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Abstract: Vehicular ad hoc networks (VANETs) are a fundamental component of intelligent trans-
portation systems in smart cities. With the support of open and real-time data, these networks of
inter-connected vehicles constitute an ‘Internet of vehicles’ with the potential to significantly enhance
citizens’ mobility and last-mile delivery in urban, peri-urban, and metropolitan areas. However,
the proper coordination and logistics of VANETs raise a number of optimization challenges that
need to be solved. After reviewing the state of the art on the concepts of VANET optimization and
open data in smart cities, this paper discusses some of the most relevant optimization challenges
in this area. Since most of the optimization problems are related to the need for real-time solutions
or to the consideration of uncertainty and dynamic environments, the paper also discusses how
some VANET challenges can be addressed with the use of agile optimization algorithms and the
combination of metaheuristics with simulation and machine learning methods. The paper also offers
a numerical analysis that measures the impact of using these optimization techniques in some related
problems. Our numerical analysis, based on real data from Open Data Barcelona, demonstrates that
the constructive heuristic outperforms the random scenario in the CDP combined with vehicular
networks, resulting in maximizing the minimum distance between facilities while meeting capacity
requirements with the fewest facilities.

Keywords: vehicular networks; smart cities; optimization; heuristics; open data

1. Introduction

The growing global population and preference for urban living have made city man-
agement a challenging issue for city planners and policy makers. Modern cities need to
adapt to the emerging needs of their citizens [1]. The development of intelligent transporta-
tion systems (ITS) is one of the key characteristics of smart cities. ITS aim to improve the
efficiency and safety of the road and transportation systems through new applications,
protocols, and standards, which allow vehicles to function as a sender, collector, and switch
for data broadcasting or multicasting. Furthermore, the growing number of vehicles mo-
tivates efforts to improve road safety and inter-vehicle entertainment through vehicular
systems [2]. As a result of advancements in wireless technologies and the growing pop-
ularity of the Internet of Things (IoT), researchers were able to develop communication
systems in which vehicles directly participate in the network. As a result, networks such as
VANETs have been proposed to enable communication between vehicles and everything
else, as well as between roadside units (RSUs) and people [3].
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VANETs can help smart cities by improving vehicle mobility and implementing an
efficient system for communicating and managing warning messages. For instance, efficient
traffic alerts and up-to-date traffic incident information will reduce traffic congestion,
improve road safety, prevent car accidents, and enhance city driving. Additionally, real-time
traffic alerting will reduce travel distances, fuel consumption, and, as a result, emissions
of CO2 [4]. Furthermore, due to the increasing need for communication, computation,
and storage resources, emerging vehicular applications, and exponentially growing data,
Vehicular Edge Computing (VEC) has great potential to improve traffic safety and travel
comfort by bringing communication, computing, and caching resources closer to vehicular
users. It could also be able to meet the growing demand for low latency and bandwidth in
edge devices [5].

Figure 1 shows VANETs communication in smart cities, where communication can
take place between infrastructure-to-infrastructure (I2I), vehicle-to-vehicle (V2V), vehicle-
to-infrastructure (V2I), and vehicle-to-everything (V2X) such as people, mobile phones,
RFID readers, traffic lights, and so on. The direct communications between devices and
vehicles are based on wireless access standards such as 4G, 5G, DSCR, etc. Small sensors
installed beneath the asphalt can measure traffic density, generate data, and send it to
the open repositories. The RSU is fixed and consists of a transceiver that transmits and
receives data. These mobile devices and vehicles are linked to edge devices such as RSUs
and share the edge layer. The edge serves as a bridge between the cloud and devices,
vehicles, and people. Servers with computational and storage capabilities are deployed
close to vehicular networks, and data processing and analysis are performed close to end
devices. As computing and storage services are provided close to the user (on the edge),
edge computing services provide a better quality of service (QoS).

Figure 1. VANET in Smart Cities.

Since people are consuming more information with their mobile devices, vehicles are
equipped with edge devices and RSUs technologies in the road transport network, and
the popularity of new mobility services such as ridesharing and carsharing has increased
communication between vehicles, people, and everything else [6,7]. Therefore, the infor-
mation gathered by them can be used to evaluate and predict real-time traffic density and
compute an accurate map of road traffic density, as well as assist VANET in improving
transportation efficiency, and pedestrian comfort, and provide a QoS. Cloud, fog, and edge
computing techniques enable the real-time transmission and processing of terabytes of data.
The cloud node has a lot of memory and processing power, but the fog and edge nodes
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have limited capacity. Additionally, the physical distance between the cloud data center
and the fog and edge nodes influences the data transfer rate, and if it is long, it increases
latency and potential packet loss. Furthermore, one of the primary goals of VANET is to
provide QoS to end users, while infrastructure deployment is the most significant challenge
in the traffic improvement application of VANET.

In this context, we combined the Capacitated Dispersion Problem (CDP) and vehicular
networks in order to efficiently allocate facilities which can result in proper utilization of
all facilities as well as timely reaction, which is required for smart cities, to improve the
QoS in VANET. CDP aims at maximizing the dispersion of the open facilities while fixing a
given capacity threshold to make facility capacity sufficient to meet customers’ demands.
Since CDP is NP-hard, exact methods may take a long time to guarantee the optimality of a
solution when dealing with large instances [8]. Furthermore, because approximate methods
such as heuristics and metaheuristics have been demonstrated to be effective and capable
of producing high-quality solutions for large-scale and complex real-world problems,
optimization techniques such as these are now widely used. In particular, heuristics have a
strong potential to offer agility and real-time responses, which are critical for an effective
ITS [9].

In this paper, we aim at reaching the following goals: (i) to elaborate a comprehensive
overview of vehicular networks; (ii) to provide optimization challenges regarding rideshar-
ing, carsharing, VEC, and traffic improvement applications in VANETs; and (iii) to propose
a case study, based on real-life data, which combines a CDP and vehicular networks. The
organization of this paper is introduced as follows: Section 2 presents an overview of vehic-
ular networks. In Section 3, we provided optimization challenges regarding ridesharing,
carsharing, and traffic improvement applications in VANET. We present a case study and
computational results in Section 4. Lastly, Section 5 summarizes our main conclusions and
provides future research lines.

2. Vehicular Networks: An Overview
2.1. Vanets: A Conceptual Framework

The notion of networks characterized by a dynamic structure and limited transmission
speed and quality is no recent innovation—in their 1999 paper, Corson and Macker [10]
coined the term mobile ad hoc network (MANET). These networks are characterized by a
set of mobile routers which create routes for information transmission as needed [11]. In
ITS, vehicles can use communication technology to counteract and eliminate transportation
inefficiencies [12]. VANETs are the extension of this line of thought; vehicles and RSUs act
as network nodes that send, transmit, and receive data enabled by a combination of wireless
access and network routing technology [13]. These vehicles range from regular roadside
transportation to drones [14]. Connectivity in a VANET is naturally quite demanding
due to the dynamic behavior of network nodes as vehicles enter, move within, and exit
specific regions of the network [15]. One crucial mechanic that VANETs can use to improve
network quality is that the path of network nodes is somewhat predictable as vehicles in
certain directions on a mobility grid [16]. Ultimately, the interactions between all VANET
participants require fast and complete communication to satisfy the ambitions of dynamic
mobility systems [17].

Therefore, the arguably most important task to enable VANET-based mobility in smart
cities is to ensure a high QoS, which is influenced by the two main forms of communication
occurring in a VANET context: First, vehicles transfer information with each other in a peer-
to-peer, or V2V manner. Second, vehicles can tap into a flow of data through RSUs either
through a direct connection with the RSU or with a relayed connection through a V2V net-
work path [18]. In all communication between nodes in the network, transmission follows
one simple rule: Two nodes can only exchange data if they are within broadcasting range
of their wireless devices [19]. In most VANET applications, accordingly, nodes greedily for-
ward transmissions by selecting a node in the target direction [20]. Single-hop transmission
occurs when the broadcasting node sends information to neighboring nodes; multi-hop
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transmission requires nodes to re-broadcast information [21]. To ensure an uninterrupted
flow of data in multi-hop transmission scenarios, nodes can store information and only
forward them once a suitable transfer node is found [22]. Over the last decade, a plethora
of routing protocols have been proposed by researchers and compared in regard to their
performance [23–26]. In a 2014 meta-analysis, Dua et al. [18] cluster routing protocols into
five predominant groups such as topology-based, geographic, hybrid, clustering, and data
fusion. All of these protocols aim to create a network that can withstand the demanding
nature of smart city connected mobility. Belamri et al. [27] provide a framework of parame-
ters in regard to which a VANET routing protocol should be optimized: Most importantly,
routing quality should be assessed concerning message delay, network node distances,
link reliability, hop count, and mobility of nodes. In evaluating the QoS of a network with
specific routing protocols, researchers should use network metrics such as end-to-end delay
(EED), packet loss, throughput and bandwidth, and packet sending rate (PSR). Following
this logic, a VANET routing protocol and its technology should be sufficient to enable
whichever application needs to be run in the network. VANET applications for smart city
mobility can generally be clustered into one of two applications: efficiency-oriented and
safety-oriented optimization [28]. Efficiency-oriented applications are mainly concerned
with the overall flow of traffic in a VANET environment. A VANET infrastructure can
be used to host a variety of applications such as traffic congestion detection and mitiga-
tion [29–31], traffic forecasting [32,33], fuel-saving vehicle routing [34,35], or secondary
efficiency enabled by internet access, for example, by providing internet during traffic
jams [36]. All of these applications prove to be a use case for optimization techniques.
Safety-oriented services in a VANET are concerned with vehicular security. Given VANET
connectivity, these services can be used to prevent collisions [37–39], facilitate emergency
service response [40–42], or support safe overtaking [43,44].

Figure 2 depicts the general operation of a VANET, which includes applications,
routing protocols, challenges, communication, and wireless access standards. Above, we
discussed the routing protocol and different communications in VANET. In terms of appli-
cations, VANETs can provide a wide range of services and applications. The applicability of
these services and applications allows us to classify them into safety-related, infotainment,
traffic improvement, and driving system monitoring. Additionally, each of these applica-
tions presents challenges for VANET. Other challenges could include resource management,
in which resources are shared among vehicles, presenting numerous difficulties for VANET
deployment. Since vehicles in the VANET have mobile communication devices and share
data, data networking is another challenge in this area. Finally, the expansion of VANET
services and the need to ensure the continuity and scalability of VANET communication
have motivated the use of various types of wireless communications such as DSCR, 4G, 5G,
WiMAX, etc.

Vehicular Ad-hoc Networks (VANET)

Routing protocols

Safty-related

Infotainment

Applications

Transport traffic
improvment

Topology-based

Hybrid

Geographic

Clustering

Communication

V2I

V2V

Data fusionDriving system
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Challenges Wirless access standard

Resource Management

Data network

Application challenges
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mmWave

Satellite

4G/LTE
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Figure 2. General Operation of VANET.
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2.2. Vanets and IoT, Edge Computing

Network routing protocols are one of the two cornerstones of connected smart city
mobility. They are enabled by IoT devices that, as the second cornerstone, are the foundation
upon which interconnected ITS are built [45]. The IoT paradigm envisions communication
between objects that are already part of everyday life to create an infrastructure of devices
that are embedded into larger networks [46]. In the context of vehicular mobility, a vast
array of use cases have been investigated and implemented in research: IoT devices
can be used to reserve and guide vehicles to parking spots [47,48] or to avoid vehicle
collisions [49] by providing an exchange of information between network nodes. The
challenge of transmitting large amounts of data over a vehicular network has led to research
into how external processing and storage could ameliorate the exchange of time-critical
information. Data-center facilitated cloud computing can dynamically integrate into a
VANET application, allowing network nodes to off-load data-intensive applications [50].
Hussain et al. [51] was the first to propose a cloud-based VANET architecture to connect
vehicles and support application loads. These vehicular cloud computing networks allow
for scalable network architectures that support the ever-increasing stream of data and help
alleviate connectivity limitations [52]. As Shrestha et al. [53] argue, cloud computing might
reach its limitations in the context of more demanding VANET environments where large
numbers of vehicles demand real-time applications. Consequently, they propose to enhance
VANETs with edge computing.

Edge computing further develops the key functionalities of cloud computing by
moving data processing units closer to each network node: Calculations to support network
nodes are performed at the edge of a network [54]. Garg et al. [55] demonstrate that using
edge nodes as an “intermediate interface between network and cloud” in VANETs can
indeed improve network latency and facilitate overall data flow. It is important to note
that network structures supported by edge computing are not restricted to mobility on
the ground; the concept can be extended to any network node in three-dimensional space,
such as unmanned aerial vehicles (UAVs) [56,57]. These UAVs can even be used to flexibly
support a VANET architecture if needed [14]. Aside from providing a more capable
architecture, edge computing also proves to be resistant to network attacks [58]; fast data
transfers and processing allow for reliable message verification to ensure no malicious
communication occurs in the network [59]. Recent proposals even go as far as integrating
blockchain technology to ensure network integrity [60].

VEC is a promising technology that can be used to support ITS services, smart city
applications, and urban computing. Figure 3 shows the problems and methods that are
used in the literature reviewed in VEC.

Figure 3. Operation of VEC.
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Qi et al. [61] introduced a knowledge-driven (KD) service offloading decision frame-
work for the Internet of Vehicles (IoV), which provides a unique platform for various
vehicular services and aims at achieving long-term optimal performance experienced
by vehicular users, and based on that, they proposed offloading decisions as a resource
scheduling problem with single or multiple objective functions and constraints, where
some customized heuristics are used. The framework consists of a decision model which
uses deep reinforcement learning (DRL) to learn decision knowledge, and an observation
function to obtain vehicular mobility and edge computing node data. To realize online
optimization of offloading decisions, they proposed a KD service based on an online A3C
algorithm. Evaluating the performance of KD service offloading decisions, they showed
that the framework achieves low service delay, can learn the distribution of task data depen-
dency, and almost always chooses a proper destination for large data transmission tasks.

Qiao et al. [62] proposed a new edge caching scheme that optimizes content placement
and delivery in VEC and networks with limited storage capacity and bandwidth by taking
into account time-varying content popularity, dynamic network topology, and vehicle
driving paths. Edge caching was modeled as a double time-scale Markov decision process
(DTS-MDP). The joint content placement and the delivery problem is NP-hard long-term
mixed integer linear programming (MILP). As a result, the variable participation of vehicles
increases the operational complexity of the edge caching system, making it difficult to
find the best solution. Thus, they proposed a deep deterministic policy gradient (DDPG)
learning algorithm based on a DRL-based cooperative caching scheme to provide low-
complexity decision making and adaptive resource management, and they accelerated the
learning speed and improved caching performance by using mini-batch gradient descent.

Furthermore, they concentrated on the model-free reinforcement learning approach
to provide training guidelines based on a large number of historical experiences. This
model-free approach is divided into three categories: critic-model (value-based approach),
actor-model (policy-based approach), and actor-critic learning approach, which employs
deep neural networks to provide an accurate estimation of deterministic policy function
and value function.

As a result, the actor-critic learning framework and the double time-scale content
caching model combined to develop a DDPG-based cooperative caching technique. The
performance was compared using two benchmark schemes: (i) random caching; and
(ii) noncooperative caching. To improve the accuracy of vehicle destination prediction, the
destination of the vehicle was predicted using a machine learning model based on shorter
strings rather than longer strings to represent the transport region of smart vehicles. The
analysis of caching performance based on the DDPG learning algorithm revealed that as
the number of episodes increases, all content caching schemes can approach their stable
cumulative average cost. The noncooperative caching scheme had the highest average
system cost, which includes the cost of content storage and access. In addition, the proposed
caching scheme yielded the lowest system cost, and lowest content access latency, and
improved the content hit ratio, particularly in the low content delivery latency, when
compared to the other benchmark schemes.

Chen et al. [63] proposed a task offloading scheme based solely on V2V communi-
cation, based on the gathered period of vehicles in urban environments due to traffic
lights or areas of interest (AOI) to minimize task processing time. The Max-Min Fairness
scheme is used to optimize the task execution time, which is then solved by the particle
swarm optimization (PSO) algorithm. On the one hand, for the special case where all
service vehicles participate in task processing, the proposed algorithm provides the optimal
solution based on adapted Max-Min Fairness. On the other hand, the PSO algorithm is
used for generating a feasible solution for the general case where it is unknown whether
each service vehicle will participate in task processing or not. Furthermore, to evaluate
the performance of their proposed scheme, they generated vehicle track files using the
TIGER map and then used the IDM IM model provided by VanetMobiSim to compare the
performance of computed schemes such as local computing, offloading with the Max-Min
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Fairness Algorithm, and offloading with the PSO Algorithm. The results showed that the
Max-Min Fairness algorithm and the PSO algorithm reduced task execution time based on
the number of service vehicles used. Additionally, the increasing number of service vehicles
showed that the PSO algorithm is slightly better than the Max-Min Fairness algorithm in
terms of robustness over different task sizes for each scheme.

Wang et al. [64] considered VEC and networks with dynamic topologies, unstable
connections, and unpredictable movements and proposed a near-optimal performance
imitation learning-enabled online task scheduling algorithm. In their proposed algorithm,
they used the terms service providing vehicles (SPV) and VEC servers interchangeably.
Furthermore, the task scheduling problem was considered by minimizing the average
consumed energy of offloaded computation tasks while ensuring their execution latency
based on SPV clustering and imitation learning approaches.

The branch-and-bound algorithm was used with a few iterations as the expert’s trajec-
tories, and the learning agent made proper task scheduling decisions by mimicking the
expert’s demonstrations with the help of imitation learning. They proposed an imitation
learning-based task scheduling algorithm that allows the learning agent to make timely
scheduling decisions instead of global searching, which is time-consuming and computa-
tionally intensive and is not suitable for online scheduling. To validate the performance of
their proposed algorithm, they compared it to four other designed algorithms: the Deep Q
Network (DQN)-based algorithm, DATE-V, local optimization, and FORT. As a result, the
proposed algorithm’s average energy consumption was much lower than that of the other
algorithms, and its task-processing ratio was higher than that of the other four algorithms.

3. Optimization Problems in Vehicular Networks
3.1. Ridesharing

Ridesharing in public/private vehicles is an intriguing problem that has piqued the
interest of numerous researchers. The taxonomy, shown in Figure 4, divides the literature
discussed in this section into four categories: operation modes, problem type, methods
used to solve the problem, and type of vehicle communication/protocol used.

Figure 4. Operation of RideSharing.

There are two types of ridesharing: static and dynamic. Static ridesharing assumes
that driver and rider requests are known before executing a matching process, attempting
to cover a wide variety of types such as dial-a-ride problems (DARP), carpooling, and
slugging. Due to the complexity of ridesharing optimization, researchers use or adopt
various heuristics, as well as mixed-integer/integer linear programming models, to solve
large-sized instances [7]. Dynamic ridesharing is a service that dynamically arranges ad



Sensors 2023, 23, 499 8 of 25

hoc shared rides, made possible by low-cost geo-locating devices, smartphones, wireless
networks, and social networks [65]. The dynamic ridesharing problem focuses on the
fact that passenger requests are generated in real time. In this regard, Huang et al. [66]
proposed a branch-and-bound algorithm to solve the problem of ridesharing with service
guarantees on road networks; moreover, they proposed a kinetic tree algorithm to better
schedule dynamic requests and adjust routes on the fly. Their flexible algorithm could
also handle changing road network layouts and traffic conditions. It creates a server trip
schedule based on the server’s location upon request, calculating trip cost between any two
points on the schedule, and satisfying point order, waiting time, and service constraints.
Furthermore, they build an augmented valid trip schedule that combines new requests
with existing ones to share a partial trip among customers. Using their proposed kinetic
tree approach, they allow constraint flexibility if pickup and drop-off locations are close to
each other.

Based on dual social group architecture (SGA), Zhao et al. [67] proposed a distributed
ridesharing service that divides messages into driver social group architecture (DSGA)
messages which include a driver’s destination, and vehicle social group architecture (VSGA)
messages that provide information on traffic condition. Assigning a number of token
vehicles to each vehicle, tokens in the beacon packet were transmitted to the relay vehicles’
neighbors by the relay vehicles. Neighbor vehicles will first collect the feature-level atomic
messages with a one-hop communication scope and then fuse them using a fuzzy cluster
method to generate the feature-level result. Each relay vehicle receives this message from
the token vehicle and generates its own VSGA messages; this methodology allows to
determine traffic conditions in double vehicle communication distance. Through this
dual-SGA methodology, passenger wait times are significantly reduced.

Bathla et al. [68] proposed four different ridesharing system models based on the
pickup and drop-off locations of potential riders. They also proposed a dynamic algorithm
for models in which the pickup and drop-off locations are different for all users. With
DBSCAN clustering, they simulated the scenario of multiple ridesharing requests from the
same or nearby regions. Grouping together requests and calculating the distance between
two locations using the Haversine formula and the Google Maps Direction API, they divide
the cost for passengers with shared ride distance evenly. They assessed the algorithm
using ridesharing metrics such as satisfying requests and waiting time per passenger.
Additionally, they implemented a taxi distance minimization algorithm with a complexity
of O(n×m) where n and m are pickup and drop-off events, finding that their proposed
algorithm accommodates higher ridesharing among passengers.

Alisoltani et al. [69] concentrated on the automatic matching process, which is one of
the most difficult challenges in dynamic ridesharing. They used a variety of techniques,
including exact methods based on branch-and-cut and the rolling horizon method to solve
the problem dynamically for quality of solution; an AI-based technique to limit the number
of requests for the solver; a clustering method such as K-means and hierarchical clustering
based on the shareability function to place the most shareable trips within a separate cluster;
and finally, a heuristic algorithm to solve the matching problem within each cluster. As
a result, the final algorithm provided high-quality solutions for large-scale problems in
a short amount of time. It considers both passengers’ and service providers’ objectives,
minimizing total travel time and distance while also minimizing passenger waiting time. To
simulate the operation of their proposed dynamic ridesharing system, the authors created a
plant model using macroscopic fundamental diagrams (MFD) to simulate real-world traffic
conditions and a prediction model which calculates travel times during the assignment
process using mean vehicle speed.
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Aydin et al. [70] proposed a new ride matching algorithm that takes into account the
participants’ characteristics and preferences. They defined joint socialness score (JSS) as a
score of similarity between a driver and a rider while maintaining the maximum number
of participants in a ridesharing system, and they planned to maximize JSS and allow a
driver to be matched with more than one rider, even if only single rider-single driver
matches are permitted. They checked the similarities between the routes of the drivers
and riders using the Needleman–Wunsch algorithm and specified the score of matching,
mismatching, and gap. Then, it was modified by removing the traceback process. They
used the first-come, first-served method for matching. As a result, when a rider enters the
system, the feasibility of each available driver is checked first. Following that, the JSSs for
all possible drivers are computed. The rider is paired with the driver who has the highest
corresponding JSS. The computational burden imposed by splitting drivers’ routes on the
algorithm resulted in longer computation times. Additionally, the proposed heuristic finds
matches on relatively short notice, compared to integer programming, and also can be used
to solve more complex and large-scale problems.

Unlike most vehicular applications, which rely on the availability of an easily accessible
internet infrastructure, Bravo-Torres et al. [71] focused on advanced services deployed by
VANET to vehicles without infrastructure access. Their proposed multi-layer architecture
is built on a procedure combining request, response, and acknowledgment messages with
timers. A knowledge management layer facilitates the modeling of locally stored user
profiles, using context-aware algorithms to match potential riders’ mobility needs based
on their itineraries and preferences. The route matching algorithm defines two distinct
methods based on Euclidean distances: one that detects regular user routes using past
itineraries, and one to determine whether two users can share a route based on weighted
user characteristics. Both methods use GIS technologies to locate routes on a map and
model user mobility patterns. Testing their proposal in a VANET simulator using the
Simulation of Urban Mobility (SUMO) software to model traffic and NS-3 to simulate
communications, they found that their VaNetLayer significantly reduced downtime and
increased savings, outperforming the AODC and VNAODV protocols for delivery ratios.

Olakanmi and Odeyemi [72] proposed a novel 1-to-n ridesharing scheme for effective
ridesharing capable of collaborative 1-to-n ridesharing and recommending the shortest
routes and pickup points for riders and drivers based on previously visited locations.
Records for this 1-to-n ridesharing scheme are divided into three stages: trust and similarity
models, 1-to-n ridesharing shortest routes and pickup points recommendations, and mutual
authentication between the rider and car owner. Based on the location records visited, they
developed an algorithm that recommends pickup points for riders and the shortest routes
for car owners. They examined the efficiency and cost of the proposed scheme in terms of
mean waiting time (MWT), capacity overshoot, and computational cost of the proposed
mutual authentication. According to the results, the scheme’s mutual authentication
procedure had the lowest computational cost when compared to other authentication
schemes such as SAMA, ECPP, CAS, GSB, KPSD, and IBCPPA. This reduces the proposed
scheme’s service-delay, as evidenced by the insignificant increase in mean waiting time as
the number of requests increases.

3.2. Carsharing

Carsharing offers a flexible alternative that meets a wide range of transportation
needs around the world while mitigating the negative effects of private vehicle ownership.
Extensive research has been conducted in the field of carsharing systems in recent years,
which includes analyzing carsharing trip characteristics, evaluating its impact on society
and the environment, and optimizing systems [73]. Figure 5 depicts the literature reviewed
in this section on carsharing optimization via vehicular networks.
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Zhao et al. [74] proposed a carsharing service in VANET based on a dual SGA in
order to improve the quality and robustness of carsharing services while also reducing
passenger wait times and avoiding traffic congestion. After a successful match, the vehicle
will respond to carpool matching requests via relay vehicles. The DSGA procedure will
first calculate the geographic matching based on the driver and passenger destination
correlation when the relay vehicle receives the request. The vehicle will then conduct a
VSGA identity check. If the match fails, the request is forwarded by the relay vehicle.
In the final match step, each relay vehicle merges and collects its traffic data with the
help of nearby vehicles via the beacon package. They then distribute a certain amount of
tokens to each relay vehicle to control the peripheral congestion message. The authors also
proposed a layered congestion monitoring method to collect congestion information and
improve matching accuracy. In this process, the relay vehicle first distributes some tokens
to its neighbors, and then the neighbor vehicle that received the tokens collects the atomic
congestion message in its driving region, such as acceleration, speed, and brake frequency,
and then performs fuzzy clustering on the message. The fuzzy clustering method can
reduce information and computation redundancy by extracting key information.

Figure 5. Operation of Car Sharing.

Lu et al. [75] combined vehicle mobility simulation and vehicular communication
networks to create carsharing systems. They provided two models, one for taxi systems
and one for the VANET configuration in NS-2. They used SUMO to generate traffic. Fur-
thermore, classic microscopic traffic theory was used to develop the car following model,
which calculates each car’s trajectory to analyze its performance. They chose the ad hoc
on-demand distance vector (AODV) routing protocol for the network layer after compar-
ing AODV, DSR, and DSDV. They examined three parameters in carsharing application
performance using a Manhattan map generated by TIGER: PSR, Maximum connectivity
number (MCN), and vehicle count. As a result, the carsharing performance focuses on two
scenarios: the impact of different PSR and MCN on communication performance when
the number of cars remains constant and the impact of different numbers of cars when
network parameters remain constant. They conclude that improving VANET performance
in carsharing systems is possible with a greater number of equipped vehicles and proper
control over the maximum connectivity number.
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Olufemi and Adedamola [76] improved user service delivery by proposing an effec-
tive anonymous authentication scheme capable of detecting and preventing malicious
entities from disrupting the carsharing system’s operations. The scheme also includes
a conditional identity-tracing approach for tracking and exposing a malicious entity by
revoking the misbehaving entity’s privacy. Their proposed scheme includes five entities:
an autonomous vehicle taxi, a taxi user, an autonomous vehicle taxi service provider, a
trusted registration center, and a taxi call roadside unit. Each entity in the carsharing system
registers with a trusted registration center, which generates an entity-specific pre-private
key. The entity later upgrades the pre-private key to a private key. To request a service,
both the requester and the requestee must perform mutual authentication, which is based
on a two-way parameter exchange technique and consists of five phases: setup, registra-
tion, mutual authentication, service request, and conditional privacy tracing. In terms of
security analysis, they introduced eight theorems with proofs based on a bilinear map.
Non-key and key-based hash functions are used to obtain fundamental security against
impersonation, collusion attacks, privilege escalation, man-in-the-middle, forward secrecy,
and insider attacks. They evaluated the scheme’s computation latency by simulating the
computational overhead of the cryptographic operations used to determine the proposed
scheme’s verification delay. When the scheme’s verification delay was compared to the
verification delays of existing certificate and signature-based authentication schemes, it
was discovered that their scheme had the lowest computational cost.

3.3. Optimization Challenges in Traffic Improvement Application of Vehicular Networks

VANETs promise to improve transportation efficiency, accident prevention, and pedes-
trian comfort by providing a variety of services and applications to drivers and travelers.
These services and applications can be classified as safety-related, infotainment, traffic
improvement, or driving system monitoring applications based on their applicability [77].
Figure 6, shows the taxonomy of the literature reviewed in this section on the traffic
improvement application of VANET.

Figure 6. Operation of traffic improvement application.

There are several challenges to overcome in order to optimize road traffic and reduce
travel times by avoiding traffic congestion. One of the difficulties concern infrastructure
deployment, where UAVs can act as flying RSUs, relaying data to vehicles outside the
RSUs’ coverage range. In this context, a collaborative network coverage enhancement
scheme was proposed by Islam et al. [78] to bring these uncovered vehicles within the
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infrastructure’s coverage. The PSO algorithm was used to determine the best positions to
deploy the UAVs, taking into account factors such as vehicle density, heading direction,
and previous coverage information. The new positions of the dispatched UAVs were
calculated after each time frame, and the UAVs were instructed to move to these positions.
Using the traffic simulation tool SUMO, the authors compared the performance of their
proposed scheme to other UAV-assisted VANETs schemes, including those without UAVs,
fixed UAV-assisted VANETs, and hovering UAV-assisted VANETs, in terms of PDR, hop
counts (HOPs), EED, and throughput. The results showed that their proposed scheme
outperformed its competitors in the simulation of Daegu, South Korea.

Deploying RSUs in urban areas can be a complex task due to the high cost of installing
them at intersections and the large number of possible combinations when there are
many intersections. To address this issue, Lehsaini et al. [79] used various metaheuristics,
including genetic algorithms (GA), simulated annealing (SA), and improved versions of
these algorithms, to determine the best approach for achieving high coverage rates on
roads in the target area while deploying a minimum number of RSUs at intersections. The
GA-Basic approach includes a probability of performing a mutation operation, where two
bits are chosen randomly, while the GA-Improved approach focuses on individuals that
increase the overlap of coverage areas. The SA-Basic approach generates an initial solution
randomly, while the SA-Improved approach generates it after a preprocessing step that
avoids placing RSUs at closely spaced intersections. The authors used the OMNeT-5.0 and
SUMO simulators to evaluate the routing performance in terms of PDR and EED based on
the number of RSUs deployed in the urban area. The results showed that the GA-Improved
approach required fewer RSUs and provided better routing performance in terms of PDR
and EED compared to the other approaches.

Additionally, various recent studies address different diversity problems, where
Parreño et al. [80] presented mathematical formulations for combinatorial optimization
such as MaxMin, MaxSum, MaxMinSum, and MinDiff and solved the problem using the
commercial CPLEX solver. Martí et al. [81] proposed new instances, tested them through
computational experiments, and demonstrated how these problems have evolved over
time from an operations research standpoint. Moreover, based on other previous works
Martí et al. [82] formulated a new MILP model to propose an exact and heuristic ap-
proach to solve the CDP and later Gomez et al. [83] proposed a BR algorithm that uses the
construction-destruction concept to generate high-quality solutions for the CDP in short
computing times.

Furthermore, Cao et al. [84] proposed an RSU optimized deployment scheme as a
multi-objective optimization problem for mathematical modeling based on large vehicle
data, which improves the quality of time-sensitive services while also reducing deployment
costs. They proposed a two-step solution in which they obtained the initial RSU deployment
location based on road topology and analyzed big vehicle data. They also used the K-
nearest neighbor algorithm to remove the overlapping intersection of bidirectional lanes
based on the actual road topology situation. Later, the branch-and-bound algorithm was
used to achieve optimal RSU deployment. According to the results, the proposed scheme
used a small number of RSUs to achieve high coverage.

Another challenge is prediction accuracy, where knowing about potential traffic prob-
lems can aid in congestion relief and road capacity expansion. Based on collected vehicular
data and the Continuous Time Markov Chain (CTMC), El Joubari et al. [85] developed
traffic behavior in multi-lane roads and near intersections. In order to analyze system
performance, the queuing theory was used to describe urban traffic dynamics, and CTMC
in continuous time was used to forecast long-run average quantities such as congestion
rates and average waiting times. Long-term estimates of traffic distribution can be ob-
tained using this method, which employs a numerical method for solving the stationary
distribution. In order to validate their model, the results were compared to a queue-based
model and realistic traces. The numerical results show that the model accurately reflects
real-world urban traffic behavior when historical traffic data are used.
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Bhatia et al. [86] presented a VANET system with software-defined networking (SDN)
for forecasting traffic flow behavior using computationally intelligent models. They pro-
posed an architecture made up of RSUs and OBUs that is managed by an SDN controller
framework and is linked to cloud infrastructure for real-time data storage and high compu-
tational capacity. They used a three-phase algorithm, including a configuration phase, a
clustering phase, and a running phase, to identify the system’s congestion-sensitive spots
before implementing a machine learning model to learn traffic patterns for each spot. They
also used the K-means algorithm to find three-dimensional spatiotemporal clusters, which
were then processed to finalize the congestion-sensitive spots under a specific RSU. They
used the LSTM recurrent neural network architecture to learn time series with long-term
traffic flow dependency on the identified congestion-sensitive spot. In addition, detailed
and precise LSTM hyperparameter tuning was performed to finalize the set of optimal hy-
perparameters required for convergence to an optimal traffic flow prediction solution. The
results showed that their proposed method can predict future densities with an accuracy of
97% on the entire dataset.

Another issue to consider in traffic management applications are packet storm prob-
lems where VANET sends warning messages to vehicles near congested roads in order
to keep drivers informed of road conditions and provide the best possible routes to their
destinations. This generates a significant number of alert messages, which may cause
network congestion and QoS breakdown. In this context, Rizwan et al. [87] proposed a
simulation model to reduce broadcast storms by reducing redundancy. Based on three
factors—position, distance, and orientation, they developed the next forwarder vehicle
(NFV) protocol and, by using the DDP4V technique, analyzed each of these features. The
proposed protocol reduced broadcast storms by using DDP4V NFV isolation known as
wagon wheels to select the next forwarding vehicle, which can transport data packets 60%
faster. In addition, when compared to AID and DBRS, DDP4V has fewer dispersed packets,
which reduces retransmissions, and it outperforms standard techniques in high-traffic
areas. Considering message transmission results in unwanted data flooding, which causes
broadcast storm issues, affecting the overall reliability and performance of VANET. To
efficiently minimize the broadcast storming problem, Velmurugan and Leo Manickam [88]
proposed a relative speed-based dynamic broadcasting GHN algorithm for broadcasting
safety and warning messages in the VANET. For data transmission, the GHN algorithm
employs the selective distance allocation methodology. They compared it with SODAD
and ABIN, and the results demonstrated that the GHN algorithm can reduce the broadcast
storm by more than 2% when compared to the existing algorithm. The system’s output
proved to be more efficient in terms of data, throughput, and packet delivery ratio.

Table 1 summarizes the various approaches of the reviewed literature, as well as the
objective and specific methods used for various types of problems. Each issue made use of
various vehicle communications and protocols, which have also been mentioned.
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Table 1. Summarized reviewed work.

Article Year Objective Methods Type Vehicle Communication Case Study

[61] 2019 Obtain optimal offloading policy A3C algorithm,
DRL offloading decision VEC WLAN -

[62] 2019 Minimize storage cost on large time scale Joint optimization problem
DDPG, DTS-MDP, (DRL) Content caching VEC V2V, RSU -

[63] 2020 Minimize task processing time Max-Min Fairness scheme,
Particle Swarm Optimization (PSO) Computation offloading VEC V2V, 802.11p, WBSS -

[64] 2020 Minimizing system energy consumption
satisfying task latency constraints

SPV clustering,
imitation learning approaches,
branch-and-bound algorithm

Online task scheduling RSU Hangzhou, China

[66] 2013 Schedule requests in real time,
minimize the servers’ traveling times

Kinetic tree algorithm
the slack time algorithm,
hot-spot clustering algorithm

Dynamic ridesharing schedule problem - Shanghai, China

[67] 2014 Minimizing passenger waiting time
Social group architecture,
Geometry Matching Method,
fuzzy clustering

Distributed ridesharing matching problem V2V, 802.11p,
GPS -

[68] 2018 Minimize total distance traveled
maximize occupancy

Pickup and drop off in different state.
Taxi Distance Minimization Algorithm,
DBSCAN clustering

Distributed DTRS scheduling problem GPS Shanghai, China

[69] 2022 Minimizing waiting time and travel distance
clustering shareable trips

Exact method based on branch-and-cut
Rolling horizon for dynamic situation
k-means, hierarchical clustering
plant model and prediction model

Real-time ridesharing matching problem GPS Lyon city, France

[70] 2020
Optimizing matches
by considering characteristics
Maximizing a joint socialness score

Needleman-Wunsch algorithm,
Matching process with first-come-first-serve Ridesharing matching problem - Istanbul city, Turkey

[71] 2016 Serve the users’ mobility needs
without their active participation

Application layer,
knowledge management layer,
distribution layer,
and an ad-hoc communications layer

Proactive ridesharing VNADOV+, 802.11p
PHY/MAC -

[72] 2021
Match a minimum number of riders
with drivers

Trust and similarity models,
1-to-n ridesharing shortest routes
and Pickup points recommendation

Recommending the shortest routes and
pickup points for ridesharing VaNetLayer -

[74] 2014 Minimizing waiting time VSGA, DSGA, Fuzzy fusion,
fuzzy clustering Carsharing matching problem SGA, 802.11p -
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Table 1. Cont.

Article Year Objective Methods Type Vehicle Communication Case Study

[75] 2013 Evaluate inter-communication system
in carsharing

SUMO
classic microscopic traffic theory
NS-2, CBR

Carsharing communication AODV,
802.11p Manhattan map

[76] 2020 Improve service delivery in carsharing
minimizing waiting time

Mutual authentication scheme
for multi-provider-based carsharing
two-way parameter exchange technique

Car sharing security and privacy Cryptography operations -

[78] 2022 Find the optimal place for UAVs to
minimize the wastage of UAVs service time

PSO algorithm
OpenStreetMap, SUMO Infrastructure development in VANET V2I, RSU, AODV Daegu, South Korea

[79] 2022 Minimize the number of RSUs deployed
find the best locations

Genetic algorithms
Simulated annealing
OMNeT-5.0, SUMO

Infrastructure development in VANET V2V, V2I, 802.11p Abou Tachfine, Tlemcen

[80] 2021 MaxMin, MaxSum, MaxMinSum, MinDiff problem Mathematical formulation
Comercial CPLEX Diversity problem - -

[81] 2021 MaxMin, MaxSum, MaxMinSum, MinDiff problem
Operation research
new instances
computational experiments

Diversity problem - -

[82] 2021 Maximizes the dispersion of the open facilities MILP
heuristic CDP - -

[83] 2022 Maximizes the dispersion of the open facilities
considering the capacity

Biased-randomized algorithm
construction-destruction heuristic CDP - -

[84] 2018 Improve quality of time sensitivity services
minimize deployment cost

Branch and bound
K-nearest neighbor
OSMNx, OpenStreetMap

Infrastructure development in VANET RSU, V2I Beijing, China

[85] 2022 Stochastic mobility model
for urban environments

Queuing theory
Markov chain Prediction accuracy in VANET RSU, V2I, V2V -

[86] 2020 Forecasting traffic flow behavior SDN, LTSM, K-means Prediction accuracy in VANET RSU, OBU, V2I, V2V -

[89] 2019 Minimize total driving and waiting time Linear prediction
OMNeT++, SUMO Prediction accuracy in VANET RSU, V2I, V2V, 802.11p -

[87] 2022 Minimize broadcast storms problem DDP4V, NFV Packet storm problem in VANET V2I, V2V -

[88] 2019 Minimize broadcast storms problem GHN algorithm Packet storm problem in VANET - -
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4. A Case Study

We present a case study to show how the CDP described by Gomez et al. [83] can be
combined with vehicular networks in real-world scenarios to efficiently allocate facilities
in a city. This study aims to maximize the minimum distances between any pair of open
facilities where each facility has a known capacity and the total capacity of open facilities
must exceed a user-defined threshold.

The CDP can be defined more formally on a complete, weighted, and undirected graph
G(V, E), where V is a set of facilities and E is the set of edges connecting these facilities.
Each edge (i, j) ∈ E has a distance di,j > 0 that satisfies the triangle inequality, considering
i, j ∈ V, with i 6= j. All distances are symmetric, i.e., dij = dji. Each facility i ∈ V has
a predetermined, known capacity ci > 0. As a threshold, collected service capacity b is
needed. The CDP’s goal is to find a subset O ⊂ V of facilities with a collected capacity
greater than b and maximized the shortest possible distance between any two facilities
i, j ∈ S. The threshold is a minimum collected capacity b that represents a portion m of the
total facility capacities b = m ·∑i∈V ci.

The data used to test are obtained from Open Data BCN, specifically, bicing station
in the city of Barcelona (https://opendata-ajuntament.barcelona.cat/data/en/dataset/
bicing/resource/f59e276c-1a1e-4fa5-8c89-8a8a56e56b34, accessed on 26 December 2022) is
used to model CDP. The dataset contains 496 unique locations of bicycle stations and 45 of
them, particularly for the electric bicycle charging station. The distribution of electric bicycle
charging stations throughout the Barcelona metropolitan area determines the facility’s
locations, and the capacity of each facility is the capacity of each electric bicycle charging
station. Figure 7 depicts the distribution of potential facilities concerning red flags, and each
facility has a known capacity. According to the traffic data (https://opendata-ajuntament.
barcelona.cat/data/en/dataset/trams, accessed on 26 December 2022), the traffic situation
is classified into various states, such as no data, very-fluid, fluid, dense, very-dense,
congestion, and cut-off. Here we consider very-fluid, fluid, dense, and very-dense situations
and apply different sizes of threshold b to evaluate the performance of Gomez et al. [83]
constructive heuristic model in a realistic scenario where the solution is constructed by
adding promising elements one by one until the required capacity was reached and compare
it to a random scenario where the solution is randomly selected from a list of elements until
all the required capacity is covered.

Figure 7. Potential Facilities Location.

In this section, we demonstrate the outcome of a real numerical experiment using
the constructive heuristic methodology Gomez et al. [83], which we then compared to a
random scenario. The experiment was conducted on a standard computer. A single instance
with 45 unique facility locations and a different capacity threshold was run 30 times with

https://opendata-ajuntament.barcelona.cat/data/en/dataset/bicing/resource/f59e276c-1a1e-4fa5-8c89-8a8a56e56b34
https://opendata-ajuntament.barcelona.cat/data/en/dataset/bicing/resource/f59e276c-1a1e-4fa5-8c89-8a8a56e56b34
https://opendata-ajuntament.barcelona.cat/data/en/dataset/trams
https://opendata-ajuntament.barcelona.cat/data/en/dataset/trams
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different random seeds. Each threshold is defined on m percentage of total capacity and
m ∈ {0.2, 0.4, 0.6, 0.8}, based on the city’s traffic state, where 0.2 for very fluid, 0.4 in a fluid
state, and 0.6, 0.8 for the dense and very dense situation. Figure 8 depicts the outcome of
employing the constructive heuristic in a highly dynamic traffic situation. In this situation,
where there are fewer devices to connect to the facilities, the constructive heuristic algorithm
used seven facilities that are not particularly close to one another to cover the required
capacity. However, as the situation becomes fluid, the number of facilities chosen increases
Figure 9. Figures 10 and 11 show that the algorithm chose 24 and 34 facilities in the dense
and very dense states, respectively, to cover the entire required demand while maximizing
the minimum distance between each of them.

Figure 8. Very Fluid, 7 Selected Facilities.

Figure 9. Fluid, 13 Selected Facilities.
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Figure 10. Dense, 24 Selected Facilities.

Figure 11. Very Dense, 34 Selected Facilities.

Furthermore, in order to evaluate the effectiveness of the constructive heuristics
in real scenarios, Table 2 compares the performance of the random scenario and the
constructive heuristic scenario with various thresholds based on the city’s traffic sit-
uation. The instance was run 30 times with different random seeds and the compu-
tational time of both algorithms was less than one second. The gap is calculated as
Gap = (random_scenario− constructive_scenario)/random_scenario, since the goal of CDP
is to maximize the minimum distance between each pair of facilities while meeting the
required capacity, a negative distance gap indicates that the algorithm performed better.
Table 2 shows a generally better performance of a constructive scenario. Since both scenar-
ios had almost the same demand to cover, the constructive procedure used less facilities to
cover all required capacities and maximized the distances between each pair of facilities
when compared to the random scenario. The greatest differences in the average distance are
achieved in a very fluid (−43.03%) and fluid (−26.22%) state where the constructive sce-
nario utilized 7 and 13 facilities to satisfy the required demand with the average distances
of 3127.12 and 1521.98 m, respectively, while the random scenario used 10 and 19 facilities
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with the distance of 2186.30 and 1205.78 m. Additionally, the gap decreased to −19.12%
and −4.24% when the traffic state shifted to the dense and very dense situation. When the
traffic state changes from very fluid to very dense, a general decreasing trend in solution
quality is identified, requiring a high capacity percentage to open more facilities. As a
result, the constructive heuristic outperforms the random scenario in terms of meeting the
required capacity with the fewest facilities while maximizing distances between them.

Table 2. Comparative results between constructive scenario and random scenario.

Random Scenario
State

Avg_Distance (1) Avg_Capacity (2) Avg_Facility_Number (3)

Very_fluid 2186.30 56 10
Fluid 1205.78 111 19
Dense 889.56 164 28

Very_dense 658.34 220 36

Constructive Scenario

Avg_Distance (4) Avg_Capacity (5) Avg_facility_Number(6)

Very_fluid 3127.12 55 7
Fluid 1521.98 108 13
Dense 1059.61 163 24

Very_dense 686.28 216 34

Gap

Gap (1)–(4) Gap (2)–(5) Gap (3)–(6)

Very_fluid −43.03% 1.79% 30.00%
Fluid −26.22% 2.70% 31.58%
Dense −19.12% 0.61% 14.29%

Very_dense −4.24% 1.82% 5.56%

Figure 12 depicts the differences between the random and constructive scenarios,
demonstrating that the constructive version clearly outperforms the random version in
terms of distance and selecting the number of facilities.

Figure 12. Performance of different scenarios.

5. Conclusions

In this paper, we discussed the concept of VANET and the existing challenges in
this area, we provided a detailed taxonomy for ridesharing, carsharing, VEC, and the
traffic improvement application in vehicular networks, where various challenges were
mentioned and a detailed solution was discussed. Furthermore, in order to demonstrate the
effectiveness of using agile optimization algorithms in the concept of VANET. We combined
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state-of-the-art algorithms with vehicular networks, using real data from Barcelona’s open
data repository to solve the CDP using constructive heuristics because the constructive
approach is built by adding promising elements one by one until the required capacity
is reached. Different values are considered for the threshold capacity based on the city’s
traffic level, which was determined as a proportion of the network’s total potential capacity.
In order to demonstrate the efficacy of the constructed heuristic in a real-world scenario,
we evaluated its performance and compared it to a random scenario. As a result, the
constructive heuristic outperforms the random scenario by maximizing distances between
facilities while satisfying the required capacity with the fewest facilities. Additionally,
increasing the traffic volume from very fluid to very dense resulted in a general downward
trend in solution quality and necessitated a high capacity percentage in order to open more
facilities. Consequently, using constructed heuristic would improve QoS in VANET by
making better use of available resources.

In the future, a comparison of this work to the state of the art will be considered. We can
also extend it by using predictive models, i.e., machine learning models, to predict facility
capacity rather than predetermined capacity and by providing a dynamic model where
the threshold changes based on the dynamic situation of the environment. Furthermore,
we would like to use a simulator to simulate a realistic scenario of transportation systems
with V2X communication and an intelligent roadside unit in order to evaluate the model’s
ability to respond adequately to edge node mobility.
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Abbreviations
The following abbreviations are used in this manuscript:

AO Agile optimization
AODV Ad-hoc on-demand distance vector
A3C Asynchronous advantage actor critic
AOI Areas of interest
BR Biased randomization
BSS Between-cluster sum of squares
CDP Capacitated dispersion problem
CAS Certificateless aggregate signatures
CBR Constant bit rate
CTMC Continuous-time Markov
DSCR Debt service coverage ratio
DARP Dial-a-ride problems
DSGA Driver social group architecture
DRL Deep reinforcement learning
DTS-MDP Double time-scale Markov decision process
DDPG Deep deterministic policy gradient
DQN Deep Q networks
DDP4V Data dissemination protocol for vehicular networks
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ECPP Efficient conditional privacy preservation
FTP File transfer protocol
GSB Group signature based
HOPs Hop counts
ITS Intelligent transportation system
IoT Internet of things
I2I Infrastructure to infrastructure
JSS Joint socialness score
KPSD Key-insulated pseudonym self delegation
KD Knowledge-driven
LSTM Long-short term memory
MANET Mobile ad hoc network
MFD Macroscopic fundamental diagram
MCN Maximum connectivity number
MaxMin Maximize the minimum distance
MaxSum Maximize the total distance
MaxMinSum Maximize the minimum aggregate dispersion
MinDiff Minimize the gap between max and mini of aggregate dispersion
MWT Mean waiting time
NS-2 Network simulator version 2
NFV Next forwarder vehicle
OBUs On-board units
PSR Packet sending rate
PSO Particle swarm optimization
QoS Quality of service
RSUs Roadside units
RFID Radio frequency identification
SGA Social group architecture
SUMO Simulation of urban mobility
SAMA Secure and anonymous mutual authentication
SPVs Service providing vehicles
SDN Software-defined networking
TCP Transmission control protocol
UDP User datagram protocol
VANETs Vehicular ad hoc networks
VEC Vehicular edge computing
V2V Vehicle to vehicle
V2I Vehicle to infrastructure
V2X Vehicle to everything
VLC Visible light communication
VSGA Vehicle social group architecture
VN Virtual nodes
VNLayer Virtual node layer
VNAODV Virtual nodes ad-hoc on-demand distance vector
VBR Variable bit rate
WiMAX Worldwide interoperability for microwave access
WSS Within-cluster sum of squares
UAV Unmanned aerial vehicle
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