

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

http://hdl.handle.net/10251/202264

Alarcón, B.; Gutiérrez Gil, R.; Lucas Alba, S.; Navarro-Marset, R. (2010). Proving
Termination Properties with Muterm. Lecture Notes in Computer Science. 6486:201-208.
https://doi.org/10.1007/978-3-642-17796-5_12

https://doi.org/10.1007/978-3-642-17796-5_12

Springer-Verlag

Proving Termination Properties with mu-term?

Beatriz Alarcón, Raúl Gutiérrez, Salvador Lucas, and Rafael Navarro-Marset

ELP group, DSIC, Universidad Politécnica de Valencia
Camino de Vera s/n, E-46022 Valencia, Spain

Abstract. mu-term is a tool which can be used to verify a number of
termination properties of (variants of) Term Rewriting Systems (TRSs):
termination of rewriting, termination of innermost rewriting, termina-
tion of order-sorted rewriting, termination of context-sensitive rewriting,
termination of innermost context-sensitive rewriting and termination of
rewriting modulo specific axioms. Such termination properties are essen-
tial to prove termination of programs in sophisticated rewriting-based
programming languages. Specific methods have been developed and im-
plemented in mu-term in order to efficiently deal with most of them. In
this paper, we report on these new features of the tool.

1 Introduction

Handling typical programming language features such as sort/types and sub-
types, evaluation modes (eager/lazy), programmable strategies for controlling
the execution, rewriting modulo axioms and so on is outside the scope of many
termination tools. However, such features can be very important to determine
the termination behavior of programs. For instance, in Figure 1 we show a Maude
[10] program encoding an order-sorted TRS which is terminating when the sort-
ing information is taken into account but which is nonterminating as a TRS
(i.e., disregarding sort information) [18]. The predicate is-even tests whether
an integer number is even. When disregarding any information about sorts, the
program EVEN is not terminating due to the last rule for is-even, which specifies
a recursive call to is-even. However, when sorts are considered and the hierar-
chy among them is taken into account, such recursive call is not longer possible
due to the need of binding variable Y of sort NzNeg to an expression opposite(Y)
of sort NzPos, which is not possible in the (sub)sort hierarchy given by EVEN.

The notions coming from the already quite mature theory of termination of
TRSs (orderings, reduction pairs, dependency pairs, semantic path orderings,
etc.) provide a basic collection of abstractions for treating termination prob-
lems. For real programming languages, though, having appropriate adaptations,
methods, and techniques for specific termination problems is essential. Giving
support to multiple extensions of such classical termination notions is one of the
main goals for developing a new version of our tool, mu-term 5.0:

http://zenon.dsic.upv.es/muterm

? Partially supported by EU (FEDER) and MICINN grant TIN 2007-68093-C02-02.

fmod EVEN is

sorts Zero NzNeg Neg NzPos Pos Int Bool .

subsorts Zero < Neg < Int . subsorts NzNeg < Neg .

subsorts Zero < Pos < Int . subsorts NzPos < Pos .

op 0 : -> Zero . op is-even : Int -> Bool .

op s : Pos -> NzPos . op is-even : NzPos -> Bool .

op p : Neg -> NzNeg . op is-even : NzNeg -> Bool .

ops true false : -> Bool . op opposite : NzNeg -> NzPos .

var X : Pos . var Y : NzNeg .

eq opposite(p(0)) = s(0) .

eq opposite(p(Y)) = s(opposite(Y)) .

eq is-even(0) = true .

eq is-even(s(0)) = false .

eq is-even(s(s(X))) = is-even(X) .

eq is-even(Y) = is-even(opposite(Y)) .

endfm

Fig. 1. Maude program

mu-term [23, 2] was originally designed to prove termination of Context-Sensitive
Rewriting (CSR, [21]), where reductions are allowed only for specific arguments
µ(f) ⊆ {1, . . . , k} of the k-ary function symbols f in the TRS. In this paper
we report on the new features included in mu-term 5.0, not only to improve
its ability to prove termination of CSR but also to verify a number of other
termination properties of (variants of) TRSs.

In contrast to transformational approaches which translate termination prob-
lems into a classical termination problem for TRSs, we have developed specific
techniques to deal with termination of CSR, innermost CSR, order-sorted rewrit-
ing and rewriting modulo specific axioms (associative or commutative) by using
dependency pairs (DPs, [7]). Our benchmarks show that direct methods lead
to simpler, faster and more successful proofs. Moreover, mu-term 5.0 has been
rewritten to embrace the dependency pair framework [17], a recent formulation
of the dependency pair approach which is specially well-suited for mechanizing
proofs of termination.

2 Structure and Functionality of mu-term 5.0

mu-term 5.0 consists of 47 Haskell modules with more than 19000 lines of code.
A web-based interface and compiled versions in several platforms are available at
the mu-term 5.0 web site. In the following, we describe its new functionalities.

2.1 Proving Termination of Context-Sensitive Rewriting

As in the unrestricted case [7], the context-sensitive dependency pairs (CSDPs,
[3]) are intended to capture all possible function calls in infinite µ-rewrite se-
quences. In [2], even though our quite ‘immature’ CSDP approach was one of

2

our major assets, mu-term still used transformations [15, 25] and the context-
sensitive recursive path ordering (CSRPO, [9]) in many termination proofs.
Since the developments in [2], many improvements and refinements have been
made when dealing with termination proofs of CSR. The most important one
has been the development of the context-sensitive dependency pair framework
(CSDP framework, [3, 20]), for mechanizing proofs of termination of CSR. The
central notion regarding termination proofs is that of CS problem; regarding
mechanization of the proofs is that of CS processor. Most processors in the stan-
dard DP-framework [17] have been adapted to CSR and many specific ones have
been developed (see [3, 20]). Furthermore, on the basis of the results in [28] we
have implemented specific processors to prove the infiniteness of CS problems.
Therefore, mu-term 5.0 is the first version of mu-term which is also able to dis-
prove termination of CSR. In the following table, we compare the performance of
mu-term 5.0 and the last reported version of the tool (mu-term 4.3 [2]) regard-
ing its ability to prove termination of CSR over the context-sensitive category of
the Termination Problem Data Base1 (TPDB) which contains 109 examples2.
The results show the power of the new CSDP framework in mu-term 5.0, not

Termination Tool Total Yes No CSDPs CSRPO Transf. Average (sec)

mu-term 5.0 99/109 95 4 99 0 0 0.95s

mu-term 4.3 64/109 64 0 54 7 3 3.44s

Table 1. mu-term 4.3 compared to mu-term 5.0 in proving termination of CSR.

only by solving more examples in less time, but also disregarding the need of
using transformations or CSRPO for solving them.

2.2 Proving Termination of Innermost CSR

Termination of innermost CSR (i.e., the variant of CSR where only the deepest µ-
replacing redexes are contracted) has been proved useful for proving termination
of programs in eager programming languages like Maude and OBJ* which per-
mit to control the program execution by means of context-sensitive annotations.
Techniques for proving termination of innermost CSR were first investigated
in [14, 22]. In these papers, though, the original CS-TRS (R, µ) is transformed
into a TRS whose innermost termination implies the innermost termination for
(R, µ). In [4], the dependency pair method [7] has been adapted to deal with ter-
mination proofs of innermost CSR. This is the first proposal of a direct method
for proving termination of innermost CSR and mu-term was the first termina-
tion tool able to deal with it. Our experimental evaluation shows that the use
of innermost context-sensitive dependency pairs (ICSDPs) highly improves over
the performance of transformational methods for proving termination of inner-
most CSR: innermost termination of 95 of the 109 considered CS-TRSs could be
1 See http://termination-portal.org/wiki/TPDB
2 We have used version 7.0.2 of the TPDB.

3

proved by using ICSDPs; in contrast, only 60 of the 109 could be proved by us-
ing (a combination of) transformations and then using AProVE [16] for proving
the innermost termination of the obtained TRS. Another important aspect of
innermost CSR is its use for proving termination of CSR as part of the CSDP
framework [1]. Under some conditions, termination of CSR and termination of
innermost CSR coincide [14, 19]. We then switch from termination of CSR to
termination of innermost CSR, for which we can apply the existing processors
more successfully (see Section 2.6). Actually, we proceed like that in 30 − 50%
of the CSR termination problems which are proved by mu-term 5.0 (depending
on the particular benchmarks).

2.3 Proving Termination of Order-Sorted Rewriting

In order-sorted rewriting, sort information is taken into account to specify the
kind of terms that function symbols can take as arguments. Recently, the order-
sorted dependency pairs have been introduced and proved useful for proving
termination of order-sorted TRSs [26]. As a remarkable difference w.r.t. the
standard approach, we can mention the notion of applicable rules which are those
rules which can eventually be used to rewrite terms of a given sort. Another
important point is the use of order-sorted matching and unification. To our
knowledge, mu-term 5.0 is the only tool which implements specific methods for
proving termination of OS-TRSs3. Our benchmarks over the examples in the
literature (there is no order-sorted category in the TPDB yet) show that the
new techniques perform quite well. For instance, we can prove termination of
the OS-TRS EVEN in Figure 1 automatically.

2.4 Proving Termination of A∨C-Rewriting

Recently, we have developed a suitable dependency pair framework for prov-
ing termination of A∨C-rewrite theories [5]. An A∨C-rewrite theory is a tuple
R = (Σ,E,R) where E is a set containing associative or commutative axioms
associated to function symbols of the signature Σ. We have implemented the
techniques described in [5] in mu-term. Even with only a few processors imple-
mented, mu-term behaves well in the equational category of the TPDB, solving
39 examples out of 71. Obviously, we plan to investigate and implement more
processors in this field. This is not the first attempt to prove termination of
rewriting modulo axioms: CiME [11] is able to prove AC-termination of TRSs,
and AProVE is able to deal with termination of rewriting modulo equations sat-
isfying some restrictions.

2.5 Use of Rational Polynomials and Matrix Interpretations

Proofs of termination with mu-term 5.0 heavily rely on the generation of poly-
nomial orderings using polynomial interpretations with rational coefficients [24].
3 The Maude Termination Tool [12] implements a number of transformations from

OS-TRSs into TRSs which can also be used for this purpose.

4

In this sense, recent improvements which are new with respect to the previous
versions of mu-term reported in [2, 23] are the use of an autonomous SMT-based
constraint-solver for rational numbers [8] and the use of matrix interpretations
over the reals [6]. Our benchmarks show that polynomials over the rationals are
used in around 25% of the examples where a polynomial interpretation is re-
quired during the successful proof. Matrix interpretations are used in less than
4% of the proofs.

2.6 Termination Expert

In the (CS)DP framework, a strategy is applied to an initial (CSR, innermost
CSR, . . .) problem and returns a proof tree. This proof tree is later evaluated
following a tree evaluation strategy (normally, breadth-first search).

With small differences depending on the particular kind of problem, we do
the following:

1. We check the system for extra variables (at active positions) in the right-
hand side of the rules.

2. We check whether the system is innermost equivalent (see Section 2.2). If it
is true, then we transform the problem into an innermost one.

3. Then, we obtain the corresponding dependency pairs, obtaining a (CS)DP
problem. And now, recursively:
(a) Decision point between infinite processors and the strongly connected

component (SCC) processor.
(b) Subterm criterion processor.
(c) Reduction triple (RT) processor with linear polynomials (LPoly) and

coefficients in N2 = {0, 1, 2}.
(d) RT processor with LPoly and coefficients in Q2 = {0, 1, 2, 1

2} and Q4 =
{0, 1, 2, 3, 4, 1

2 ,
1
4} (in this order).

(e) RT processor with simple mixed polynomials (SMPoly) and coefficients
in N2.

(f) RT processor with SMPoly and rational coefficients in Q2.
(g) RT processor with 2-square matrices with entries in N2 and Q2.
(h) Transformation processors (only twice to avoid nontermination of the

strategy): instantiation, forward instantiation, and narrowing.
4. If the techniques above fail, then we use (CS)RPO.

The explanation of each processor can be found in [3, 20]. Note also that all
processors are new with respect to mu-term 4.3 [2].

2.7 External use of mu-term

The Maude Termination Tool4 (MTT [12]), which transforms proofs of termina-
tion of Maude programs into proofs of termination of CSR, use mu-term’s expert
as an external tool to obtain the proofs. The context-sensitive and order-sorted
4 http://www.lcc.uma.es/~duran/MTT

5

features developed as part of mu-term 5.0 are essential to successfully handling
Maude programs in MTT. The Knuth-Bendix completion tool mkbTT [29] is a
modern completion tool that combines multi-completion with the use of termi-
nation tools. In the web version of the tool, the option to use mu-term as the
external termination tool is available.

3 Conclusions

We have described mu-term 5.0, a new version of mu-term with new features
for proving different termination properties like termination of innermost CSR,
termination of order-sorted rewriting and termination of rewriting modulo (asso-
ciative or commutative) axioms. Apart from that, a complete implementation of
the CSDP framework [20] has been included in mu-term 5.0, leading to a much
more powerful tool for proving termination of CSR. While transformations were
used in mu-term 4.3, in mu-term 5.0 they are not used anymore. The research
in the field has increased the number of examples which could be handled with
CSDPs in 35 (see Table 1). Regarding proofs of termination of rewriting, from a
collection of 1468 examples from the TPDB 7.0.2, mu-term 5.0 is able to prove
(or disprove) termination of 835 of them. In contrast, mu-term 4.3 was able to
deal with 503 only.

More details about these experimental results in all considered termination
properties discussed in the previous sections can be found here:

http://zenon.dsic.upv.es/muterm/benchmarks/index.html

Thanks to the new developments reported in this paper, mu-term 5.0 has proven
to be the most powerful tool for proving termination of CSR in the context-
sensitive subcategory of the 2007, 2009, and 2010 editions of the International
Competition of Termination Tools5. Moreover, in the standard subcategory, we
have obtained quite good results in the 2009 and 2010 editions, being the third
tool (among five) in solving more examples. We have also participated in the
innermost category in the 2009 and 2010 editions and in the equational category
in 2010.

Note also that mu-term 5.0 has a web interface that allows inexpert users
to prove automatically termination by means of the ‘automatic’ option. This is
very convenient for teaching purposes, for instance. And, apart from MTT, it is
the only termination tool that accepts programs in OBJ/Maude syntax.

Therefore, mu-term 5.0 is no more a tool for proving termination of CSR
only: We can say now that it has evolved to become a powerful termination
tool which is able to prove termination of a wide range of interesting properties
5 See http://www.lri.fr/~marche/termination-competition/2007/, where only

AProVE and mu-term participated, and http://termcomp.uibk.ac.at/termcomp/

where there were three more tools in the competition: AProVE, Jambox [13] (only in
the 2009 edition), and VMTL [27]. AProVE and mu-term solved the same number of
examples but mu-term was much faster. The 2008 edition had only one participant:
AProVE.

6

of rewriting with important applications to prove termination of programs in
sophisticated rewriting-based programming languages like Maude or OBJ*.

References

1. Alarcón, B.: Innermost Termination of Context-Sensitive Rewriting. Master’s
thesis, Departamento de Sistemas Informáticos y Computación, Universidad
Politécnica de Valencia, Valencia, Spain (2008)

2. Alarcón, B., Gutiérrez, R., Iborra, J., Lucas, S.: Proving Termination of Context-
Sensitive Rewriting with mu-term. Electronic Notes in Theoretical Computer Sci-
ence 188, 105–115 (2007)

3. Alarcón, B., Gutiérrez, R., Lucas, S.: Context-Sensitive Dependency Pairs. Infor-
mation and Computation 208, 922–968 (2010)

4. Alarcón, B., Lucas, S.: Termination of Innermost Context-Sensitive Rewriting Us-
ing Dependency Pairs. In: Wolter, F. (ed.) Proc. of the 6th International Sympo-
sium on Frontiers of Combining Systems, FroCoS’07. LNAI, vol. 4720, pp. 73–87.
Springer-Verlag (2007)

5. Alarcón, B., Lucas, S., Meseguer, J.: A Dependency Pair Framework for A∨C-
Termination. In: Ölveczky, P. (ed.) Proc. of the 8th International Workshop on
Rewriting Logic and its Applications, WRLA’10. LNCS, Springer-Verlag, to appear
(2010)

6. Alarcón, B., Lucas, S., Navarro-Marset, R.: Proving Termination with Matrix In-
terpretations over the Reals. In: Geser, A., Waldmann, J. (eds.) Proc. of the 10th
International Workshop on Termination, WST’09. pp. 12–15 (2009)

7. Arts, T., Giesl, J.: Termination of Term Rewriting Using Dependency Pairs. The-
oretical Computer Science 236(1–2), 133–178 (2000)

8. Borralleras, C., Lucas, S., Navarro-Marset, R., Rodŕıguez-Carbonell, E., Rubio,
A.: Solving Non-linear Polynomial Arithmetic via SAT Modulo Linear Arithmetic.
In: Schmidt, R.A. (ed.) Proc. of the 22th Conference on Automated Deduction,
CADE’09. LNAI, vol. 5663, pp. 294–305. Springer-Verlag (2009)

9. Borralleras, C., Lucas, S., Rubio, A.: Recursive Path Orderings can be Context-
Sensitive. In: Voronkov, A. (ed.) Proc. of the 18th Conference on Automated De-
duction, CADE’02. LNAI, vol. 2392, pp. 314–331. Springer-Verlag (2002)

10. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott,
C.: All About Maude – A High-Performance Logical Framework, LNCS, vol. 4350.
Springer-Verlag (2007)

11. Contejean, E., Marché, C., Monate, B., Urbain, X.: Proving Termination of Rewrit-
ing with CiME. In: Rubio, A. (ed.) Proc. of the 6th International Workshop on
Termination, WST’03. pp. 71–73 (2003)

12. Durán, F., Lucas, S., Meseguer, J.: MTT: The Maude Termination Tool (System
Description). In: Armando, A., Baumgartner, P., Dowek, G. (eds.) Proc. of the 4th
International Joint Conference on Automated Reasoning, IJCAR’08. LNCS, vol.
5195, pp. 313–319. Springer-Verlag (2008)

13. Endrullis, J.: Jambox, Automated Termination Proofs For String and Term Rewrit-
ing, available at http://joerg.endrullis.de/jambox.html (2009)

14. Giesl, J., Middeldorp, A.: Innermost Termination of Context-Sensitive Rewriting.
In: Ito, M., Toyama, M. (eds.) Proc. of the 6th International Conference on De-
velopments in Language Theory, DLT’02. LNAI, vol. 2450, pp. 231–244. Springer-
Verlag (2003)

7

15. Giesl, J., Middeldorp, A.: Transformation Techniques for Context-Sensitive
Rewrite Systems. Journal of Functional Programming 14(4), 379–427 (2004)

16. Giesl, J., Schneider-Kamp, P., Thiemann, R.: AProVE 1.2: Automatic Termi-
nation Proofs in the Dependency Pair Framework. In: Furbach, U., Shankar,
N. (eds.) Proc. of the 3rd International Joint Conference on Automated Rea-
soning, IJCAR’06. LNAI, vol. 4130, pp. 281–286. Springer-Verlag, available at
http://www-i2.informatik.rwth-aachen.de/AProVE (2006)

17. Giesl, J., Thiemann, R., Schneider-Kamp, P., Falke, S.: Mechanizing and Improving
Dependency Pairs. Journal of Automatic Reasoning 37(3), 155–203 (2006)

18. Gnaedig, I.: Termination of Order-sorted Rewriting. In: Kirchner, H., Levi, G.
(eds.) Proc. of the 3rd International Conference on Algebraic and Logic Program-
ming, ALP’92. LNAI, vol. 632, pp. 37–52. Springer-Verlag (1992)

19. Gramlich, B., Lucas, S.: Modular Termination of Context-Sensitive Rewriting. In:
Proc. of the 4th ACM SIGPLAN International Conference on Principles and Prac-
tice of Declarative Programming, PPDP’02. pp. 50–61. ACM Press (2002)

20. Gutiérrez, R., Lucas, S.: Proving Termination in the Context-Sensitive Dependency
Pair Framework. In: Ölveczky, P. (ed.) Proc. of the 8th International Workshop
on Rewriting Logic and its Applications, WRLA’10. LNCS, Springer-Verlag, to
appear (2010)

21. Lucas, S.: Context-Sensitive Computations in Functional and Functional Logic
Programs. Journal of Functional and Logic Programming 1998(1), 1–61 (1998)

22. Lucas, S.: Termination of Rewriting With Strategy Annotations. In: Nieuwenhuis,
R., Voronkov, A. (eds.) Proc. of the 8th International Conference on Logic for
Programming, Artificial Intelligence and Reasoning, LPAR’01. LNAI, vol. 2250,
pp. 666–680. Springer-Verlag (2001)

23. Lucas, S.: mu-term: A Tool for Proving Termination of Context-Sensitive Rewrit-
ing. In: van Oostrom, V. (ed.) Proc. of the 15th International Conference on Rewrit-
ing Techniques and Applications, RTA’04. LNCS, vol. 3091, pp. 200–209. Springer-
Verlag, available at http://zenon.dsic.upv.es/muterm/ (2004)

24. Lucas, S.: Polynomials over the Reals in Proofs of Termination: from Theory to
Practice. RAIRO Theoretical Informatics and Applications 39(3), 547–586 (2005)

25. Lucas, S.: Proving Termination of Context-Sensitive Rewriting by Transformation.
Information and Computation 204(12), 1782–1846 (2006)

26. Lucas, S., Meseguer, J.: Order-Sorted Dependency Pairs. In: Antoy, S., Albert, E.
(eds.) Proc. of the 10th International ACM SIGPLAN Sympsium on Principles and
Practice of Declarative Programming, PPDP’08. pp. 108–119. ACM Press (2008)

27. Schernhammer, F., Gramlich, B.: VMTL - A Modular Termination Laboratory. In:
Treinen, R. (ed.) Proc. of the 20th International Conference on Rewriting Tech-
niques and Applications, RTA’09. LNCS, vol. 5595, pp. 285–294. Springer-Verlag
(2009)

28. Thiemann, R., Sternagel, C.: Loops under Strategies. In: Treinen, R. (ed.) Proc.
of the 20th International Conference on Rewriting Techniques and Applications,
RTA’09. LNCS, vol. 5595, pp. 17–31. Springer-Verlag (2009)

29. Winkler, S., Sato, H., Middeldorp, A., Kurihara, M.: Optimizing mkbTT. In: Lynch,
C. (ed.) Proc. of the 21st International Conference on Rewriting Techniques and
Applications, RTA’10. Leibniz International Proceedings in Informatics (LIPIcs),
vol. 6, pp. 373–384. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, http://
drops.dagstuhl.de/opus/volltexte/2010/2664 (2010)

8

