a high gain at DC to guarantee a null error in tracking
the steady state reference current. GV-GCC is adjusted to obtain the open loop gain (TV)
of Figure 22. The stability margins guarantee the stability of the voltage loop: crossover
frequency 6 Hz, phase margin 85◦, and gain margin 45 dB.



Electronics 2023, 12, 3545 17 of 19Electronics 2023, 12, x FOR PEER REVIEW 17 of 19 
 

 

 

Figure 22. GCC control: Bode diagram of TV(s). DC input voltage in the legend. 

5. Conclusions 

In this paper, the modeling of the NPC + GCC topology is presented. OP (operating 

point) and AC (small-signal) equivalent circuits for the NPC inverter and GCC DC/DC 

converter have been obtained. The NPC + GCC topology has a pair of converters working 

in parallel. As a result, both PV input voltages can be controlled independently. Addition-

ally, its model and stability study are carried out independently as well. 

By using the small-signal model presented, both converters’ current and voltage con-

trollers have been designed in the frequency domain. Moreover, the stability margins are 

obtained and evaluated to ensure the designed control’s robustness. 

The low-frequency ripple in the input capacitors, inherent in the half-bridge topolo-

gies, is addressed here in the control loops. The designed voltage compensators have a 

very low gain at the grid frequency. Hence, they do not respond to that ripple. 

Author Contributions: Conceptualization, I.P., E.F. and G.G.; methodology I.P. and M.L.; validation 

I.P., M.L. and R.G.-M.; software I.P. and E.T.; formal analysis, I.P., M.L. and G.G.; writing—original 

draft preparation, I.P., M.L. and G.G.; supervision, G.G. and E.F.; project administration, G.G. and 

E.F.; funding acquisition G.G. and E.F. All authors have read and agreed to the published version 

of the manuscript. 

Funding: This research was funded by the Spanish “Ministerio de Asuntos Económicos y Transfor-

mación Digital” and the European Regional Development Fund (ERDF), under grant PID2021-

122835OB-C22. 

Data Availability Statement: No data were created. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 

1. Patrao, I.; Figueres, E.; González-Espín, F.; Garcerá, G. Transformerless topologies for grid-connected single-phase photovoltaic 

inverters. Renew. Sustain. Energy Rev. 2011, 15, 3423–3431. https://doi.org/10.1016/j.rser.2011.03.034. 

2. Liberos, M.; González-Medina, R.; Garcerá, G.; Figueres, E. A Method to Enhance the Global Efficiency of High-Power Photo-

voltaic Inverters Connected in Parallel. Energies 2019, 12, 2219. https://doi.org/10.3390/en12112219. 

3. Vo, D.-V.; Nguyen, K.M.; Lim, Y.-C.; Choi, J.-H. A Single-Stage Bimodal Transformerless Inverter with Common-Ground and 

Buck-Boost Features. Electronics 2023, 12, 221. https://doi.org/10.3390/electronics12010221. 

4. Amoiralis, E.I.; Tsili, M.A.; Kladas, A.G. Power Transformer Economic Evaluation in Decentralized Electricity Markets. IEEE 

Trans. Ind. Electron. 2011, 59, 2329–2341. https://doi.org/10.1109/tie.2011.2157291. 

Figure 22. GCC control: Bode diagram of TV(s). DC input voltage in the legend.

5. Conclusions

In this paper, the modeling of the NPC + GCC topology is presented. OP (operating
point) and AC (small-signal) equivalent circuits for the NPC inverter and GCC DC/DC
converter have been obtained. The NPC + GCC topology has a pair of converters working in
parallel. As a result, both PV input voltages can be controlled independently. Additionally,
its model and stability study are carried out independently as well.

By using the small-signal model presented, both converters’ current and voltage
controllers have been designed in the frequency domain. Moreover, the stability margins
are obtained and evaluated to ensure the designed control’s robustness.

The low-frequency ripple in the input capacitors, inherent in the half-bridge topologies,
is addressed here in the control loops. The designed voltage compensators have a very low
gain at the grid frequency. Hence, they do not respond to that ripple.
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