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Abstract. Recently, the dependency pairs (DP) approach has been gen-
eralized to context-sensitive rewriting (CSR). Although the context-sen-
sitive dependency pairs (CS-DP) approach provides a very good basis for
proving termination of CSR, the current developments basically corre-
spond to a ten-years-old DP approach. Thus, the task of adapting all
recently introduced dependency pairs techniques to get a more powerful
approach becomes an important issue. In this direction, usable rules are
one of the most interesting and powerful notions. Actually usable rule
have been investigated in connection with proofs of innermost termina-
tion of CSR. However, the existing results apply to a quite restricted
class of systems. In this paper, we introduce a notion of usable rules that
can be used in proofs of termination of CSR with arbitrary systems. Our
benchmarks show that the performance of the CS-DP approach is much
better when such usable rules are considered in proofs of termination of
CSR.
Keywords. Dependency pairs, term rewriting, termination.

1 Introduction

During the last decade, the impressive advances in techniques for proving ter-
mination of rewriting (remarkably the dependency pairs approach [6, 10, 13, 14])
have succeeded in solving termination problems that stood out of reach for a
long time. Roughly speaking, given a Term Rewriting System (TRS) R, the de-
pendency pairs associated to R give rise to a new TRS DP(R) which (together
with R) determines the so-called dependency chains whose finiteness character-
izes termination of R. The dependency pairs can be presented as a dependency
graph, where the absence of infinite chains can be analyzed by considering the
cycles in the graph. Basically, given a cycle C ⊆ DP(R) in the dependency graph,
we require l � r for all rules in the TRS R, u � v or u = v for all dependency
pairs u → v ∈ C and u = v for at least one u → v ∈ C. Here, � is a stable
and monotonic quasi-ordering on terms and = is a well-founded ordering; both
of them can be different for the different cycles in the dependency graph.
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Termination problems with many rules require more time for getting an an-
swer. Even worse: since termination proofs are usually constrained to succeed
within a given (often short) time-out, the proof could get lost due to a lack of
time. For those reasons, techniques leading to increase the efficiency (and also
the power) of the dependency pairs method, like usable rules, appear like a key
issue. Usable rules U(R,C) ⊆ R are associated to a given cycle C of the depen-
dency graph for R. For particular (but widely used) classes of quasi-orderings
�, we can restrict the comparisons l � r to rules l → r in U(R,C) instead of
using R. Since U(R,C) is (usually) smaller than R, proofs of termination often
become easier in this way. Usable rules were introduced ten years ago by Arts
and Giesl for proving termination of innermost rewriting [5]. The adaptation of
the idea to (unrestricted) rewriting [14, 17] took some years. A possible reason
for that is that the proof of soundness for the innermost and for the unrestricted
cases are totally different. The proof of soundness in [14, 17] relies on a trans-
formation in which all infinite (minimal) rewrite sequences can be simulated
by using a restricted set of rules. This transformation was devised by Gramlich
for a completely different purpose [15]. Later, Urbain [24] used it (with some
modifications) to prove termination of rewriting modules. Finally, Hirokawa and
Middeldorp [17] and (independently) Thiemann et al. [14] combined this idea
with the idea of usable rules leading to an improved framework for proving
termination of rewriting.

In this paper, we extend the notion of usable rule to the recently intro-
duced dependency pairs approach for context-sensitive rewriting (CS-DPs [2,
3]). Proving termination of context-sensitive rewriting (CSR [18, 20]) is an in-
teresting problem with many applications in the fields of term rewriting and
programming languages (see [8, 12, 19, 20, 22] for further motivations). In CSR,
a replacement map (i.e., a mapping µ : F → ℘(N) satisfying µ(f) ⊆ {1, . . . , k},
for each k-ary symbol f of a signature F) is used to discriminate the argument
positions on which the rewriting steps are allowed; rewriting at the topmost po-
sition is always possible. The following example gives a first intuition of CSR
and CS-DPs; full details are given below.

Example 1. Consider the following TRS R borrowed from [7, Example 4.7.37].
The program zips two lists of integers into a single one but instead of pairing
the components it rather computes their quotients:

sel(0, cons(x, xs)) → x (1)

minus(x, 0) → x (2)

quot(0, s(y)) → 0 (3)

zWquot(nil, x) → nil(4)

zWquot(x, nil) → nil(5)

head(cons(x, xs)) → x (6)

sel(s(n), cons(x, xs)) → sel(n, xs) (7)

minus(s(x), s(y)) → minus(x, y) (8)

quot(s(x), s(y)) → s(quot(minus(x, y), s(y))) (9)

from(x) → cons(x, from(s(x))) (10)

tail(cons(x, xs)) → xs (11)

zWquot(cons(x, xs), cons(y, ys)) → cons(quot(x, y), zWquot(xs, ys)) (12)

with µ(cons) = {1} and µ(f) = {1, . . . , ar(f)} for all other symbols f ∈ F .
The set of CS-DPs of R is:



MINUS(s(x), s(y)) → MINUS(x, y)

QUOT(s(x), s(y)) → MINUS(x, y)

QUOT(s(x), s(y)) → QUOT(minus(x, y), s(y))

TAIL(cons(x, xs)) → xs

SEL(s(n), cons(x, xs)) → SEL(n, xs)

ZWQUOT(cons(x, xs), cons(y, ys)) → QUOT(x, y)

SEL(s(n), cons(x, xs)) → xs

Note that non-µ-replacing subterms in right-hand sides (e.g., from(s(x)) in rule
(10)) are not considered to build the CS-DPs. Also, in sharp contrast with the un-
restricted case, collapsing dependency pairs like TAIL(cons(x, xs))→ xs (where
the right-hand side is a variable) are introduced.

Regarding proofs of termination of innermost CSR, the straightforward adapta-
tion of usable rules to the context-sensitive setting only works for the so-called
conservative systems (see [4]) where collapsing dependency pairs do not occur.
In Section 3, we show that the standard adaptation does not work when proofs
of termination of CSR are attempted. In Section 4, we provide a general notion
of usable rules for proving termination of CSR. Although we follow the same
proof style, our proof of soundness differs from those in [14, 15, 17, 24] in several
aspects that we clarify below. In Section 5, we prove that it is possible to use the
standard (simpler) notion of usable rules [14, 17] in proofs of termination of CSR
for a restricted class of CS-TRSs: the strongly conservative systems. Section 6
provides experimental evaluations and Section 7 concludes. Complete proofs are
given in [16].

2 Preliminaries

We assume knowledge about standard definitions and notations for term rewrit-
ing (including dependency pairs) as given in, e.g., [23]. In the following, we
provide some definitions and notation on CSR [18, 20] and CS-DPs [2, 3].

Context-Sensitive Rewriting. Given a TRS R = (F , R), we consider the sig-
nature F as the disjoint union F = C ] D of constructors symbols c ∈ C and
defined symbols f ∈ D where D = {root(l) | l → r ∈ R} and C = F − D. A
mapping µ : F → ℘(N) is a replacement map (or F-map) if ∀f ∈ F , µ(f) ⊆
{1, . . . , ar(f)} [18]. Let MF be the set of all F-maps (MR for the F-maps of a
TRSR = (F , R)). A binary relation R on terms in T (F ,X ) is µ-monotonic if tRs
implies f(t1, . . . , ti−1, t, . . . , tn)Rf(t1, . . . , ti−1, s, . . . , tn) for all f ∈ F , i ∈ µ(f),
and t, s, t1, . . . , tn ∈ T (F ,X ). The set of µ-replacing positions Posµ(t) of t ∈
T (F ,X ) is: Posµ(t) = {ε}, if t ∈ X and Posµ(t) = {ε}∪

⋃
i∈µ(root(t)) i.Pos

µ(t|i),
if t 6∈ X . The set of µ-replacing variables of t is Varµ(t) = {x ∈ Var(t) | ∃p ∈
Posµ(t), t|p = x}. The µ-replacing subterm relation �µ is defined by t �µ s if
there is p ∈ Posµ(t) such that s = t|p. We write t�µs if t�µs and t 6= s. We write
t�

�µ
s to denote that s is a non-µ-replacing strict subterm of t: t�

�µ
s if there is

p ∈ Pos(t)−Posµ(t) such that s = t|p. We say that f ∈ F is a hidden symbol in



l→ r ∈ R if there exists a term t ∈ T (F ,X ) s.t. r�
�µ
t and root(t) = f . We say

that a variable x is migrating in l→ r ∈ R if x ∈ Varµ(r)−Varµ(l). In context-
sensitive rewriting (CSR [18]), we (only) rewrite terms at µ-replacing positions:
t µ-rewrites to s, written t ↪→µ s (or t ↪→R,µ s), if t

p→R s and p ∈ Posµ(t). A
TRS R is µ-terminating if ↪→µ is terminating. A term t is µ-terminating if there
is no infinite µ-rewrite sequence t = t1 ↪→µ t2 ↪→µ · · · . A pair (R, µ) (or triple
(F , µ,R)) where R = (F , R) is a TRS and µ ∈ MR is often called a CS-TRS.
We denote H(R, µ) (or just H, if there is no ambiguity) the set of all hidden
symbols in (R, µ).

Context-Sensitive Dependency Pairs. Given a TRS R = (F , R) = (C]D, R) and
µ ∈MR, the set of context-sensitive dependency pairs (CS-DPs) is DP(R, µ) =
DPF (R, µ) ∪ DPX (R, µ), where DPF (R, µ) and DPX (R, µ) are obtained as fol-
lows: let f(t1, . . . , tm) → r ∈ R and s ∈ T (F ,X ) be such that r �µ s. Then
(1) if s = g(s1, . . . , sn), for some g ∈ D, s1, . . . , sn ∈ T (F ,X ) and l 7µ s, then
f ](t1, . . . , tm) → g](s1, . . . , sn) ∈ DPF (R,µ); (2) if s = x ∈ Varµ(r) − Varµ(l),
then f ](t1, . . . , tm) → x ∈ DPX (R,µ). Here, f ] and g] are new fresh symbols
(called tuple symbols) associated to the symbols f and g respectively. The CS-
DPs in DPX (R, µ) are called the collapsing CS-DPs. Let F ] = F ∪{f ] | f ∈ F}.
We extend µ ∈ MF into µ] ∈ MF] by µ](f) = µ](f ]) = µ(f) for each f ∈ F .
As usual, for t = f(t1, . . . , tn) ∈ T (F ,X ), we write t] to denote the marked
term f ](t1, . . . , tn). Let T ](F ,X ) = {t] | t ∈ T (F ,X ) − X} be the set of
marked terms. We will also use the set P](F ,X ) = T ](F ,X )× (T ](F ,X )∪X ).
Given t = f ](t1, . . . , tk) ∈ T ](F ,X ), we write t\ to denote the unmarked term
f(t1, . . . , tk) ∈ T (F ,X ). As usual, capital letters denote marked symbols in
examples. A set of pairs P ⊆ P](F ,X ) is decomposed into collapsing and non-
collapsing pairs (PX and PF , respectively): PX = {u → v ∈ P | v ∈ X} and
PF = P − PX .

Let R = (F , R) be a TRS, P ⊆ P](F ,X ) and µ ∈ MF . An (R,P, µ])-chain
is a finite or infinite sequence of pairs ui → vi ∈ P, for i ≥ 1 such that there is
a substitution σ satisfying both:

1. σ(vi) ↪→∗R,µ] σ(ui+1), if ui → vi ∈ PF , and
2. if ui → vi = ui → xi ∈ PX , then there is si ∈ T (F ,X ) such that σ(xi) �µ si

and s]i ↪→∗R,µ] σ(ui+1).

where Var(vi) ∩ Var(uj) = ∅ for all i 6= j (renaming if necessary). Let M∞,µ
be the set of minimal non-µ-terminating terms. Then, t ∈ M∞,µ if t is non-µ-
terminating and every strict µ-replacing subterm of t is terminating. We say that
an (R,P, µ])-chain is minimal if for all i ≥ 1 σ(vi) (whenever ui → vi ∈ PF ), s]i
(whenever ui → vi ∈ PX ) are µ-terminating w.r.t. R. A CS-TRS R = (F , µ,R)
is µ-terminating if and only if there is no infinite minimal (R,DP(R, µ), µ])-
chain. For finite CS-TRSs, the CS-DPs can be presented as a context-sensitive
dependency graph (CS-DG); there is an arc from u → v ∈ DPF (R, µ) to u′ →
v′ ∈ DP(R, µ) if there is a substitution σ such that σ(v) ↪→∗R,µ σ(u′); and, there
is an arc from u → v ∈ DPX (R, µ) to u′ → v′ ∈ DP(R, µ) if root(u′)\ ∈ H.



We consider the strongly connected components in this graph. A µ-reduction
pair (�,=) consists of a stable and weakly µ-monotonic quasi-ordering �, and
a stable and well-founded ordering = satisfying � ◦ =⊆= or = ◦ � ⊆=. From
now on, we assume that all CS-TRSs are finite.

3 Basic Usable Rules

Consider a set of pairs P and a CS-TRS (R, µ). Then, the set of usable rules is
the smallest set of rules from R which are needed to capture all the infinite min-
imal (R,P, µ])-chains. The rules that are responsible for generating the chains
between pairs are those rules rooted by symbols that appear in the right-hand
side of the pairs below the root symbol. This concept is captured by the definition
of direct dependency [14, 17, 24]:

Definition 1 (Direct Dependency [14, 17]). Given a TRS R = (F , R), we
say that f ∈ F directly depends on g ∈ F , written f �d g, if there is a rule
l→ r ∈ R with f = root(l) and g occurs in r.

The set of defined symbols in a term t is DFun(t) = {f | ∃p ∈ Pos(t), f =
root(t|p) ∈ D}. Let �∗d be the transitive and reflexive closure of �d. Then, we
have:

Definition 2 (Usable Rules [14, 17]). For a set G of symbols we denote by
R | G the set of rewriting rules l → r ∈ R with root(l) ∈ G. The set U(R, t) of
usable rules of a term t is defined as R | {g | f �∗d g for some f ∈ DFun(t)}. If
P is a set of dependency pairs then U(R,P) =

⋃
l→r∈P U(R, r).

The set U(R,P) can be used instead of R when looking for a reduction pair that
proves termination of R [14, 17]. Let us now focus on CS-TRSs.

A first attempt to give a notion of usable rules for CSR is given in [4] (basic
usable rules) for proofs of innermost termination. The results in [4] show that the
straightforward generalization of Definition 2 to CSR (see Definition 4 below)
only applies to conservative CS-TRSs and cycles (of CS-DPs), that is, systems
having only conservative rules [22]: a rule l→ r ∈ R is conservative if Varµ(r) ⊆
Varµ(l). First, we adapt Definition 1 to the CSR setting as follows:

Definition 3 (Basic µ-Dependency). Given a CS-TRS (F , µ,R), we say that
f ∈ F has a basic µ-dependency on g ∈ F , written f Id,µ g, if there is l→ r ∈ R
with f = root(l) and g occurs in r at a µ-replacing position.

This leads to a straightforward extension of Definition 2. The set of µ-replacing
defined symbols in a term t is DFunµ(t) = {f | ∃p ∈ Posµ(t), f = root(t|p) ∈
D}. Then, we have3:

Definition 4 (Basic Context-Sensitive Usable Rules). Let R = (F , R)
be a TRS and µ ∈ MR. The set UB(R, µ, t) of basic context-sensitive usable
rules of a term t is defined as R | {g | f I∗d,µ g for some f ∈ DFunµ(t)},
3 Note that, due to the focus on innermost CSR, [4, Def. 5] slightly differs from ours.



where I∗d,µ is the transitive and reflexive closure of Id,µ. If P ⊆ P](F ,X ), then

UB(R, µ],P) =
⋃

l→r∈P

UB(R, µ], r).

Example 2. (Continuing Example 1) The cycles in the CS-DG are:

{SEL(s(n), cons(x, xs))→ SEL(n, xs)} (C1)

{MINUS(s(x), s(y))→ MINUS(x, y)} (C2)

{QUOT(s(x), s(y))→ QUOT(minus(x, y), s(y))} (C3)

Consider the cycle C3; then, UB(R, µ], C3) contains the following rules:

minus(x, 0)→ x minus(s(x), s(y))→ minus(x, y)

However, as we are going to see, and in sharp contrast with [4], Definition
4 does not lead to a correct approach for proving termination of CSR, even for
conservative TRSs.

Example 3. Consider the TRSR = {f(c(x), x)→ f(x, x), b→ c(b)} [4] together
with µ(f) = {1, 2} and µ(c) = ∅. Note that (R, µ) is conservative (and innermost
µ-terminating, see [4]).

We have a single cycle C = {F(c(x), x) → F(x, x)}. According to Defini-
tion 4, we have no usable rules because F(x, x) contains no symbol in F . We
could wrongly conclude µ-termination of (R, µ), but we have the infinite mini-
mal (R, C, µ])-chain F(c(b), b)→ F(b, b) ↪→ F(c(b), b)→ · · · .
In the following, we develop a correct definition of usable rules that can be
applied to arbitrary CS-TRSs.

4 Termination of CS-TRSs with Usable Rules

As shown in [14, 17], considering the set of usable rules instead of all the rules suf-
fices for proving termination of (R,P)-chains (or P-minimal sequences in [17]).
In [14, 17], an interpretation of terms as sequences of their possible reducts is
used4. The definition of the transformation requires adding new fresh (list con-
structor) symbols ⊥, g /∈ F and the (projection) rules g(x, y) → x, g(x, y) → y
(the π-rules). In this way, infinite minimal (R,P)-chains can be represented as
infinite (U(R,P) ∪ π,P)-chains. We recall here the interpretation definition.

Definition 5 (Interpretation [14, 17]). Let R = (F , R) be a TRS and G ⊆ F .
Let > be an arbitrary total ordering over T (F ] ∪ {⊥, g},X ) where ⊥ is a new
constant symbol and g is a new binary symbol. The interpretation IG is a mapping
from terminating terms in T (F ],X ) to terms in T (F ] ∪ {⊥, g},X ) defined as
follows:

IG(t) =

 t if t ∈ X
f(IG(t1), . . . , IG(tn)) if t = f(t1 . . . tn) and f /∈ G
g(f(IG(t1), . . . , IG(tn)), t′) if t = f(t1 . . . tn) and f ∈ G

4 This method goes back to [15].



where t′ = order ({IG(u) | t→R u})

order(T ) =
{
⊥, if T = ∅
g(t, order(T − {t})) if t is minimal in T w.r.t. >

The set of symbols G ⊆ F in Definition 5 is intended to represent the set of
‘non-usable symbols’, i.e., symbols which do not occur in the usable rules of the
considered set of pairs P. In rewriting, when considering infinite minimal (R,P)-
chains, we only deal with terminating terms overR. The interpretation in Defini-
tion 5 is defined only for terminating terms because non-terminating terms would
yield an infinite term which, actually, does not belong to T (F ] ∪ {⊥, g},X ).

Similarly, we aim at defining a µ-interpretation IG,µ that allows us to asso-
ciate an infinite (U(R, µ],P)∪π,P, µ])-chain to each infinite minimal (R,P, µ])-
chain. Actually, the main problem is that (R,P, µ])-chains contain non-µ-ter-
minating terms in non-µ-replacing positions which are potentially able to reach
µ-replacing positions: subterms at a µ-replacing position are µ-terminating, but
we do not know anything about subterms at non-µ-replacing positions. Hence,
we have to define our µ-interpretation IG,µ both on µ-terminating and non-
µ-terminating terms. In [3], we have investigated the structure of infinite µ-
rewriting sequences issued from minimal non-µ-terminating terms. Intuitively,
one of the main results in [3] states that terms at non-µ-replacing positions in
the right-hand side of the rules are essential to track infinite minimal (R,P, µ])-
chains involving collapsing CS-DPs (see [3, Proposition 3.6]). These terms, by
definition, are formed by hidden symbols. This observation gives us the key to
generalize Definition 5 properly. Following Definition 5, a µ-terminating but non-
terminating term generates an infinite list. For this reason, IG (as a mapping from
finite into finite terms) is not defined for non-terminating terms.

Regarding our µ-interpretation, if we consider the rules headed by hidden
symbols as usable, then we are avoiding such infinite µ-interpretations of µ-
terminating terms. A non-µ-terminating term t (below a non-µ-replacing posi-
tion) is treated as if its root symbol does not belong to G, because if it occurs
in the (R,P, µ])-chain at a µ-replacing position, then t�µ s and s] becomes the
next term in the chain. To simulate all possible derivations of the terms over
(R, µ) we also need to add to the system the π-rules. Our new µ-interpretation
is:

Definition 6 (µ-Interpretation). Let R = (F , µ,R) be a CS-TRS, G ⊆ F be
such that G∩H = ∅. Let > be an arbitrary total ordering over T (F ] ∪ {⊥, g},X )
where ⊥ is a new constant symbol and g is a new binary symbol (with µ(g) =
{1, 2}). The µ-interpretation IG,µ is a mapping from arbitrary terms in T (F ],X )
to terms in T (F ] ∪ {⊥, g},X ) defined as follows:

IG,µ(t) =


t if t ∈ X
f(IG,µ(t1), . . . , IG,µ(tn)) if t = f(t1 . . . tn) and f /∈ G

or t is non-µ-terminating
g(f(IG,µ(t1), . . . , IG,µ(tn)), t′) if t = f(t1 . . . tn) and f ∈ G

and t is µ-terminating



where t′ = order
(
{IG,µ(u) | t ↪→(R,µ) u}

)
order(T ) =

{
⊥, if T = ∅
g(t, order(T − {t})) if t is minimal in T w.r.t. >

The set G ⊆ F in Definition 6 corresponds to the set of non-usable symbols as
discussed below. Now, we prove that IG,µ is well-defined. The most important
difference (and essential in our proof) among our µ-interpretation and all pre-
vious ones [14, 15, 17, 24] is that IG,µ is well-defined both for µ-terminating or
non-µ-terminating terms.

Lemma 1. Let R = (F , R) be a TRS, µ ∈MF and let G ⊆ F −H. Then, IG,µ
is well-defined.

Now, we define an appropriate notion of direct µ-dependency. This is not straight-
forward as shown in the next example.

Example 4. Consider the following conservative non-µ-terminating CS-TRSR =
{a(x, y) → b(x, x), d(x, e) → a(x, x), b(x, c) → d(x, x), c → e} with µ(a) =
µ(d) = {1, 2}, µ(b) = {1} and µ(c) = µ(e) = ∅. The only cycle consists of the
dependency pairs C = {A(x, y)→ B(x, x), D(x, e)→ A(x, x), B(x, c)→ D(x, x)}.

According to Definition 4, we have no basic usable rules because the right-
hand sides of the dependency pairs have no defined symbols. Since we do not
consider the rule c → e as usable, we would assume G = {a, b, c, d, e}. Then,
we cannot simulate the infinite minimal (R,P, µ])-chain A(c, c) ↪→ B(c, c) ↪→
D(c, c) ↪→ D(c, e) ↪→ A(c, c) ↪→ · · · because we have:

s = IG,µ(A(c, c)) = A(g(c, g(e,⊥)), g(c, g(e,⊥))) ↪→ B(g(c, g(e,⊥)), g(c, g(e,⊥))) = t

The interpreted term g(c, g(e,⊥)) at the µ-replacing position 1 of s is ‘moved’
to a non-µ-replacing position 2 of t. Hence, we cannot reduce t on the second
argument of B to obtain the term B(g(c, g(e,⊥)), c) required for applying the
next CS-DP (B(x, c)→ D(x, x)) which continues the previous (R,P, µ)-chain.

In order to avoid this problem, we modify Definition 3 to take into account
symbols occurring at non-µ-replacing positions in the left-hand sides of the rules.

Definition 7 (µ-Dependency). Given a CS-TRS R = (F , µ,R), we say that
f ∈ F directly µ-depends on g ∈ F , written f�d,µ g, if there is a rule l→ r ∈ R
with f = root(l) and (1) g occurs in r at a µ-replacing position or (2) g occurs
in l at a non-µ-replacing position.

Remarkably, condition (2) in Definition 7 is not very problematic in practice
because most programs are constructor systems, which means that no defined
symbols occur below the root in the left-hand side of the rules.

Now we are ready to define our notion of usable rules. The set of non-µ-
replacing defined symbols in a term t is NDFunµ(t) = {f | ∃p ∈ Pos(t) and p /∈
Posµ(t), f = root(t|p) ∈ D}.

Definition 8 (Context-Sensitive Usable Rules). Let R = (F , R) be a TRS,
µ ∈ MR, and P ⊆ P](F ,X ). The set U(R, µ],P) of context-sensitive usable



rules for P is given by U(R, µ],P) = UH(R, µ) ∪
⋃

l→r∈P

UE(R, µ], l→ r).

where UE(R, µ, l→ r) = R | {g | f �∗d,µ g for some f ∈ DFunµ(r) ∪NDFunµ(l)}
UH(R, µ) = R | {g | f �∗d,µ g for some f ∈ H}

Note that UE extends the notion of usable rules in Definition 2, by taking into
account not only dependencies with symbols on the right-hand sides of the rules,
but also with some symbols in proper subterms of the left-hand sides. We call
UE(R, µ) the set of extended usable rules. On the other hand, UH is the set of
usable rules corresponding to the hidden symbols. Now, we are ready to formulate
and prove our main result in this section.

Theorem 1. Let R = (F , R) be a TRS, P ⊆ P](F ,X ), and µ ∈ MF . If there
exists a µ-reduction pair (&,=) such that U(R, µ],P)∪ π ⊆&, P ⊆& ∪ =, and

1. If PX = ∅, then P ∩ = 6= ∅
2. If PX 6= ∅, then �µ⊆&, and

(a) P ∩ = 6= ∅ and f(x1, . . . , xk) & f ](x1, . . . , xk) for all f ] in P, or
(b) f(x1, . . . , xk) = f ](x1, . . . , xk) for all f ] in P.

Let P= = {u → v ∈ P | u = v}. Then there are no infinite minimal (R,P, µ])-
chains whenever:

1. there are no infinite minimal (R,P \ P=, µ
])-chains in in case (1) and in

case (2a).
2. there are no infinite minimal (R, (P \ PX ) \ P=, µ

])-chains in case (2b).

Proof (Sketch). By contradiction. Assume that there exists an infinite minimal
(R,P, µ])-chain A but there is no infinite minimal (R,P \P=, µ

])-chains in case
(1) and (2a), or there is no infinite minimal (R, (P \PX )\P=, µ

])-chains in case
(2b). We can assume that there is a P ′ ⊆ P such that A has a tail B where all
pairs are used infinitely often:

t1 ↪→∗R,µ u1 →P′ ◦�]
µ t2 ↪→∗R,µ u2 →P′ ◦�]

µ · · ·

where s�]
µ t for s ∈ T (F ,X ) and t ∈ T ](F ,X ) means that s�µ t

\.
Let σ be a substitution, we denote by σIG,µ the substitution that assigns to

each variable x the term IG,µ(σ(x)) and let G be the set of defined symbols of
R\U(R, µ],P). We show that after applying IG,µ we get an infinite (U(R, µ],P)∪
π,P ′, µ])-chain. All terms in the infinite chain are µ-terminating w.r.t. (R, µ).
We proceed by induction. Let i ≥ 1.

– If we consider the step ui →P′ ◦�]
µ ti+1, we have two possibilities:

1. There is l→ r ∈ P ′F , then we get:

IG,µ(ui) ↪→∗π σIG,µ(l)→P′F σIG,µ(r) = IG,µ(r) = IG,µ(ti+1)

2. There is an l→ x ∈ P ′X , then we get:

IG,µ(ui) ↪→∗π σIG,µ(l)→P′X σIG,µ(x) = IG,µ(σ(x))

and IG,µ(σ(x)) �µ IG,µ(t\i+1)



– If we consider ti ↪→∗R,µ ui. We get IG,µ(ti) ↪→∗U(R,µ],P)∪π IG,µ(ui).

Therefore we get the infinite (U(R, µ],P),P ′, µ])-chain:

IG,µ(t1) ↪→∗U(R,µ],P)∪π IG,µ(u1)→P′ ◦�
]
µ IG,µ(t2) ↪→∗U(R,µ],P)∪π IG,µ(u2)→P′ · · ·

Using the premises of the theorem, by monotonicity and stability of &, we
would have that IG,µ(ti) & IG,µ(ui) for all i ≥ 1. By stability of = (and of &),
we have that IG,µ(ui)(& ∪ =)IG,µ(ti+1) for all i ≥ 1 and IG,µ(ui) = IG,µ(ti+1)
for all j ∈ J for an infinite set J = {j1, . . . , jn, . . .} of natural numbers j1 < j2 <
. . . < jn < . . .. Now, since & ◦ =⊆= or = ◦ &⊆=, we would obtain an infinite
sequence consisting of infinitely many =-steps. We obtain a contradiction to the
well-foundedness of =. ut
Remark 1. Notice that (as expected) U(R,P, µ>) = U(R,P), i.e., our usable
rules for CS-TRSs (R, µ) coincide with the standard definition (see Definition 2)
when µ = µ> is considered (here, µ>(f) = {1, . . . , ar(f)} for all symbols f ∈ F ,
i.e., no replacement restriction is associated to any symbol).

Thanks to Theorem 1, we do not need to make all rules in R compatible with
the weak component &P of a reduction pair (&P ,=P) associated to a given set
of pairs P. We just need to consider U(R, µ],P) (together with the π-rules).
Example 5. (Continuing Examples 1 and 2) Since H ∩D = {from, zWquot}, we
have that U(R, µ], C1) is:

minus(x, 0) → x

quot(0, s(y)) → 0

zWquot(nil, x) → nil

zWquot(x, nil) → nil

minus(s(x), s(y)) → minus(x, y)

quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))

from(x) → cons(x, from(s(x)))

zWquot(cons(x, xs), cons(y, ys)) → cons(quot(x, y), zWquot(xs, ys))

According to Theorem 1, the following polynomial interpretation (computed by
mu-term [1, 21]) shows the absence of infinite (R, C1, µ

])-chains.
[s](x) = x+ 1 [quot](x, y) = x+ y [minus](x, y) = 0

[from](x) = 0 [sel](x, y) = 0 [zWquot](x, y) = x+ y
[cons](x, y) = 0 [0](x, y) = 0 [nil](x, y) = 1
[SEL](x, y) = x

Note that, if the rules for sel were present, we could not find a linear polynomial
interpretation for solving this cycle.

Remark 2. When considering Definition 8 (usable rules for CSR) and Definition
2 (standard usable rules), one can observe that, despite the fact that CSR is a
restriction of rewriting, we can obtain more usable rules in the context-sensitive
case. Examples 3 and 4 show that this is because rules associated to hidden
symbols that do not occur in the right-hand sides of the dependency pairs in
the considered cycle can play an essential role in capturing infinite µ-rewrite
sequences. Thus, for terminating TRSs R, it could be sometimes easier to find a
proof of µ-termination of the CS-TRS (R, µ) if we ignore the replacement map
µ.



5 Improving Usable Rules

According to the discussion in Section 3, the notion of basic usable rules is not
correct even for conservative systems. Still, since UB(R, µ,P) is contained in
(and is usually smaller than) U(R, µ,P), it is interesting to identify a class of
CS-TRSs where basic usable rules can be safely used. Then, we consider a more
restrictive kind of conservative CS-TRSs: the strongly conservative CS-TRSs.

Definition 9. Let F be a signature, µ ∈ MF and t ∈ T (F ,X ). We denote
Var�µ(t) the set of variables in t occurring at non-µ-replacing positions, i.e.,
Var�µ(t) = {x ∈ Var(t) | t�

�µ
x}.

Definition 10 (Strongly Conservative). Let R be a TRS and µ ∈ MR. A
rule l→ r is strongly conservative if it is conservative and Varµ(l) ∩ Var�µ(l) =
Varµ(r) ∩ Var�µ(r) = ∅; and R is strongly conservative if all rules in R are
strongly conservative.

Linear CS-TRSs trivially satisfy Varµ(l) ∩ Var�µ(l) = Varµ(r) ∩ Var�µ(r) = ∅.
Hence, linear conservative CS-TRSs are strongly conservative. Note that the
CS-TRSs in Examples 1 and 3 are not strongly conservative.

Theorem 2 below is the other main result of this paper. It shows that ba-
sic usable rules in Definition 4 can be used to improve proofs of termination of
CSR for strongly conservative CS-TRSs. As discussed in Section 4, if we con-
sider minimal (R,P, µ])-chains, then we deal with µ-terminating terms w.r.t.
(R, µ). We know that any µ-replacing subterm is µ-terminating, but we do not
know anything about non-µ-replacing subterms. However, dealing with strongly
conservative CS-TRSs, we ensure that non-µ-replacing subterms cannot become
µ-replacing after µ-rewriting(s) above them. Hence, we develop a new basic µ-
interpretation I ′G,µ where non-µ-replacing positions are not interpreted. In con-
trast to I ′G,µ (but closer to IG) our new basic µ-interpretation is defined now for
µ-terminating terms only.

Definition 11 (Basic µ-Interpretation). Let (F , µ,R) be a CS-TRS and G ⊆
F . Let > be an arbitrary total ordering over T (F ] ∪ {⊥, g},X ) where ⊥ is a new
constant symbol and g is a new binary symbol. The basic µ-interpretation I ′G,µ is
a mapping from µ-terminating terms in T (F ],X ) to terms in T (F ] ∪ {⊥, g},X )
defined as follows:

I ′G,µ(t) =


t if t ∈ X
f(I ′G,µ,f,1(t1), . . . , I ′G,µ,f,n(tn)) if t = f(t1 . . . tn) and f /∈ G
g(f(I ′G,µ,f,1(t1), . . . , I ′G,µ,f,n(tn)), t′) if t = f(t1 . . . tn) and f ∈ G

where I ′G,µ,f,i(t) =

{
I ′G,µ(t) if i ∈ µ(f)

t if i /∈ µ(f)
t′ = order

(
{I ′G,µ(u) | t ↪→R,µ u}

)
order(T ) =

{
⊥, if T = ∅
g(t, order(T − {t})) if t is minimal in T w.r.t. >



It is easy to prove that the basic µ-interpretation is well-defined (finite) for all
µ-terminating terms.

Lemma 2. For each µ-terminating term t, the term I ′G,µ(t) is finite.

For the proof of our next theorem, we need some auxiliary definitions and results.

Definition 12. Let (R, µ) be a CS-TRS and σ be a substitution and let G ⊆ F .
We denote by σI′G,µ : T (F ,X )→ T (F ,X ) a function that, given a term t replaces
occurrences of x ∈ Var(t) at position p in t by either I ′G,µ(σ(x)) if p ∈ Posµ(t),
or σ(x) if p 6∈ Posµ(t).

Proposition 1. Let (R, µ) be a CS-TRS and σ be a substitution and let G ⊆ F .
Let t be a term such that Varµ(t) ∩ Var�µ(t) = ∅. Let σI′G,µ,t be a substitution
given by

σI′G,µ,t(x) =
{
I ′G,µ(σ(x)) if x ∈ Varµ(t)
σ(x) otherwise

Then, σI′G,µ,t(t) = σI′G,µ(t).

The following theorem shows that we can safely consider the basic usable rules
(with the π-rules) for proving termination of strongly conservative CS-TRSs.

Theorem 2. Let R = (F , R) be a TRS, P ⊆ P](F ,X ), and µ ∈ MF . If P ∪
UB(R, µ],P) is strongly conservative and there exists a µ-reduction pair (&,=)
such that UB(R, µ],P) ∪ π ⊆ &, P ⊆ &, and P ∩ = 6= ∅. Let P= = {u → v ∈
P | u = v}. Then there are no infinite minimal (R,P, µ])-chains whenever there
are no infinite minimal (R,P \ P=, µ

])-chains.

Proof (Sketch). By contradiction. Assume that there exists an infinite minimal
(R,P, µ])-chain A but there is no infinite minimal (R,P \ P=, µ

])-chains. We
can assume that there is a P ′ ⊆ P such that A has a tail B where all pairs are
used infinitely often:

t1 ↪→∗R,µ u1 →P′ t2 ↪→∗R,µ u2 →P′ · · ·

After applying the basic µ-interpretation I ′G,µ we obtain an infinite (UB(R, µ],P)∪
π,P ′, µ])-chain. Since all terms in the infinite (R,P ′, µ])-chain are µ-terminating
w.r.t. (R, µ), we can indeed apply the basic µ-interpretation I ′G,µ. Let i ≥ 1.

– If we consider the pair step ui →P′ ti+1 we can obtain the following sequence:

I ′G,µ(ui) ↪→∗π σI′G,µ(l) ↪→∗π σI′G,µ,r(l)→P′ σI′G,µ,r(r) = σI′G,µ(r) = I ′G,µ(ti+1)

– If we consider the rewrite sequence ti ↪→∗R,µ ui. All terms in it are µ-
terminating, then we get I ′G,µ(ti) ↪→∗UB(R,µ],P)∪π I

′
G,µ(ui).

So we obtain the infinite µ-rewrite sequence:

I ′G,µ(t1) ↪→∗UB(R,µ],P)∪π I
′
G,µ(u1) ↪→∗π ◦ →P′ I ′G,µ(t2) ↪→∗UB(R,µ],P)∪π · · ·

Using the premise of the theorem, it is transformed into an infinite sequence
consisting of & and infinitely many = steps. Using the stability condition, this
contradicts the well-foundedness of =. ut



Example 6. (Continuing Examples 1, 2 and 5) Cycle C1 is not strongly conserva-
tive, but cycles C2 and C3 are strongly conservative. Thus, we can use their basic
usable rules. Cycle C2 has no usable rules and we can easily find a polynomial
interpretation to show the absence of infinite minimal (R, C2, µ

])-chains:

[s](x) = x+ 1 [MINUS](x, y) = y

The basic usable rules UB(R, µ], C3) for C3 are strongly conservative (see Ex-
ample 2). The following polynomial interpretation proves the absence of infinite
(R, C3, µ

])-chains:

[0] = 0 [s](x) = x+ 1 [minus](x, y) = x [QUOT](x, y) = x

Since we dealt with cycle C1 in Example 5, µ-termination of R is proved. Until
now, no tool for proving termination of CSR could find a proof for this R in
Example 1. Thanks to the results in this paper, which have been implemented
in mu-term, we can easily prove µ-termination of R now.

6 Experiments

The techniques described in the previous sections have been implemented as part
of the tool mu-term [1, 21]. In order to make clear the real contribution of the
new technique to the performance of the tool, we have implemented three differ-
ent versions of mu-term: (1) a basic version without any kind of usable rules,
(2) a second version implementing the results about usable rules described in [4],
and (3) a final version that implements the usable rules described in this paper
(we do not use the notion in [4] even if the TRS is conservative and innermost
equivalent). Version (2) of mu-term proves termination of CSR as termination
of innermost CSR when the TRS is orthogonal (see [4, 11]), 37 systems, and as
termination of CSR without usable rules in the rest of cases. In order to keep
the set of experiments simple (but still meaningful), we only use linear interpre-
tations with coefficients in {0, 1}. The usual practice shows that this is already
quite powerful (see [9] for recent benchmarks in this sense). The benchmarks
have been executed in a completely automatic way with a timeout of 1 minute
on each of the 90 examples in the Context-Sensitive Rewriting subcategory of
the 2007 Termination Competition5. A complete report of our experiments can
be found in:

http://www.dsic.upv.es/~rgutierrez/muterm/rta08/benchmarks.html

Table 1 summarizes our results. Our notion of usable rules works pretty well: we
are able to prove 20 more examples than without any usable rules, and 12 more
than with the restricted notion in [4]. Furthermore, a comparison over the 44
examples solved by all the three versions of mu-term, we see that version (3)
of mu-term is 43% faster than (1) and 27% faster than (2) (see Table 2).

5 See http://www.lri.fr/~marche/termination-competition/2007



Table 1. Comparative among the three mu-term versions

Tool Version Proved Total Time Average Time

No Usable Rules 44/90 6.11s 0.14s

Innermost Usable Rules 52/90 11.75s 0.23s

Usable Rules 64/90 8.91s 0.14s

Table 2. Comparative over the 44 examples

Tool Version Proved Total Time Average Time

No Usable Rules 44/90 6.11s 0.14s

Innermost Usable Rules 44/90 5.03s 0.11s

Usable Rules 44/90 3.57s 0.08s

7 Conclusions

We have investigated how usable rules can be used to improve termination
proofs of CSR when the (context-sensitive) dependency pairs approach is used
to achieve the proof. In contrast to [4], the straightforward extension of the
standard notion of usable rules (called here basic usable rules, see Definition 4)
does not work for CSR even for the quite restrictive class of conservative (cy-
cles of) CS-TRSs. We have shown how to adapt the notion of usable rules for
their use with arbitrary CS-TRSs (Definition 8). Theorem 1 shows that the new
notion of usable rules can be used in proofs of termination of CS-TRSs. Here,
although the proof uses a transformation in the very same style than [14, 17],
the definition of the transformation is quite different from the usual one in that
it applies to arbitrary terms, not only terminating ones. To our knowledge, this
is the first time that Gramlich’s transformation [15] is adapted and used in that
way. We have also introduced the notion of strongly conservative rule and CS-
TRS (Definition 10). Theorem 2 shows that basic usable rules can be used in
proofs of termination involving strongly conservative cycles and rules. Although
we follow the proof scheme in [14, 17], a number of subtleties have to be carefully
addressed before getting a correct adaptation of the proof.

We have implemented our techniques as part of the tool mu-term [1, 21].
Our experiments show that usable rules are helpful to improve proofs of ter-
mination of CSR. Regarding the previous work on usable rules for innermost
CSR [4], this paper provides a fully general definition which is not restricted to
conservative systems. Actually, as we show in our experiments, our framework is
more powerful in practice than trying to prove termination of CSR as innermost
termination of CSR with the restricted notion of usable rules in [4]. Actually,
our results provide a basis for refining the notion of usable rules in the innermost
setting, thus hopefully allowing a generalization of the results in [4].

Finally, usable rules were an essential ingredient for mu-term in winning the
context-sensitive subcategory of the 2007 competition of termination tools.
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