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aa: amino acid 

AD: activation domain 

AHL: acyl-homoserine lactone 

AiiA: AHL-lactonase 

araC: arabinose regulator protein 

aTc: anhydrotetracycline 

AU: arbitrary units 

BIOFAB: international open facility 
advancing biotechnology 
cI: phage-encoded λ repressor protein 

CNS: central nervous system 

CRISPR: clustered regularly 
interspaced short palindromic repeats 
CSD: cold-shock domain 

CsrA: carbon storage regulator 

CV: coefficient of variation 

DBDs: DNA-binding domains 

DEAD motif: Asp-Glu-Ala_Asp 
motif 
DNA: deoxyribonucleic acid 

dsRBD: double-stranded RNA-
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eBFP2: enhanced blue fluorescent 
protein 2 
EDEMP cycle: Entner-Doudoroff 
Embden-Meyerhof-Parnas cycle  
eIF4G: eukaryotic translation 
initiation factor 

FadD: long-chain acyl-CoA 
synthetase 
FadE: acyl-CoA dehydrogenase 

FadL: long-chain fatty acid transport 
protein 
GO: Gene Ontology 

GRAS: generally recognized as safe 

Hfq: host factor I protein 

hnRNPs: heterogeneous nuclear 
ribonucleoproteins 
iGEM: international genetically 
engineered machine 
IPTG: isopropyl-ß-D-
thiogalactopyranoside 
KD: dissociation constant 

kON: protein-RNA association rate 
constant 
kOFF: protein-RNA dissociation rate 
constant 
LacI: lactose repressor protein 

LB: Luria Bertani broth 

LuxI: N-acyl-1-homoserine lactone 
synthase 
LuxR transcriptional factor for 
quorum-sensing control of 
luminescence 
KH: homology domain 

MIT: Massachusetts Institute of 
Technology 
m-numb: mammalian numb 



 10 

mRNA: messenger RNA 

miRNA: micro RNA 

MSI-1: Musashi-1 protein 

MSI-1*: synthetic Musashi-1 protein 

MS2CP: MS2 coat protein 

M9: minimal medium 

NES: nuclear export signal 

NLS: nuclear localization signal 

OB: oligonucleotide/oligosaccharide 
binding family 
ORFs: open reading frames 

PABP: poly(A)-binding protein 

PCR: polymerase chain reaction 

Pfam: protein family (database) 

PLlac: PL-based promoter repressed 
by LacI 
PTMs: post-translational 
modifications 
RBPs: RNA binding proteins 

RBS: ribosome binding site 

RNA: ribonucleic acid 

r-proteins: ribosomal proteins 

RRM: RNA recognition motif 

SELEX: systematic evolution of 
ligands by exponential enrichment 
sfGFP: superfolder green fluorescent 
protein 
SOPs: sensory organ precursors cells 

crRNA: cis-repressed RNA 

ssRBDs: single-stranded RNA 
structure predictions 
sRNAs: small RNAs 

tRNAs: transfer RNAs 

taRNA: trans-activating RNA 

TALEs: transcription activator-like 
effectors 
TC: tetracycline 

TetR: tetracycline repressor protein 

TFs: transcription factors 

TFBs: transcription factor binding 
sites 
TX-TL: transcription-translation cell-
free expression system 
UTRs: untranslated regions 

UV: ultraviolet 

yemGFP: monomeric yeast-enhanced 
green fluorescent protein 



 11 

SUMMARY 

Synthetic biology seeks to design and construct new biological systems with desired 

functions. Circuits based on transcriptional control have been preponderant in the 

field following the pioneering work of the toggle switch and repressilator. However, 

to advance the creation of transformative technologies using synthetic genetic 

circuits, a blend of dependable control mechanisms throughout the genetic 

information flow is essential. This combination is necessary to attain the level of 

integrability and functional complexity observed in nature. In this regard, circuits 

based on post-transcriptional regulation have recently gained attention. In particular, 

the great programmability of RNA has been exploited to create regulatory circuits 

for biosensing of environmental signals or for controlling metabolic pathway in 

bioproduction. In this thesis, in contrast, we propose to exploit RNA-binding proteins 

to engineer synthetic circuits that operate at the level of translation in the bacterium 

Escherichia coli. This thesis intends to study how noise emerges and propagates 

when gene expression is regulated by a translation factor, and the expansion of the 

synthetic biology toolbox with new characterization of suitable RNA-binding 

proteins. 

On the one hand, we engineered a post-transcriptional control circuit using 

the phage MS2 coat protein. Through meticulous single-cell level monitoring of both 

the regulator and the regulated gene, we quantified the dynamic behavior of the 

system, as well as their stochasticity. While previous efforts focused on 

understanding noise propagation in transcriptional regulations, the stochastic 

behavior of genes regulated at the translation level remain largely unknown. Our data 

revealed that a protein translation factor enabled strong repression at the single-cell 

level, buffered noise propagation from gene to gene, and led to a nonlinear sensitivity 

to global perturbations in translation. These findings significantly enhanced our 
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understanding of stochastic gene expression and provided foundational design 

principles for synthetic biology applications.  

On the other hand, we harnessed the RNA recognition motif (RRM), the most 

prevalent RNA-binding domain in nature, despite its predominance in eukaryotic 

phyla, to engineer an orthogonal post-transcriptional control system in Escherichia 

coli. Leveraging the mammalian RNA-binding protein Musashi-1, which contains 

two canonical RRMs, we developed a sophisticated circuit. Musashi-1 functioned as 

an allosteric translation repressor through its specific interactions with the N-

terminal coding region of messenger RNA, exhibiting responsiveness to fatty acids. 

Comprehensive characterization at both population and single-cell levels highlighted 

a significant fold change in reporter expression. Molecular insights were gleaned 

through in vitro binding kinetics and in vivo functionality assessments of a series of 

RNA mutants. This work showcased the adaptability of RRM-based regulation to 

simpler organisms, introducing a novel regulatory layer for translation control in 

prokaryotes, ultimately expanding the horizons of genetic manipulation. 
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RESUMEN 

La biología sintética tiene como objetivo diseñar y construir nuevos sistemas 

biológicos con funciones deseadas. Los circuitos basados en el control 

transcripcional han tenido preponderancia en este campo tras el trabajo pionero del 

toggle switch y del repressilator. Sin embargo, para avanzar en la creación de 

tecnologías transformadoras que utilicen circuitos genéticos sintéticos, es esencial 

una combinación de mecanismos de control confiables en todo el flujo de la 

información genética. Esta combinación es necesaria para alcanzar el nivel de 

integrabilidad y complejidad funcional observado en la naturaleza. En tal sentido, 

recientemente han ganado atención los circuitos basados en regulación 

postranscripcional. En particular, se ha aprovechado la gran programabilidad de 

ARN para crear circuitos reguladores para la biodetección de señales ambientales o 

para controlar la vía metabólica en la bioproducción. En esta tesis, por el contrario, 

proponemos explotar las proteínas de unión a ARN para diseñar circuitos sintéticos 

que operen a nivel de traducción en la bacteria Escherichia coli. Esta tesis pretende 

estudiar como surge y se propaga el ruido cuando la expresión genética está regulada 

por un factor de traducción, y la ampliación de la caja de herramientas de la biología 

sintética con una nueva caracterización de proteínas de unión a ARN adecuadas. 

Por un lado, hemos diseñado un circuito de control postrancripcional 

utilizando la proteína de cápside del fago MS2. Mediante una meticulosa 

monitorización a nivel unicelular tanto del regulador como del gen regulado, hemos 

cuantificado el comportamiento dinámico del sistema, así como su estocasticidad. Si 

bien los esfuerzos anteriores se centraron en comprender la propagación del ruido en 

las regulaciones transcripcionales, el comportamiento estocástico de los genes 

regulados a nivel de la traducción sigue siendo en gran medida desconocido. 

Nuestros datos han revelado que un factor de traducción de proteínas ha permitido 

una fuerte represión a nivel unicelular, ha amortiguado la propagación del ruido de 
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un gen a otro y ha conducido a una sensibilidad no lineal a las perturbaciones 

globales en la traducción. Estos descubrimientos han mejorado significativamente 

nuestra comprensión de la expresión genética estocástica y han proporcionado 

principios de diseño fundamentales para aplicaciones de biología sintéticas.  

Por otro lado, aprovechamos el motivo de reconocimiento de ARN (RRM), 

el dominio proteico de unión a ARN mas prevalente en la naturaleza, a pesar de su 

predominio en los filos eucariotas, para diseñar un sistema de control 

postranscripcional ortogonal en Escherichia coli. Aprovechando la proteína de unión 

a ARN de mamífero Musashi-1, que contiene dos RRM canónicos, desarrollamos un 

circuito sofisticado. Musashi-1 ha funcionado como represor de la traducción 

alostérico a través de su interacción especifica con la región codificante N-terminal 

del ARN mensajero, mostrando capacidad de respuesta a los ácidos grasos. La 

caracterización integral tanto a nivel poblacional como unicelular ha destacado un 

cambio significativo en la expresión del reportero. Se obtuvieron conocimientos 

moleculares a través de la cinética de unión in vitro y evaluaciones de funcionalidad 

in vivo de una serie de mutantes de ARN. Este trabajo ha mostrado la adaptabilidad 

de la regulación basada en RRM a organismos mas simples, introduciendo una nueva 

capa regulatoria para el control de la traducción en procariotas y, en última instancia, 

ampliando los horizontes de la manipulación genética. 
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RESUM 

La biologia sintètica té per objectiu dissenyar i construir nous sistemes biològics amb 

funcions desitjades. Els circuits basats en el control transcripcional han tingut 

preponderancia en aquest camp després del treball pioner del toggle switch i del 

repressilator. Tot i això, per avançar en la creació de tecnologies transformadres que 

utilitzin circuits genètics sintètics, és esencial una combinació de mecanismes de 

control fiables en tot el flux de la información genètica. Aquesta combinació és 

necessària per assolir el nivel d’integrabilitat i complexitat funcional observat a la 

natura. En aquest sentit, recentement han guanyat atenció els circuits basats en 

regulació posttranscripcional. En particular, s’ha aprofitat la gran programabilitat 

d’ARN per crear circuits reguladors per a la biodetecció de senyals ambientals o per 

controlar la via metabólica a la bioproducció. En aquesta tesi, per contra, proposem 

exlotar les proteïnes d’unió a ARN per dissenyar circuits sintètics que operin a nivel 

de traducció al bacteri Escherichia coli. Aquesta tesi pretén estudiar com sorgeix i 

es propaga el soroll quan l’expressió genètica està regulada per un factor de 

traducció, il’ampliació de la caixa d’eines de la biología sintètica amb una nova 

caracteriació de proteïnes d’unió a ARN adequades. 

D’una banda, hem dissenyat un circuit de control postranscripcional utilitzant 

la proteína de càpsid del fag MS2. Mitjançant una meticulosa monitorització a nivel 

inucel·lular tant del regulador com del gen regulat, hem quantificat el comportament 

dinàmic del sistema, així com la seva estocasticitat. Tot i que els esforços anteriors 

es van centrar a comprendre la propagació del soroll en les regulacions 

transcripcionals, el comportament estocàstic dels gens regulats a nivell de la 

traducció continua sent en gran mesura desonegut. Les nostres dades han revelat que 

un factor de traducció de proteïnes ha permès una forta repressió a nivell unicel·lular, 

ha esmorteït la propagació del soroll d’un gen a un altre i ha conduït a una sensibilitat 

no lineal a les pertorbacions globals a la traducció. Aquest descobriments han 
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millorat significativament la nostra comprensió de l’expressió genètica estocástica i 

han proporcionat principis de disseny fonamentals per a aplicacions de biologia 

sintètiques. 

D’altra banda, aprofitem el motiu de reconeixement d’ARN (RRM), el 

domini proteic d’unió a ARN més prevalent a la natura, malgrat el seu predomini als 

talls eucariotes, per dissenyar un sistema de control posttranscripcional ortogonal a 

Escherichia coli. Aprofitant la proteína d’unió a ARN de mamífers Musashi-1, que 

conté dos RRM canònics, hem desenvolupat un circuit sofisticat. Musashi-1 va 

funcionar com un repressor de la traducció al·lostèric a través de la seva interacció 

específica amb la regió codificant N-terminal de l’ARN missatger, mostrant 

capacitat de resposta als àcids grassos. La caracterització integral tant a nivel 

poblacional com unicèl·lular va destacar un canvi significatiu a l’expressió de 

l’informador. S’obtingueren coneixements moleculars a través de la cinètica d’unió 

in vitro i avaluacions de funcionalitat in vivo d’una sèrie de mutants d’ARN. Aquest 

treball va mostrar l’adaptabilitat de la regulació basada en RRM a organismos més 

simples, introduint una nova capa regulatòria per al control de la traducció en 

procariotes i, en darrer terme, ampliant els horitzons de la manipulació genètica. 
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INTRODUCTION 

Synthetic Biology 

Synthetic biology is an emerging area of research that combines the investigative 

nature of biology with the constructive nature of engineering in order to study living 

organisms [1]. Similar descriptions have been offered by other commissions and 

studies. For example, a joint opinion by three scientific committees of the European 

Commission emphasizes the role of design and engineering approaches [2]. A report 

of the Secretariat of the Convention on Biological Diversity suggests that while there 

is no agreed international definition, the key features of synthetic biology include 

“the novo synthesis of genetic material and an engineering-based approach to 

develop components, organisms and products” [3]. 

Although a consensus has yet to be reached on a precise definition of synthetic 

biology, many disciplines (physics, chemistry, mathematics, engineering, and 

computer science) are applied simultaneously for a useful purpose. As a result, the 

use of molecular biology tools and techniques to engineer cellular behavior has 

emerged as a broad identity for the field, and a set of engineering approaches and 

laboratory practices have developed, along with a community culture. Much of the 

foundational work in the field has been carried out in Escherichia coli as a model 

organism. This microbial system remains central in several focal areas of the field, 

including complex circuit design, metabolic engineering, minimal genome 

construction and cell-based therapeutic strategies. 

Modern synthetic biology started with the creation of simple artificial gene 

regulatory circuits in living cells that carry out functions in an analogous manner to 

electrical circuits [4, 5]. Notably, the crucial events were the construction of the first 

toggle switch by Collins and colleagues [6], and the construction of the first genetic 

oscillator by Elowitz and Leibler [7] in E. coli (Fig. 1). 
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The main goal of synthetic biology is to gain a better understanding of how 

to regulate pathways and gene expression in living organisms. To date, genetic tools 

must be developed to obtain a desired cell function with the synthetic regulatory 

network. Regulatory networks constructed by synthetic biology approach are used to 

either investigate natural biological phenomena or to furnish cells with a new 

function. In bacteria, this has led to a variety of circuit designs implemented at the 

transcriptional and post-transcriptional levels both in single cell and in a population 

of cells. Many genetic elements, such as promoter, transcription factor binding sites 

(TFBs), ribosome binding sites (RBSs), terminators, and DNA vectors, can be 

synthetically combined in the expression systems to customize the desired 

regulation. 

 
Fig. 1 Timeline of the history of synthetic biology from [11]. 
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The roots of synthetic biology can be traced to the seminal work of Francois 

Jacob and Jacques Monod in 1961 [8]. For the first time, a gene circuit consisting of 

several functional blocks capable of responding to environmental factors was shown 

in bacterial cell. Insights from their studies of the lac operon in E. coli led them to 

assume the existence of regulatory circuits that establish the response of a cell to its 

environment. According to the landmark publication of Monod and Jacob, 

fundamental cellular processes as differentiation and protein regulation are 

accomplished through signaling pathway resident at level of a gene. Therefore, the 

ability to assemble new regulatory systems from molecular elements was soon 

envisioned [9] but a more concrete vision based on programmed gene expression 

began to take shape only when the molecular details of transcriptional regulation in 

bacteria were uncovered [10]. 

The period from 1961 to 2000 was characterized by the accumulation of 

knowledge in the field of molecular biology. In the 1970s and 1980s, the 

development of molecular cloning and PCR techniques for the genetic manipulation 

offered a technical means to engineer artificial gene regulation. In the 1990s, 

biologists and computer scientists began to combine experimentation and 

computation to reverse-engineer cellular networks. This 'scaling-up' of molecular 

biology generated the field of systems biology. Such an approach could be used to 

study the functional organization of natural systems and to create artificial regulatory 

networks [11]. 

In the time immediately after the publication of the toggle switch and 

repressilator several studies focused on circuit engineering in order to correlate 

network architecture to quantitative behavior [12]. Despite being primarily focused 

on circuit engineering, research at this early stage started to expand gene regulatory 

networks. The development of the first cell-cell communication circuits portended a 

shift in future years toward artificial microbial consortia [13]. The first attempts to 

control of the behavior rewiring post-translational regulation utilizing scaffold 
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proteins and protein-protein interaction domains were also shown in Saccharomyces 

cerevisiae [14]. 

 
Fig. 2 Analogy between computer science and synthetic biology from [19]. 

In the middle of the 2000s, the synthetic biology field significantly grew. 

Synthetic Biology 1.0 (SB1.0), the first global conference in the field, took place in 

the summer of 2004 at the Massachusetts Institute of Technology (MIT, US). It 

helped to establish an identifiable community and inspire work on the design, 

construction, and characterization of biological systems with the long-term of whole 

genomic engineering [15,16]. Questions concerning the compatibility of the two 

areas of science raised when the highly multidisciplinary community began to work 

together and concepts from modern engineering were incorporated into the 

traditional molecular biology. Could synthetic biology evolve into a sophisticated 

engineering discipline, comparable to electrical or mechanical engineering? Could 

practices like parts standardization and concepts like abstraction hierarchies be 

mapped onto biological systems? To answer these questions, a number of synthetic 
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parts including promoters [17], regulatory proteins and RNA (i.e., riboregulators and 

riboswitches) [18], have been successfully engineered and characterized in a number 

of hosts including bacteria. 

As well as generating insights into natural processes, synthetic biology aims 

to obtain a specific behaviour in living organisms including drug production and 

delivery, bioengineering, bioremediation, biosensing, and biofuel production. For 

many, the goal and method of synthetic biology can be conceptualized by the 

hierarchical structure of computer engineering (Fig. 2) [19]. Within the metaphor, 

the simplest components at the bottom of the computer architecture are transistors 

and resistors that are connected to form devices such as Boolean logic gates. The 

way cells process information can be compared to digital control system. Such 

systems are based on logic gates, which define a response (output) by combining two 

inputs. Each input or output can determine the state of the synthetic circuit that can 

be “on” or “off” giving the symbol of “1” or “0” used in the binary code. A variety 

of logic gates are obtained with two inputs. Boolean logic functions include AND, 

NOR, OR, XOR gates, and all their possible combinations. In these gates, inputs are 

read out by a sensor. Then, a computational core sets them a value of “0” or “1”. If 

the combination of these values satisfies the system requirements, the output is then 

executed. Each gate can be defined by symbols and a truth table (Fig. 3). Applying 

to a living cell, thresholds of input and output values must be precisely defined. In 

synthetic biology, these components can be represented by basic elements such as 

genes and regulatory proteins (promoters and repressors) that interact in biochemical 

reactions. At the beginning of the synthetic biology era, these devices were pieced 

together to form modules to achieve specific tasks, such as switching and oscillation 

[10]. Recently, modules were brought together to form larger scale systems (i.e., 

networks) [20]. This set of modules that are restricted to a single cell, or distributed 

over a number of cells, interact each other to produce a coherent behavior. 

Throughout the information transmission, functional spatiotemporal patterns can be 

achieved for a purpose. 
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Fig. 3 Synthetic circuit behaviors based on Boolean logic gates. 

As a result of increasing efforts in the characterization and development of 

biological parts used for the assembly of synthetic systems, the number of available 

parts expanded with the need to catalogue them. First catalogue started by the iGEM 

registry (Registry for Standard Biological Parts) with 20,000 parts listed. 

Subsequently, many other registers have been established (i.e., the International 

Open Facility Advancing Biotechnology -BIOFAB, the BioBrick Foundation -BBF, 

and the Joint BioEnergy Institute Inventory of Composable Elements -JBEI-ICEs) 

and commercially available to scientists and general public for free.
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The first synthetic genetic devices based on transcription regulation 

The first synthetic genetic oscillator, called the repressilator, was designed by 

Elowitz and Leibler to implement a particular function in E. coli [7]. The 

repressilator uses a simple design, resembling a game of rock, paper, scissors. The 

key components are repressor proteins, which bind to specific DNA sequences to 

inhibit gene expression (Fig. 3a). The three transcriptional repressor systems are 

made by LacI from E. coli that inhibits the transcription of a second repressor gene, 

tetR, from the tetracycline-resistance transposon Tn10, whose protein product in turn 

inhibits the expression of a third gene, cI from λ phage. Finally, CI inhibits LacI 

expression. Thus, three repressor factors are configured to display a cycle where each 

one represses the expression of the next one. In addition, one of the repressors 

inhibits the expression of a gene encoding a green fluorescent reporter. Such 

configuration results in a negative feedback loop that can lead to temporal oscillation 

in the concentrations of each of its components and the behavior of the loop can be 

designed by a simple transcriptional regulation. In other words, with this 

configuration an increase in concentration of one repressor protein causes a decrease 

in the second, leading to an increase in the third, thereby decreasing the first. 

Since the design of the first repressilator, a wide variety of synthetic 

oscillators have been constructed. Those synthetic networks incorporated alternative 

designs, coupling between cells and other features. For instance, a dual-feedback 

oscillator was engineered with tunable oscillatory periods (13 min). Based on 

previous design, the E. coli components were used to design a fast, robust and 

persistent genetic oscillator. A hybrid promoter plac/ara-1 controls the expression of 

araC, lacI and yemGFP to form three co-regulated transcription modules [21]. 

Another example is a genetic clock engineered with global intercellular coupling 

capable of generating synchronized oscillations in growing population of cell. Such 

synchronized oscillator is based on elements of the quorum sensing machineries in 

Vibrio fischeri (luxI) and Bacillus thurigensis (aiiA), and yemGFP, under control of 
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three identical copies of the luxI promoter [22]. The network architecture is similar 

to the motif used in previous synthetic oscillator designs. An activator its own 

repressor. In this case, LuxI synthase enzymatically produces an acyl-homoserine 

lactone (AHL) which is a small molecule that can diffuse across the membrane and 

binds intracellularly to LuxR (constitutively produced). The LuxR-AHL complex 

forms a transcriptional activator for the luxI promoter. By contrast, the promoter is 

negatively regulated by AiiA by catalyzing the degradation of AHL. Moreover, a 

genetic network was engineered in cell-free system prepared from an E. coli extract 

called TX-TL [23] accurately reproducing the same pattern of gene expression in 

live E. coli cells [24]. 

The toggle switch is another engineering approach to the study of gene 

expression. The synthetic circuit constructed by Collins and colleagues, contains two 

promoters that drive the expression of mutually inhibitory transcriptional repressors 

(lacI and cI) resulting in a bistable genetic circuit in which only one of the two genes 

is active at a given time (Fig. 3b) [6]. As a result, each promoter is inhibited by the 

repressor that is transcribed by the opposing promoter. The toggle does not require 

any specialized promoters. However, in the pivotal study of Collins and colleagues 

two classes of toggle switch plasmids were constructed (termed pTAK and pIKE). 

Both classes use the transcriptional Lac repressor (lacI) in conjunction with the Ptrc-

2 promoter for one promoter-repressor pair. This class of plasmid was switched 

between states using isopropyl-ß-D-thiogalactopyranoside (IPTG). For the second 

promoter-repressor pair, a temperature-sensitive λ repressor  (cIts) was used in 

conjunction with the PLs1con promoter. This class of plasmids was switched between 

states by IPTG or a thermal pulse. Alternatively, the Tet repressor (tetR) was used in 

conjunction with the PLtetO-1 promoter. This class of plasmid was switched between 

states using IPTG or a pulse of anhydrotetracycline (aTc). Indeed, the toggle exhibits 

bistability due to the mutually inhibitory arrangement of the repressor genes. In 

absence of inducers, two stable states are possible: one in which promoter 1 

transcribes repressor 2, and one in which promoter 2 transcribes repressor 1. 
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Switching is accomplished by transiently introducing an inducer of the currently 

active repressor. The inducer permits the opposing repressor to be maximally 

transcribed until it stably represses the originally active promoter. 

 
Fig. 4 a) Repressilator regulatory system. The system is made of three genes connected in a feedback 
loop. On the left, the synthetic circuit constructed by Elowitz and Leibler; on the right, repressilator 
dynamics [7]. b) On the left, toggle switch design; on the right, bistability behaviour [6]. 

The successful design of the first synthetic networks showed that a 

computing-like behavior can be used into biological systems. In both repressilator 

and toggle switch, basic transcriptional regulatory elements were assembled to 

realize the biological equivalents of electronic memory storage and timekeeping.
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 Synthetic biology chassis 

Synthetic biology was originally built using a small set of organisms that were highly 

adapted to laboratory conditions. In classical engineering terms, a chassis is defined 

as the load-bearing framework of an object supporting the weight and structure of 

the object for its correct function. The term can evoke the basic frame of a car to 

which a number of components in response to specifications or customer’s desirers. 

This concept started to be used in the early 2000s by the synthetic biology 

community referring to a platform that acts as a framework and support for biological 

parts, and it lies between frontline bioengineering and the traditional recombinant 

DNA technology [25,26]. A chassis contains at least four elements: the physical 

container of the genetic constructs, the genomic skeleton, the cellular machinery 

necessary for the gene expression, and the spatial scaffold for the genetic and 

metabolic reactions. Therefore, a live organism qualifies as the chassis serving as a 

foundation to physically house genetic components and support them by providing 

the resource to function. Any implanted components of the chassis are orthogonal 

and then programmable. 

The choice of a suitable chassis organism is crucial in synthetic biology, as it 

determines the available molecular machinery, cellular processes, and physiological 

characteristics that can be harnessed for engineering purposes. Notably, the choice 

of a chassis organism depends on the specific application and desired outcomes. 

Researchers and engineers are continuously exploring and expanding the range of 

potential chassis organisms, including non-traditional candidates like cyanobacteria, 

mammalian cells, and even synthetic organisms engineered from scratch. 

Ideally, a synthetic biology chassis should possess several key characteristics: 

i. Genetic tractability. The chassis organism should have a well-understood and easily 

manipulable genome. It should allow for efficient genetic engineering, such as 

DNA insertion, deletion, or modification, to facilitate the introduction of desired 

genetic circuits or pathways. 
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ii. Stability and compatibility. The chassis organism should maintain genetic stability 

and compatibility with the engineered genetic constructs over multiple generations. 

This ensures that the desired traits or functions are reliably passed on and 

maintained over time. 

iii. Robust growth and proliferation. A chassis organism should exhibit fast growth and 

reproduction rates, enabling rapid production of engineered systems. This 

characteristic is particularly important when scaling up synthetic biology processes 

for industrial or commercial applications. 

iv. Modularity. A modular chassis allows for the incorporation of different genetic 

modules or parts without significant interference or crosstalk. This modular design 

facilitates the construction of complex genetic circuits and systems, allowing for 

greater control and predictability. 

v.Safety and biocontainment. Chassis organisms should be engineered with 

appropriate safety measures to prevent unintended release into the environment or 

potential harm to other organisms. This includes containment mechanisms to 

restrict the survival or spread of the chassis outside of controlled laboratory 

conditions. 

Due to its largest available toolkit of computational design programs, genetic 

parts and regulatory elements, E. coli is undoubtedly the most used chassis in 

synthetic biology. E. coli is the laboratory workhorse, it is widely exploited as a cell 

factory for microbial production of pharmaceuticals [27,28], enzymes, and biofuel 

(including alcohol-, fatty acid-, terpenoid- based biofuel [29,30]. Indeed, E. coli has 

played a pivotal role in the development of genetics and molecular biology field of 

science. It is therefore not surprising that synthetic biology has been created upon it 

and E. coli is the protagonist in the field. However, scientific breakthroughs have 

been achieved from simple gene mutations to the insertion of rationally designed, 

complex synthetic circuits and creation of synthetic genomes. Indeed, a set of 
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functionalities are unavailable in this system (epigenetic control, post-translational 

protein modifications). 

Although the versatile microbial chassis of E. coli continues to dominate the 

field, this bacterium may no longer be the adequate host for the sophisticated genetic 

design of synthetic biology, and other set of chassis should be required to cover a 

range of applications. To date, novel synthetic biology toolboxes have grown rapidly 

in the last decade including Bacillus subtilis, Pseudomonas putida, Streptomyces sp, 

and S. cerevisiae. These organisms possess many desirable traits, such as well-

characterized genomes, ease of genetic manipulation, and established tools and 

techniques for engineering. Among these, B. subtilis is a Gram-positive spore-

forming member of the phylum Firmicutes that was discovered during the second 

world war to treat dysentery. It is commonly used for studies in genetics, cellular 

metabolism, and cell factory for secondary metabolite production (polyketides, non-

ribosomal peptides) for industrial application and ability to survive under harsh 

environments [31,32,33,34]. B. subtilis is an attractive chassis for the assembly of 

heterologous DNA parts in a genome scale and cloning system [35], for biosensors 

development [36,37]. The soil-dwelling Pseudomonas putida is a ubiquitous 

rhizosphere bacterium certified as “generally recognized as safe” (GRAS). Because 

of the high tolerance to organic solvents, redox stress, capability to degrade aromatic 

compounds, and ease of genetic manipulation, P. putida has emerged as a platform 

for industrial processes (biotransformation) [38,39]. Due to its central carbon 

metabolic network that involves the recycling of triose phosphates to hexose 

phosphates (called EDEMP cycle) and versatile metabolism, the soil-dwelling 

bacterium P. putida is an optimal microbial cell factory for metabolic engineering 

applications [40]. The high tolerance to oxidative stress makes this bacterium 

suitable for several technical applications, such as biofuel production [41]. 

Physiological robustness, metabolic versatility, and high tolerance to stress are key 

features of this specie. Due to these properties, it is a well-established host for 

cloning and gene expression. Stable cloning has been demonstrated by the use of 
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Tn5-derived transposon system for DNA integration into the genome [42]. 

Moreover, genetic tools have been developed to tune gene expression using genome 

integration and reporter system and identifying synthetic promoters from a library 

with different expression levels [43]. The Gram-positive, soil-dwelling Streptomyces 

species belong to the Actinobacteria family. Streptomyces species have a diverse 

secondary metabolism producing bioactive compounds such as antibiotics, 

antifungals, and anticancer [44,45,46,47]. Because of the natural genomic 

information, Streptomyces sp have a great potential to produce novel secondary 

metabolites. 

Nevertheless, there are some issues about the physiological and metabolic 

properties of bacterial chassis for constructing synthetic reliable platforms. Bacteria 

lack of membrane-boundaries in their cytoplasm displaying an open architecture 

where proteins and nucleic acids organize to catalyze the proper biochemical 

reactions [48]. Thus, the spatial organization of the bacterial metabolism with the 

link between the DNA organization, the location of the products and the interaction 

between the enzymes in a pathway is a challenge [47]. Indeed, over time proteins 

aggregate and or can be cleaved by proteases in the process of cell ageing [49]; cells 

can adopt the shape of biofilm where the biochemical properties of individual cell 

are boosted [50]. For those reason, synthetic biology is nowadays extended to 

eukaryotic organisms. The budding yeast S. cerevisiae is the optimal eukaryotic 

organism for metabolic engineering platform [51]. S. cerevisiae is the first 

experimental model to study eukaryotic biological system as an ideal chassis for 

biochemical production due to its ability to survive at low temperature, pH changes, 

and phage attack [52]. The S. cerevisiae toolkit developed involved the construction 

and implementation of synthetic promoters [53]. 
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Design principles and challenges for engineering synthetic biology circuits 

Design principles play a crucial role in engineering circuits in the field of synthetic 

biology. In this context, interconnected networks of genetic elements that control the 

flow of information and regulate the behavior of biological systems are created. 

Indeed, the design of synthetic biology circuits with desired features from gene 

components is a non-trivial process. Compared to the standard engineering 

disciplines, it needs the design, construction, testing and verification of the process 

making it not trivial and often unpredictable. Therefore, the following approaches 

are described to lead the engineering of synthetic circuits. 

i. Rational design. A synthetic system is experimentally designed, and a 

computational model is developed for the analysis of the system behavior. A fine-

tuning of the engineered system is performing by the model until the desired 

behavior is achieved. The repressilator [7] and the toggle switch [6] are an example 

of the application of this principle. Notably, many efforts using a trial-and-error 

method are needed to obtain the desired circuitry due to the model parameters and 

the resulting effect on the behavior. 

ii. Direct evolution. Random mutagenesis obtained by PCR and screening of the 

desired mutants is used for this method. For instance, an original genetic circuit was 

evolved to the functional one by mutating the coding sequence of a gene and its 

RBS, and the transcriptional factor LuxR to improve the quorum sensing signal. 

iii. Combinatorial synthesis. Circuit variants with parts in predefined different 

combinations and configurations are constructed, and the functional ones with the 

desired behaviour are then selected. This combinatorial method was first shown in 

a study of random shuffling the connectivity of three transcriptional factors (TetR, 

LacI, CI) and their corresponding promoters. The resulting synthetic networks 

displayed phenotypic behavior of NAND, NOR, and NOT logic gates. 

iv. Hybrid approaches obtained by combining the three methods mentioned above. 
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Engineering gene circuit is a complex and challenging area of Synthetic 

Biology that involves designing biological systems to perform specific functions. 

These circuits can be used in a variety of applications, from medicine to 

biotechnology. However, there are several challenges related to engineering gene 

circuit including orthogonality, and modularity achievement, assembly of modules, 

noise minimization. 

i. Modularity. It involves the decomposition of complex systems into smaller, 

independent functional modules. Each module performs a specific task and can be 

combined with other modules to achieve more complex behaviors. Modularity 

allows for easy assembly, modification, and testing of different circuit components, 

enhancing flexibility and scalability. Therefore, genetic parts can be combined and 

modified to create new functions. However, most of the parts and modules used for 

building synthetic genetic systems are not standardized and quantitively 

characterized lacking modularity and reusability. Indeed, the behavior of a module 

characterized in one context can change in new conditions. Therefore, new methods 

for characterization need to be developed to reduce such context dependency and 

increase its reusability. 

ii. Orthogonality. It refers to the independence of different components of a circuit. 

The newly added synthetic circuits should do not interfere with the existing ones in 

the designed genetic system as well as the genetic background of the host. In 

synthetic biology, orthogonal components allow for the modular assembly of 

circuits without cross-talk or unwanted interactions. Orthogonal genetic parts 

ensure predictable and reliable circuit behavior, enabling the design of complex 

circuits with minimal interference. Although synthetic systems are supposed to 

function similarly to their electronic counterparts, one difference is that, unlike 

electronic digital circuits, the individual components of biological devices are not 

connected by wires. The interactions between biological parts depends on the 

chemical specificity between them. The current synthetic biology toolkit contains 

only a small repertoire of orthogonal regulatory elements, such as LacI, TetR, and 
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CI regulatory proteins and their promoters. Therefore, there is the need to expand 

the number of currently available orthogonal modules. 

iii. Functional assembly of modules. The current design principles (rational design, 

evolution, combinatorial synthesis) have been shown to work in designing small 

scale biological systems and lots of trial-and-error efforts. 

iv. Standardization. Standardization of genetic parts and components is essential for 

effective circuit design in synthetic biology. Standardized parts, such as promoters, 

terminators, and coding sequences, have well-defined properties and are 

characterized and documented. This standardization enables the predictable 

behavior and easy exchangeability of genetic elements, simplifying circuit design 

and facilitating collaboration among researchers. 

v.Feedback Control. It is a key principle used to regulate and maintain desired circuit 

behavior. For instance, negative feedback loops can be incorporated into circuits to 

sense changes in system parameters and adjust the output accordingly. This 

principle helps maintain stability, robustness, and homeostasis within the biological 

system, allowing circuits to respond and adapt to dynamic environmental 

conditions. 

vi. Noise. Another challenge in engineering gene circuits is the variation problem, 

which is related to evolution and noise in biological systems. Biological systems 

are inherently noisy due to stochastic processes and fluctuations. To mitigate the 

effects of noise, circuit designers in synthetic biology employ strategies such as 

amplification, signal averaging, and stochastic modeling. These techniques help 

improve the reliability and precision of circuit responses, ensuring consistent and 

predictable behavior. Notably, the host chassis may introduce mutations into the 

engineered biological circuits, and the entire synthetic system could collapse. 

Indeed, noise can cause the designed circuit to behave in an unstable and 

heterogeneous manner. Protein concentrations in cell can fluctuate leading to 

stochasticity in gene expression and cell to cell variation. 
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vii. Modulation and Tunability. Synthetic biology circuits often require the ability to 

modulate and control their behavior. Designers incorporate regulatory elements that 

allow the dynamic control of gene expression, such as inducible promoters, tunable 

promoters, and regulatory motifs. Modulation and tunability provide the flexibility 

to adjust circuit output in response to external signals, allowing for fine-tuning of 

system behavior. 

viii. Robustness and Stability. Designing circuits with robustness and stability is 

essential to ensure reliable performance in varying conditions. Robustness refers to 

the ability of a circuit to maintain its function despite perturbations or parameter 

variations. Stability ensures that the circuit remains in a desired state without 

spontaneous transitions. By incorporating robustness and stability features, 

synthetic biology circuits can withstand fluctuations and uncertainties in the 

biological environment. 

Post-transcriptional regulation 

In the cell, gene expression occurs in two essential steps: transcription and translation 

which, in prokaryotes, are tightly coupled in time and space [54]. Notably, the 

transcription event is tightly regulated by transcription factors (TFs). Natural TFs 

typically contain two DNA-binding domains (DBDs) that bind a target site on the 

gene promoter, and activation domain (AD) that activates transcription by interacting 

with the basal transcription machinery of the cell. Over the years, synthetic 

regulation of gene expression predominantly focused on the transcription level 

engineering promoters or TFs. For instance, the strength of promoters can be altered 

changing the length of the spacer region between the -35 and -10 box, or around and 

in the -35 box, to the -10 box [55,56,57]. Indeed, zinc-fingers proteins and 

transcription activator-like effectors (TALEs) are the first gene editing components 

that act through DNA-protein interaction [58,59]. However, this mode of function 

requires a laborious engineering of proteins for different genomic sequences. 

Nevertheless, this approach paved the way for researchers to a new era of gene 
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regulation developing the clustered regularly interspaced short palindromic repeats 

(CRISPR)-Cas systems as powerful tool [60]. 

Although most tools have so far been developed to regulate gene expression 

at the transcriptional level engineering gene circuits with DNA-protein interactions, 

a limited number of artificial regulators are available for the post-transcriptional 

regulation. To date, tools that develop a programmable and versatile platform for 

gene regulation are needed. Recent advances in RNA biology are inspiring the use 

of RNA components in the design of synthetic systems [61,62]. Due to its versatile 

regulation of gene expression, RNA-based gene circuits are now fundamental 

components of the synthetic biology toolbox. In addition to RNA synthesis 

(transcription), the control points of gene expression that occur in prokaryotes are 

RNA degradation and protein synthesis (translation). Notably, for each control point 

classes and mechanisms of RNA-based gene regulation exist. Regarding the 

translational control, small RNAs (sRNAs) are defined as non-coding-RNA 

molecules that bind the ribosome binding site (RBS) or their target mRNA, causing 

competition with the ribosome for binding to that region. Indeed, sRNAs generally 

act as repressor in gene silencing. In bacteria, regulatory RNAs naturally comprise a 

size range between 20 and 400 nucleotides in length; they do not encode proteins, 

but they modulate transcription, translation, RNA stability in response to 

environmental changes. sRNAs directly target specific mRNA through base-pairing 

interactions at the RBS or start codon region [63,64]. mRNA is a cis-repressed RNA 

(crRNA) by the presence of a 5’ stem loop structure that hold the RBS. Activation 

of translation can be obtained by the presence of a trans-activating RNA (taRNA) 

that target the stem loop structure exposing the RBS. Moreover, these riboregulators 

have been further engineered to provide orthogonal crRNA and taRNA pairs that 

have been combined in synthetic counter devices [65] and computationally 

implemented with an algorithm in a structure-guided design [66]. Alternatively, 

riboswitches positively or negatively control gene expression in response to ligands. 

Riboswitches are made of two structurally linked domains: an aptamer, and a 
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platform that is sensitive to the ligand [67,68,69]. RNAs that act as enzymes, called 

ribozymes, have also the ability to control translation by the RNA cleavage or 

ligation [70]. For the regulation of targeted gene expression, a key role is played by 

non-regulatory RNAs, however, they are limited. To date, RNA-binding proteins 

(RBPs) are of crucial importance in the post-transcriptional regulation of gene 

expression. These proteins are numerous and diverse, they contain regions with 

RNA-binding domain function, and auxiliary domain that mediate protein-protein 

interaction and subcellular targeting [71,72]. The two best studied bacterial RBPs 

are CsrA and Hfq. CsrA predominantly compete with the ribosome for binding to 

the RBS of its targets; Hfq generally mediates the interaction between sRNAs and 

mRNAs, but it is involved in a variety of other mechanisms to post-transcriptionally 

control gene expression [73]. However, additional proteins have been recently 

identified to control gene expression at post-transcriptional level adapting the 

susceptibility to RNAses, affecting RNA stability, and modulating RBS 

accessibility. Moreover, RNA-binding proteins can be involved in gene expression 

regulation acting as a scaffold and participating in the formation of ribonucleoprotein 

(RNP) complexes. Works published over the last years have extended our 

understanding of the structure and the function of the RNA-binding domains 

(RBDs). At the structural level, RBPs often exhibit a high degree of modularity and 

are composed of multiple repeats of a few small domains. RNA recognition motif 

(RRM) [74], and hnRNP K homology domain (KH) [75] are structural examples by 

which such proteins regulate RNA metabolism and, consequently, gene expression. 

RNA-binding proteins 

RNA-binding proteins (RBPs) exist in all living organisms playing a crucial role for 

most cellular processes. RBPs were first characterized using biochemical techniques, 

such as gel electrophoresis and ultraviolet (UV)-crosslinked nuclear extracts or RNA 

affinity purification coupled with mass spectrometry and/or immunodetection 

[76,77]. First analysis using single-stranded RNA structure predictions (ssRBDs) 
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identified ~500 RBPs in mammals suggesting their role in controlling a complex 

regulatory network [78,79]. Subsequently, bioinformatic analysis supported by the 

Gene Ontology (GO) project, database entries (Pfam) and structural features reported 

by literature estimated ~1900 human RBPs [80]. The most conserved RBPs are a set 

of ribosomal proteins (r-proteins) that were already present at the time of the last 

common ancestor [81]. Prokaryotic and eukaryotic organisms use RBPs both as 

structural components of complexes (ribosome), and regulators of cellular processes 

(RNA synthesis, modification, translation, processing, and decay). As most of 

proteins, the structure determines the function. Notably, RBPs contain deeply 

conserved RNA-binding domains (RBDs) across bacteria and eukaryotes which 

allow them to interact with their ligands. Based on their specific RBDs and their 

ability to bind to RNA, RBPs are classified in families. The most common RBDs 

found in bacteria are the S1 domain [82], the cold-shock domain (CSD) of the 

oligonucleotide/oligosaccharide binding (OB) superfamily [83], the Sm and Sm-like 

domains [84], the RNA recognition motif (RRM) [85], the K homology (KH) domain 

[86] , the double-stranded RNA-binding domain (dsRBD) [87] and the PAZ and 

PIWI domains [88]. Regarding the classes of domains found in eukaryotes, some of 

RBDs are shared with prokaryotes, such as the RRM, the KH and the dsRBD. In 

addition, zinc-finger domain, and DEAD motif were also identified. RBPs control 

all aspects of gene expression at post-transcriptional level, including RNA editing, 

transport, and mRNA turnover. 

In this thesis, the role of two RBPs on gene expression regulation at post-

transcriptional level was studied. The focus was on the viral MS2 coat protein, and 

the mammalian Musashi-1. 

Bacteriophage MS2 is a small spherical virus that causes the infection of E. 

coli, and their genomic RNA serves for synthesis of viral proteins. The icosahedral 

virus contains 180 copies of a coat protein forming a shell around a single-stranded 

RNA molecule. The coat protein is made of 129 amino acid residues which, in its 

monomeric form, has a molecular mass of 13.7 kDa. The assembled particle has a 
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triangulation number of T=3 and a diameter of 275 Å. In addition to phage-particles 

packaging and host cell infection, MS2 plays a role in gene regulation. MS2 binds to 

a specific stem-loop structure in the single-stranded viral RNA acting as translational 

repressor of the phage-encoded replicase gene in infected cells [89]. The viral RNA 

genome is made of 3569 nucleotides, it encodes a maturation or A protein, the coat 

protein promoter, a replicase subunit and a lysis protein. During the infection, coat 

protein binds to the translation initiation region of the replicase cistron preventing 

the initiation of translation by ribosome. Studies of X-ray crystallography showed 

that the MS2 coat protein and RNA form two different complexes depending on the 

protein concentration and the RNA-protein ratio [90]. In the form of homodimer, 

MS2 binds to an RNA stem-loop structure of 19 nucleotides that contain the initiation 

codon of the phage replicase gene [91,92]. Therefore, the active repressor is a dimer, 

and one RNA molecule is bound by a repressor dimer at saturation. Over the years, 

the MS2 coat protein has been engineered for many applications such as the study of 

protein-RNA interaction in vivo, and trafficking of delivered-mRNA (Fig. 5a). 

Musashi-1 (MSI-1) is a eukaryotic protein that is expressed in both 

vertebrates and invertebrates. MSI-1 belongs to a family of neural RNA binding 

protein (RBPs) which was originally discovered in 1994 by Nakamura and 

colleagues [93] in Drosophila as a progenitor cell fate regulator. In Drosophila, MSI-

1 plays a key role in regulating asymmetrical division sensory neural precursors cells. 

When msi gene is mutated and its function is lost, the sensory organ precursors cells 

(SOPs) appear different in shape leading in a double-bristle phenotype. For this 

reason, the name of the gene reflects similarity of this phenotype to the martial 

portrayals of the two-swords fighting style originated by the Japanese warrior 

Miyamoto Musashi born in the 15th century. The msi gene is evolutionarily conserved 

and MSI-1 protein is a conserved marker for neural progenitor cells [94,95]. MSI-1 

was isolated as a mammalian homologue of Drosophila Musashi; the family protein 

consists of two orthologs (MSI-1 and MSI-2) in humans and mice. Both homologs 

post-transcriptionally regulate the expression of target genes that are involved in cell 
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fate determination and cancer development. Notably, MSI-1 expression pattern in 

the central nervous system and primary protein structure is conserved among 

vertebrates and invertebrates, and the human and mouse proteins share sequence 

identity [93,96,97,98]. 

 
Fig. 5 Schematics of the downregulatory function of a) the coat protein MS2 on the viral replicase, 
and b) the MSI-1 on the target mRNA in mammalian cells. 

In humans, MSI-1mRNA and protein are highly expressed in the progenitor 

cells of the central nervous system (CNS) (astrocytes) playing a role in the stemness 

maintenance [99,100]. By binding the 3’-untranslated region (UTR) of the 

mammalian numb (m-numb) messenger RNA (mRNA), MSI-1 is naturally involved 

in the regulation of the Notch signaling pathway and the development of the central 

nervous system [101]. The MSI-1 protein consists of 362 amino acid (aa) residues, 

and it contains two conserved RNA recognition motifs (RRMs) in its N-terminal 

region, each containing a nuclear localization signal (NLS), and a putative nuclear 
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export signal (NES) in its C-terminal region [102,103]. The in vitro selection method 

(SELEX) demonstrated that MSI-1 is able to block translation of the target mRNA 

by binding to (G/A)UnAGU sequence motif (n=1-3) at 3’ untranslated regions 

(UTRs). In a natural context, MSI-1 inhibits the initiation of translation of target 

mRNAs by competing with eIF4G factor for binding to poly(A) binding protein 

(PABP) preventing the formation of 80s ribosome complex (Fig. 5b). 
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OBJECTIVES 

Post-transcriptional control systems based on RNA-protein interactions could be of 

special interest in synthetic biology. However, more work is required to understand 

in quantitative terms this type of regulation and to know what elements are available 

for such an engineering effort. Therefore, this thesis has the following objectives: 

1) To study the dynamic behavior, both deterministic and stochastic (single-cell 

data), of a post-transcriptional gene expression program based on a suitable 

RNA binding protein. 

2) To study how an RNA-binding protein from mammals works in a bacterium, 

which has much simpler gene expression machinery and intracellular 

organization, and serves to engineer an orthogonal post-transcriptional 

control system. 
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1. INTRODUCTION 

The ability to map a given genotype to its corresponding phenotype is perhaps the 

biggest pursuit in molecular biology [1], especially in the post-genomic era, as it can 

provide fundamental insight and predictive power on natural evolution, with clear 

applications in biomedicine and ecology. However, it is well established that the very 

same genotype can lead to phenotypic heterogeneity in a non-changing environment 

[2]. This is the consequence of the inherent stochasticity of the different biochemical 

reactions that are needed for gene expression [3]. While stochastic events are often 

seen as undesirable, as they are when the optimal gene expression levels are lost [4], 

we now realize that a noisy gene expression can also be advantageous for the cell 

population to face environmental changes or induce time-dependent behaviors [5]. 

In this regard, substantial progress has been made over the last years to quantitatively 

understand and model this non-genetic variability (noise). However, there are still 

numerous questions regarding the mechanisms that produce and regulate noise in 

gene expression. 

Motivated by the prevalence of transcriptional regulations in the cell [6], 

previous work focused on studying the emergence and propagation of noise in genes 

regulated transcriptionally [3,7]. For example, we now appreciate that some 

promoters can generate bursts of expression as a consequence of a stochastic 

switching in their activity [8], that the sign of the regulation determines the best way 

to extract information from the environment [9], and that the stochastic fluctuations 

can inform about the underlying regulation when time is considered [10]. In addition, 

recent studies also focused on post-transcriptional regulations implemented by small 

non-coding RNAs (in particular, by microRNAs in eukaryotic cells) [11,12]. These 

studies concluded that microRNAs, by controlling the messenger RNA (mRNA) 

abundance, can suppress part of the noise generated at the level of transcription, 

hence resulting in ideal genetic elements to engineer robust circuits. Nevertheless, 
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studies on cell-to-cell variability when protein expression is regulated at the level of 

translation are scarce, especially when the regulation is exerted by a translation 

factor. We just know that structured 5’ untranslated regions (UTRs) can generate 

noise in protein expression [13], which can even be tuned by trans-acting small 

RNAs [14].The importance of studying how stochastic gene expression is generated 

and regulated at different levels in the genetic information flow lies in the fact that 

living cells implement highly intricate circuitries for multiple signal integration that 

allow displaying a variety of phenotypes. Certainly, this signal integration becomes 

easier and more scalable if different layers are exploited (e.g., transcriptional, 

translational, and post-translational), and this is precisely what has evolved in nature. 

Only by understanding the particularities of each regulatory mode, we can rationalize 

the impact of gene expression on the cell behavior. As highlighted before, more 

studies on stochastic gene expression regulated at a layer other than transcription are 

mandatory, especially because there are important phenotypes in nature that arise as 

a consequence of changing expression translationally. 

 
Fig. 1 Schematics of the synthetic genetic circuit implemented in a bacterial cell. IPTG is the external 
molecule that controls the expression of the protein translation factor (eBFP2-MS2CP). sfGFP is the 
final output of the system. 

In this work, we exploited the bacteriophage MS2 coat protein (MS2CP) as 

a translation factor [15] to engineer a basic synthetic regulatory circuit from which 

to study stochastic gene expression when it is regulated translationally (Fig. 1). 

In the natural context, in addition to be a structural protein to form the virion, MS2CP 

blocks the translation of the viral replicase upon binding to an RNA hairpin in the 

IPTG
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sfGFP

DNA

mRNA
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corresponding 5’ UTR that contains the ribosome binding site (RBS) and the start 

codon [16]. Over the years, MS2CP has been used for many applications due to its 

strong binding affinity to RNA, such as the subcellular tracking of mRNAs with time 

and space [17], the study of protein-RNA interactions in vivo [18], the development 

of CRISPR scaffold RNAs for programmable transcription regulation (CRISPR 

stands for clustered regularly interspaced short palindromic repeats) [19], and the 

construction of nanoscale architectures that can serve, for example, to improve 

enzymatic reactions [20]. With our engineered circuit, we examined gene expression 

in single cells by using a double reporter system to monitor both the regulator 

(MS2CP) and the regulated gene, and we also developed a mathematical model to 

provide a predictive quantitative foundation of the system. 

2. MATERIALS AND METHODS 
2.1. Strains, plasmids, and reagents 

E. coli Dh5α was used for cloning purposes by following standard procedures. To 

express our genetic circuit, E. coli MG1655-Z1 (lacI+ and tetR+; kindly gifted by 

M.B. Elowitz) was used. This strain was co-transformed by electroporation with two 

plasmids, called pRKFR2 (kanR, pSC101-E93G ori) and pREP3 (camR, p15A ori). 

pRKFR2 contains the gene coding for MS2CP translationally fused to eBFP2 in its 

N terminus (eBFP2-MS2CP) under the transcriptional control of the inducible 

promoter PLlac. pREP3 contains the gene coding for sfGFP under the transcriptional 

control of the constitutive promoter J23119 and the translational control of the 

MS2CP-recognizing RNA motif (Fig. 2). The genetic cassettes were synthesized by 

IDT. LB medium was used for both overnight and characterization cultures. 

Kanamycin and chloramphenicol were used at the concentration of 50 μg/mL and 34 

μg/mL, respectively. IPTG and TC were used as inducers of the system. 
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The concentration gradient of IPTG that we tested was 0, 5, 10, 20, 50, 100, 200, 

500, and 1000 μM, and the concentration gradient of TC was 0, 10, 100, 200, 300, 

400, 500, 700, and 1000 ng/mL. Compounds provided by Sigma. 

 
Fig. 2 Maps of the plasmids used to implement the synthetic gene circuit in which MS2 represses the 
translation of sfGFP. a) Map of pRKFR2 to express the MS2CP protein fused with eBFP protein from 
a PLlac promoter, induced with lactose or IPTG. b) Map of pREP3 to express the reporter sfGFP 
protein from a constitutive promoter (J23119), harboring a suitable RNA motif in the leader region 
for translation regulation. 

Note that LacI is overexpressed in MG1655-Z1 to efficiently regulate the 

PLlac promoter in the pRKFR2 plasmid. This overexpression adds to the wild-type 

expression of LacI. In addition, TetR is expressed in E. coli MG1655-Z1 (although 

it does not play any regulatory role), so it will bind to TC when this inducer is used. 

The titration effect will be more relevant at low concentrations of TC, although 

overall this will only mean an effective TC concentration slightly lower. The 

maximal TC concentration used here reduced significantly the growth rate of the 

cells, suggesting a marginal effect of TetR in this case. 

 

a b
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2.2. Growth curves 

Cultures (2 mL) inoculated from single colonies (three replicates) were grown 

overnight in LB medium at 37 °C and 200 rpm. Cultures were then diluted 1:100 in 

fresh LB medium (2 mL) and were grown for 3 h at the same conditions to reach 

exponential phase (OD600 around 0.5). Cultures were then diluted 1:50 in fresh LB 

medium (200 μL) to load a microplate (96 wells, black, clear bottom; Corning) with 

appropriate concentrations of IPTG and TC. The microplate was then incubated for 

10 h at 37 ºC and 1,000 rpm in a PST-60HL plate shaker (Biosan). Absorbance (600 

nm) was measured every hour in a Varioskan Lux fluorometer (Thermo). The growth 

rate was calculated as the slope between absorbance (in log scale) and time during 

the exponential phase. Data analysis performed with MATLAB (MathWorks) and 

Python. 

2.3. Flow cytometry 

Cultures (2 mL) inoculated from single colonies (four replicates) were grown 

overnight in LB medium at 37 °C and 200 rpm. Cultures were then diluted 1:100 in 

fresh LB medium (2 mL) and were grown for 3 h at the same conditions to reach 

exponential phase (OD600 around 0.5). Cultures were then diluted 1:50 in fresh LB 

medium (200 μL) to load a microplate (96 wells, black, clear bottom; Corning) with 

appropriate concentrations of IPTG and TC. The microplate was then incubated at 

37 ºC and 1,000 rpm in a PST-60HL plate shaker (Biosan) until cultures reached a 

sufficient OD600 (a different incubation time for each TC concentration). Cultures (6 

μL) were then diluted in PBS (1 mL). Fluorescence was measured in an LSRFortessa 

flow cytometer (BD); a 405 nm laser and a 450 nm filter for blue fluorescence, and 

a 488 nm laser and a 530 nm filter for green fluorescence. Events were gated by 

using the forward and side scatter signals and compensated (~104 events after this 

process). The mean value of the autofluorescence of the cells was subtracted in each 

channel to obtain a final estimate of expression. Data analysis performed with 
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MATLAB and Python. The mean and the variance were calculated for each 

distribution after removing outliers, which served to compute the noise in gene 

expression. 

2.4. Deterministic mathematical modelling 

Mathematical model and data analysis were performed in collaboration with the research team at 
our lab. Even though my contribution in this part is limited because I am not an expert in 
mathematical modelling, I believe it was necessary to add the following sections for the integrity of 
the thesis and relevance of the topic. 

We assumed that the cellular amount of regulatory protein (eBFP2-MS2CP) is 

proportional to the signal of blue fluorescence, and that the amount of regulated 

protein (sfGFP) is proportional to the signal of green fluorescence. Thus, with IPTG 

and TC being the two external molecules of control, the Hill-Langmuir equations 

that dictate average protein expression (population measure) are 

〈eBFP2〉 = 𝛼*
𝜌* + -

IPTG
𝜃2

3
45

1 + -IPTG𝜃2
3
45

〈sfGFP〉 = 𝛼9
1 + 𝜌9 :

〈eBFP2〉
𝜃*

;
4<

1 + :〈eBFP2〉𝜃*
;
4< 	,			(1)

 

where 𝛼* is the maximal protein level from the PLlac promoter (in presence of 

IPTG), 𝜌* the transcriptional repression fold by LacI, 𝛼9 the maximal protein level 

from the constitutive J23119 promoter, and 𝜌9  the translational repression fold by 

eBFP2-MS2CP. In addition, 𝜃2 is the effective dissociation constant between LacI 

and IPTG, 𝑛2 the effective degree of cooperativity of LacI, 𝜃* the effective 

dissociation constant between eBFP2-MS2CP and the cognate RNA motif embedded 

within the sfGFP mRNA, and 𝑛* the effective degree of cooperativity of eBFP2-

MS2CP. By using our data, the adjusted parameter values are 𝛼* = 1,890 AU, 𝜌* =
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0.225, 𝜃2 = 116 μM, 𝑛2 = 2.38, 𝛼9 = 29,000 AU, 𝜌9 = 0.016, 𝜃* = 610 AU, and 

𝑛* = 5 (upon varying IPTG, with no TC). 

 Moreover, if 𝜇 denotes the actual cell growth rate, which is modulated by TC 

and dictates the dilution rate of the proteins, it turns out that the following Michaelis-

Menten equation 

𝜇 =
𝜇J

1 + TC𝜃L

	,			(2) 

where 𝜇J is the maximal cell growth rate (in absence of TC) and 𝜃L the half maximal 

inhibitory concentration of TC. From the data, we obtained 𝜇J = 1.2 h-1 and 𝜃L =

526 ng/mL (upon varying TC, with no IPTG). 

2.5. Stochastic mathematical modelling 

The expressions for the variances in gene expression (or fluorescence signal) can be 

derived by following some basic calculations [3,7]. We followed a Langevin 

formalism, which consists in introducing in the right-hand side of the differential 

equation a series of stochastic processes, and the mean-field approximation for the 

analytical treatment, which consists in assuming that the different fluctuation 

amplitudes depend on the deterministic solution. In brief, the variance for a given 

gene and induction condition can be decomposed into three different variances 

according to the nature of the molecular noise source. The variance coming from 

extrinsic noise can be assumed to scale with the square of the expression level (then 

leading to a constant term in gene expression noise), the variance from intrinsic noise 

with the expression level, and the variance from the regulatory protein noise with the 

square of the derivative of the transfer function (in terms of protein synthesis rate). 

In particular, we can write  
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CVeBFP2N = 𝜂*	NP
extrinsic

+
𝛽*

〈eBFP2〉XYZY[
intrinsic

+
1
2

⎝

⎜
⎛𝛼*(1 − 𝜌*)𝑛2 -

IPTG
𝜃2

3
45`a

𝜃2 :1 + -
IPTG
𝜃2

3
45
;
N

⎠

⎟
⎞

N

𝜂lacN

〈eBFP2〉N

XYYYYYYYYYYYYZYYYYYYYYYYYY[
regulation

CVsfGFPN = 𝜂9	NP
extrinsic

+
𝛽9

〈sfGFP〉XYZY[
intrinsic

+
1
2

⎝

⎜
⎛𝛼9(1− 𝜌9)𝑛* :

〈eBFP2〉
𝜃*

;
4<`a

𝜃* :1 + :
〈eBFP2〉
𝜃*

;
4<
;
N

⎠

⎟
⎞

N

𝛾9〈eBFP2〉N

〈sfGFP〉N CVeBFP2N

XYYYYYYYYYYYYYYYYYZYYYYYYYYYYYYYYYYY[
regulation

	,			(3)

 

where 𝜂*N and 𝜂9N  are two empirical constants that quantify the levels of noise of 

extrinsic nature on eBFP2-MS2CP and sfGFP, respectively. Also, 𝜂lac
N  is a constant 

that measures the noise in LacI expression, 𝛽* and 𝛽9 the Fano factors of noise of 

intrinsic nature for eBFP2-MS2CP and sfGFP, respectively, and 𝛾9  a constant that 

accounts for the difference between fluorescence and number of molecules. Note that 

〈eBFP2〉 = 〈MS2CP〉 and CVeBFP2
N = CVMS2CP

N . Note also that when a strong 

repression occurs at the level of translation the transcriptional noise can be neglected 

and then 𝛽9 can be considered constant (i.e., the Fano factor, in number of molecules 

per cell, can be approached by 1). By using our data, the adjusted parameter values 

are 𝜂*N = 0.246, 𝛽* = 45.6 AU, 𝜂lac
N = 6,470 μM2, 𝜂9N = 0.127, 𝛽9 = 61.9 AU, and 

𝛾9 = 0.0233 (upon varying IPTG, with no TC). 

Finally, we assumed that the stochastic gene expression follows a Gamma 

distribution [28]. Then, the probability for a given expression level reads 

𝑃(eBFP2) =
eBFP2p<`a𝑒`eBFP2/s<

Γ(𝑎*)𝑏*
p<

𝑃(sfGFP) =
sfGFPpw`a𝑒`sfGFP/sw

Γx𝑎9y𝑏9
pw 	,			(4)

 

where 𝑎* and 𝑎9 are the Gamma shape parameters for eBFP2-MS2CP and sfGFP, 

respectively, and 𝑏* and 𝑏9  the Gamma scale parameters. Importantly, by knowing 
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that for a Gamma distribution 𝑎𝑏 is the mean and 𝑎𝑏N the variance, these two 

parameters can be defined as 

𝑎* =
1

CVeBFP2N

𝑎9 =
1

CVsfGFPN

𝑏* = 〈eBFP2〉CVeBFP2N

𝑏9 = 〈sfGFP〉CVsfGFPN 	.			(5)		

 

This means that the Gamma shape parameter is directly the inverse of the noise, and 

that the Gamma scale parameter depends on the translation rate in the case of eBFP2- 

MS2CP (transcription regulation) and is nearly independent of it in the case of sfGFP 

(translation regulation). 

2.6. Numerical simulations 

The system of stochastic differential equations was solved numerically to obtain 

stochastic trajectories of mRNA and protein concentrations. For that, we followed 

an integration scheme previously described [43]. The colored stochastic processes 

(for extrinsic and regulation noise) were obtained from independent white stochastic 

processes. The system was solved in one-time interval with the routine ode45s from 

MATLAB, considering constant the stochastic fluctuations in that interval. The 

values of the fluctuations were updated in each interval with the previous mRNA and 

protein concentrations. Negative concentration values were avoided. 
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3. RESULTS 
3.1. Regulation of translation with an RNA-binding protein in single cells 

We engineered a synthetic genetic system in E. coli in which the RNA-binding 

protein MS2CP acts as a protein translation factor (Fig. 1,3). MS2CP was expressed 

from a synthetic PL-based promoter repressed by LacI (named as PLlac) [21] in a 

medium copy number plasmid (about 80 copies/cell). This allowed controlling the 

expression of the regulator (at the transcriptional level) with isopropyl β-D-1-

thiogalactopyranoside (IPTG). In addition, we fused the enhanced blue fluorescent 

protein 2 (eBFP2) [22] to the N terminus of MS2CP (leading to eBFP2-MS2CP) in 

order to monitor its expression (Fig. 3a). As a regulated element, here we used the 

superfolder green fluorescent protein (sfGFP) [23], which was expressed from a 

constitutive promoter in a low copy number plasmid (about 15 copies/cell). The wild-

type RNA motif recognized by MS2CP (with a dissociation constant of about 3 nM) 

[24] was placed in frame just after the start codon of sfGFP. In this way, MS2CP can 

block the progression of the ribosome on the regulated gene in the initial phase [15]. 

This mode of action differs from the natural one, in which MS2CP prevents 

translation initiation rather than elongation [16]. The resulting circuit behaves like 

an inverter considering IPTG as input and sfGFP as output, MS2CP being an internal 

regulator that operates at the level of translation. 

 
Fig. 3 Schematics of the synthetic genetic circuit. a) sequence details of the cis-regulatory region 
(DNA level) for transcriptional regulation (PLlac promoter). b) sequence details of the cis-regulatory 
region (RNA level) for post-transcriptional regulation (MS2CP RNA motif). 
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We performed single-cell measurements of blue and green fluorescence by 

flow cytometry for a concentration gradient of IPTG (9 conditions) in order to 

quantitatively study the stochastic regulatory dynamics of this engineered system 

(Fig. 4a,b). 

 
Fig. 4 a) Histograms of single-cell fluorescence for eBFP2 (fused to the regulatory protein) for 
different induction conditions with IPTG. b) Histograms of single-cell fluorescence for sfGFP (the 
regulated protein) for different induction conditions with IPTG. 

We found a substantial down-regulation of sfGFP (about 50-fold in 

expression) as a consequence of the action of MS2CP on the cognate mRNA (Fig. 

4b). From these data, we calculated the mean and the noise of expression for both 

eBFP2-MS2CP and sfGFP (the noise as the square of the coefficient of variation) 

[3], which were represented as a function of IPTG (Fig. 5a,b). The mean gives the 

average position of the population, and the noise is a measure of the cell-to-cell 

variability. These measurements were repeated for different populations, finding 

consistency in the results (Fig. 6a-d). 
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Fig. 5 a) Mean and noise of expression for eBFP2 as a function of IPTG. b) Mean and noise for sfGFP 
as a function of IPTG. c) Noise for eBFP2 as a function of mean expression. d) Noise for sfGFP as a 
function of mean expression. e) Transfer function of the post-transcriptional regulation in terms of 
mean expression. f) Transfer function of the post-transcriptional regulation in terms of noise. In the 
plots, points correspond to calculations from the experimental data, while solid lines to predictions 
with the mathematical model. 

We then constructed a mathematical model relying on a series of algebraic 

equations from basics on the biochemistry of gene expression and molecular noise 

propagation [7]. To derive these mathematical expressions for the mean and the 

noise, we constructed a system of stochastic differential equations for mRNA and 

protein expression following the Langevin formalism. The rates of concentration 

changes were subject to stochastic fluctuations of intrinsic and extrinsic nature. This 

system was analytically solved in steady state with the mean-field approximation for 

the fluctuations. With a suitable parameterization, our model was able to recapitulate 

with reasonable agreement the values of mean expression and noise for both eBFP2-

MS2CP and sfGFP, highlighting the functional form of the different dose-response 

curves. In particular, the mean expressions follow Hill-Langmuir equations and the 

noises non-monotonous curves presenting a maximum at an intermediate IPTG 

concentration. 
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Fig. 6 a) Mean of eBFP2 expression as a function of IPTG. b) Mean of sfGFP expression as a function 
of IPTG. c) Noise of eBFP2 expression as a function of IPTG. d) Noise of sfGFP expression as a 
function of IPTG. Points correspond to the values of the population shown in the main figures. Error 
bars correspond to standard errors calculated from four different populations. Solid lines correspond 
to predictions with the mathematical model. 

Indeed, the peak-like noise curve is a consequence of a sigmoidal dynamics 

at the population level. We also observed that the noise levels in sfGFP are lower 

than in eBFP2 for all IPTG concentrations. In addition, we represented the noise 

versus the mean to show the stochastic expression scaling laws of the system (Fig. 

5c,d). The model was also explicative about the nonlinear transfer functions in terms 

of mean expression regulation (Fig. 5e) and noise propagation (i.e., how the noise of 

eBFP2-MS2CP impacts on the noise of sfGFP; Fig. 5f). Together, these results 

indicated that the protein translation factor is a suitable element to control expression 

and that the cell-to-cell variability emerged at this level can be predicted with certain 

accuracy.
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3.2. Noise analysis in transcription and translation regulation 

To further analyze the stochastic behavior, we looked inside the noise. That is, we 

inspected how a particular noise level is achieved. For that, we first decomposed the 

total noise of both eBFP2-MS2CP and sfGFP into three fundamental components: 

extrinsic noise, intrinsic noise, and regulation noise. Extrinsic noise comes from 

replication and variability in the cellular machinery, intrinsic noise is a consequence 

of a low number of molecules, and regulation noise accounts for the noise that is 

propagated from the regulator to the regulated gene [3,7,25]. In previous work, the 

regulation noise has been considered as a part of the extrinsic noise. 

Here, we separate this component to study more in detail the stochastic gene 

expression when it is regulated. Assuming independence between the different 

stochastic sources, we were able to end with compact mathematical expressions for 

the noise in which the different components were identified, although at the cost of 

introducing some inaccuracies since the extrinsic noise may correlate responses. 

Along the IPTG gradient and according to our mathematical model, the extrinsic 

noise of the system is constant, the intrinsic noise decreases in the case of eBFP2-

MS2CP and increases in the case of sfGFP (as this noise scales inversely with the 

expression level), and the regulation noise follows a peak-like curve (Fig. 7a-h). 

Even though for both eBFP2-MS2CP and sfGFP the functional form of the  

regulation noise is similar, peaking at 50-75 μM IPTG, the maximal noise level is 

much lower (about four times) in the case of sfGFP. This suggested that with a 

translational control the noise of the regulator is buffered, i.e., the fluctuations of 

MS2CP expression are manifested on sfGFP expression in lower extent than the 

fluctuations of LacI expression on MS2CP expression. This is because in a scenario 

of translational control the regulated gene is constantly transcribed at high levels, 

where fluctuations in the number of mRNAs per cell are small in comparison with 

the mean quantity that is produced. 
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Fig. 7 a) Model-based calculation of the total noise in eBFP2 expression as a function of IPTG. On 
top, schematics of the amplification effect by the transcriptional regulation. b-d) Decomposition of 
the total eBFP2 noise into extrinsic, intrinsic, and regulation noise components. e) Model-based 
calculation of the total noise in sfGFP expression as a function of IPTG. On top, schematics of the 
buffering effect by the post-transcriptional regulation. f-h) Decomposition of the total sfGFP noise 
into extrinsic, intrinsic, and regulation noise components. Insets in c,g) show the scaling of the 
intrinsic noise with the mean expression. 

Thus, the transcriptional noise is not significant. In addition, the regulation 

enters at the level of translation, which prevents the typical amplification process of 

the noise of the regulator that occurs with a transcriptional control [26]. Indeed, in 

such a scenario, the transcription rate can be quite low when the promoter is 

repressed, thereby leading to substantial fluctuations in mRNA amount in 

comparison with the mean production. Furthermore, in the post-transcriptional case, 

the fluctuations in mRNA abundance can partly be absorbed by the effect of the 

translation factor, controlling the number of mRNAs available for translation. This 

has already been discussed in the case of regulatory RNAs [27], but it also applies to 

the case of a protein translation factor. Consequently, we can argue that the noise in 

the regulated gene is reduced when the regulation occurs at the level of translation. 

only the particular noise value. In addition, we aimed at predicting the shape of the 

whole distribution of protein expression and not To this end, we considered a Gamma 

distribution, which has been shown to describe quite well the stochasticity of genetic 

systems [28] and which emerges from ab initio calculations [29]. 
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Fig. 8 a) Predicted eBFP2 fluorescence distribution for different induction conditions with IPTG 
(Gamma distributions). b) Gamma shape and scale parameters for eBFP2. c) Predicted sfGFP 
fluorescence distribution for different induction conditions with IPTG (Gamma distributions). d) 
Gamma shape and scale parameters for sfGFP. In plots b,d points correspond to calculations from the 
experimental values of mean and noise, while solid lines to predictions with the mathematical model. 

The distribution of protein expression is instrumental to appreciate the degree 

of heterogeneity in the production with time and from cell to cell (assuming 

ergodicity).  Here, by defining the Gamma shape parameter as the inverse of the 

noise (equal to the mean square divided by the variance) and the Gamma scale 

parameter as the product between the mean and the noise (i.e., an effective Fano 

factor), we were able to predict the distributions for both eBFP2-MS2CP and sfGFP 

(Fig. 8a,d). This was done with the values of mean expression and noise given by the 

mathematical model. As a result of a transcriptional control, the Gamma scale 

parameter for eBFP2-MS2CP depends on the translation rate; but in the case of 

sfGFP, as this element is controlled at the level of translation, the Gamma scale 

parameter is nearly independent of that rate. Importantly, these theoretical
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distributions were very close to those fitted directly against the experimental data 

(data not shown), although some discrepancies were observed between the data and 

the model at intermediate IPTG concentrations. Overall, this highlighted the 

generality of the Gamma distribution to describe genetic systems regulated at both 

transcriptional and translational levels. 

3.3. Examination of global effects on regulated gene expression 

Subsequently, we decided to study how global perturbations can impact the single-

cell response of the system. To this end, we considered the effect of a global signal 

affecting translation. Here, we used sublethal concentrations of tetracycline (TC), a 

bacteriostatic antibiotic known to inhibit the formation of active ribosomes (Fig. 9) 

[30]. 

 
Fig. 9 Extended schematics of the gene regulatory system in which TC further modulates it through 
its negative impact on translation rate (global effects). 

Paradoxically, this inhibition leads to an increase in translation rate as a result 

of an over-production of ribosomes (a global response mechanism in bacteria against 

this type of antibiotics) [31,32]. That is, the cell is able to sense that a substantial 

amount of ribosomes is being inhibited upon binding to TC and produces more. In 

particular, TC binds to the 30S subunit and interferes with the transfer RNAs 

(tRNAs). In turn, the cell growth rate is compromised due to the action of TC. 

Importantly, this parameter has been shown to modulate the mean and noise of gene 

expression [33,34], so we decided to exploit it as a predictor variable. Over a two-
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dimensional concentration gradient of IPTG and TC (81 conditions), we first 

generated growth curves (Fig. 10). 

 

Fig. 10 Predicted growth curves. Three different populations (blue, red, and green) were monitored 
with time. Points correspond to absorbance values, while solid lines come from fitted exponential 
trends. 

Basically, only TC showed a significant impact on growth rate, with a 

maximal reduction of almost 3-fold, which was well explained by a Michaelis-

Menten function (Fig. 11a,b). 
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Fig. 11 a) Heatmap of the mean growth rate as a function of IPTG and TC. b) Dose-response curve 
between growth rate and TC. Points correspond to experimental data, while solid line comes from the 
mathematical model. 

In parallel, we performed single-cell measurements of blue and green 

fluorescence for each condition (Fig. 12). 

 
Fig. 12 Projected two-dimensional histograms of single-cell fluorescence for eBFP2 and sfGFP for 
different induction conditions with IPTG and TC. 

We observed that the mean expression levels of both eBFP2-MS2CP and 

sfGFP remained almost constant at low TC concentrations, but they increased 
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significantly from 500 ng/mL TC, irrespective of the induction with IPTG (Fig. 

13a,b). Because protein expression comes from the ratio between the protein 

synthesis rate (accounting for both transcription and translation) and the growth rate 

(in the case of stable proteins, as it is the case here), this indicated that the protein 

synthesis rate of both eBFP2-MS2CP and sfGFP scales with the growth rate (Fig. 

12c,d). It was interesting to note here the logical NOR behavior of the sfGFP 

synthesis rate and the difference between protein expression and synthesis rate. In 

addition, we calculated the noise levels for each condition (Fig. 13e,f). We observed 

that the regulation noise decreases with TC for both eBFP2-MS2CP and sfGFP, as 

well as that TC leads to a substantial increase in the sfGFP noise when this gene is 

fully repressed by MS2CP. 

 
Fig. 13 a) Heatmap of the mean eBFP2 fluorescence as a function of IPTG and TC. b) Heatmap of 
the mean sfGFP fluorescence as a function of IPTG and TC. c) Heatmap of the mean eBFP2 synthesis 
rate as a function of IPTG and TC. d) Heatmap of the mean sfGFP synthesis rate as a function of 
IPTG and TC. e) Heatmap of the sfGFP noise as a function of IPTG and TC.
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3.4. Integrative modeling of the deterministic and stochastic dynamics 

Importantly, we noted that the cell volume increases as a consequence of TC (Fig. 

14a, which agrees with previous observations [35]. This entails the necessity of a 

higher number of MS2CP molecules per cell to repress the target gene. Moreover, it 

is known that the number of total ribosomes decreases linearly with the growth rate 

when it is modulated by an antibiotic (i.e., the slower the replication, the larger the 

number of ribosomes) [31]. This leads to a reciprocal function with the growth rate 

to describe the translation rate of a given gene [32]. That is, the translation rate scales 

inversely with the growth rate. It is also known that the transcription rate (mRNA 

production) scales linearly with the growth rate [33]. In terms of number of proteins 

per cell, this effect is cancelled out by the effective dilution due to cell division. By 

introducing into our mathematical model these dependencies, we were able to predict 

with relatively good agreement the impact of TC on mean expression for both 

eBFP2-MS2CP and sfGFP (Fig. 14b,c). 

To further comprehend the interplay between gene regulation and cell 

growth, we used the model to predict the protein synthesis rate. Remarkably, we 

found that for eBFP2-MS2CP the same curve is explicative for all induction 

conditions with IPTG, provided the values are relativized to the case of no TC (Fig. 

13d). This is because eBFP2-MS2CP is regulated transcriptionally, and in turn the 

transcription factor of the system (LacI) is expressed constitutively and modulated 

by IPTG in terms of activity at the post-translational level. Hence, there is a 

decoupling between the regulation and the effect of growth rate on expression. A 

minimum in eBFP2-MS2CP synthesis rate was found at a growth rate of about 0.45 

h-1, which comes from the fact that the protein synthesis rate is modeled by a rational 

function with the growth rate. In essence, at low TC concentrations, the transcription 

rate is reduced, but the translation rate remains almost constant. However, at high 

TC concentrations, the translation rate very much increases and dominates over the 

transcription rate.  
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Fig. 14 Detailed analysis of stochastic gene expression modulated by growth rate. a) As TC increases, 
cells grow slower and bigger. b) Mean eBFP2 expression as a function of growth rate for each IPTG 
condition. c) Mean sfGFP expression as a function of growth rate for each IPTG condition. d) Relative 
mean eBFP2 synthesis rate as a function of growth rate for each IPTG condition. e) Relative mean 
sfGFP synthesis rate as a function of growth rate for each IPTG condition. In d,e), the values are 
relative to the case TC = 0, and the dashed line corresponds to a linear dependence (which comes 
from a null model in which the translation rate is not affected by the growth rate). f) Transfer function 
of the post-transcriptional regulation in terms of mean expression for each TC condition. The inset 
shows the effect of TC on the sfGFP mRNA synthesis rate (included in αy, as the growth rate 
decreases) and the effective dissociation constant between eBFP2-MS2CP and sfGFP mRNA (θx, as 
the volume increases) according to the mathematical model. g) eBFP2 noise as a function of growth 
rate for each IPTG condition. h) sfGFP noise as a function of growth rate for each IPTG condition. i) 
Transfer function of the post-transcriptional regulation in terms of noise for each TC condition. In 
plots b-i), points correspond to calculations from the experimental data, while solid lines to 
predictions with the mathematical model. 
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By contrast, we found that the relative sfGFP synthesis rate strongly depends 

on IPTG and that this dependence is well captured by the model (Fig. 14e). In this 

case, the number of MS2CP molecules per cell changes with IPTG, so there is a 

coupling between the translational regulation and the effect of growth rate on 

expression. While at low IPTG concentrations the relative sfGFP synthesis rate 

follows the aforementioned trend for eBFP2-MS2CP, at high IPTG concentrations 

there is a maximum at a growth rate of about 0.65 h-1 (it was particularly pronounced 

at the intermediate value of 100 μM). Fig. 14f illustrates how the transfer function in 

terms of mean expression varies with the TC concentration (i.e., by increasing the 

maximal expression level and shifting the inflexion point towards the right). 

Finally, we applied the model to project the noise in protein expression. In 

this case, we needed to introduce a phenomenological dependence with the growth 

rate on three noise-related parameters to explain the data. In particular, we set that 

the noise in LacI expression scales with the square of the growth rate (i.e., LacI 

expression varies from cell to cell in greater extent when cells grow faster) and that 

the extrinsic noise of both eBFP2-MS2CP and sfGFP scales with the inverse of the 

growth rate by following the translation rate (i.e., the extrinsic noise is higher at 

lower growth rates, which seems in tune with recent experiments characterizing 

genome-wide noisy expression levels [36]). While for eBFP2-MS2CP the noise 

decreases or remains constant with the growth rate (Fig. 14g), for sfGFP the noise 

presents a more complex trend (almost constant at low IPTG concentrations and with 

a maximum at high IPTG concentrations; Fig. 14h). In turn, Fig. 14i illustrates how 

the transfer function in terms of noise varies with the TC concentration, showing 

how the belly shape is reduced with TC, which indicates that noise propagation 

through the translation factor is less significant (i.e., it is masked) when the growth 

rate is low. That is, the regulation noise term, which quantifies how much fluctuation 

sfGFP perceives from MS2CP, becomes smaller than the other noise terms (intrinsic 

and extrinsic) with TC. Arguably, at high growth rates, when global perturbations 

are small, a translation factor is superior to a transcription factor because it is able to 
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regulate gene expression without transmitting much noise. However, this is not the 

case at low growth rates, when global perturbations become substantial, due to a poor 

signal-to-noise ratio. Together, these results highlight the complex impact of growth 

rate in the system and serve to appreciate how global and local regulatory 

mechanisms interplay in the cell. 

4. DISCUSSION 

Our development follows previous work on exploiting RNA-binding proteins as 

translation factors to engineer gene circuits [15]. In this work, we focused on 

quantitatively studying the stochastic behavior of this type of circuits (i.e., noise 

generation and propagation in gene expression when it is regulated at the level of 

translation). Our results show that the protein-RNA interaction in this case leads to 

a significant down-regulation in expression of about 50-fold by blocking the 

progression of the ribosome on the target mRNA, which is comparable to 

transcriptional fold-changes. In addition, a general mathematical framework was 

shown suitable to describe the stochastic behavior in regulations exerted by both 

transcription and translation factors. Noise propagation from gene to gene is buffered 

when the regulator acts at the level of translation, as the amplification process by 

transcription is avoided, and a Gamma distribution properly parameterized can 

provide deep analytical explanations about the resulting cell-to-cell variability [28]. 

By modulating the cellular growth rate, we also reported an interplay between global 

and local regulatory mechanisms in the cell that affect both the mean expression and 

noise levels. It is important to notice that the growth rate that we measured here 

corresponds to an average of the population (as we calculate it having monitored 

absorbance with time for a culture). Nevertheless, each cell grows differently,
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especially when the culture is under the effect of TC. In this regard, a mathematical 

model incorporating such heterogeneous growth might explain better the observed 

noise patterns [37]. Another limitation of our work is the assumption that the noise 

sources are independent, which allowed us to derive a compact mathematical 

expression for the noise of sfGFP. This is not strictly true since eBFP2-MS2CP and 

sfGFP share extrinsic noise sources [7]. Yet, we expect reliability in the conclusions 

derived from this study. 

Here, we exploited the viral protein MS2CP to implement the regulatory 

system, but in principle other RNA-binding proteins might be used. For example, the 

bacteriophage PP7 coat protein or the Mycobacterium enzyme PyrR [16] are suitable 

elements from which to engineer orthogonal systems. In fact, given the plethora of 

RNA-binding proteins in nature, especially in eukaryotes [38], and noting that the 

regulatory mechanism only requires a tight protein-RNA interaction to interfere with 

the ribosome, multiple implementations might be achieved. 

Our mathematical model is general enough to describe these eventual 

implementations. We only expect to change the kinetic parameters for each particular 

protein, preserving the functional form. In principle, each RNA motif will lead to a 

different translation rate. In this regard, the predictability of the system might be 

strengthened by using the RBS calculator [39]. We also anticipate that the use of 

tandem repeats of the RNA motif might enhance the regulatory fold-change of the 

system. Furthermore, since RNA is a very versatile molecule, RNA-binding proteins 

can regulate gene expression through a variety of mechanisms acting post-

transcriptionally, including the regulation of translation initiation, translation 

elongation, transcription termination, and RNA stability [40]. In prokaryotes, the 

regulation of translation initiation by controlling RBS accessibility is a widespread 

mechanism, but in eukaryotes the blockage of translation elongation has been 

observed in the case of Argonaute proteins [41]. Arguably, a blockage in the initial 

phase by MS2CP is key in our synthetic system. Further work should analyze how 

those other mechanisms generate and propagate noise. 
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In sum, our work provides new quantitative insights about the stochastic 

behavior in genes regulated translationally by RNA-binding proteins. Protein 

translation factors can integrate some advantages distinctively attributed to proteins 

(as transcription factors), such as the ability to transduce small signals and achieve 

large dynamic ranges, or to small RNAs, such as the ability to produce rapid 

responses and buffer transcriptional noise [27]. Furthermore, our work paves the way 

for engineering gene regulatory circuits with greater integrability and then 

sophistication. Certainly, the combination of different layers within the genetic 

information flow (i.e., transcription and translation) leads to an easier integration of 

signals to achieve a given function [42]. Therefore, we envision that RNA-binding 

proteins will be of great utility in synthetic biology in the close future to face 

biotechnological and biomedical challenges. 
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1. INTRODUCTION 

Gene regulation at the post-transcriptional level is pervasive in living organisms of 

ranging complexity [1-4]. Indeed, the ability to regulate the genetic information flow 

at different points appears instrumental to maximize the integration of intrinsic and 

extrinsic signals, which enables an efficient information processing by the 

organisms. However, the solutions implemented in prokaryotes and eukaryotes 

greatly differ. In prokaryotes, small RNAs (sRNAs) regulate messenger RNA 

(mRNA) stability and translation initiation [1], supported by a series of RNA-binding 

proteins that act globally [2]. Regulatory proteins of specific scope in these simple 

organisms mainly operate in the transcriptional layer [5], what is aligned with the 

models presented in the early times of molecular biology [6]. By contrast, eukaryotes 

deploy a sizeable number of RNA-binding proteins with a variety of functions [4] 

that participate in the regulation of mRNA turnover, transport, splicing, and 

translation in a gene-specific manner and also at a global scale. In animals, in 

particular, most RNA-binding proteins contain RNA recognition motifs (RRMs) [7]. 

RRMs are small globular domains of about 90 amino acids that fold into four 

antiparallel b-strands and two a-helices, which can bind to single-strand RNAs with 

sufficient affinity and specificity to control biological processes [8]. 

Yet, while important to attain functional diversity in the post-transcriptional 

layer in animals, RRMs are not prevalent in all organisms. In fact, the scarcity of 

RRM-containing proteins in prokaryotes and the often-unknown functional role of 

those identified by bioinformatic methods [9] question if RRMs can readily work in 

organisms with much simpler gene expression machinery and intracellular 

organization. If so, this would raise the potential to use RRM-RNA interactions as 

an orthogonal layer to engineer gene regulation in prokaryotes. To address these 

intriguing questions, we adopted a synthetic biology approach where a specific 

RRM-containing protein was incorporated in a bacterium in order to engineer a post-
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transcriptional control module. Synthetic biology has highlighted how living cells 

can be (re)programmed through the assembly of independent genetic elements into 

functional networks for a variety of applications in biotechnology and biomedicine 

[10]. Yet, synthetic biology can also be used to disentangle natural systems and to 

probe hypotheses about biological function [11]. 

In previous work, some proteins with the ability to recognize RNA have been 

exploited as translation factors in bacteria for a gene-specific regulation [12-14]. The 

first instance was the tetracycline repressor protein (TetR), which naturally functions 

as a transcription factor, by means of the selection of synthetic RNA aptamers [12]. 

The bacteriophage MS2 coat protein (MS2CP) [13] and eukaryotic Pumilio 

homology domains [14] were also used in synthetic circuits. Alternatively, a wide 

palette of post-transcriptional control systems based on sRNAs have been developed 

in recent years to program gene expression in bacteria [15]. Of note, these systems 

are amenable to be combined with regulatory proteins to attain complex dynamic 

behaviors [16]. A heterologous RRM-containing protein with definite regulatory 

activity, in addition to provide empirical evidence on the adaptability of such RNA-

binding domains to different genetic backgrounds, would enlarge the synthetic 

biology toolkit [17], boosting applications in which high orthogonality, expression 

fine-tuning, and signal integrability are required features. In addition, RRMs can 

themselves be allosterically regulated, opening up new avenues for post-

transcriptional regulation by small molecules. 

In this work, the mammalian RNA-binding protein Musashi-1 (MSI-1) [18] 

was used as a translation repressor in the bacterium Escherichia coli (Fig. 1). MSI-1 

belongs to an evolutionarily conserved family of RRM-containing proteins, of which 

a member was first identified in Drosophila melanogaster [19]. MSI-1 contains two 

RRMs in the N-terminal region (RRM1 and RRM2) and recognizes the RNA 

consensus sequence RUnAGU on the nanomolar affinity scale [20]. Importantly, 

MSI-1 can be allosterically inhibited by fatty acids (in particular, 18-22-carbon w-9 

monounsaturated fatty acids) [21]. 
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Fig. 1 Overview of the biotechnological development. In mammals, MSI-1 binds to the 3’ UTR of its 
target mRNA to repress translation. Here, the M. musculus gene coding for MSI-1 was moved to E. 
coli (transgenesis) to implement a synthetic regulation system at the level of translation. 

In mammals, MSI-1 is mainly expressed in stem cells of neural and epithelial 

lineage and plays crucial roles in differentiation, tumorigenesis, and cell cycle 

regulation [18]. Notably, MSI-1 regulates Notch signaling by repressing the 

translation of a key protein in the pathway [20]. Hence, rather than moving genetic 

elements from simple to complex organisms, as it is normally done (e.g., the TetR-

aptamer module was implemented in simple eukaryotes [22]), we reversed the path 

by moving an important mammalian gene (from Mus musculus) to E. coli. Some 

eukaryotic factors have already been implemented in bacteria to regulate gene 

expression at different levels [14,23], but the case of RRM-containing proteins has 

remained elusive. In the following, we present quantitative experimental and 

theoretical results on the response dynamics of a synthetic gene circuit in which MSI-

1 works as an allosteric translation repressor. There, MSI-1 is transcriptionally 

controlled by the lactose repressor protein (LacI), and translation regulation by MSI-

1 is accomplished by means of a specific interaction with an mRNA (encoding a 

reporter protein) that harbors a suitable binding motif in its leader coding region.
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2. MATERIALS AND METHODS 
2.1. Strains, plasmids, and reagents 

E. coli Dh5a was used for cloning purposes following standard procedures. To 

express our genetic circuit for functional characterization, E. coli MG1655-Z1 cells 

(lacI+, tetR+) were used. This strain was co-transformed with two plasmids, called 

pRM1+ (KanR, pSC101-E93R ori; leading to ~230 copies/cell) [60] and pREP6 

(CamR, p15A ori; leading to ~15 copies/cell) (Fig. 2). 

 
Fig. 2 Maps of the plasmids used to implement the synthetic gene circuit in which MSI-1* represses 
the translation of sfGFP. a) Map of pRM1+ to express the MSI-1* protein from a PLlac promoter, 
induced with lactose or IPTG. b) Map of pREP6 to express the reporter sfGFP protein from a 
constitutive promoter (J23119), harboring a suitable RNA motif in the leader region for translation 
regulation. 

On the one hand, pRM1+ was obtained by cloning a truncated coding region 

of the M. musculus MSI-1 protein (the first 192 amino acids, containing the two 

RRMs; UniProt #Q61474; termed MSI-1*). This gene was under the transcriptional 

control of the inducible promoter PLlac. On the other hand, pREP6 was obtained by 

cloning the coding region of sfGFP with an RNA sequence motif recognized by MSI-

1. The coding region of mScarlet was also present in the plasmid. These two genes 

a b
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were under the control of the constitutive promoter J23119 in two different 

transcriptional units. 

Table 1. List of plasmids used in this work. 

name insert feature 
backbone 

feature 
reference 

pRM1+ PLlac:msi-1* 
KanR, 
pSC101(E93R) 
ori 

this work 

pREP6 J23119:sfGFP (with RNA motif for MSI-1* binding) 
CamR,  

p15A ori 
this work 

pREP6-
mut1 J23119:sfGFP (with mutated RNA motif for MSI-1* binding) 

CamR,  

p15A ori 
this work 

pREP6-
mut2 J23119:sfGFP (with mutated RNA motif for MSI-1* binding) 

CamR,  

p15A ori 
this work 

pREP6-
mut3 J23119:sfGFP (with mutated RNA motif for MSI-1* binding) 

CamR,  

p15A ori 
this work 

pREP6-
mut4 J23119:sfGFP (with mutated RNA motif for MSI-1* binding) 

CamR,  

p15A ori 
this work 

pREP6-
mut5 J23119:sfGFP (with mutated RNA motif for MSI-1* binding) 

CamR,  

p15A ori 
this work 

pREP7 J23119:sfGFP (with RNA motif for MSI-1* binding and consensus 
sequences within RBS) 

CamR,  

p15A ori 
this work 

pREP4 J23119:sfGFP (with minimal RNA motif for MSI-1* binding) 
CamR,  

p15A ori 
this work 

pREP4b J23119:sfGFP (with less structured RNA motif for MSI-1* binding) 
CamR,  

p15A ori 
this work 

pREP4b3x J23119:sfGFP (with 3x less structured RNA motif for MSI-1* 
binding) 

CamR,  

p15A ori 
this work 

pRKFR2 PLlac:eBFP2 
KanR, 
pSC101(E93K) 
ori 

[34] 

pGio T7p:msi-1* KanR, pUC ori this work 

To perform the dynamic assays with LigandTracer (Ridgeview), E. coli 

BL21(DE3) cells (lacI+, T7pol+) were used. This strain was also co-transformed with 

pRM1+ and pREP6. In addition to the original RNA sequence motif, five point-

mutated sequences were designed and cloned in pREP6 (Fig. 6a). Additional RNA 

sequence motifs were cloned in front of sfGFP for control experiments (the resulting 

plasmids were named pREP4, pREP4b, pREP4b3x, and pREP7). In particular, 

pREP4b3x incorporates three RNA motifs in tandem after the start codon, and 
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pREP7 has two RUnAGU repeats flanking the RBS and a full RNA motif after the 

start codon. Suitable genetic cassettes to obtain the final constructions were 

synthesized by IDT. Table 1 lists all plasmids used in this work. 

To purify a recombinant Musashi protein, E. coli BL21-Gold(DE3) cells 

(lacI+, T7pol+) were used. A truncated coding region of the human MSI-1 protein 

(the first 200 amino acids; UniProt #O43347; also termed MSI-1* abusing of 

notation) was cloned under the control of a T7pol promoter into the plasmid pET29b 

(KanR, pUC ori). Luria-Bertani (LB) medium was used for the overnight cultures 

and M9 minimal medium (1X M9 minimal salts, 2 mM MgSO4, 0.1 mM CaCl2, 

0.05% thiamine, 0.05% casamino acids, 1% glycerol or 0.4% glucose) for the 

characterization cultures. M9-glucose medium was only used for real-time 

fluorescence quantification in liquid medium with IPTG. LB-agar was used for real-

time fluorescence quantification in solid medium. Kanamycin and chloramphenicol 

were used at a concentration of 50 μg/mL and 34 μg/mL, respectively. Lactose and 

IPTG were used as the inducers of the system (controlling the expression of MSI-1* 

in E. coli) at a concentration of 5, 10, 20, 50, 100, 200, 500, or 1000 μM. Oleic acid 

was used as the allosteric inhibitor of MSI-1* at a concentration of 20 mM in the in 

vivo assays (both in liquid and solid medium). In the in vitro assays, oleic acid was 

used at a concentration of 0.01, 0.1, 0.2, 0.5, 0.7, 1, 1.5, or 2 mM. It was neutralized 

with NaOH and used in a medium containing 0.5% tergitol NP-40.  

Compounds provided by Merck. 

2.2. Bulk fluorometry 

Cultures (2 mL) inoculated from single colonies (in triplicate) were grown overnight 

in LB medium with shaking (220 rpm) at 37 °C. Cultures were then diluted 1:100 in 

fresh M9 medium (200 μL) with the appropriate inducer (lactose or IPTG). The 

microplate (96 wells, black, clear bottom; Corning) was incubated with shaking 

(1300 rpm) at 37 °C up to 8-10 h (to reach an OD600 around 0.5-0.7). At different 
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times, the microplate was assayed in a Varioskan Lux fluorometer (Thermo) to 

measure absorbance (600 nm), green fluorescence (excitation: 485 nm, emission: 

535 nm), and red fluorescence (excitation: 570 nm, emission: 610 nm). To 

characterize the time-course response of the system, cultures were grown to 

exponential phase and then diluted before adding the inducer (to minimize the 

response lag). Mean background values of absorbance and fluorescence, 

corresponding to M9 medium, were subtracted to correct the signals. Normalized 

fluorescence was calculated as the slope of the linear regression between 

fluorescence and absorbance (assuming fluorophore maturation faster than cell 

doubling time and no proteolytic degradation) [61]. The mean value of normalized 

fluorescence corresponding to non-transformed cells was then subtracted to obtain a 

final estimate of expression. In addition, cell growth rate was calculated as the slope 

of the linear regression between the logarithm of background-subtracted absorbance 

and time in the exponential phase.  

2.3. Real-time fluorescence quantification in solid medium 

Cultures (2 mL) inoculated from single colonies (in triplicate) were grown overnight 

in LB medium with shaking (220 rpm) at 37 °C. The overnight culture was plated 

(15 μL) in areas A and D of a MultiDish 2x2 plate (Ridgeview) coated with LB-agar. 

IPTG was added in areas A and B of the dish at the final concentration of 1 mM. 

Area C was kept free of cells/inducers as a reference. The dish was then placed in 

the rotating support of the LigandTracer instrument (Ridgeview) and incubated at 37 

°C for 24 h. The fluorescence from sfGFP and mScarlet was quantified with time in 

the seeded areas of the dish using the BlueGreen (excitation: 488 nm, emission: 535 

nm) and OrangeRed (excitation: 568 nm, emission: 620 nm) detectors. The readouts 

of the opposite parts of the dish were subtracted to correct the signals. 
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2.4. Flow cytometry 

Cultures (2 mL) inoculated from single colonies (three replicates) were grown 

overnight in LB medium with shaking (220 rpm) at 37 °C. Cultures were then diluted 

1:100 in fresh LB medium (200 μL) to load a microplate (96 wells, black, clear 

bottom; Corning) with the appropriate concentrations of lactose (0, 100, 1000 μM) 

and oleic acid (0, 20 mM). The microplate was then incubated with shaking (1300 

rpm) at 37 °C until cultures reached a sufficient OD600. Cultures (6 μL) were then 

diluted in PBS (1 mL). Fluorescence was measured in an LSRFortessa flow 

cytometer (BD) using a 488 nm laser and a 530 nm filter for green fluorescence. 

Events were gated by using the forward and side scatter signals and compensated 

(~104 events after this process). The mean value of the autofluorescence of the cells 

was subtracted to obtain a final estimate of expression. Data analysis performed with 

MATLAB (MathWorks). 

2.5. Purification of a Musashi protein 

Cells were grown in LB medium with shaking at 37 °C until OD600 reached 0.6-0.8. 

Subsequently, the expression of MSI-1* was induced with 0.5 mM IPTG. Cells were 

incubated at 37 °C for 4 h and harvested by centrifugation at 7500 rpm for 15 min at 

4 °C. The cell pellet was resuspended in a lysis buffer (50 mM Tris-HCl, pH 8.0, 500 

mM NaCl, 10% glycerol, with protease inhibitor cocktail), ruptured by sonication, 

and separated by centrifugation at 30,000 rpm for 35 min at 4 °C. The soluble fraction 

was collected and treated with a 5% polyethylenimine solution in order to remove 

DNA/RNA attached to the protein. Resuspension of the protein was done in 20 mM 

Tris-HCl, pH 9.0, with protease inhibitor cocktail. Soluble protein was filtered with 

a 0.22 μm membrane and purified by ion exchange chromatography using an Anion 

exchange Q FF 16/10 column previously equilibrated in alkaline buffer. The protein 

was collected on the flow-through. The protein was filtered and further purified to 

homogeneity by size exclusion chromatography using a Hi load 26/60 Superdex 75 
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pg column previously equilibrated in alkaline buffer with NaCl. The purified 

fractions were collected and buffer exchange chromatography was performed using 

a HiPrep 26/10 Desalting column previously equilibrated with the final buffer (20 

mM MES, pH 6.0, 100 mM NaCl, 0.5 mM EDTA, with protease inhibitor cocktail). 

Purification performed at Giotto. 

2.6. Binding kinetics assays of protein-RNA interactions 

Binding experiments of a purified MSI-1* protein against different RNA ligands 

were performed using the switchSENSE proximity sensing technology [33,62] and 

a suitable adapter chip on the heliX biosensor platform (Dynamic Biosensors). The 

adapter chip consists of a microfluidic channel with two gold electrodes 

functionalized with fluorophore-decorated DNA nanolevers that serve as linkers 

between the gold surface and the ligand of interest. A constant negative voltage is 

applied to the electrodes to keep the DNA nanolevers in an upright position. Binding 

between the injected analyte (MSI-1*) and the ligand attached to the sensor surface 

(RNA) leads to the alteration of the chemical surrounding of the dye, which results 

in a fluorescence change. Fluorescence change of the dye in real time describes the 

binding kinetics of the molecule of interest. Kinetic experiments consisted of a 

protein association phase (5 min) and a dissociation phase (15 min) in which the chip 

was rinsed with a buffer (50 mM Tris-HCl, 0.5 mM EDTA, 140 mM NaCl, 0.05% 

Tween 20, 1 mM TCEP, pH 7.2). A flow rate of 100 μL/min was applied and a 

sampling rate of 1 Hz was used. Six different RNA ligands (original and 5 mutants) 

were attached to the 5’ end of a generic 48 nt DNA ligand strand, which is part of 

the DNA linker system on the heliX adapter chip surface. All oligonucleotides were 

synthesized by Ella Biotech. The ligand strand was hybridized with an adapter strand 

carrying the fluorophore. Different fluorophores were tested towards their sensitivity 

for protein-RNA interactions. The green fluorophore Gb showed the most significant 

signal change. The other half of the adapter strand is complementary to a DNA 

anchor strand, which is pre-attached to the chip surface. The immobilization of the 
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RNA used a standard functionalization procedure on the heliX device. Kinetic rate 

constants and affinities were obtained by fitting the experimental data with 

theoretical binding models implemented in the heliOS software (Dynamic 

Biosensors). Exponential decay models were used. As a negative control to check 

for unspecific protein-RNA binding, the single-strand RNA sequence 

CGGCGCCGC was used (without any binding motif). All data were referenced with 

a blank run and with the negative control.  

2.7. Gel electrophoresis 

Mobility shift assays with a purified MSI-1* protein and its cognate RNA motif were 

performed. The RNA motif was generated by in vitro transcription with the 

TranscriptAid T7 high yield transcription kit (Thermo) from a DNA template. It was 

then purified using the RNA clean and concentrator column (Zymo) and quantified 

in a NanoDrop. Bovine serum albumin (BSA) was used as a control protein (at 30 

μM). Reactions with different combinations of elements were prepared (MSI-1* at 

45 μM, RNA at 11 μM, and oleic acid at 1 mM). Reactions with concentration 

gradients of MSI-1* (from 0 to 45 μM) and oleic acid (from 0 to 2 mM) were also 

performed. Reactions were incubated for 30 min at 37 °C. Reaction volumes were 

then loaded in 3% agarose gels prepared with 0.5X TBE and stained using RealSafe 

(Durviz). Gels ran for 45 min at room temperature applying 110 V. The GeneRuler 

ultra-low range DNA ladder (10-300 bp, Thermo) was used. This staining served to 

reveal the RNA and oleic acid (free or in complex with the MSI-1* protein) [63,64]. 

In addition, gels were soaked for 10 min in the Coomassie blue stain (Fisher) at room 

temperature with shaking to reveal the proteins. Gels were then soaked in a 

destaining solution overnight to remove the excess of blue stain. Pictures were taken 

with the Imager2 gel documentation system (VWR). 
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2.8. Microscopy 

LB-agar plates seeded with E. coli MG1655-Z1 cells co-transformed with pRM1+ 

and pREP6 or pREP7 were grown overnight at 37 °C. Lactose (1 mM) and oleic acid 

(20 mM) were used as supplements. The plates were irradiated with blue light and 

images were acquired with a 2.8 Mpixel camera with a filter for green fluorescence 

in a light microscope (Leica MSV269). The commercial software provided by Leica 

was used to adjust the visualization of the differential fluorescence among plates. 

The fluorescence intensity of the colonies was quantified with Fiji [65]. 

2.9. Mathematical modeling 

On the one hand, Hill equations were used to empirically model sfGFP expression 

with lactose/IPTG, eBFP2 expression with lactose, and sfGFP expression with 

eBFP2 expression. On the other hand, a system of ordinary differential equations 

was developed to model the dynamic response of the synthetic gene circuit from a 

bottom-up approach. The system accounted for the intracellular mRNA and protein 

concentrations, considering a scenario of equilibrium to model both LacI-DNA and 

MSI-1*-RNA binding. Parameter values were obtained by nonlinear fitting against 

our experimental data. 

2.10. Molecular visualization in silico 

The RMM1 of MSI-1 protein structure determined by nuclear magnetic resonance 

was downloaded from the UniProt database (www.uniprot.org) [66]. A 3D structure 

of the RNA motif subsequence involving the two RUnAGU repeats was predicted 

with the RNAComposer software [67]. The oleic acid molecule was downloaded 

from the ChemSpider database (www.chemspider.com). All the molecules were 

loaded, visualized, colored, trimmed (where necessary), and manually docked using 

the open source PyMol software (Schrödinger; pymol.org).
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3. RESULTS 
3.1. A Musashi protein can down-regulate translation in bacteria 

From the amino acid sequence of M. musculus MSI-1, we generated a nucleotide 

sequence with codons optimized for E. coli expression. Knowing that the C-terminus 

of MSI-1 is of low structural complexity [24], we cloned a truncated version of the 

gene encompassing the first 192 amino acids, which include the two RRMs, to 

implement our synthetic circuit (Fig. 3). The resulting protein (termed MSI-1*) was 

expressed from a synthetic PL-based promoter repressed by LacI (termed PLlac) [25] 

lying in a high copy number plasmid. This allowed controlling the expression of the 

heterologous RNA-binding protein at the transcriptional level with lactose or 

isopropyl β-D-1-thiogalactopyranoside (IPTG) in a genetic background over-

expressing LacI. As a regulated element, we used the superfolder green fluorescent 

protein (sfGFP) [26], which was expressed from a constitutive promoter (J23119) 

lying in a low copy number plasmid. An RNA motif obtained by affinity elution-

based RNA selection (SELEX) containing two copies of the consensus recognition 

sequence (viz., GUUAGU and AUUUAGU) [20] was placed in frame after the start 

codon of sfGFP. This motif folds into a stem-loop structure that allows stabilizing 

the exposure of the recognition sequence to the solvent. In this way, MSI-1* can 

block the progression of the ribosome on the regulated gene in the initial phase. This 

mode of action differs from the natural one in mammals, in which MSI-1 binds to 

the 3’ untranslated region of its target mRNA (Numb) to repress translation by 

disrupting the activation function of the poly(A)-binding protein [27]. 

Here, considering lactose (or IPTG) and oleic acid as the two inputs and 

sfGFP as the output, MSI-1* being an internal allosteric regulator operating at the 

post-transcriptional level, an IMPLY gate would model the logic behavior of the 

resulting circuit (i.e., sfGFP would only turn off with lactose and without oleic acid 

in the medium). 
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Fig. 3 Schematic of the synthetic gene circuit engineered in E. coli. A truncated version of MSI-1 
(termed MSI-1*) was expressed from the PLlac promoter to be induced with lactose (or IPTG) in a 
genetic background over-expressing LacI. sfGFP was used as a reporter expressed from a constitutive 
promoter (J23119) and under the control of a suitable RNA motif recognized by MSI-1* in the leader 
coding region of the transcript (viz., located after the start codon). The activity of MSI-1* could in 
turn be allosterically inhibited by oleic acid. In electronic terms, this circuit implements an IMPLY 
logic gate. The inset shows the predicted secondary structure of the leader region of the reporter 
mRNA. Within the motif (blue shaded), the consensus recognition sequences (RUnAGU) are bolded 
and the minimal cores (UAG) are marked in red. System implemented with pRM1+ and pREP6. 

We first characterized by bulk fluorometry the dose-response curve of the 

system using a lactose concentration gradient up to 1 mM. Our data show that MSI-

1* down-regulated sfGFP expression by 2.5-fold (Fig. 4). The repression of sfGFP 

as a function of lactose was modelled by the following Hill equation  

(sfGFP) =	
𝐴a

1 + :(𝐿𝑎𝑐𝑡𝑜𝑠𝑒)𝐾a
;
𝑛1 +	𝐵1	, 

where K1 is the regulatory coefficient, n1 the Hill coefficient, A1 + B1 the maximal 

expression level, and B1 the basal expression level at full repression. In the case of 

sfGFP, its concentration is given by the normalized green fluorescence signal in 

arbitrary units (AU). The adjusted parameter values are A1 = 90.7 AU, B1 = 62.1 AU, 

K1 = 99.1 μM, and n1 = 1.70. Fitting a Hill equation, we obtained a regulatory 
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coefficient of 99 μM (lactose concentration at which the repression is half of the 

maximal) and a Hill coefficient of 1.7. 

 
Fig. 4 Dose-response curve of the system using lactose as inducer (up to 1 mM). The inset shows the 
dynamic range of the response using lactose or IPTG (1 mM). 

We also observed that IPTG (a synthetic compound) triggered a very similar 

response (Fig. 4, inset). Also, the following Hill equation models the repression of 

sfGFP by IPTG: 

(sfGFP) = 	
𝐴N

1 + :(𝐼𝑃𝑇𝐺)𝐾N
;
𝑛2 + 	𝐵2	, 

To further inspect the activity of the RNA-binding protein, we filtered out the 

transcriptional regulatory effect. For that, we expressed the enhanced blue 

fluorescent protein 2 (eBFP2) [28] from the PLlac promoter to obtain the 

corresponding dose-response curve with lactose. In this way, eBFP2 expression was 

a proxy of MSI-1* expression, which allowed representing the transfer function of 

the engineered regulation (Fig. 5a). 
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Fig. 5 a) Transfer function of the system (between sfGFP and MSI-1*). The inset shows the dose-
response curve of eBFP2 expressed from the PLlac promoter (proxy of MSI-1* expression) with 
lactose. b) Scatter plot of the dynamic response of the system in the Crick space (translation rate vs. 
transcription rate). The dose-response curve of mScarlet expressed from the J23119 promoter with 
lactose was used to perform the decomposition (vertical line fitted to 48 AU/h). The inset shows the 
growth rate of the cells for each induction condition (horizontal line fitted to 0.55 h-1). In all cases, 
points correspond to experimental data, while solid lines come from adjusted mathematical models. 
Error bars correspond to standard deviations (n = 3). 

A Hill equation with no cooperative binding (i.e., Hill coefficient of 1) 

explained the data with sufficient agreement, suggesting that only one protein 

interacted with a given mRNA (i.e., each RRM of MSI-1* binds to a consensus 

sequence repeat, in agreement with a previous structural model [24]). We also 

measured the cell growth rate for all induction conditions, finding that the values 

were almost constant (Fig. 5b, inset). This indicates that the expression of the 

mammalian protein did not produce a significant burden to the bacterial cell. In 

simple terms, protein expression comes from the product of the transcription and 

translation rates of the gene. 

Hence, we examined such a decomposition in the case of sfGFP expression 

regulated by MSI-1*. Of note, the low copy number plasmid harbors an additional 

transcriptional unit to express the monomeric red fluorescent protein mScarlet [29] 

from a constitutive promoter (J23119). We then monitored its expression profile with 

lactose. Assuming that sfGFP and mScarlet were equally transcribed, as they were 

expressed from the same promoter, and that the translation rate of mScarlet was 
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constant, the product of mScarlet expression and cell growth rate was considered a 

proxy of the transcription rate of sfGFP. Moreover, the ratio of sfGFP and mScarlet 

expressions was a proxy of the translation rate of sfGFP [30]. This served us to 

represent the dynamics of the system in a plane defined as translation rate vs. 

transcription rate (termed Crick space [31]), highlighting that the change in sfGFP 

expression with lactose comes indeed from translation regulation (Fig. 5b). Finally, 

to evaluate the heterogeneity of the response within a bacterial population, we 

performed single-cell measurements of sfGFP expression by flow cytometry. 

Unimodal distributions able to shift in response to lactose were observed (Fig. 6). 

Setting a threshold to categorize expression, we found that the percentage of cells in 

the ON state dropped from 87% to 15% upon addition of 1 mM lactose (Fig. 6, inset). 

In sum, our results show that MSI-1* can regulate translation in a specific manner in 

E. coli, and hence that eukaryotic regulators can be borrowed to be functional 

elements in prokaryotes. 

 
Fig. 6 Probability-based histograms of sfGFP expression from single-cell data for different lactose 
concentrations. The inset shows the percentage of cells in the ON state (sfGFP expressed), according 
to a specified threshold, for each lactose concentration. AU, arbitrary units. 
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3.2. Mechanistic insight into the engineered regulation based on a protein-RNA 
interaction 

We then introduced a series of point mutations into the SELEX RNA motif to assess 

their effect over the regulatory activity of the RRM-containing protein (Fig. 7a,9a). 

These mutations change the consensus recognition sequence of at least one repeat. 

A characterization of all systems revealed that the mutations affected both the 

maximal level and fold change of sfGFP expression (Fig. 7b). 

 
Fig. 7 a) Sequences and predicted secondary structures of the different RNA motif variants for MSI-
1 binding analyzed in this work. Point-mutations indicated in red. Three-dimensional representations 
of the RRM1 and RNA motif are also shown. Within the RRM1, the region that recognizes the RNA 
is shown in blue. b) Dynamic range of the response of the different genetic systems using lactose (1 
mM). c) Characterization of the system response with lactose using pREP4 as a reporter plasmid 
(induction with 1 mM lactose). Error bars correspond to standard deviations (n = 3). On the top, 
sequence of the leader RNA of sfGFP in this case. 

Of note, a single point mutation in one repeat leading to RUnCGU (mutant 

1) was quite detrimental for the MSI-1*-based regulation (only 1.4-fold reduction in 

sfGFP expression). This agrees with the prior observation that,
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within the consensus sequence, UAG is a minimal core that determines the specific 

recognition by MSI-1 [32]. 

 
Fig. 8 Schematics of the heliX biosensor platform. A double-strand DNA nanolever was immobilized 
on a gold electrode of the chip. The nanolever carried a fluorophore in one end and the RNA motif 
for MSI-1 binding in the other. Binding between MSI-1* (injected analyte) and RNA led to a 
fluorescence change, whose monitoring in real time served to extract the kinetic constants that 
characterize the interaction. d) Scatter plot of the experimentally-determined kinetic constants of 
association and dissociation between the protein and the RNA for all systems (original and 5 mutants). 
Means and deviations calculated in log scale (geometric). e) Correlation between the maximal sfGFP 
expression level (in absence of lactose) and the translation rate predicted with RBS calculator. Linear 
regression performed. f) Correlation between the fold change in sfGFP expression and the dissociation 
constant (KD). Deviations calculated by propagation. Linear regression performed (vs. 1/KD). Blue 
shaded areas indicate 95% confidence intervals. In all cases, error bars correspond to standard 
deviations (n = 3). AU, arbitrary units. 

A double point mutation changing the minimal cores of the two repeats (UAC 

rather than UAG; mutant 5) also resulted in a detrimental action, but not to a greater 

extent. We also engineered a new reporter system with a minimal RNA motif 

consisting of a single copy of the shortest possible consensus sequence (AUAGU), 

but its characterization showed no apparent regulation by MSI-1* (Fig. 7c). Taken 

together, two copies of the consensus sequence seem necessary for a successful 

regulation of protein expression. 
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To relate the cellular effects with protein-RNA interactions, we obtained a 

purified MSI-1* preparation in order to perform in vitro binding kinetics assays. For 

that, a gene coding for a truncated version of the human MSI-1 was expressed from 

a T7 polymerase promoter in E. coli. With respect to the M. musculus version, this 

protein only differs in one residue of RRM2, which is the subsidiary domain for RNA 

recognition (note also that the human and mouse proteins recognize the same 

consensus sequence [32]; data not shown). 

 
Fig. 9 Characterization of different mutant RNA motifs in terms of binding kinetics against the MSI-
1* protein. a) Predicted secondary structures of original and mutant RNA motifs; mutations are 
marked in red. b) Binding and unbinding kinetic curves for the different RNA sequences 
(representative samples). The kinetic constants were extracted from mono-exponential model fits. For 
the original, mutant 1, mutant 2, and mutant 4 RNA motifs, a bi-exponential model was also explored 
to describe the binding kinetics, reflecting two types of interactions, although with little improvement. 

To avoid the necessity of labelling the molecules of interest and allow 

working with very low amounts of protein and RNA, we used the switchSENSE 

technology, which allows measuring molecular dynamics on a chip (Fig. 8a) [33]. 

Fig. 9b summarizes the resulting protein-RNA association and dissociation rates (kON 

and kOFF, respectively; see also Table 2. 
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Table 2. Inferred kinetic constants (kON, kOFF) and the resulting dissociation constant (KD) for each 
sequence and replicate. 

RNA motif 
ligand 

replicate kon (M-1s-1) koff (s-1) KD (nM) 

orig 1 (23.600 ± 0.400) × 106 (10.10 ± 0.10) × 10-3 0.427 ± 0.007 

orig 2 (17.000 ± 0.300) × 106 (13.00 ± 0.10) × 10-3 0.760 ± 0.010 

orig 3 (14.200 ± 0.400) × 106 (10.40 ± 0.10) × 10-3 0.728 ± 0.010 

mut1 1 (22.600 ± 2.400) × 106 (33.10 ± 1.40) × 10-3 1.470 ± 0.170 

mut1 2 (25.100 ± 3.500) × 106 (22.10 ± 0.90) × 10-3 0.880 ± 0.100 

mut1 3 (30.600 ± 3.900) × 106 (90.90 ± 1.40) × 10-3 2.970 ± 0.380 

mut2 1 (16.700 ± 2.000) × 106 (40.80 ± 2.20) × 10-3 2.440 ± 0.3200 

mut2 2 (12.600 ± 3.300) × 106 (27.20 ± 2.90) × 10-3 2.160 ± 0.600 

mut2 3 (5.700 ± 1.710) × 106 (54.40 ± 3.20) × 10-3 9.550 ± 2.930 

mut3 1 (5.700 ± 0.210) × 106 (45.40 ± 0.50) × 10-3 7.970 ± 0.300 

mut3 2 (9.000 ± 0.200) × 106 (31.50 ± 0.20) × 10-3 3.510 ± 0.100 

mut3 3 (6.950 ± 0.530) × 106 (31.60 ± 1.00) × 10-3 4.540 ± 0.370 

mut4 1 (14.600 ± 0.000) × 106 (8.80 ± 0.04) × 10-3 0.600 ± 0.008 

mut4 2 (17.000 ± 0.400) × 106 (12.30 ± 0.10) × 10-3 0.723 ± 0.018 

mut4 3 (14.200 ± 0.300) × 106 (7.96 ± 0.07) × 10-3 0.550 ± 0.014 

mut5 1 (0.596 ± 0.000) × 106 (60.70 ± 2.50) × 10-3 102.000 ± 11.000 

mut5 2 (1.540 ± 0.190) × 106 (87.60 ± 3.60) × 10-3 57.000 ± 7.300 

mut5 3 (1.760 ± 0.180) × 106 (202.00 ± 5.00) × 10-3 115.000 ± 12.00 

In the case of the original RNA motif, we found an association rate of              

1.1 nM-1min-1, which means that a single regulator molecule would take 1-3 min to 

find its target in the cell, and a residence time of the protein on the RNA of 1.5 min 

(given by 1/kOFF). Of note, the reported value of kON is relatively close to the upper 

limit imposed by the diffusion rate (~1 nM-1s-1). This fast rate suggests that MSI-1* 

is able to find its target mRNA in E. coli, competing with ribosomes and 

ribonucleases, and then achieve translation regulation. We also found that a single 
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mutation in one of the two UAG minimal cores (mutants 1 and 2) led to similar 

association but faster dissociation (almost 4 times faster dissociation), whereas a 

double mutation affecting the two cores (mutant 5) disturbed both phases (almost 15 

times slower association and 10 times faster dissociation). The dissociation constant 

(KD = kOFF/kON) was 0.62 nM for the original system, while 87 nM for mutant 5. The 

switchSENSE technology allowed revealing that affinity on the subnanomolar scale, 

refining a previous estimate of 4 nM obtained by gel shift assays [20]. 

To contextualize these values, we compared to the binding kinetics of 

MS2CP, a phage RNA-binding protein that has evolved in a prokaryotic context and 

that we recently exploited to study how expression noise emerges and propagates 

through translation regulation [34]. Previous work disclosed an association rate to 

the cognate RNA motif of 0.032 nM-1min-1 and a residence time of 12 min, leading 

to a dissociation constant of 2.6 nM [35]. Thus, MSI-1* would target RNA faster 

than MS2CP, but once this happened the phage protein would remain bound longer. 

Next, we tried to predict the impact of the mutations on sfGFP expression. On the 

one hand, we used an empirical free-energy model (RBS calculator) to obtain an 

estimate of the mRNA translation rate from the sequence [36]. However, only a poor 

correlation (R2=0.16) with the maximal expression level was observed (Fig. 8c), 

suggesting that additional variables should be considered. For example, it was 

surprising the higher expression level in the case of mutant 4, despite a minimal 

change in the structure of the RNA motif (Fig. 9a). On the other hand, when the fold 

change was correlated with the inverse of the dissociation constant (1/KD, i.e., the 

equilibrium constant) better results were obtained (R2 = 0.75; Fig. 8d). 

Mutant 1 is illustrative in this case because, even though a fast association rate was 

preserved (1.6 nM-1min-1), it displayed a marginal regulatory activity as a result of a 

shorter residence time (0.41 min). This indicates that the underlying protein-RNA 

interaction in the bacterial circuit was close to thermodynamic equilibrium. 
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3.3. A mathematical model captured the dynamic response of the system 

Mathematical model and data analysis were performed in collaboration with the research team at 
our lab. Even though my contribution in this part is limited because I am not an expert in 
mathematical modelling, I believe it was necessary to add the following sections for the integrity of 
the thesis and relevance of the topic. 

Translation regulation is more challenging than transcription regulation because 

mRNA is unstable compared to DNA, especially in bacteria. In E. coli, in particular, 

the average mRNA half-life is about 5 min [37]. However, it is possible to derive a 

common mathematical framework from which to analyze the dynamics of both 

regulatory modes (Fig. 10a). The fold change in protein expression is a suitable 

mesoscopic parameter that is directly related to the kinetic parameters that 

characterize the interaction in the cell [38]. Using mass action kinetics, we obtained 

a general mathematical description of the fold change as a function of the regulator 

concentration (R), the association and dissociation rates, the leakage fraction of 

RNA/peptide-chain elongation, and the nucleic acid degradation rate (data not 

shown). To visualize the impact of the different parameters, we represented the fold 

change equation as a heatmap. When there is no nucleic acid degradation (DNA), a 

linear dependence between the first-order association rate (kONR) and kOFF is 

established to maintain a given fold change value (Fig. 10b), which would 

correspond to the case of transcription regulation. Accordingly, our model converges 

to the classical description of fold = 1 + R/KD. However, if the nucleic acid degrades 

quickly (mRNA), the dependence between the first-order kinetic rates becomes 

nonlinear (Fig. 10c). Indeed, in the case of translation regulation, it is important to 

note that when kONR is lower than the mRNA degradation rate (i.e., the mRNA is 

degraded faster than the protein binds), the functionality is greatly compromised. To 

overcome this barrier, the regulator needs to be highly expressed, as MSI-1* is in our 

system (we estimate R > 1 μM with 1 mM lactose). Furthermore, when the residence 

time is much longer than the mRNA half-life (i.e., the mRNA is degraded before the 

protein unbinds), KD is not a suitable parameter to characterize the regulation, which 

is solely association-dependent, resulting in non-equilibrium thermodynamics [39]. 
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Fig. 10 A mathematical model captures the dynamic response of the system. a) Schematics of gene 
regulation at different levels with proteins that bind to nucleic acids (DNA or RNA). On the left, 
schematic of transcription regulation (e.g., LacI regulating MSI- 1* expression). On the right, 
schematic of translation regulation (e.g., MSI-1* regulating sfGFP expression). A general 
mathematical expression (grey shaded) was derived to calculate the fold change in protein expression 
as a function of the regulator concentration (R), the association and dissociation rates (kON and kOFF), 
the elongation leakage fraction (𝜀), and the nucleic acid degradation rate (𝛿). ). b) Heatmap of the fold 
change as a function of kONR and kOFF (i.e., the first-order kinetic rates that characterize the protein-
DNA/RNA interaction) when 𝛿 = 0 and 𝜀 = 0.1. This would correspond to transcription regulation. c) 
Heatmap of the fold change when 𝛿 = 0.14 min-1 and 𝜀 = 0.1. This would correspond to translation 
regulation. 

According to the aforementioned kinetic rates, this would be the case for 

MS2CP, but not for MSI-1* (i.e., both kON and kOFF are instrumental to describe the 

regulation exerted by MSI-1*). Furthermore, given the 2.5-fold down-regulation in 

our system, we estimated an elongation leakage fraction of 40% (using the fold 

change equation in the limit R ® ¥). This leakage would come from the ability of 
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ribosomes to elongate even if MSI-1* is bound and their ability to bind sooner to the 

sfGFP mRNA due to a conserved transcription-translation coupling mechanism [40]. 

 
Fig. 11 A mathematical model captures the dynamic response of the system. a) Total red fluorescence 
of the cell population (SmScarlet) over time without and with 1 mM lactose. In this case, the cell 
growth rate was fitted to 0.80 h-1. b) Total green fluorescence of the cell population (SsfGFP) over 
time without and with 1 mM lactose. The inset shows the dynamic response for different lactose 
concentrations. c) Correlation between the experimental values of SsfGFP at different times and for 
different lactose concentrations and the predicted values from a mathematical model that accounts for 
population growth and gene regulation. Data for t > 2 h. Linear regression performed. d) Ratio of total 
green and red fluorescence as a proxy of cellular sfGFP expression over time. Ratio not represented 
at early times due to the high error obtained given the low number of cells present in the culture (grey 
shaded area). Deviations calculated by propagation. In all cases, points correspond to experimental 
data, while solid lines come from an adjusted mathematical model. Error bars correspond to standard 
deviations (n = 3). AU, arbitrary units. 

In addition, we studied the transient response of the gene circuit with lactose, 

as both MSI-1* and sfGFP expressions changed with time. For that, we quantified 

the total red fluorescence of the cell population (Fig. 11a), which is an estimate of 

the total number of cells, and the total green fluorescence (Fig. 11b), which comes 

from the composition of population growth and gene regulation. We developed a 
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bottom-up mathematical model based on differential equations to predict sfGFP 

expression in the cell (data not shown), as well as a phenomenological model for the 

bacterial growth (data not shown). The parameter values were adjusted with the 

curves without and with 1 mM lactose. Then, we used the mathematical model to 

predict the transient responses for different intermediate lactose concentrations, 

finding excellent agreement with the experimental data (R2= 0.98; Fig. 11c). We also 

characterized the time-course response of the circuit with IPTG, encountering similar 

results (Fig. 12a,b). 

 
Fig. 12 Characterization of the system response with IPTG (implemented with pRM1+ and pREP6). 
a) Dose-response curve. Error bars correspond to standard deviations (n = 3). b) Time-course response 
for different inducer concentrations (average of 4 clones). The fluorescence of the whole population 
is represented (ΣsfGFP). 

Moreover, to explore the maintenance of the regulatory behavior when the 

cell physiology changes, we characterized cells growing in solid medium with a 

repurposed LigandTracer technology (Fig. 13a), which initially was developed to 

monitor molecular interactions in real time [41]. In this case, a significant difference 

in the total red fluorescence was observed without and with 1 mM IPTG, suggesting 

that MSI-1* expression was costly for the cell in these conditions. Besides, the total 

green fluorescence of the growing population was recapitulated using the model with 

a 2.6-fold down-regulation of cellular sfGFP expression, which is in tune with the 

results in liquid medium (Fig. 13b,c). 
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Subsequently, we analyzed the intracellular response. The time-dependent ratio of 

total green and red fluorescence was used as a proxy of sfGFP expression. A delay 

in the response is expected because MSI-1* needs to be produced upon addition of 

lactose [42]. Nevertheless, our model predicted a faster response than experimentally 

observed (Fig. 11d). Overall, this quantitative inspection of translation regulation 

backs connections between molecular attributes and cellular behavior. 

 
Fig. 13 a) Schematics of the LigandTracer technology repurposed for characterizing bacterial cells 
expressing fluorescent proteins (implemented with pRM1+ and pREP6). b) Real-time green 
fluorescence of the whole population (ΣsfGFP) upon induction with IPTG. c) Real-time red 
fluorescence (ΣmScarlet). Points correspond to the experimental data, while solid lines come from an 
adjusted mathematical model. 
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3.4. Rational redesign of the targeted transcript to enhance the dynamic range 

of the response 

The presence of stem-loop structures in the leader coding region contributes to lower 

the expression level. The more stable and closer to the start codon, the greater the 

impact on expression [43]. We hypothesized that, by destabilizing the RNA motif 

for MSI-1 binding, we would obtain an alternative regulatory system with higher 

expression levels. Accordingly, a new reporter system was engineered removing 

three base pairs from the stem, maintaining the two consensus recognition sequences. 

An experimental analysis revealed a 4.9-fold increase of the maximal sfGFP 

expression level and a 2.0-fold down-regulation with 1 mM lactose (Fig. 14, redesign 

1). We then investigated the possibility of increasing the dynamic range of the 

response by placing three consecutive RNA motifs. However, we did not observe a 

greater down-regulation with 1 mM lactose (Fig. 14, redesign 2), suggesting that the 

additional motifs far away from the start codon had no effect; what was noticed is an 

effect on the maximal expression level. 

 
Fig. 14 Dynamic range of the response of two redesigned genetic systems using lactose (1 mM). The 
predicted secondary structures of the leader regions of the reporter mRNAs are shown on the right. 
Redesign 1 (red1) was implemented with pREP4b and redesign 2 (red2) with pREP4b3x, which 
contains three MSI-1 binding sites. These stem-loop structures are less stable than the original one. 

We also designed fusion proteins, with eBFP2 or MS2CP connected with a glycine-

serine linker in the C-terminal region of MSI-1*, thereby envisioning a greater ability  
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to interfere with the ribosome due to a bigger size of the resulting protein. However, 

no suitable clones were obtained despite multiple attempts, stressing the difficulty of 

recombinant protein expression (data not shown).  

As a further strategy to enhance the dynamic range of the response, we 

redesigned the 5’ untranslated region (UTR) of sfGFP to accommodate two 

additional RUnAGU repeats (viz., GUUUAGU and AUUUAGU) flanking the 

ribosome binding site (RBS), maintaining the original RNA motif after the start 

codon. Indeed, this is a widespread post-transcriptional regulatory strategy in 

prokaryotes, as it happens e.g. with the MS2 phage replicase [44]. We characterized 

by bulk fluorometry the dose-response curve of this new system, revealing an 8.6-

fold down-regulation of sfGFP expression by MSI-1* (Fig. 15, redesign 3). 

 
Fig. 15 Dose-response curve of another redesigned genetic system (redesign 3, red3) using lactose as 
inducer (up to 1 mM). MSI-1* down-regulated sfGFP expression by 8.6-fold. The inset shows the 
scatter plot of the dynamic response in the Crick space (translation rate vs. transcription rate; vertical 
line fitted to 27 AU/h). The predicted secondary structure of the leader region of the reporter mRNA 
containing two MSI-1 binding sites (blue shaded) is shown on the right. In the 5’ UTR, the binding 
site is formed by two RUnAGU repeats that flank the RBS. In the leader coding region, the binding 
site is the original one. The minimal cores (UAG) are marked in red. Redesign 3 was implemented 
with pREP7. Points correspond to experimental data, while the solid line comes from an adjusted 
mathematical model. In all cases, error bars correspond to standard deviations (n = 3). 
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This was a substantial increase in performance with respect to the 2.5-fold 

down-regulation of the system shown in Fig. 3. At the single-cell level, we found a 

91% of ON cells in the uninduced state that decreased to 5.3% with 1 mM lactose 

(Fig. 16). Taken together, our data present MSI-1* as a powerful heterologous 

translation regulator in bacteria. 

 
Fig. 16 Probability-based histograms of sfGFP expression from single-cell data for different lactose 
concentrations (redesign 3). The inset shows the percentage of cells in the ON state (sfGFP 
expressed), according to a specified threshold, for each lactose concentration. AU, arbitrary units. 

3.5. The regulatory activity of a Musashi protein in bacteria can be externally 

controlled by a fatty acid 

The ability of proteins to respond to small molecules is instrumental for 

environmental and metabolic sensing. Previous work revealed that MSI-1 can be 

allosterically inhibited by w-9 monounsaturated fatty acids and, in particular, by 

oleic acid [21], an 18-carbon fatty acid naturally found in various animal and plant 

oils (e.g., olive oil). Oleic acid binds to the RRM1 domain of MSI-1 and induces a 

conformational change that prevents RNA recognition (Fig. 17). 
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Fig. 17 Oleic acid inhibits the regulatory activity of Musashi-1 in bacteria. Three-dimensional 
structural schematic of the allosteric regulation. RRM1 of MSI-1 is shown alone, in complex with the 
RNA motif, and in complex with oleic acid. 

To gain insight about the interactions between the elements of our system, 

we performed gel electrophoretic assays using the purified MSI-1* protein, the RNA 

motif as a label-free sRNA molecule, and oleic acid. The different mobility of the 

nucleic acids upon binding to proteins and the coincident staining capacity of nucleic 

and fatty acids were exploited. 

 
Fig. 18 Oleic acid inhibits the regulatory activity of Musashi-1 in bacteria. a) Three-dimensional 
structural schematic of the allosteric regulation. RRM1 of MSI-1 is shown alone, in complex with the 
RNA motif, and in complex with oleic acid. b) Gel electrophoretic assay to test the allosteric 
inhibition of MSI-1* with oleic acid. A purified MSI-1* protein (45 μM), the RNA motif as a label-
free sRNA molecule (11 μM), and oleic acid (1 mM) were mixed in a combinatorial way in vitro. On 
the left, nucleic acid-stained gel. On the right, protein-stained gel (Coomassie). The different formed 
species are indicated. M denotes molecular marker (GeneRuler ultra-low range DNA ladder, 10-300 
bp, Thermo). BSA was used as a control. 
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We confirmed the MSI-1*-RNA interaction using a protein concentration 

gradient in this in vitro set up (Fig. 18a), and we found that the interaction was 

completely disrupted in presence of 1 mM oleic acid (Fig. 18). Furthermore, using 

an oleic acid concentration gradient, we obtained a half-maximal effective inhibitory 

concentration of about 0.5 mM (Fig. 19b). 

 
Fig. 19 Gel electrophoretic assays to test the MSI-1*-RNA and the MSI-1*-oleic acid interactions 
(nucleic acid-stained gels). a) Interaction of MSI-1* with the RNA motif. RNA added at 11 μM. b) 
Interaction of MSI-1* with oleic acid. RNA added at 11 μM and MSI-1* at 45 μM. M, molecular 
marker (GeneRuler ultra-low range DNA ladder, 10-300 bp, Thermo). 

Subsequently, we assessed the effect of oleic acid over the regulatory activity 

of MSI-1* expressed in E. coli. This bacterium has evolved a machinery to uptake 

fatty acids from the environment. FadL and FadD are two membrane proteins that 

act as transporters, and FadE is the first enzyme that processes the fatty acid via the 

b-oxidation cycle [45]. Because of the high turbidity of the cell culture observed in 

presence of oleic acid, we characterized the system by single-cell measurements of 

sfGFP expression by flow cytometry. The percentage of cells in the ON state 

increased from 10% (with 1 mM lactose) to 49% upon addition of 20 mM oleic acid 

(Fig. 20). However, the initial 93% of ON cells observed in absence of lactose was 

not recovered. Arguably, oleic acid was partially degraded once it entered the cell.  
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Fig. 20 Probability-based histograms of sfGFP expression from single-cell data for different induction 
conditions (1 mM lactose or 1 mM lactose + 20 mM oleic acid) for the original system (implemented 
with pRM1+ and pREP6). The inset shows the percentage of cells in the ON state (sfGFP expressed), 
according to a specified threshold, for each condition. 

Moreover, a controlled heterogeneity of the response with oleic acid was 

observed. In particular, we found a dispersion of the unimodal distribution 

(quantified as the Fano factor, i.e., the ratio between variance and mean) 2.9-fold 

higher in the case of induction with 0.1 mM lactose than with 1 mM lactose and 20 

mM oleic acid, despite having similar mean expression levels. As the former 

response sensitivity was dominated by transcription regulation and the latter by 

translation regulation, that result agrees with previous work suggesting that 

molecular noise is buffered when the control mechanism is post-transcriptional [34]. 

In addition, we investigated this allosteric regulation by imaging the 

fluorescence of bacterial colonies grown in solid medium with different inducers. In 

stationary phase, FadE and the rest of oxidative enzymes could be saturated with the 

fatty acids generated from the membrane degradation [46], oleic acid then having 

more time to interact with MSI-1*. Notably, we found a substantial inhibition of the 

repressive action of MSI-1* with 20 mM oleic acid (Fig. 21a,c). The system 

implemented with the redesign-3 reporter displayed an even better dynamic behavior 

in response to lactose and oleic acid (Fig. 22a,b). Conclusively, these results illustrate 

how the plasticity of RRM-containing proteins (e.g., MSI-1) can be exploited to 
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engineer, even in simple organisms, gene regulatory circuits that operate in an 

integrated way at the transcriptional, translational, and post-translational levels. 

 
Fig. 21 Oleic acid inhibits the regulatory activity of Musashi-1 in bacteria. a) Images of E. coli 
colonies harboring pRM1+ and pREP6. Bacteria were seeded in LB-agar plates with suitable inducers 
(1 mM lactose or 1 mM lactose + 20 mM oleic acid). Fluorescence and bright field images are shown. 
On the bottom, schematics of the working mode of the synthetic gene circuit according to the different 
induction conditions. b) Quantification of the green fluorescence of the colonies from panel a (denoted 
by SsfGFP as it is from populations; n = 5). c) Images of E. coli colonies harboring pRM1+ and 
pREP7. f) Quantification of the green fluorescence of the colonies from panel c. AU, arbitrary units. 

4. DISCUSSION 

The successful incorporation of the mammalian MSI-1 protein as a translation factor 

in E. coli highlights, in first place, the versatility of RRM-containing proteins to 

function as specific post-transcriptional regulators in any living cell, from 

prokaryotes to eukaryotes. Our data show that the protein-RNA association phase is 

very fast, which is suitable for regulation even in cellular contexts in which RNA 

molecules are short-lived, such as in E. coli [37]. Nonetheless, it is important to stress 

that the kinetic parameters in vivo might differ from those measured in vitro due to 

off-target bindings and crowding effects [47]. 
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Moreover, our data show that a down-regulation of translation rate up to 8.6-

fold can be achieved, with an appropriate design of the target mRNA leader region, 

and that the engineered cell can sense oleic acid from the environment. Here, the C-

terminal low-complexity domain of the native MSI-1 was discarded to create MSI-

1* [24], in order to increase solubility, even though this domain might contribute to 

RNA binding [48]. Interestingly, proteins associated to clustered regularly 

interspaced short palindromic repeats (CRISPR), which belong to the prokaryotic 

immune system, contain distorted RRM versions [49]. Some CRISPR proteins might 

have evolved, for example, from an ancestral RRM-based (palm) polymerase after 

duplications, fusions, and diversification. Noting that the palm domain indeed 

presents an RRM-like fold [50], we hypothesize that a boost of functionally diverse 

RRM-containing proteins took place once the polymerases were confined into the 

nucleus, as the pressure for efficient replication was relieved in the cytoplasm, which 

would provide a rationale on the unbalance noticed between eukaryotes and 

prokaryotes [7,51]. In second place, our results pave the way for engineering more 

complex circuits in bacteria with plastic and orthogonal RNA-binding proteins, such 

as MSI-1, capable of signal multiplexing. 

Nature is a formidable reservoir of functional genetic material sculpted by 

evolution that can be exploited to (re)program specific living cells [10]. However, to 

overcome biological barriers, transgenes usually come from related organisms or 

cognate parasites, at the cost of limiting the potential engineering. Therefore, efforts 

to borrow functional elements from highly diverse organisms are suggestive (e.g., 

regulatory proteins from mammals to bacteria), with the ultimate goal of developing 

industrial or biomedical applications. Notably, advances in synthetic biology have 

pushed the bioproduction of a wide variety of compounds in bacteria as a result of a 

better ability to fine tune enzyme expression [52]. Translation regulation is 

instrumental to this end because in multiple cases different enzymes are expressed 

from the same transcriptional unit (i.e., operon). Previous work exploited regulatory 

RNAs for such a tuning [53], but the use of RNA-binding proteins as translation 
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factors is also appealing. We envision the application of MSI-1* as a genetic tool for 

metabolic engineering. Furthermore, MSI-1* is able to respond to fatty acids, which 

are ideal precursors of potential biofuels due to their long hydrocarbon chains. In 

particular, biofuel in the form of fatty acid ethyl ester, whose bioproduction in E. coli 

can be optimized by reengineering the regulation of the b-oxidation cycle with the 

allosteric transcription factor FadR [54]. Arguably, MSI-1* might be used in place 

of or in combination with FadR for subsequent developments. However, engineering 

regulatory circuits for efficient bioproduction is not evident in general as the 

enzymatic expression levels may require fine tuning, so systems-level mathematical 

models need to be considered for design along with a wide genetic toolkit for 

implementation [52]. 

We anticipate that other animal RRM-containing proteins might be 

repurposed in E. coli as translation factors. Moreover, protein design might be used 

to reengineer MSI-1* in order to respond to new ligands, maintaining high specificity 

and affinity for a particular RNA sequence, as previously done with the transcription 

factor LacI [55]. In addition, the Musashi protein family is of clinical importance, as 

in humans it is involved in different neurodegenerative disorders (e.g., Alzheimer’s 

disease) and some types of cancer [18,56,57]. Therefore, the development of simple 

genetic systems from which to test protein mutants, potential target mRNAs, 

decoying RNA aptamers, and inhibitory small molecules in a systematic manner is 

very relevant. Furthermore, isolating human regulatory elements would help to filter 

out indirect effects that likely occur in the natural context. This might lead to new 

therapeutic opportunities. Nevertheless, one limitation of using E. coli as a chassis is 

that some post-translational modifications (PTMs) may be lost, thereby 

compromising the functionality of the expressed proteins [58]. Fortunately, there are 

metabolic engineering efforts devoted to implement eukaryotic PTM pathways in E. 

coli, such as the glycosylation pathway [59]. 

In conclusion, the functionalization of RRM-containing proteins in bacteria 

offers exciting prospects, especially as more information becomes available on how 
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individual RRM domains bind to precise RNA sequences, interact with further 

protein domains, and respond to small molecules through allosteric effects. This 

work illustrates how synthetic biology, through the rational assembly of 

heterologous genes and designer cis-regulatory elements into circuits, is useful to 

generate knowledge about the application range of a fundamental type of proteins in 

nature.  
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GENERAL DISCUSSION 

Synthetic biology aims to design, construct, and optimize biological systems for 

useful purposes. It uses engineering principles to build unique biological circuits and 

organisms with predictable and programmable behavior. In this context, biological 

parts (genes, proteins, and regulatory elements) are treated as composable elements 

that can be interconnected to form complex systems. These systems could perform a 

wide range of tasks, from sensing and responding to environmental changes to 

producing valuable compounds for various applications [1,2]. 

 

In the cell, proteins can bind to DNA to regulate transcription as well as to 

RNA to regulate translation. However, bacterial cells have mainly evolved to exploit 

transcription factors as specific gene regulators, while translation factors have 

remained as global modulators of expression. Consequently, transcription regulation 

has attracted much attention over the last years to unveil design principles of genetic 

organization and to engineer synthetic circuits for cell reprogramming [3,4]. Yet, 

while substantial work combining theory and experiments has been carried out to 

study how noise propagates through transcriptional regulations, the stochastic 

behavior of genes regulated at the level of translation is poorly understood [5]. 

 

In this thesis, we have engineered a synthetic genetic system in which a target 

gene is down-regulated by an RNA-binding protein acting as a translation factor 

(MS2CP), which in turn is regulated transcriptionally. In particular, we have 

exploited the phage protein to regulate the expression of a green fluorescent protein 

at the level of translation. Thus, we have designed a two-layer genetic system that 

involves transcriptional and post-transcriptional regulations. Through our synthetic 

circuit, we have studied the generation and propagation of noise (stochastic behavior) 

of the gene regulated at the level of translation. In particular, we quantified the 

stochasticity of the system by monitoring both the expression of the regulator and 
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the regulated gene at the single-cell level [6]. 

 

Importantly, our results show that with a protein translation factor i) a tight 

repression can be achieved in single cells, ii) noise propagation from gene to gene is 

buffered, iii) and the regulated gene is sensitive in a nonlinear way to global 

perturbations in translation. Key findings revealed a significant down-regulation in 

gene expression, approximately 50-fold, achieved by inhibiting ribosomal 

progression on the target mRNA through protein-RNA interactions. This down-

regulation was comparable to transcriptional fold-changes. In addition, we 

developed a robust mathematical framework capable of describing stochastic 

behaviors influenced by both transcription and translation factors. Our results 

showed that a bottom-up mathematical model can be exploited to predict the transfer 

functions of the system. We have also shown that a Gamma distribution 

parameterized with mesoscopic parameters, such as the mean expression and 

coefficient of variation, provided a deep analytical explanation about the system, 

displaying enough versatility to capture the cell-to-cell variability in genes regulated 

both transcriptionally and translationally. 

 

Our utilization of the viral protein MS2CP in the regulatory system suggested 

the potential for diverse RNA-binding proteins. Orthogonal systems could be 

engineered using proteins like the bacteriophage PP7 coat protein or the 

Mycobacterium enzyme PyrR [7]. Considering the abundance of RNA-binding 

proteins in nature, especially in eukaryotes, multiple implementations were 

conceivable. The adaptability of our mathematical model allowed us to 

accommodate different proteins while preserving the fundamental functional form. 

Predictability could be enhanced by leveraging tools like the RBS calculator, and 

incorporating tandem repeats of RNA motifs might augment the regulatory fold-

change. RNA-binding proteins offered versatility in regulating gene expression post-

transcriptionally, and analyzing other mechanisms, such as translation elongation 



 129 

blockage by Argonaute proteins in eukaryotes, was a crucial avenue for future 

research. 

 

In essence, our study provided in-depth quantitative insights into the 

stochastic behavior of genes translationally regulated by RNA-binding proteins. 

These translation factors offered unique advantages, bridging attributes of both 

proteins (like transcription factors) and small RNAs. Our work not only advanced 

our understanding of these regulatory mechanisms but also paved the way for more 

sophisticated gene regulatory circuit engineering. The integration of different layers 

within the genetic information flow, specifically transcription and translation, 

facilitates easier signal integration for achieving specific functions. We anticipated 

that RNA-binding proteins would play a vital role in synthetic biology, addressing 

various biotechnological and biomedical challenges in the near future. 

In this thesis, we have additionally engineered an orthogonal post-

transcriptional synthetic genetic system in E. coli with a mammalian RNA-binding 

protein [8]. In nature, the RNA recognition motif (RRM) is the most common 

conserved RNA-binding protein domain identified. Such conserved structural 

domain consists of a four-stranded antiparallel β-sheet packet against two α-helices 

with specific amino acid residues that enable the contact with RNA through 

hydrogen bonding [9]. However, RRM-containing proteins are only prevalent in 

eukaryotic phyla, in which they play central regulatory roles along RNA metabolism 

and stability [10]. In particular, RRM-containing proteins can fine-tune protein 

synthesis by interacting with RNA. Although RRM-containing proteins have a 

pivotal role in gene expression regulation, they are scarce in prokaryotes. Thus, it 

would be useful to use RRM-RNA interactions as an orthogonal layer to engineer 

gene regulation adding a novel post-transcriptional regulatory layer in such 

organisms. 
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In particular, we have engineered an orthogonal post-transcriptional control 

system of gene expression in the bacterium E. coli with the mammalian RNA-

binding protein Musashi-1, which is a stem cell marker with neurodevelopmental 

role that contains two canonical RRMs. In the circuit, Musashi-1 is regulated 

transcriptionally and works as an allosteric translation repressor thanks to a specific 

interaction with the leader coding region of a messenger RNA and its structural 

plasticity to respond to fatty acids. To study the response of the regulatory system, 

we have presented quantitative assays and theoretical results. We fully characterized 

the genetic system both at the population and single-cell levels showing a significant 

fold change in reporter expression, and the underlying molecular mechanism by 

assessing the in vitro binding kinetics and in vivo functionality of a series of RNA 

mutants. Moreover, the dynamic response of the system has been well recapitulated 

by a bottom-up mathematical model. 

The successful incorporation of the mammalian MSI-1 protein as a 

translation factor in E. coli underscored the versatility of RRM-containing proteins 

as specific post-transcriptional regulators across diverse living cells. Notably, we 

modified the native MSI-1 by discarding its C-terminal low-complexity domain to 

enhance solubility, although this domain potentially contributed to RNA binding. 

The rapid protein-RNA association phase, even in contexts with short-lived RNA 

molecules like in E. coli, demonstrated the potential applicability of these proteins. 

However, it is crucial to acknowledge the potential disparities between in vivo and 

in vitro kinetic parameters due to, for example, off-target bindings and crowding 

effects [11]. Overall, we have shown how RRM-based regulation can be adapted to 

simple organisms, thereby paving the way for engineering more complex circuits in 

prokaryotes by combining transcription and translation control with proteins. Indeed, 

we aimed to expand the synthetic toolbox and enlarge the repertoire of translational 

repressors suitable for biotechnological applications. Overall, our results elucidate 

the use of Musashi-1 protein in synthetic biology. 
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Our engineered cells, capable of sensing environmental oleic acid, showcased 

the utility of our synthetic biology development. Responding to fatty acids offers 

opportunities in optimizing biofuel production, particularly fatty acid ethyl esters, in 

E. coli through regulation of the β-oxidation cycle [12]. Indeed, the bioproduction of 

industrially-relevant compounds in microbes stands as a linchpin for the preservation 

of the biosphere. Unlike traditional chemical synthesis methods, microbial 

bioproduction offers an eco-friendly alternative, dramatically reducing the 

environmental footprint of various industries. By harnessing the potential of RNA-

binding proteins, we might design specific pathways for the production of valuable 

compounds, mitigating the pressure on natural resources, conserving biodiversity 

and maintaining ecological equilibrium.  

 

We also anticipate the repurposing of other animal RRM-containing proteins 

in E. coli and the use of protein design to engineer these proteins for new ligand 

responses. We have demonstrated that once our reporter gene is transcribed into a 

mRNA, RNA-binding proteins are able to bind to a specific sequence placed in the 

leader region of the reporter mRNA to regulate translation. Alternatively, in the case 

of eukaryotes, RNA-binding proteins can also participate in chromatin remodeling, 

in addition to RNA stability, editing, and decay [13]. In addition, understanding the 

native protein-RNA interactome, which refers to the network of RNA molecules that 

interact with specific RNA-binding proteins, would facilitate the identification of 

novel proteins with potential to be borrowed for synthetic gene expression regulation 

and reprogrammed cellular function [14].  

 

In summary, this thesis has illuminated the potential of RNA-binding proteins 

(in particular, RRM-containing proteins) in bacteria, offering promising prospects 

for future research. As our understanding deepens regarding how individual protein 

domains interact with specific RNA sequences and small molecules and regarding 

the quantitative aspects of gene regulation at the level of translation, our ability to 
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implement more complex circuits will increase. This study is intended to lay the 

foundation for exploring the wide-ranging capabilities of RNA-binding proteins, 

showcasing their adaptability and versatility. 
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CONCLUSIONS 

This PhD dissertation was intended to expand our knowledge on how translation 

control of gene expression with proteins in prokaryotic cells can be engineered to 

create a new variety of synthetic circuits. In particular, this thesis has reached the 

following main conclusions: 

1) Gene expression programs can be engineered with RNA-binding proteins 

(e.g., MS2CP or MSI-1*) in E. coli, achieving sufficient dynamic range and 

tunability. This was accomplished through an interaction with the 5’ UTR or N-

terminal coding region of the target mRNA. 

2) Through the use of a protein translation factor a tight repression can be 

achieved in single cells, noise propagation from gene to gene is buffered, and the 

regulated gene is sensitive in a nonlinear way to global perturbations in translation. 

3) Translation regulation with proteins can be bottom-up mathematically 

modeled to predict dynamic responses. Moreover, Gamma distribution 

parameterized with mesoscopic parameters, such as the mean expression and 

coefficient of variation, provides a deep analytical explanation about the system, 

displaying enough versatility to capture the cell-to-cell variability in genes regulated 

both transcriptionally and translationally. 

 

4) RNA-binding proteins from mammals carrying RNA recognition motifs 

(RRMs) can work in bacteria (e.g., MSI-1*). 

 

5) RNA-binding proteins can be allosterically regulated (e.g., MSI-1* in 

bacteria can be externally controlled by a fatty acid). This plasticity can be exploited 

to engineer, even in simple organisms, gene regulatory circuits that operate in an 

integrated way at the transcriptional, translational, and post-translational levels. 
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6) Through the use of an engineered post-transcriptional mechanism, it was 

possible to achieve the specific regulation within an operon and the implementation 

of combinatorial regulation. 
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