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Abstract
An Alexandroff space is a topological space where the arbitrary intersections of open sets are
also open. These are named after the Russian mathematician Pavel Sergeyevich Alexandroff,
characterized by the minimal open neighborhoods existing for every point of the space, all the
while they stay in the realm of low-level separation axioms. This thesis explores Alexandroff
spaces from their foundational definitions to their intricate connections with quasiorders.
It navigates through the province of functional Alexandroff spaces, also known as primal
topologies, by studying the significance of their topological properties. Finally, it delves into
their application in tackling the famous Collatz Conjecture of number theory, as shown by a
surprising series of recent papers. Although the statement of the conjecture is very simple,
mathematicians from different areas have studied it for years without being able to prove
or refute it. In this instance, the problem is addressed from a topological point of view, so
that equivalent propositions based on the properties of the set of natural numbers endowed
with the primal topology induced by the Collatz function are obtained. This journey unveils
the beauty and profound implications of Alexandroff spaces within the broader tapestry of
topology and mathematics as a whole.

Keywords Alexandroff space; quasiorder; primal spaces; Collatz conjecture.

Resumen
Un espacio de Alexandroff es un espacio topológico donde se verifica que la intersección arbi-
traria de conjuntos abiertos es también abierto. Deben su nombre al matemático ruso Pavel
Sergeyevich Alexandroff, y se caracterizan por las vecindades abiertas minimales existentes
para cada punto del espacio; todo mientras se mantienen en el dominio de los axiomas de
separación de bajo nivel. Esta tesis explora los espacios de Alexandroff desde sus definiciones
fundamentales hasta sus intrincadas conexiones con los preórdenes. Examina también el ám-
bito de los espacios de Alexandroff funcionales, también conocidos como topologías primales,
estudiando la importancia de sus propiedades topológicas. Finalmente, se profundiza en su
aplicación al abordar la famosa conjetura de Collatz de la teoría de números, somo se muestra
en una sorprendente serie de artículos recientes. Aunque el enunciado de la conjetura es muy
sencillo, matemáticos de distintas áreas la han estudiado durante años sin haber logrado pro-
barla o refutarla. En este caso, se aborda el problema desde un punto de vista topológico, de
forma que se obtienen proposiciones equivalentes basadas en las propiedades del conjunto de
los números naturales dotado con la topología primal inducida por la función de Collatz. Este
viaje revela la belleza y las profundas implicaciones de los espacios de Alexandroff dentro del
entramado más amplio de la topología y las matemáticas en su conjunto.

Palabras clave Topología de Alexandroff; preorden; espacios primales; Conjetura de Col-
latz.
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1 Introduction
Alexandroff spaces, named after the Russian mathematician Pavel Sergeyevich Alexandroff
(1896-1982), constitute a stimulating topic of topology that has increasingly attracted the
attention of scholars since their introduction in 1937 [1]. These spaces, characterized by
minimal open neighborhoods, possess a rich structure while staying in the realm of low-level
separation axioms. The purpose of the present work is to explore the world of Alexandroff
spaces, describing their defining characteristics and attributes.

The survey starts with the foundational concepts in Chapter 2, i.e., the definition and
characterization via the existence of minimal open neighborhoods. In due course, the notions
of separation, connectedness, compactness, and countability are examined. The chapter is
closed with a consideration of how new Alexandroff spaces can be derived from previous
ones through operations like intersections, products, quotients, and identification maps. In
Chapter 3, the profound connection between Alexandroff spaces and quasiorders is presented,
shedding light on the deep interplay between topology and order theory. Chapter 4 leads
us into the domain of the primal topology, by navigating through its notable classes of
sets, namely, the minimal neighborhoods, invariant sets, and orbits. Separation properties,
compactness, and connectedness continue to be examined within the context of primal spaces.
Lastly, Chapter 5 ventures into the application of Alexandroff spaces as the Collatz Conjecture
is investigated, showcasing the relevance of these topological structures on the noted open
problem. A primal topology is induced over the set N by the Collatz function, which has led
to inquiries from a novel perspective. Several equivalences have been proposed in connection
with the conjecture [23], hence being added to the several approaches attempted to solve it.

While navigating this mathematical landscape, let us uncover not only the beauty of
Alexandroff spaces but also their connection to the broader tapestry of topology and the
potential impact on other branches of Mathematics.
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2 Alexandroff spaces

It is well known that a topological space is a pair (X, τ) where X is a nonempty set and τ
is a family of subsets containing X and ∅ which is closed under arbitrary unions and finite
intersections. However, there exist well-known topologies, like the discrete topology, that not
only are closed under finite intersections but arbitrary intersections.

Nowadays, topological spaces satisfying this property are known as Alexandroff spaces and
they were introduced in [1] under the name discrete spaces (diskreten Räumen in German).
We devote this chapter to study these topologies in detail. Our basic references for this
chapter are [2, 13, 19, 22]. Let us start with its definition.

Definition 1 (Alexandroff space, [2]). A topological space (X, τ) is called an Alexandroff
space if the arbitrary intersections of open sets are open.

Example 1. If X is a finite space and τ is a topology on X then (X, τ) is clearly an
Alexandroff space.

Example 2. Sets endowed with the discrete topology are Alexandroff spaces since every subset
is open in the discrete topology, that includes any arbitrary intersection of open sets.

Example 3. The real line with the usual topology is not an Alexandroff space. For example,
{(− 1

n ,
1
n) : n ∈ N} is a family of open sets but its intersection {0} is not open, as singletons

are not open.

A straightforward consequence of the definition of an Alexandroff space is that arbitrary
unions of closed sets are closed.

Proposition 1. Let F be an arbitrary family of closed sets in an Alexandroff space (X, τ).
Then

∪
F is closed.

Proof. Let F = {Fλ : λ ∈ Λ} be a family of closed sets and let C =
∪

λ∈Λ Fλ. Then
X\C =

∩
λ∈ΛX\Fλ. Since X\Fλ is open for all λ ∈ Λ and (X, τ) is an Alexandroff space,

then X\C is open, hence C is closed.

Proposition 2. Let (X, τ) be an Alexandroff space, then for any subset S ⊆ X the closure
is S̄ =

∪
{x̄ : x ∈ S}.

Proof. Since (X, τf ) is also an Alexandroff space, then any union of closed sets is also closed.
Therefore, the union

∪
{x̄ : x ∈ S} is a closed set containing S, and so S̄ ⊆

∪
{x̄ : x ∈ S}.

On the other hand, x ∈ S implies that x̄ ⊆ S̄, with
∪
{x̄ : x ∈ S} ⊆ S̄ as a result. Hence,

S̄ =
∪
{x̄ : x ∈ S}.

The following is an important characterization of Alexandroff spaces as those topological
spaces having minimal open neighborhoods.
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2 Alexandroff spaces

Theorem 1 ([19]). A topological space (X, τ) is Alexandroff if and only if each point x ∈ X
has a minimal open neighborhood Nx.

Proof. (→) Let (X, τ) be an Alexandroff space, and x ∈ X. Take the collection {O ∈ τ : x ∈
O}, and let Nx =

∩
{O ∈ τ : x ∈ O}. Since (X, τ) is Alexandroff and Nx is an intersection

of open sets, then it is open. Moreover, it is obviously the minimal neighborhood of x in the
ordering by inclusion since U is a neighborhood of x, thus we can find an open set G such
that x ∈ G ⊆ U ; therefore, Nx ⊆ G ⊆ U.

(←) Suppose that for each x ∈ X, there exists a minimal open neighborhood Nx. Let
{Oi : i ∈ I} be an arbitrary family of open sets. If ∩i∈IOi = ∅ then the intersection is
obviously open. So let us suppose that there exists x ∈ ∩i∈IOi. Since Oi is a neighborhood of
x and Nx is the minimal neighborhood of x, then Nx ⊆ Oi for all i ∈ I, that is, Nx ⊆ ∩i∈IOi.
Hence ∩i∈IOi is a neighborhood of x. Due to the arbitrariness of x we deduce that ∩i∈IOi is
open. Consequently, (X, τ) is Alexandroff.

From the previous result we immediately deduce that if (X, τ) is an Alexandorff space then
{Nx} is a basis for the neighborhood system of x for every x ∈ X. Therefore, we can prove
the following.

Proposition 3. The collection of minimal open neighborhoods constitutes a basis for the
open sets in an Alexandroff space.

Proof. Let (X, τ) be an Alexandroff space, and U ∈ τ be a nonempty set. Then, for every
x ∈ U there exists a minimal neighborhood Nx ⊆ U , so that U =

∪
Nx for all x ∈ U .

Hence, any open set of an Alexandroff space is a union of minimal neighborhoods.
We next characterize the properties that a family of subsets must satisfy to be a base of

an Alexandroff topology.

Proposition 4. Let X be a nonempty set. A family B of subsets of X is a base for an
Alexandroff topology on X if and only if

1. X =
∪

B∈B B;

2. if {Bi : i ∈ I} ⊆ B then
∩

i∈I Bi ∈ B.

Proof. Let X be a nonempty set.
(→) Suppose that B is a base for an Alexandroff topology τ on X. This obviously implies

condition 1 since it is a base. Moreover, B ⊆ τ is closed under arbitrary intersection so 2
holds.
(←) Conversely, suppose that B satisfies properties 1 and 2. Then if B1, B2 ∈ B and

x ∈ B1 ∩ B2 we have that x ∈ B3 ⊆ B1 ∩ B2 where B3 = ∩{B ∈ B : x ∈ B}. Since B3 ∈ B
by 2, then B is a base for a topology τ(B) on X.

Moreover, let {Oi : i ∈ I} ⊆ τ. If ∩i∈IOi = ∅ then the intersection is open. Otherwise,
let x ∈ ∩i∈IOi. Then, for each i ∈ I there exists Bi ∈ B such that x ∈ Bi ⊆ Oi. Then
B = ∩i∈IBi ∈ B and x ∈ B ⊆ ∩i∈IOi. Since x is arbitrary, we deduce that ∩i∈IOi is also
open, hence τ(B) is Alexandroff.
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Figure 2.1: Example 4. A numerable family of concentric balls can be a basis for an Alexan-
droff topology on R2.

Consequently, a family B satisfying the requirements of the previous result produces an
Alexandroff topology since it ensures that every point has a minimal neighborhood, that is,
the intersection of all the basic open sets containing the point.

We next provide two examples of the construction of an Alexandroff topology.

Example 4. Let X be R2, and d : X ×X → R be the Euclidean distance. Given an element
a ∈ X, fixed, it is possible to define a set B(a, n), a ’ball’, just as follows:

B(a, n) = {x ∈ R2 : d(a, x) ≤ n with n ∈ N}

Then the collection B = {B(a, n)}n∈N is a basis for an Alexandroff topology on R2; since
∀x ∈ R2, there exists a set acting as the minimal open neighborhood in the topology generated
by B.

Example 5. Let X = R. The collection B = {[n, n+1) : n ∈ Z} is a basis for an Alexandroff
topology on R.

A short yet very useful result is the following lemma:

Lemma 1. Let (X, τ) be an Alexandroff space, and a, b ∈ X. Then,

a ∈ Nb if and only if b ∈ ā,

where ā denotes the closure of the singleton {a}.

Proof. (←) If b ∈ ā, then every open neighborhood of b contains a, that includes the minimal
open neighborhood Nb; hence a ∈ Nb.

(→) If a ∈ Nb, straightforwardly, b ∈ ā, for Nb is already the minimal open neighborhood
of b.

9



2 Alexandroff spaces

Figure 2.2: Example 5. A numerable family of intervals on R.

2.1 Separation
In this section, some separation properties of Alexandroff spaces will be studied. These
concepts deal with the possibility of distinguishing points, i.e., singletons, in a topological
space, via their corresponding neighborhood systems. This motivates the introduction of the
following definitions [6, 18, 24].

Definition 2 (Distinguishable points). In a topological space (X, τ), two distinct points
x, y ∈ X are called topologically distinguishable if they do not have the same neighborhood
system.

This means that there exist at least a neighborhood containing one of the points but not
the other. It can be said that one of the points is separated from the other, but not vice
versa [18]. On the other hand, two points become indistinguishable if they both belong to
the closure of the other.

Definition 3 (Separated points). Let (X, τ) be a topological space, and x, y ∈ X. The
points x and y are called separated if for each point there exists a neighborhood that is not a
neighborhood of the other.

Definition 4 (Separation by neighborhoods). Let (X, τ) be a topological space, and x, y ∈ X.
It is said that the points x and y are separated by neighborhoods if and only if they both have
disjoint neighborhoods.

Clearly, separation by neighborhoods imply that points are separated which, in turn, im-
plies topological distinguishability. The following definitions are due to [24, 4].

Definition 5 (T0). A topological space (X, τ) is T0 or Kolmogorov if every two distinct points
x, y ∈ X are topologically distinguishable.

The separation axiom R0 was first introduced by Shanin in 1943, for the proceedings of
the Russian Academy of sciences [20]. The R0 separation axiom has been proved useful for
some types of Alexandroff spaces.

Definition 6 (R0). A topological space (X, τ) is R0 if all pairs of topologically distinguishable
points are separated.

Definition 7 (T1). A topological space (X, τ) is T1 or Fréchet if every two distinct points
x, y ∈ X are both separated.
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2.1 Separation

Notice that a topological space is T1 if and only if it is T0 and R0.
In Example 4, there are topologically indistinguishable points; for instance, the elements

sharing the same radius n. In Example 5 the topologically indistinguishable points are the
ones being in the same interval [n, n + 1); thus those are not Kolmogorov spaces. However,
there are topologically distinguishable points in both of them. In Example 4, points with
radii differing in value higher than 1 are distinguishable. Points lying in different intervals
are distinguishable in Example 5. The latter is an instance of an R0 space, for every pair of
topologically distinguishable points are separated.

The following result shows that separation axioms stronger than or equal to T1 are not
useful in Alexandroff spaces, for the discrete topology is obtained.

Theorem 2. Let X be a nonempty set. Then the only T1 Alexandroff topology over X is the
discrete topology.

Proof. Let τ be a T1 Alexandroff topology over the set X and let x ∈ X. Thus ∀y ∈ X with
x ̸= y, y is separated from x, hence there exists a neighborhood of x not containing y. Let
Nx denote the intersections of all neighborhoods of x, thus Nx does not contain y, and so for
every other y, therefore Nx = {x} and τ is the discrete topology.

There is a minor result as well, namely: if X is a T1 Alexandroff space, and x ∈ X, then
Nx = {x}.

Lemma 2. Let (X, τ) be an Alexandroff space. Then Nx = Ny if and only if x̄ = ȳ.

Proof. If Nx = Ny, then x ∈ Ny and y ∈ Nx, and so Nx ∩ {y} ̸= ∅ and Ny ∩ {x} ̸= ∅; hence
x ∈ ȳ and y ∈ x̄, therefore x̄ ⊆ ȳ and ȳ ⊆ x̄. Consequently, x̄ = ȳ.

It is easy to follow the converse path to prove the logic equivalence.

Proposition 5 (Arenas, F.G. [2]). Let (X, τ) be an Alexandroff space. (X, τ) is T0 if and
only if Nx = Ny implies that x = y

Proof. Let (X, τ) be an Alexandroff space.
(→) Let (X, τ) be T0. Take the contrapositive, and suppose x ̸= y, then they are topolog-

ically distinguishable since X is T0, and thus x̄ ̸= ȳ. Therefore Nx ̸= Ny, as a consequence
of Lemma 2.
(←) By the contrapositive, if x ̸= y implies Nx ̸= Ny, it follows directly that they do not

have the same neighborhood system, therefore the space is T0. For it being Alexandroff, the
neighborhood systems differ at least in the minimal open neighborhood.

Theorem 3 (Characterization of R0 in Alexandroff spaces). An Alexandroff space (X, τ) is
R0 if and only if x̄ ̸= ȳ implies that x̄ ∩ ȳ = ∅ for all x, y ∈ X.

Proof. Let (X, τ) be an Alexandroff space.
(→) Suppose that (X, τ) is R0 and let x, y ∈ X such that x̄ ̸= ȳ. By Lemma 2, Nx ̸= Ny so

x and y are topologically distinguishable. Since the space is R0, then they are also separated,
that is, Nx ̸⊆ Ny and Ny ̸⊆ Nx.

Let z ∈ x̄. Then x ∈ Nz so Nx ⊆ Nz which implies that Nz ̸⊆ Ny. Since the space is R0,
then Ny ̸⊆ Nz. Hence z ̸∈ ȳ and x̄ ∩ ȳ = ∅.
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2 Alexandroff spaces

(←) Suppose x, y ∈ X are topologically distinguishable, that is, Nx ̸= Ny. By Lemma
2, x̄ ̸= ȳ so x̄ ∩ ȳ = ∅ by hypothesis. Hence y ̸∈ Nx and x ̸∈ Ny, that is, Nx is not a
neighborhood of y and Ny is not a neighborhood of x. Consequently x, y are separated and
the topological space is R0.

Substantially, all interesting properties of Alexandroff spaces are to be sought in the realm
of separability axioms weaker than T1. The only Hausdorff Alexandroff space is the dis-
crete space, and so on. Several authors put emphasis in Alexandroff spaces being T0, i.e.,
Kolmogorov [2].

2.2 Connectedness
This section is aimed to study one of the fundamental properties of a topological space within
the framework of Alexandroff spaces: connectedness. Let us recall the definition.

Definition 8. A topological space (X, τ) is disconnected if there exist disjoint nonempty open
sets O1, O2 such that X = O1 ∪O2.

If (X, τ) is not disconnected we say that it is connected. Furthermore, the topological space
is locally connected if each point has a neighborhood base of open connected sets.

The following result characterizes the disconnection of a subspace of a topological space.

Lemma 3 (Mendelson, B.[16]). Let (X, τ) be a topological space,� and A ⊆ X, then A is
disconnected if and only if there exist O1, O2 ∈ τ , such that:

• A ⊆ O1 ∪O2,

• O1 ∩O2 ⊆ X\A, and

• A ∩O1 ̸= ∅ and A ∩O2 ̸= ∅.

Using the previous result, we next prove that the minimal neighborhood of a point is always
connected in an Alexandroff space.

Theorem 4. Let (X, τ) be an Alexandroff space, then the minimal neighborhoods are con-
nected.

Proof. Let (X, τ) be an Alexandroff space and a ∈ X. Let Na be the minimal neighborhood
of a. If there exist open sets O1, O2 such that Na ⊆ O1∪O2, then a ∈ O1 or a ∈ O2. Suppose
that a ∈ O1, then a ∈ Na ⊆ O1, so that Na ∩ O1 = Na ̸= ∅, then it is impossible that
∅ ̸= Na ∩O2 ⊆ O1 ∩O2 be contained in X\Na. Therefore, Na is connected.

Corollary. Alexandroff spaces are locally connected.

Since Alexandroff spaces are locally connected, it can be readily seen that any connected
component is clopen. Several connectedness properties for T0-Alexandroff spaces are now
covered. Let us first recall a few definitions regarding chain connectedness [24].
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2.2 Connectedness

Definition 9 (Chain connectedness). Let (X, τ) be a topological space, and V be a family of
open sets in X. Let x, y ∈ X. A V-chain connecting x and y is a finite sequence V1, V2, ...Vk

of open sets in V such that x ∈ V1, y ∈ Vk, and Vi ∩ Vj ̸= ∅ for any |i− j| ≤ 1.
A subset C ⊆ X is chain connected if for every open covering V of X, and any x, y ∈ C,

there exists a V-chain connecting x and y. Moreover, if this property holds for any x, y ∈ X,
then X is said to be a chain connected space.

The following lemma is taken from Willard, [24].

Lemma 4. Let (X, τ) be a topological space. If X is connected, then X is chain connected.

Proof. Let (X, τ) be a connected topological space, V be an open cover of X, and a ∈ X.
Let Pa be the set:

Pa = {p ∈ X : there is a V-chain connecting p with a }.

Then Pa ̸= ∅ for a ∈ Pa. Take b ∈ Pa, then there exists a finite sequence V1, V2, ...Vk of
elements of V connecting a and b, hence b ∈ Vk with Vk open. Then for any other element
c of Vk the finite sequence V1, V2, ...Vk is a V-chain connecting a with c. Hence Vk ⊆ Pa.
Therefore Pa is open, for it contains an open set containing b, for any b ∈ Pa.

We next show that Pa is closed. Take a point in the closure, say z ∈ Pa. Since V is an
open covering of X, there exists V ∈ V such that z ∈ V. Then it holds V ∩ Pa ̸= ∅; hence
there exists a w ∈ V ∩Pa, and so w ∈ Pa. Let V1, V2, ...Vk be a V-chain connecting w with a,
with a ∈ V1 and w ∈ Vk. Then V1, V2, ...Vk, V is a V-chain connecting a with z, hence z ∈ Pa.
As a consequence, Pa ⊆ Pa and Pa is closed.

Since X is connected and Pa is clopen, then Pa = X, and the whole space is chain connected.

Theorem 5 (Arenas, F.G.[2]). Let (X, τ) be a T0-Alexandroff space. The following statements
are equivalent.

1. X is path connected.

2. X is connected.

3. X is chain connected.

4. For every x, y ∈ X, there exist a0, a1, ...an such that a0 = x, an = y, with Nai∩Naj ̸= ∅
whenever |i− j| ≤ 1.

5. For every x, y ∈ X, there exist a0, a1, ...ak such that a0 = x, ak = y, with N ai∩N aj ̸= ∅
whenever |i− j| ≤ 1.

6. For every x, y ∈ X, there exist a0, a1, ...am such that a0 = x, am = y, with {ai}∩{aj} ̸=
∅ whenever |i− j| ≤ 1.

Proof. (1→ 2) As in any topological space, path connectedness is sufficient for connectedness.
(2→ 3) Likewise, this follows from Lemma 4, just as in any topological space.
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2 Alexandroff spaces

(3→ 4) Let V be the family of all minimal open neighborhoods of elements of X. Since X
is chain connected and x, y ∈ X, we can find a V-chain V0, . . . , Vn connecting x and y, so the
conclusion follows.
(4→ 5) If 4. holds for minimal neighborhoods, then it holds for their respective closures.
(5 → 6) If 5. holds, then for every pair of consecutive indices, say i, j, with j = i + 1,
N ai ∩ N aj ̸= ∅; hence there exists pi ∈ N ai and pi ∈ N aj , so that Npi ∩ Nai ̸= ∅ and
Npi ∩ Naj ̸= ∅. This guarantees the existence of at least two points, name them qi, qj such
that qi ∈ Nai and qi ∈ Npi ; while qj ∈ Npi and qj ∈ Naj . By applying the Lemma 1, ai ∈ {qi},
pi ∈ {qi}∩{qj}, and aj ∈ {qj}. By executing the same procedure to all the other consecutive
pairs, it is shown that there exists a finite sequence {qm}, such that {qi}∩{qj} ̸= ∅, whenever
|i− j| ≤ 1.

The only question left is about the first and last elements in the sequence. It is contended
that the first element can be x, and y the last. In the first case, the previous result guarantees
the existence of q0, p0, q1, such that q0 ∈ Np0 and q0 ∈ Na0 , with a0 = x. Therefore, by
Lemma 1, x ∈ {q0}; hence {x}∩{q0} ̸= ∅. The new finite sequence starts with x, and similar
reasoning can show that the last element is y.
(6→ 1) If 6. holds, then for all x, y ∈ X, there exist a0, a1, ...am such that a0 = x, am = y,

with {ai} ∩ {aj} ̸= ∅ whenever |i − j| ≤ 1. Take a pair of consecutive indices, say i, i + 1,
then there exists bi ∈ {ai} ∩ {ai+1}. By Lemma 1, ai ∈ Nbi and ai+1 ∈ Nbi ; thus Nai ⊆ Nbi

and Nai+1 ⊆ Nbi . It will be shown that ai and ai+1 are path connected via the following
function fi : [0, 1]→ X:

fi(t) =


ai if t ∈ [0, 12)

bi if t = 1
2

ai+1 if t ∈ (12 , 1]

The correspondence fi is continuous: Let O be an open set; if O does not include ai, bi nor
ai+1, then has an empty preimage, f−1

i (O) = ∅. If O contains ai only, then f−1
i (O) =

[0, 12), which is open with the relative topology on the domain. If O contains only ai+1,
then f−1

i (O) = (12 , 1], which is also open in [0, 1]. If O contains both ai and ai+1, then
f−1
i (O) = [0, 12) ∪ (12 , 1] open in [0, 1]. Any open set containing bi will containing also ai

and ai+1, therefore its preimage will be [0, 1], open as well. Hence, fi is continuous, for the
preimages of open sets are open.

A path connecting ai and ai+1 was constructed. The same constructive process can be
carried out for all the other consecutive pairs of elements in the finite sequence, by taking
bi ∈ {ai} ∩ {ai+1} for every i ∈ {0, 1, . . . ,m − 1}. Hence, the linking of all the paths can be
done with just one function, α : [0, 1]→ X, as follows:

α(t) =


ak if k

m+1 < t < k+1
m+1 , k ∈ {0, . . . ,m− 1},

bk if t = k+1
m+1 , k ∈ {0, . . . ,m− 1},

x if t = 0,

y if t = 1.

By construction, α(0) = x and α(1) = y, and it can be readily checked that α is continuous
in the context of an Alexandroff space.
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2.3 Compactness and countability

Corollary. Every T0-Alexandroff space is locally path-connected.

2.3 Compactness and countability
Several topological properties such as the Lindelöf property and countability axioms are
addressed in this section, within the framework of Alexandroff spaces.

Proposition 6 (Arenas, F.G.[2]). Let (X, τ) be an Alexandroff space, then X satisfies the
first axiom of countability.

Proof. By Theorem 1, every point x ∈ X has a minimal neighborhood Nx. Then {Nx} is a
countable neighborhood base at x so the space is first countable.

Bear in mind that a topological space (X, τ) is said to be orthocompact if every open cover
has an interior-preserving open refinement.

Proposition 7 (Arenas, F.G.[2]). Let (X, τ) be an Alexandroff space, then X is orthocompact.

Proof. In an Alexandroff space, every open cover is interior-preserving, for arbitrary inter-
sections of open sets are always open. Therefore, it is obviously orthocompact.

The following definition is given by McCord in [13].

Definition 10. A topological space (X, τ) is said to be locally finite if every point has a finite
neighborhood.

Proposition 8 (Arenas, F.G.[2]). Let (X, τ) be a T0-Alexandroff space. If X is paracompact,
then X is locally finite.

Proof. If X is paracompact, then for every open cover of X there exists a refinement, namely
the minimal open neighborhoods refinement, such that every Nx satisfies Nx ∩Ny ̸= ∅ for a
finite number of Ny. Proceeding by contradiction, suppose X is not locally finite, then there
exists x ∈ X such that Nx is infinite. In that case, Ny ⊆ Nx for every y ∈ Nx, ⇒⇐. Hence
X is locally finite.

Proposition 9. Let (X, τ) be a T0-Alexandroff space. Then X is second countable if and
only if X is countable.

Proof. (←) If X is countable and X is also first countable by Proposition 6, then it is also
second countable as with any topological space.
(→) Since the second countable axiom implies that the minimal neighborhood basis is

countable, then the space is countable.

Theorem 6. Let (X, τ) be a T0-Alexandroff space, X is Lindelöf if and only if X =
∪∞

n=1Nxn

for some countable set {xn : n ∈ N} ⊆ X.

Proof. (→) If X is Lindelöf, then given the open cover X =
∪
{Nx : x ∈ X} constituted by

the minimal neighborhoods, there exists a countable subcover, i.e., X =
∪∞

n=1Nxn for some
countable set {xn : n ∈ N} ⊆ X.
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2 Alexandroff spaces

(←) Suppose that X =
∪∞

n=1Nxn for some countable set {xn : n ∈ N} ⊆ X. Given an
arbitrary open cover X =

∪
{Ui : i ∈ I}, then ∀n ∈ N, by the Axiom of Choice, it is possible

to pick an element xn ∈ Nxn ⊆ Ui for some i ∈ I. Rename the selected Ui as Un and make a
countable subcover of X. Hence X is Lindelöf.

The next definition can be found in [17].

Definition 11. A topological space (X, τ) is said to be locally countable if for every x ∈ X,
there exists a countable open set in τ containing x.

Proposition 10. Let (X, τ) be a T0-Alexandroff space. X is countable if and only if X is
locally countable and Lindelöf.

Proof. (→) If X is countable, then there is a countable cover consisting of minimal neigh-
borhoods, hence it is Lindelöf and locally countable.
(←) If X is Lindelöf and locally countable, then X is a countable union of locally countable

sets, hence X is countable.

Proposition 11. Let (X, τ) be a locally finite T0-Alexandroff space. X is compact if and
only if X is finite.

Proof. (←) Straightforward, as with any finite space.
(→) Let X be a locally finite T0-Alexandroff space. If X is compact, then the cover

comprised by minimal neighborhoods has a finite subcover, X =
∪N

k=1Nxk
. Since X is

locally finite, then X is finite.

2.4 Obtaining Alexandroff spaces out of others
In this section, several rules for obtaining new Alexandroff spaces from old ones are examined,
starting with the called opposite topology which is distinguishing topology associated with
Alexandroff spaces.

2.4.1 The opposite topology
Alexandroff spaces arise in pairs. Since arbitrary intersections of open sets are also open,
then the arbitrary unions of their complementary closed sets are closed as well. This feature
allows for the appearance of the labeled opposite topology.

Theorem 7. If τ is an Alexandroff topology over X, then the collection τo described as:

τo = {X\V : V ∈ τ}

is also an Alexandroff topology on X.

Proof. X and ∅ belong to τo for ∅, X ∈ τ , respectively.

• Let U1, U2 ∈ τo, thus Ui = X\Vi with Vi ∈ τ . Then U1 ∩ U2 = X\V1 ∩ X\V2 =
X\(V1 ∪ V2). Hence U1 ∩ U2 ∈ τo, for V1 ∪ V2 ∈ τ .
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2.4 Obtaining Alexandroff spaces out of others

• Let {Ui}i∈I be an arbitrary family of elements of τo, so that Ui = X\Vi with Vi ∈ τ for
all i ∈ I. Then the union belong to τo, for:∪

i∈I
Ui =

∪
i∈I

X\Vi = X\
∩
i∈I

Vi

and
∩

i∈I Vi ∈ τ because of τ being an Alexandroff topology.

Therefore, τo is also a topology on X. Moreover, the intersection
∩

i∈I Ui of an arbitrary
collection of open sets {Ui}i∈I in τo is open as well, for:∩

i∈I
Ui =

∩
i∈I

X\Vi = X\
∪
i∈I

Vi

and
∪

i∈I Vi is closed in τ . Therefore, τo is an Alexandroff topology.

2.4.2 Subspaces
Given a topological space (X, τ), and Y ⊂ X, it is possible to define a topology on Y , by
restricting the open subsets O of X to Y via A = O∩Y . This produces a family τA of subsets
of Y which is a topology on Y called the relative topology on A. In this case, we say that Y
is a subspace of X.

Theorem 8. Let (X, τ) be an Alexandroff space and Y ⊂ X, with Y ̸= ∅. Then (Y, τY ) is
an Alexandroff space.

Proof. Let y ∈ Y ⊂ X, and let {U ∈ τ : y ∈ U} be the collection of its open neighborhoods.
Then, each V = U ∩ Y , is an open neighborhood of y as well, regarding the relative topology
on Y . Therefore, the intersection:

Ny =
∩
{V ∈ τY : y ∈ V} =

∩
{U ∩ Y ∈ τY : y ∈ U}

is open, for
∩
V = Y ∩ (

∩
U) with

∩
U being open on X. Moreover, Ny ̸= ∅, for y ∈ Ny, and

it is minimal with respect to the inclusion order. As a consequence, (Y, τY ) is an Alexandroff
subspace of X.

It can be readily shown that the collection of minimal neighborhoods {Ny : y ∈ Y }, with
Ny as defined above, constitutes a basis for the relative Alexandroff topology on Y .

2.4.3 Intersections
Given a nonempty set X and two topologies on it, namely τ1 and τ2, it is a well-known result
that the intersection τ1 ∩ τ2 is a topology as well. It holds for the arbitrary intersection as
well. Let {τi}i∈I be a collection of topologies over X, and τ =

∩
τi. Then X and ∅ are in τ

for they belong to every τi in the collection. If {Aj}j is an arbitrary family of open sets in
τ , then each one of them belong to each one of the topologies in the family. Therefore, the
union

∪
j Aj is open in every τi, hence it is open in τ . Finally, if A1, A2 ∈ τ , then A1, A2 ∈ τi

for all i ∈ I; thus A1 ∩A2 ∈ τi, for all i ∈ I, hence A1 ∩A2 ∈ τ .
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2 Alexandroff spaces

Theorem 9 (Intersection of Alexandroff spaces). Let {τi}i∈I be a collection of Alexandroff
topologies over X, then (X, τ), with τ =

∩
τi, is an Alexandroff space.

Proof. Let {τi}i∈I be an arbitrary family of Alexandroff topologies over X; it is already
known that τ =

∩
τi is also a topology over X.

Let x ∈ X and {Uj : x ∈ Uj ∈ τ} the collection of all open neighborhoods containing x.
Then Nx =

∩
{Uj : x ∈ Uj} is open and a neighborhood of x, being also minimal in the sense

of the inclusion order. If V is any other open neighborhood of x in τ , then V ∈ τi for all
i ∈ I. This means that V ∈ {Uj : x ∈ Uj} and Nx ⊆ V . Therefore, (X, τ) is Alexandroff.

Corollary. Finite intersection of Alexandroff topologies is also Alexandroff.

2.4.4 Products

Let (X1, τ1), (X2, τ2), ..., (Xn, τn) be n topological spaces, and let X =
∏n

i=1Xi be the carte-
sian product X1 ×X2 × ...Xn. It has been shown that it is possible to construct a topology
on X as a result of the topologies on each factor Xi [16]. For finite products, it has been
proved that the box topology coincides with the Tychonoff topology; both being generated
by a basis of the form:

B = {O = O1 ×O2 × ...On : Oi is open in Xi}.

Likewise, given a point x ∈ X, and a neighborhood V of x, then x = (x1, x2, ...xn) ∈ V
and there exists a set of the form V1 × V2 × ... × Vn contained in V, with every Vi being a
neighborhood of xi ∈ Xi. Then there exist open sets Oi ⊆ Vi containing xi, for all i = 1...n.

Theorem 10 (Finite products of Alexandroff spaces). Let (X1, τ1), (X2, τ2), ..., (Xn, τn) be n
Alexandroff topological spaces, then the product X =

∏n
i=1Xi is an Alexandroff space as well.

Proof. Let x = (x1, x2, . . . , xn) ∈ X =
∏n

i=1Xi. For each i ∈ {1, . . . , n}, (Xi, τi) is an Alexan-
droff space so xi has a minimal open neighborhood Nxi which constitutes a neighborhood
base at xi. Since the cartesian product of neighborhood bases at xi gives a neighborhood
base at (x1, . . . , xn), then {Nx1 × . . . × Nxn} is a open neighborhood base at x. Since this
neighborhood is also minimal, then X is also Alexandroff.

In the product space, it is possible to define the canonical projection πi : X → Xi such
that, given a = (a1, a2, ...an) ∈ X, then πi(a) = ai. Hence, given an open set Ui ∈ τi with
ai ∈ Ui, then the preimage is:

π−1
i (Ui) = X1 ×X2 × ...Xi−1 × Ui ×Xi+1 × ...Xn.

Since π−1
i (Ui) is open, then the projection maps are continuous. Therefore, it is possible to

write an open set in X as:

O = O1 ×O2 × ...On = π−1
1 (O1) ∩ π−1

2 (O2) ∩ ... ∩ π−1
n (On)

Hence the Tychonoff’s generalization for an arbitrary product is obtained.
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2.4 Obtaining Alexandroff spaces out of others

Definition 12 (Tychonoff’s product topology). Let {(Xi, τi)}i∈I be an arbitrary collection
of topological spaces. Then the product space X =

∏
i∈I Xi is a topological space, having as a

basis for the topology open sets of the form:

K∩
k=1

π−1
ik

(Oik)

with K ∈ N and Oik ∈ τik .

Addressing the question whether an arbitrary product of Alexandroff spaces is also Alexan-
droff, the following is a counterexample to this idea.

Example 6. Let S = {a, b} and (S, τS) be a Sierpiński space, namely, τS = {∅, {a}, S}.
Then it is also an Alexandroff space. Let us construct the following product:∏

n∈N
Sn

with Sn = S. The Tychonoff’s product topology requires that only a finite number of com-
ponents in the product of open set are not the whole space S. Therefore, it is possible to
construct the following family of open sets, {On}n∈N :

O1 = {a} × S × S × ...

O2 = S × {a} × S × ...

O3 = S × S × {a} × ...

...
On = S × ...× {a}...× S × ...

where the only open set different from S is {a} in the nth-position, for every n ∈ N. Hence,
each On is an open set in the Tychonoff’s product topology, and {On}n∈N is an arbitrary
family of open sets. However, the intersection∩

n∈N
On = {a} × {a} × {a} × ...

is not an open set, as it does not satisfies the Definition 12. In consequence, the aforemen-
tioned product is not an Alexandroff space.

2.4.5 Quotients
Given a topological space (X, τ) and an equivalence relation ∼ on X, then the quotient set
denoted, by X/∼, is the set of all the equivalence classes regarding ∼. If x ∈ X, the symbol
[x] denotes the class of equivalence of x, i.e., the set [x] = {a ∈ X : x ∼ a}. A surjective
map called the canonical quotient map is naturally associated with the equivalence relation,
namely q : X → X/∼, where q(x) = [x]. In similar fashion, there is a natural topology
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defined for the quotient X/∼, namely a set U ∈ X/∼ is open if and only if q−1(U) is open in
X.

Let τq denote the collection {U ⊆ X/∼ : q−1(U) is open in X}. Then ∅ and X/∼ are in
τq, for q−1(∅) = ∅ and q−1(X/∼) = X, both open in X. If {Ui}i∈I is an arbitrary collection
of elements of τq, then q−1(Ui) is open in X for each i ∈ I. Therefore

∪
i Ui is in τq, for

q−1(
∪

i Ui) =
∪

i q
−1(Ui) is open in (X, τ). Finally, if U1, U2 ∈ τq, then q−1(U1) and q−1(U2)

are open in X; hence U1 ∩U2 ∈ τq, for q−1(U1 ∩U2) = q−1(U1)∩ q−1(U2) is open in X. As a
result, τq is a topology on X/∼, and it is called the quotient topology.

Theorem 11. Let (X, τ) be an Alexandroff space, and ∼ an equivalence relation on X; then
X/∼ is an Alexandroff space with the corresponding quotient topology τq.

Proof. Let {Ui}i∈I be an arbitrary collection of open sets in τq; then q−1(Ui) is open in X
for each i ∈ I. Therefore

∩
i Ui is also open in τq, on the grounds of q−1(

∩
i Ui) =

∩
i q

−1(Ui)
being open in τ , for X is Alexandroff. In consequence, (X/∼, τq) is Alexandroff.

2.4.6 Identification topologies
Let X and Y be two topological spaces, and p : X → Y be a continuous map; then p is called
an identification if and only if for each set V ⊆ Y , p−1(V ) is open in X implies that V is
open in Y , as described by Mendelson in [16]. The idea of identification is the rationale for
a method to equip a set with a topology, via surjective functions.

Definition 13 (Identification topology, Mendelson [16]). Let (X, τX) be a topological space,
and p : X → Y be a surjective function mapping X onto a set Y . The identification topology
on Y comprises all sets V ⊆ Y such that p−1(V ) is open in X.

Hence, p becomes an identification mapping X onto Y . Let τY be the collection of all sets
V ⊆ Y such that p−1(V ) is open in X. Then it can be seen that Y ∈ τY , for p−1(Y ) = X ∈ τX ;
as much as ∅ ∈ τY too. If {Vi}i∈I is an arbitrary family of elements in τY , then it means that
p−1(Vi) is open in X for each i ∈ I. Therefore

∪
i Vi is also in τY since p−1(

∪
i Vi) =

∪
i p

−1(Vi)
is open in X. Last but not least, given two sets V1, V2 ∈ τY , then the intersection V1 ∩ V2

belongs to τY for the preimage p−1(V1 ∩ V2) = p−1(V1) ∩ p−1(V2) is open in X. Therefore,
the collection τY is a topology on Y , i.e., a identification topology.

A few instances of identification have been already shown in the present work, exempli gra-
tia: the quotient map q from a space X onto the quotient X/∼, and the canonical projection
πk mapping a product space

∏
iXi onto one of the factors Xk.

Theorem 12. Let (X, τX) be a topological space, and p : X → Y be a surjective map inducing
an identification topology τY on Y . Therefore, if (X, τX) is an Alexandroff space, then (Y, τY )
is an Alexandroff space.

Proof. Let {Vi}i∈I be an arbitrary family of sets in τY , then
∩

i∈I Vi is open in τY , for

p−1(
∩
i∈I

Vi) =
∩
i∈I

p−1(Vi)

is open in X on account of X being an Alexandroff space.
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The main idea of identification can be generalized for a family of surjections mapping
a family of spaces onto a set, in order to obtain the denominated final topology. Given
a set Y , a family of topological spaces (Xi, τXi), with a corresponding family of functions
F = {fi : Xi → Y }, then the final topology on Y , induced by the family F , is the finest
topology τF on Y such that each fi is continuous for each i ∈ I. This unequivocally means
that a set U is open in Y , i.e. U ∈ τF , if and only if each f−1

i (U) is open in (Xi, τXi) for
each i ∈ I. Therefore, the final topology becomes an indexed intersection of identification
topologies, hence if (Xi, τXi)i∈I is a family of Alexandroff spaces, then (Y, τF ) is also an
Alexandroff space.
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3 Equivalence between Alexandroff spaces
and quasiordered spaces

3.1 Introduction
There is a close relationship between topology and order. The neighborhood systems in a
topological space allow to define the commonly designated specialization quasiorder in an
arbitrary topological space by considering that a point x is less than or equal to a point y
if the neighborhood system at x is included in the neighborhood system at y. When the
topological space is T1 then the specialization quasiorder becomes equality and it is useless.
Therefore, in this connection between topological and ordered spaces, non-T1 spaces play a
significant role more than T1 spaces.

In general, several different topological spaces can induce the same specialization qua-
siorder. This makes impossible to recover the topology from its specialization quasiorder.
However, in case that one considers an Alexandroff topological space, the recovery is pos-
sible. In fact, there exists an equivalence between the categories of Alexandroff spaces and
quasiordered spaces.

This chapter is devoted to develop this equivalence and it is mainly inspired in the references
[8, 9, 19].

3.2 Order theory
Given a set X, let us recall that an equivalence relation ∼ on X is a reflexive, symmetric and
transitive relation; while, on the other hand, a non-strict partial order is a relation which
is reflexive, antisymmetric and transitive. Hence, the essential difference comes down to
the symmetric–antisymmetric dichotomy. By removing this condition altogether, a relation
denominated quasiorder is obtained.

Definition 14 (Quasiorder). Let X be a nonempty set. A quasiorder on X is a reflexive and
transitive relation ≲ on X. That is, ≲ is a quasiorder on X if and only if for all x, y, z ∈ X:

• x ≲ x

• x ≲ y and y ≲ z implies x ≲ z

In this case, we say that the pair (X,≲) is a quasiordered set.
If a quasiorder ≲ on X is also antisymmetric then it is called a partial order and (X,≲)

is a partially ordered set (a poset for short).

Definition 15. Given a quasiordered set (X,≲), the dual quasiorder ≳ on X is defined as
x ≳ y if and only if y ≲ x.
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Example 7. If R is endowed with the usual topology, the binary relation ≲ on P(R) given
by

A ≲ B if and only if A ⊆ B

for any A,B ∈ P(R), is a quasiorder which does not satisfy the antisymmetry. For example,
if A = [0, 1) and B = (0, 1], then A ≲ B and B ≲ A but A ̸= B.

However, a quasiorder is at short distance to be an equivalence relation as the next result
shows [19].

Theorem 13 ([19, Theorem 8.2.2] ). Let (X,≲) be a quasiordered set. Then:

1. The relation ∼ defined on X as x ∼ y if and only if x ≲ y and y ≲ x, for all x, y ∈ X
is an equivalence relation.

2. Given an equivalence relation defined as indicated above, the quotient set X/∼ has a
natural partial order defined as [x] ≤ [y] if and only if x ≲ y.

3. Moreover, given a partition of a set C, such that there is a partial order ≤ between the
blocks of the partition, then there exists a quasiorder ≲ on C such that x ≲ y if and
only if [x] ≤ [y].

Proof. Let (X,≲) be a quasiordered set.

1. Since ≲ is reflexive, x ≲ x; therefore x ∼ x and thus ∼ is reflexive.
Let x, y, z ∈ X be such that x ∼ y and y ∼ z; that is, x ≲ y, y ≲ z, y ≲ x and z ≲ y.
Since ≲ is transitive, then x ≲ z and z ≲ x; hence, x ∼ z. Therefore, ∼ is transitive.
Finally, given x, y ∈ X such that x ∼ y, then we have x ≲ y and y ≲ x. That is exactly
the same as y ∼ x, for the conjunction and is commutative. Thus, ∼ is symmetric.
Therefore, ∼ is an equivalence relation.

2. Given (X,≲) and the aforementioned equivalence relation ∼, define ≤ in X/∼ as [x] ≤
[y] if and only if x ≲ y, for all x, y ∈ X. First, let us show that it is well-defined.
Let [x1] = [x2] and [y1] = [y2], i.e., different representatives from the same equivalence
classes, then it is true that [x1] ≤ [y1] if and only if [x2] ≤ [y2]. Since [x1] = [x2] and
[y1] = [y2], then x1 ≲ x2, x2 ≲ x1, y1 ≲ y2 and y2 ≲ y1. Hence, if [x1] ≤ [y1], then
x2 ≲ x1 ≲ y1 ≲ y2, thus x2 ≲ y2 by transitivity of ≲; therefore [x2] ≤ [y2]. In similar
fashion, [x2] ≤ [y2] implies [x1] ≤ [y1], hence ≤ is well-defined.
Now, ≤ is reflexive, for x ≲ x, hence [x] ≤ [x]. If [x] ≤ [y] and [y] ≤ [z], then x ≲ y and
y ≲ z, then x ≲ z for ≲ is transitive, therefore [x] ≤ [z] so ≤ is transitive. Finally, if
[x] ≤ [y] and [y] ≤ [x], then x ≲ y and y ≲ x, thus x ∼ y, hence, they are in the same
equivalence class: [x] = [y] and ≤ is antisymmetric.
As a consequence, ≤ is a partial order on X/∼.

3. Let C be a set, and {[x] : x ∈ C} be the blocks of a partition of C. Let ≤ be a partial
order between the blocks of partitions. Then, define x ≲ y if and only if [x] ≤ [y] for all
x, y ∈ C. Hence, ≲ is reflexive, for ≤ is reflexive, thus [x] ≤ [x] implies that x ≲ x. ≲
is transitive, for ≤ is transitive, i.e., if [x] ≤ [y] and [y] ≤ [z], then [x] ≤ [z]; therefore,
if x ≲ y and y ≲ z, it follows that x ≲ z. As a result, ≲ is a quasiorder on C.
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Corollary ([19, Corollary 8.2.3]). There is a one-to-one correspondence between quasiorders
on X and partial orders on blocks of partitions of X.

Given a quasiordered set (X,≲), and C ⊆ X, the increasing hull of C is the set ↑ C = {x ∈
X : c ≲ x for some c ∈ C}. Likewise, the decreasing hull of C is defined as ↓ C = {x ∈ X :
x ≲ c for some c ∈ C}. Since ≲ is reflexive, then C ⊆↑ C and C ⊆↓ C. When equality holds,
the set C is called an increasing set or upper set, or a decreasing set or lower set, respectively
[8, 19].

Definition 16 (Upper set, lower set). Let (X,≲) be a quasiordered set, let C ⊆ X. Then C
is said to be an increasing set or upper set if C =↑ C = {x ∈ X : c ≲ x for some c ∈ C}.

Likewise, C is a decreasing set or lower set if C =↓ C = {x ∈ X : x ≲ c for some c ∈ C}.

Moreover, the term increasing hull of a set, i.e., ↑ C, is also know as the upward closure of
C, while the decreasing hull ↓ C is also called downward closure of C. For the singleton {x},
the downward closure is denoted ↓ x, and the upward closure is denoted by ↑ x [11].

Proposition 12 ([19, Theorem 8.2.10] ). Let (X,≲) be a quasiordered set, and C a subset
of X. Then:

1. ↑ C is the smallest increasing set containing C.

2. C is increasing if and only if C =
∪
{↑ x : x ∈ C}

Proof. Let C be a subset of (X,≲).

1. Let A be another increasing different from ↑ C such that C ⊆ A ⊆↑ C. Then there
exists z ∈↑ C but z /∈ A and c ≲ z for some c ∈ C. However, A =↑ A, hence
A = {x : a ≲ x for some a ∈ A}, therefore any element in ↑ C actually pertains to
↑ A = A. Thus A =↑ C.

2. (→) Let C =↑ C and let x ∈ C. Then straightforward c ≲ x for some c ∈ C, as ≲ is
reflexive so x ≲ x. Thus x ∈

∪
{↑ x : x ∈ C} and C ⊆

∪
{↑ x : x ∈ C}.

Let z ∈
∪
{↑ x : z ∈ C}, then z ∈↑ C, but C =↑ C, therefore

∪
{↑ x : x ∈ C} ⊆ C.

(←) If C =
∪
{↑ x : x ∈ C}, then C =↑ C, hence C is increasing.

Similar arguments show that ↓ C is the smallest decreasing set containing C; and C is
decreasing if and only if C =

∪
{↓ x : x ∈ C}.

3.2.1 Quasiordered spaces as topological spaces

Several ways to endow a quasiordered space (X,≲) with a topology will be shown next.
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3 Equivalence between Alexandroff spaces and quasiordered spaces

Theorem 14 ([9, Proposition 4.2.11],[19, Theorem 8.3.1] ). Let (X,≲) be a quasiordered set.
Then the family of all upper sets

τ≲ := {A ⊆ X : A =↑ A}

is an Alexandroff topology on X called the Alexandroff topology or the specialization topol-
ogy of ≲ .

Proof. Let (X,≲) be a quasiordered set.

• Since ≲ is reflexive, then it is true that any x ≲ x for each x ∈ X, hence x ∈↑ X, hence
X =↑ X, thus X is an upper set. ∅ ⊆ X, hence, it is (vacuously) an upper set.

• Let {Ai}i∈I be an arbitrary family of upper sets.
(⊆) It is always true that

∪
i∈I Ai ⊆↑

∪
i∈I Ai, on grounds of proposition 12-1.

(⊇) Let x ∈↑
∪

i∈I Ai, then a ≲ x for some a ∈
∪

i∈I Ai; hence, there exists at least a
j ∈ I such that a ∈ Aj , thus x ∈↑ Aj = Aj . Therefore, x ∈

∪
i∈I Ai.

Since
∪

i∈I Ai =↑
∪

i∈I Ai, then
∪

i∈I Ai is an upper set.

• Let {Ai}i∈I be an arbitrary family of upper sets.
(⊆)

∩
i∈I Ai ⊆↑

∩
i∈I Ai, as shown in proposition 12-1.

(⊇) Let x ∈↑
∩

i∈I Ai, then there exists a ∈
∩

i∈I Ai, and thus a ∈ Ai for each i ∈ I,
such that a ≲ x. Therefore, x ∈↑ Ai = Ai for each i ∈ I. As a result, x ∈

∩
i∈I Ai, and

so ↑
∩

i∈I Ai ⊆
∩

i∈I Ai.
Since

∩
i∈I Ai =↑

∩
i∈I Ai, then

∩
i∈I Ai is an upper set.

Therefore τ≲ is an Alexandroff topology on X.

It can be observed that a basis for the Alexandroff topology τ≲ of a quasiordered set (X,≲)
is the family of all the sets of the form ↑ x = {y ∈ X : x ≲ y}. Hence, the set ↑ x is the
minimal open neighborhood of x.

It is important to notice that this Alexandroff topology is one of the topologies obtained
from the quasiordered set (X,≲) yet not the only one. It is possible to define a topology,
also known as the upper topology, via the complement of lower sets X\ ↓ F , where F ⊆ X is
finite, by taking them as a basis for the open sets.

Theorem 15. Let (X,≲) be a quasiordered set. Then the family:

C = {X\ ↓ F : F ⊆ X is finite},

is the basis for a topology τu≲ on X.

The topology τu≲ is also called the upper topology induced by ≲ .

Proof. Let us shows that C satisfies the properties for being a basis for a topology on X.

1. Since ∅ is finite and ↓ ∅ = ∅, then X\∅ = X ∈ C, hence C covers X.
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3.2 Order theory

2. Let X\ ↓ F1 and X\ ↓ F2 be two elements of C, so F1 and F2 are finite. Then:

x ∈ (X\ ↓ F1) ∩ (X\ ↓ F2)⇔ x ̸∈↓ F1, x ̸∈↓ F2

⇔ x ̸∈ (↓ F1) ∪ (↓ F2)

⇔ x ̸∈↓ (F1 ∪ F2)

⇔ x ∈ X\ ↓ (F1 ∪ F2)

Therefore, (X\ ↓ F1) ∩ (X\ ↓ F2) = X\ ↓ (F1 ∪ F2). Since F1 ∪ F2 is finite, then
X\ ↓ (F1 ∪ F2) ∈ C.
Hence, C is a basis for a topology on X.

The closure of a point x in the topological space (X, τu≲) is ↓ x, the smallest closed set
containing the singleton; so the upper topology is the coarsest one being associated to a
quasiordered space [9]. It can be seen that the upper topology is not Alexandroff in the
manner the topology defined by Theorem 14 is; as illustrated by the following example.

Example 8. Let us consider the partially ordered set (R,=).
It is plain to see that every subset of R is an upper set so the Alexandroff topology τ= is

the discrete topology.
On the other hand, let us compute the upper τu= on R induced by = . Given a finite subset

F of R, then ↓ F = F , so a basis for the topology τu= is the family:

{R\ ↓ F : F is finite} = {R\F : F is finite}.

But this family is indeed a topology, i.e., the cofinite topology. However, this topology is not
Alexandroff. For example, let On = R\{1, . . . , n} for all n ∈ N. It is clear that On is open in
τu= but ∩

n∈N
On =

∩
n∈N

(
R\{1, . . . , n}

)
= R\

(∪
n∈N
{1, . . . , n}

)
= R\N

is not open in τu=. Hence the upper topology τu= is not Alexandroff.

There exist more topologies that can be obtained from a quasiordered space (X,≲). The
lower topology is constructed in similar fashion as the upper topology by using the dual qua-
siorder instead. There are also the interval topology, the Lawson topology, the Scott topology
—defined via the directed sets in a quasiordered space, et cetera; all of them being beyond
the scope of this work. However, a question arises regarding the possibility of constructing a
one-to-one correspondence between quasiordered spaces and Alexandroff spaces.

3.2.2 Topological spaces as quasiordered spaces
In the previous section, the endowing of a quasiordered set with a topology was examined.
The reverse problem of constructing a quasiorder from a topological space, will be dealt
with next. In order to accomplish this, the designated specialization quasiorder (the locution
coming from algebraic geometry [12]) is introduced.
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3 Equivalence between Alexandroff spaces and quasiordered spaces

Although the following lemma is valid for any topological space, it is relevant within the
present context.

Lemma 5 (Gierz et al., [8]). Let (X, τ) be a topological space, then the following statements
are equivalent:

1. {x} ⊆ {y}

2. x ∈ {y}

3. x ∈ U implies that y ∈ U , for all open set U .

Proof. Let (X, τ) be a topological space.
(1→ 2) If {x} ⊆ {y}, then the conclusion follows suit since x ∈ {x} always.
(2→ 3) If x ∈ {y}, then any open neighborhood U of x intersects {y}, hence y ∈ U .
(3 → 1) Let a ∈ {x}, then any open neighborhood U of a intersects {x}, thus x ∈ U ;

however, this implies that y ∈ U , therefore a ∈ {y} and {x} ⊆ {y}.

Theorem 16. Let (X, τ) be a topological space, then the binary relation ≲τ on X given by

x ≲τ y if and only if x ∈ {y},

for all x, y ∈ X, is a quasiorder on X called the specialization quasiorder induced by the
topology τ.

Proof.

• For each x ∈ X, it is true that x ∈ {x}, therefore x ≲τ x and the relation ≲τ is reflexive.

• Let x, y, z ∈ X such that x ≲τ y and y ≲τ z. Then x ∈ {y} and y ∈ {z}. As
a consequence of Lemma 5, all the neighborhoods of x contain also y, so they are
neighborhoods of y as well. The same occurs between y and z, all neighborhoods of y
contain z, thus they are neighborhoods of z, yet that includes the neighborhoods of x.
Therefore x ∈ {z}, that is x ≲τ y. The relation ≲τ is transitive.

As a consequence, ≲τ is a quasiorder.

Corollary. If (X, τ) is a topological space, then two points x, y ∈ X verify that x ≲τ y if and
only if they satisfy any of the following conditions:

• {x} ⊆ {y};

• if U is a neighborhood of x then U is also a neighborhood of y.

Proposition 13 ([9], Proposition 4.2.3). Let (X, τ) be a topological space, and ≲τ be the
corresponding specialization quasiorder. Then:

1. X is T0 if and only if ≲τ is a partial ordering.

2. X is T1 if and only if ≲τ is the equality.

Proof. If (X, τ) is a topological space and ≲τ its specialization quasiorder, then:
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1. (→) If X is T0, let us suppose the specialization quasiorder lacks antisymmetry, i.e.,
there exist x, y ∈ X such that x ≲τ y and y ≲τ x, but x ̸= y. Since X is T0, then
there exists a neighborhood containing x but not y, thus contradicting that x ≲τ y as
per Lemma 5; or a neighborhood containing y but not x, contradicting that y ≲τ x on
similar reasoning. Therefore, ≲τ is antisymmetric, and a partial ordering.
(←) If ≲τ is a partial ordering, and given x ̸= y, then either x ̸≲τ y, hence there is an
open set containing x but not y; or y ̸≲τ x, thus there is an open set containing y but
not x. Therefore, X is T0.

2. (→) If X is T1, then X is T0 and the quasiorder ≲τ is already a partial order. However,
T1 also means that, whenever x ̸= y, there is an open set containing x but not y, and
an open set containing y but not x; hence x ̸≲τ y, and y ̸≲τ x, as per Lemma 5. This
means that pairs (x, y) with x ̸= y do not pertain to the relationship ≲τ (i.e., are not
comparable), hence ≲τ is an equality.
(←) An equality is a partial order, i.e., reflexive, transitive and antisymmetric. In
addition, whenever x ̸= y, x ̸≲τ y and y ̸≲τ x; that is x /∈ {y} and y /∈ {x}, hence there
exists an open set containing x but not y, and an open set containing y but not x, thus
making X a T1 space.

Proposition 14. Let (X, τ) be a topological space. Then τ ⊆ τ≲τ
, that is, the topology τ is

coarser than the Alexandroff topology induced by the specialization quasiorder of τ.

Proof. Let O be an open set in τ. Let x ∈↑ O. Then we can find o ∈ O such that o ≲τ x. If
o ≲τ x, then o ∈ {x}, hence x ∈ O. Therefore, ↑ O ⊆ O; and O ⊆↑ O.

Since ↑ O = O, then O is open in the Alexandroff topology τ≲τ
induced by the specialization

quasiorder of τ.

Notice that from the above result we can deduce the following:

Corollary. Let (X,≲) be a quasiordered space. Then the Alexandroff topology τ≲ is the finest
topology on X whose specialization quasiorder is ≲ .

Proof. Let τ ′ be a topology on X such that its specialization quasiorder is ≲, that is ≲τ ′=≲ .
By the previous result τ ′ ⊆ τ≲′

τ
= τ≲ so the Alexandroff topology τ≲ induced by ≲ is finer

than τ ′.

3.3 The one-to-one link
We have seen that a quasiordered set yields its Alexandroff topology and that from any
topology we can construct a quasiorder. At this point, it is natural to wonder if these two
constructions are inverse. The answer is positive as we show next.

Theorem 17. Let QOr,ATop be the families of quasiordered spaces and Alexandroff topolog-
ical spaces, respectively. Then the function A : QOr→ ATop given by

A(X,≲) = (X, τ≲)
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3 Equivalence between Alexandroff spaces and quasiordered spaces

is bijective and its inverse is given by

A−1(X, τ) = (X,≲τ ).

Proof. By Theorem 14, we deduce that A is well-defined.
Suppose that A(X1,≲1) = A(X2,≲2), that is, (X1, τ≲1

) = (X2, τ≲2
). Then X1 = X2 and

τ≲1
= τ≲2

. Moreover, let x ∈ X1. Since x ∈ {y ∈ X : x ≲1 y} ∈ τ≲1
and τ≲1

= τ≲2
, then

there exists an upper set G with respect to ≲2 such that x ∈ G ⊆ {y ∈ X : x ≲1 y}. Hence
{y ∈ X : x ≲2 y} ⊆ G ⊆ {y ∈ X : x ≲1 y}. So if x ≲1 y then x ≲2 y. A similar argument
also shows that x ≲2 y implies x ≲1 y. Consequently ≲1=≲2 so A is injective.

Furthermore, given an Alexandroff topological space (X, τ) then (X,≲τ ) is a quasiordered
space. Let us show that A(X,≲τ ) = (X, τ≲τ

) = (X, τ). By Proposition 14, we know that
τ ⊆ τ≲τ

. For the converse inclusion, let O be an open set in τ≲τ
. Then O is an upper set in

(X,≲τ ). Therefore

O =
∪
o∈O
{o} =

∪
o∈O
↑ {o} =

∪
o∈O

( ∩
o∈G∈τ

G

)
.

Since τ is Alexandroff, then
∩

o∈G∈τ G is open in τ so O is also open in τ. This proves that
τ = τ≲τ

.
Therefore, A is surjective and thus bijective.

This review of the important connection between Alexandroff topologies and quasiorders
can not be complete without mentioning that the dual quasiorder ≳ is in correspondence
with the opposite Alexandroff topology [19].
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4 Primal topology

An interesting typology of Alexandroff spaces are the denominated primal spaces, first intro-
duced under the name of functional Alexandroff spaces in 2011, in an article by Shirazi and
Golestani [21]. The designation primal space was introduced a year later, independently, by
Echi in [6].

Proposition 15. Given a nonempty set X and a function f : X → X, define the family τf
of subsets of X as:

τf = {C ⊆ X : f−1(C) ⊆ C}.

Then τf is an Alexandroff topology on X, also called functional Alexandroff topology or primal
topology induced by f.

Proof. Let X ̸= ∅ and f : X → X; let τf = {C ⊆ X : f−1(C) ⊆ C}. Then:

• f−1(∅) = ∅, thus ∅ ∈ τf

• f−1(X) = X, so X ∈ τf

• If the collection {Ci}i∈I ∈ τf , then f−1(
∪
Ci) =

∪
f−1(Ci) ⊆

∪
Ci; therefore

∪
Ci ∈ τf

• If {Ci}i∈I ∈ τf , then f−1(
∩
Ci) =

∩
f−1(Ci) ⊆

∩
Ci, consequently

∩
Ci ∈ τf .

Therefore, τf is a topology on X.

Since the property f−1(
∩

i∈I Ai) =
∩

i∈I f
−1(Ai) holds for arbitrary functions and indexing

sets, then it follows that primal spaces are indeed Alexandroff spaces [21]. The symbol τf will
henceforth denote the primal topology induced by the map f and we will say that (X, τf ) is
a primal space.

In the following, the expression fn will denote the iterative composition fn = f ◦ f ◦ ... ◦ f
(n times), for n ∈ N∪{0}, taking f0 to represent the identity map [6]. Likewise, f−n denotes
the iterative application of the preimage f−1.

Example 9. Given a nonempty set X, and the identity map id : X → X, then each x ∈ X
is a fixed point, i.e., id(x) = x. Therefore, singletons are open sets in τid for i−1

d ({x}) ⊆ {x},
and τid corresponds to the discrete topology over X.

An interesting type of primal spaces is given in [15], classified as linear operators on Rn as
illustrated by the following example.

Example 10. Let X = R2, θ ∈ R and let Rθ : R2 → R2 be the linear transformation of
rotation given by:

Rθ

(
x
y

)
=

[
cos(θ) −sin(θ)
sin(θ) cos(θ)

](
x
y

)
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4 Primal topology

Take for instance θ = π
3 . Rθ has only one fixed point, namely the zero vector: Rθ (⃗0) = 0⃗;

hence R−1
θ (⃗0) ⊆ {⃗0}, thus {⃗0} is an open set in the topology τRθ

. No other single vector does
hold this property. However, given a vector v ∈ R2, it is possible to construct open sets by
reiterative union of its preimages:

C =
∪
{R−n

θ (v) : n ≥ 0}

C is an open set in the topology τRθ
. In this example, the function satisfies the property

Rθ ◦Rθ = R2θ, thus with θ = π
3 , the set {Rn

θ (v) : n ≥ 0} has actually 6 elements:

{v,R1
θ(v), R

2
θ(v), R

3
θ(v), R

4
θ(v), R

5
θ(v)},

for every nonzero vector in the space. It can be shown that each nonzero element in R2 has
an open set containing it, with the above specified form.

Example 11. Given X = R, and the function f : R→ R defined as f(x) = 1, for all x ∈ R;
yields the trivial topology on R. For any set A ⊆ R:

f−1(A) =

{
R, A ⊇ {1}
∅, A ̸⊇ {1}

Therefore, it is only true f−1(R) ⊆ R and f−1(A) ⊆ ∅, whenever 1 /∈ A. Hence,

τf = {A ⊆ R : A ̸⊇ {1}} ∪ {R},

i.e., the excluded point topology.

4.1 Notable classes of sets

As with any Alexandroff space, the minimal open neighborhood is the most distinctive set
in a primal space. However, other equally relevant ones are the closed sets, characterized by
their invariance; and the orbits, appearing after repeated iterations of the map inducing the
topology.

4.1.1 Minimal neighborhoods

Let (X, τf ) be a primal space, the minimal neighborhood of an element x ∈ X, is the in-
tersection of all open sets containing x. If Nx denotes this minimal neighborhood, then the
following properties are true [21]:

Proposition 16. Given a primal space (X, τf ) then:

1. The minimal open neighborhood of a point x ∈ X, is Nx =
∪
{f−n(x) : n ≥ 0}

2. Given a subset A ⊆ X, the smallest open set containing it is NA =
∪
{Nx : x ∈ A}.
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Proof. 1. Let us see that Nx is open. Let y ∈ f−1(Nx), thus f(y) ∈ Nx, i.e., there exists
n ≥ 0 such that fn(f(y)) = x. Thus, fn+1(y) = x and y ∈ Nx, meaning that f−1(Nx) ⊆ Nx,
hence Nx is open.

Now, let us see Nx is minimal in the inclusion order. Let U be another open set containing
x, so f−1(U) ⊆ U , for it is open. We will proceed by mathematical induction: First, x ∈ U ,
so f−1(x) ⊆ f−1(U) ⊆ U . Let k ∈ N such that f−k(x) ∈ U ; therefore f−1(f−k(x)) ⊆ f−1(U);
that is f−(k+1)(x) ⊆ f−1(U) ⊆ U ; implying that the set

∪
{f−n(x) : n ≥ 0} ⊆ U , thus Nx is

minimal.
2.- Since ∀x ∈ A, the set Nx is open, then the set NA is open, for it is a union of open sets.

Let V be another open set containing A. Then, for every x ∈ A, the minimal neighborhood
Nx ⊆ V , hence the union

∪
{Nx : x ∈ A} is contained in V, then NA is minimal.

Corollary. In a straightforward result, a ∈ Nx if and only if there exists n ≥ 0 such that
fn(a) = x.

Correspondingly with Alexandroff spaces, the collection {Nx : x ∈ X} is a basis for the
primal topology. The following property was first presented by Shirazi and Golestani as a
trichotomy, i.e., Nx ∩Ny = ∅ or Nx ⊆ Ny or Ny ⊆ Nx [21]:

Theorem 18. Let (X, τf ) be a primal space, and x, y ∈ X. If Nx ∩ Ny ̸= ∅, then Nx ⊆ Ny

or Ny ⊆ Nx.

Proof. Let a be in Nx ∩ Ny, then there exist m,n ∈ N ∪ {0} such that fn(a) = x and
fm(a) = y. If m ≥ n, then fm−n(x) = y and x ∈ Ny; conversely, if n ≥ m, then fn−m(y) = x
and y ∈ Nx. Hence Nx ⊆ Ny or Ny ⊆ Nx.

4.1.2 Invariant sets
Given a space X, and a function f : X → X, a set C ⊆ X is said to be invariant under f ,
or f -invariant, if and only if f(C) ⊆ C. Closed sets are characterized by being invariant in
primal spaces, as was first shown by Echi in [6].

Theorem 19 ([6, Proposition 1.2]). Let (X, τf ) be a primal space, then it follows that:

1. C ⊆ X is closed if and only if C is invariant.

2. The closure of a point x ∈ X is given by x̄ = {fn(x) : n ≥ 0}.

Proof. Let (X, τf ) be a primal space, then:
1. (→) If C is closed, then X\C is open and thus f−1(X\C) ⊆ X\C; however f−1(X\C) =

X\f−1(C) ⊆ X\C, therefore C ⊆ f−1(C), hence f(C) ⊆ C and C is invariant.
(←) If C is invariant, then f(C) ⊆ C, thus X\C ⊆ X\f(C). Therefore, f−1(X\C) ⊆

f−1(X\f(C)) = X\f−1(C) ⊆ X\C. Consequently, X\C is open, and C closed.
2. It is evident that {fn(x) : n ≥ 0} is invariant under f , hence being a closed set containing

x, and so x̄ ⊆ {fn(x) : n ≥ 0}. On the other hand, let y ∈ {fn(x) : n ≥ 0}, thus there exists
m ≥ 0 so that fm(x) = y. Let Ny the minimal open set containing y, then x ∈ f−m(y) ⊆ Ny,
which implies that Ny ∩ x̄ ̸= ∅ and y ∈ x̄. Since this holds for every y ∈ {fn(x) : n ≥ 0},
therefore {fn(x) : n ≥ 0} ⊆ x̄. Consequently, {fn(x) : n ≥ 0} = x̄.
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4.1.3 Orbits
Given a function f : X → X, the orbit of a point x ∈ X is defined as the set Ωf (x) =
{x, f(x), f2(x), ...}. Furthermore, a point x ∈ X is defined periodic if and only if fm(x) = x
for some integer m ≥ 1. The smallest m holding this property is named the period of x. A
periodic point thus has a finite orbit.

Following Theorem 19, the closure of a point is exactly its orbit, x̄ = Ωf (x). On top of
that, while orbits are always countable, periodic orbits are finite. Moreover, Echi proved in
[6] that, in a primal space (X, τf ), finite orbits are exactly the non-empty, closed f -invariant
sets which are minimal in the inclusion order.

Proposition 17 ([6, Lemma 1.4]). Let (X, τf ) be a primal space, then the orbits of its periodic
points are the minimal non-empty closed f -invariant sets.

Proof. Let M be a non-empty closed f -invariant set, minimal in the inclusion order. For
every x ∈ X, the orbit Ωf (x) is a closed, f -invariant set. Hence, if x ∈M , then M = Ωf (x).
Likewise, it can be argued that M = Ωff(x). As a consequence, x is in the orbit of f(x)
indicating that x is periodic.

Reciprocally, if x is periodic, then Ωf (x) = x, which is closed and invariant under f . Since
the closure of x is the minimal closed set containing x, then Ωf (x) is a minimal non-empty
f -invariant closed set.

4.2 Separation
As a special case of Alexandroff spaces, primal spaces are also restricted to T1 in terms of
separation axioms. As a matter of fact, the only T1-Alexandroff space, namely the discrete
space, has a primal topology induced by the identity map f(x) = x as shown in [21] (see
Example 9).

Following Proposition 17 and Lemma 2, it can be readily observed that in a primal space,
all the points in the same periodic orbit have the same minimal open neighborhood; i.e., if x
is a periodic element, then Nx = Ny for all y ∈ Ωf (x). The next theorem show the conditions
for a primal space to be T0 [21].

Theorem 20 ([21, Lemma 2.6]). A primal space (X, τf ) is T0 if and only if the only periodic
points of f are its fixed points.

Proof. (→) Let X be T0. Let us proceed by Reductio ad absurdum: Let x ∈ X be a periodic
point but not a fixed point. Then f(x) ̸= x, but x̄ = ¯f(x). By Lemma 2, then Nx = Nf(x).
However, X is T0, therefore this implies that f(x) = x, contradictio ⇒⇐.
(←) Suppose that every periodic points for f is a fixed point. Let x, y ∈ X such that
Nx = Ny, then x̄ = ȳ, hence x and y are periodic. By assumption, x, y are fixed points so
x = y. Hence X is T0.

4.2.1 R0 and weakly-R0 primal spaces
The notions relative to R0 are now reviewed within the framework of primal spaces.

Theorem 21. A primal space (X, τf ) is R0 if and only if every point is periodic.
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Proof. (→) Suppose that (X, τf ) is R0 and let x ∈ X. If x is a fixed point, then it is periodic.
If x is not a fixed point, then x ̸= f(x). If x /∈ f(x), then x̄ ̸= f(x); hence x̄ ∩ f(x) = ∅
which is not possible in a primal space. Therefore x ∈ f(x). Consequently, there exists k > 0
so that fk+1(x) = x and x is periodic.

(←) If every point is periodic in a primal space (X, τf ), then for a point a ∈ X, all the
elements in the orbit Ωf (a) are non distinguishable. Let a, b ∈ X be distinguishable points,
then they are not in the same orbit. However, every point is periodic, then Ωf (a) and Ωf (b)
are disjoint, therefore, the sets {f−n(a) : n ≥ 0} and {f−n(b) : n ≥ 0} are disjoint, for f is a
function. Therefore a and b are separated, hence X is R0.

Proposition 18. A primal space (X, τf ) is T1 if and only if every point is a fixed point,
equivalently, τf is the discrete topology.

Proof. Let (X, τf ) be a primal space. A point being fixed is equivalent to being periodic with
period 1, that is f1(x) = x. Hence, every point is periodic is equivalent to (X, τf ) being
R0, according to Theorem 21. Moreover, that all the points are fixed is equivalent to (X, τf )
being T0. Therefore, it is equivalent to (X, τf ) being T0 and R0, which is equivalent to T1.
Hence, (X, τf ) has the discrete topology.

An associated concept, introduced by Di Maio [5], is that of weakly R0 spaces, denoted by
w −R0.

Definition 17 (Weakly R0 spaces). A topological space, X, is said to be weakly R0, or
w −R0, if the intersection of the closures of all its points is empty:∩

{x̄ : x ∈ X} = ∅.

The following result characterizing the weakly R0 primal spaces was first provided in [23].

Theorem 22 ([23, Theorem 3.1]). A primal space (X, τf ) is not w−R0 if and only if it has
exactly one periodic orbit Ω, and ∀x ∈ X\Ω there exists n ∈ N such that fn(x) ∈ Ω.

Proof. (←) Let (X, τf ) be a primal space, with exactly one periodic orbit Ω, and for every
x ∈ X\Ω there exists n ∈ N such that fn(x) ∈ Ω; then Ω ⊆ x̄ for every x ∈ X\Ω, therefore:∩

x∈X
x̄ = Ω ̸= ∅,

hence X is not w −R0.
(→) If (X, τf ) is not w−R0, then Ω =

∩
x∈X x̄ ̸= ∅. As an intersection of closures of every

point, Ω is a minimal closed set in the inclusion order, hence it is a periodic orbit, following
proposition 17. Ω is the only periodic orbit, for any other periodic orbit Ψ would be disjoint,
and then Ω ∩ Ψ = ∅ and X would be w − R0 ⇒⇐. Moreover, for any x ∈ X\Ω, it follows
that Ω ⊆ x̄; hence for any a ∈ Ω ⊆ x̄ and there exists n ∈ N such that fn(x) = a, thus
fn(x) ∈ Ω.
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4 Primal topology

4.3 Compactness
Given a function f : X → X, the set of all periodic points of f is denoted by Pe(f). The
compactness of the primal space induced by f on X is characterized by Pe(f). Let us observe
that the minimal neighborhood of a point in a primal space is always compact, for any open
cover has such a minimal neighborhood as a finite subcover. The following result, due to
Echi and Turki [7], shows a characterization of compact primal spaces.

Theorem 23 ([7, Theorem 2.2]). Let (X, τf ) be a primal space. Then, the following state-
ments are equivalent:

1. X is compact

2. Pe(f) is finite, and ∀x ∈ X there exists n ≥ 0 such that fn(x) ∈ Pe(f)

Proof. (1 → 2) If X is compact, then there exists a finite set {a1, a2, ...ak} such that X =∪
Nai. Without loss of generality, suppose that {Na1,Na2, ...Nak} are not comparable with

the inclusion order, hence Nai ∩ Naj = ∅ for all i ̸= j. For each i, f(ai) ∈ Naj , for some
j = 1, 2, ...k. However, ai ∈ Nf(ai), therefore Nai ⊆ Naj , hence i = j, for the minimal
neighborhoods were assumed disjoint for i ̸= j. Consequently, f(ai) ∈ Nai, indicating that
ai is periodic and Pe(f) ⊇

∪k
i=1{fn(ai) : n ≥ 0}.

Let b ∈ Pe(f), then b ∈ Nai for some i = 1, 2, ...k. Let T be the period of b, i.e.,
fT (b) = b. Since b ∈ Nai, then fn(b) = ai for some n ≤ T , hence fT−n(ai) = b, i.e.,
the periodic points are in finite orbits, thus Pe(f) ⊆

∪k
i=1{fn(ai) : n ≥ 0}. Therefore,

Pe(f) =
∪k

i=1{fn(ai) : n ≥ 0}. Since each ai is periodic, then its respective orbit is finite;
hence Pe(f) is finite, for it is a finite union of finite sets.

Let x ∈ X; if x is periodic, then obviously fn(x) ∈ Pe(f), for any n ≥ 0. If x is not
periodic, it is still being covered by some Nai , for X is compact. Suppose that x ∈ Naj ,
then, as a direct application of the corollary to Proposition 16, there exists n ∈ N such that
fn(x) = aj , thus fn(x) ∈ Pe(f).

(2→ 1) If Pe(f) is finite and for all x ∈ X there is some n ≥ 0 such that fn(x) ∈ Pe(f),
then X =

∪
{Na : a ∈ Pe(f)}. Since Na is compact, then X is compact, for it is a finite

union of compact sets.

4.4 Connectedness
Since primal spaces are Alexandroff, then their basic properties regarding minimal open
neighborhoods follow suit, namely, minimal neighborhoods are connected, as per Lemma 3;
primal spaces are locally connected and, consequently, connected components are clopen, as
first shown by Shirazi and Golestani in [21].

Proposition 19. Orbits are connected in primal spaces.

Proof. In any topological space, points are connected. If X is a primal space, any singleton
{x} is connected. Then, its closure x̄ is connected, being x̄ the orbit of x.

Proposition 20 ([21, Theorem 2.1.(8)]). Let (X, τf ) be a primal space, and x, y ∈ X. Then,
x and y are in the same connected component if and only if there exist n,m ∈ N such that
fn(x) = fm(y).
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4.4 Connectedness

Proof. (←) It can be argued in this sense that, if c ∈ X is such that there exist n,m ∈ N so
that fn(x) = c = fm(y), then Nc is the smallest connected neighborhood containing x, y and
c.
(→)Let a ∈ X and K be the connected component of a. Let us remark that ∀c ∈ K,
Nc ⊆ K for the minimal neighborhoods are connected and components are maximal, in the
inclusion order. However, not every Nc would contain a. Let V =

∪
{Nc : a ∈ Nc, c ∈ K},

i.e., the union of all minimal neighborhoods in K containing a. Then V is open, for it is
a union of open sets. Let us show that V is closed. Let b ∈ K\V so that b ∈ V̄ , that is
Nb ∩ V ̸= ∅, thus there exists x ∈ Nb ∩ V and ∃c ∈ V with Nc ⊇ {x}. Then Nb ∩ Nc ̸= ∅
implies Nb ⊆ Nc or Nc ⊆ Nb, by virtue of Theorem 18. If Nb ⊆ Nc, then b ∈ V , contradictio.
If Nc ⊆ Nb, then a ∈ Nb and b ∈ V , contradictio ⇒⇐. Therefore, Nb ∩ V = ∅, b ∈ int K\V ,
hence V is closed. Since K is connected, then V being clopen implies V = K.

Therefore, given any x, y ∈ X within the same connected component K, there always exists
c ∈ K such that x, y ∈ Nc ⊆ K, i.e., ∃m,n ∈ N such that fm(x) = c = fn(y).

Theorem 24 ([10, Theorem 3.2]). Let (X, τf ) be a connected primal space. If there exists
b ∈ X such that b̄ is finite, then the set x̄ is finite, ∀x ∈ X.

Proof. If b̄ is finite, then there exists a point p = fk(b), such that p is periodic, p = fk(p).
Since X is connected and by proposition 20, then for all x ∈ X there exist m,n such that
fn(x) = fm(p) and this implies that x̄ is finite.

It can be shown that two points form a connected set when they are in the same minimal
neighborhood, due to the configuration of the open sets in primal spaces. This is better
examined via path connectedness, as shown by the next two statements by Guale et al., [10].

Proposition 21 ([10, Lemma 4.1]). Let (X, τf ) be a primal space, with a, b ∈ X such that
a ∈ Nb. Then, there exists a continuous function g : [0, 1] → X, namely, a path, such that
g(0) = a and g(1) = b.

Proof. This can be proved by considering the function g : [0, 1]→ X with:

g(t) =

{
a ; for t ∈ [0, 1)
b ; for t = 1

.

Then, with the minimal neighborhoods Na y Nb it can be shown that g−1(Na) = [0, 1),
g−1(Nb) = [0, 1], and g is continuous.

Theorem 25. Every connected primal space is path-connected.

Proof. Let (X, τf ) be a connected primal space. Let a, b ∈ X; then there exists q ∈ X such
that fn(a) = q = fm(b) for some m,n ∈ N, due to the connectedness of X. Since q ∈ ā ∩ b̄,
then it is possible to construct a path g connecting a with q, then a second path h from b to
q; thus finally concatenate g with h−1 to form a path from a to b.
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5 Case in point: The Collatz Conjecture
The Collatz conjecture, also noted as the 3n+1 problem, the Ulam problem, the Hasse’s
algorithm, the Kakutani problem, the Thwaites conjecture, or the Syracuse problem; is a
notorious unsolved problem in mathematics. The conjecture presents a simple yet delusively
difficult issue: take any positive integer n and, if it is even, divide it by 2; if odd, multiply it
by 3 and add 1. By iterating this process with the resulting numbers, the sequence eventually
arrives at 1. The Collatz conjecture persists as an open problem, despite being proposed over
70 years ago [3]. However, it has attracted the attention of countless mathematicians and
enthusiasts the same, becoming a fascinating topic of study.

Let us start defining the function C : N→ N, the Collatz conjecture is based upon:

C(n) =

{
n/2 ; for n even

3n+ 1 ; for n odd
,

where the symbol N stands for the set N = {1, 2, 3, ...}. Henceforth, the primal topology
induced by the Collatz function is denoted by τC .

In Figure 5.1, a selection of orbits after iterating the Collatz function is presented. For
instance, the number 5 is odd, then it maps into 16, i.e., 3 × 5 + 1. However, 16 is even,
hence it maps into 8, i.e., (16/2); and so on. The presented orbits eventually reach the final
cycle 4− 2− 1− 4, and the question is to find out whether this is always the case or not.

Starting in 2019, several papers appeared tackling this problem from a topological per-
spective, by relating it to the primal topology [23]. In Figure 5.2, left panel, the graphic
shows a representation of the minimal open neighborhoods of two given points x = 3 and
y = 32. According to the theory, N3 =

∪
{f−n(3) : n ≥ 0} and N32 =

∪
{f−n(32) : n ≥ 0},

thus the graphic representation is not complete by any means. Likewise, in the right panel,
it is shown the closure of two points, x = 6 and y = 512, that it: 6̄ =

∪
{fn(6) : n ≥ 0} =

{6, 3, 10, 5, 16, 8, 4, 2, 1} and so on.
The following theorem was first proposed by Vielma et al., in 2019 [23]; later expanded by

Guale et al. [10], and Mejías et al. [14]; and presents a list of equivalences such that, proving
one of them would prove the Collatz conjecture to be true.

Theorem 26 (Vielma [23], Guale [10] and Mejías [14]). Let C : N → N be the Collatz
function, and (N, τC) the primal space induced by C. Therefore, the following statements are
equivalent:

1. The Collatz conjecture is true;

2. (N, τC) is not w−R0;

3. (N, τC) is compact with a single periodic orbit;

4. (N, τC) is connected;

39



5 Case in point: The Collatz Conjecture

5. (N, τC) is path-connected.

Proof. Let C : N→ N be the Collatz function, and (N, τC) the primal space induced by C.

• (1⇒ 2) If the Collatz conjecture is true, then, for all n ∈ N there exists k ≥ 0 such that
fk(n) = 1, and the primal space has only one periodic orbit, namely, ΩC(1) = {1, 4, 2};
by the theorem 22, the primal space (N, τC) is not R0.

• (2⇒ 3) If (N, τC) is not w−R0, by the theorem 22, there exists a finite orbit ΩC(1) =
{1, 4, 2} such that ∀n ∈ N there is k ≥ 0 with fk(n) = 1; hence, under the theorem 23,
(N, τC) is compact and its only periodic orbit is ΩC(1).

• (3⇒ 4) If (N, τC) is compact and with single periodic orbit, then that orbit must be the
one already known: ΩC(1) = {1, 4, 2}. Given a, b ∈ N, there exist n,m ≥ 0 such that
Cn(a) = 1 = Cm(b). Following proposition 20, we have that a and b are in the same
connected component. Since this is valid for any a, b ∈ N, then (N, τC) is connected.

• (4⇒ 5) If (N, τC) is connected, then it is path-connected, by virtue of theorem 25.

• (5 ⇒ 1) If (N, τC) is path-connected, then it is connected. Since 1̄ is finite and by
theorem 24, then we have that the point closure x̄ is finite for every x ∈ N. Since they
all are in the same connected component as 1 and 1̄ = ΩC(1), then ∀x ∈ N there exist
k, l ≥ 0 such that Ck(x) = C l(1). However, ΩC(1) = {1, 4, 2} is finite, therefore ∀x ∈ N
there exists m ≥ 0 such that Cm(x) = 1 and the Collatz conjecture is true.

The presented theorem does not solve the Collatz conjecture, yet gives a novel approach
enabling further investigation.
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Figure 5.1: A tree-shaped schematic representation of selected orbits from Collatz function.

Figure 5.2: Schematic representation of minimal open neighborhoods (left panel–under no
circumstance should be considered complete), and closures of points (right panel)
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6 Concluding remarks
The present work has explored the landscape of Alexandroff spaces, delving into their at-
tributes and interrelations.

In Chapter 2, their defining characteristics, namely, the closure under arbitrary intersec-
tions of open sets, and the existence of minimal neighborhoods were introduced, together
with their interplay with characteristics such as separation, connectedness, compactness and
countability.

Examples of construction of Alexandroff spaces were given, by using a nested family of
basis sets (Example 4), and another with basis partitioning the space (Example 5).

Lemma 1 is very useful for proofs found in the related literature, yet it is rarely made
explicit as in this work.

Regarding the separation axioms, the focus is on low level axioms, T1 or lesser; for any
T1-Alexandroff space has already the discrete topology.

Some authors put emphasis on Alexandroff spaces being T0 [2]; however several propositions
and theorems had this condition removed, for it was not required during the proving process.

With respect to connectedness, it turned up that Alexandroff spaces are locally connected
since their minimal open neighborhoods are connected.

Chapter 3 offers a perspective about quasiordered spaces and topological spaces: how a
topology can produce a quasiorder relation, and how a quasiorder can give rise to a family
of topologies. However, only the Alexandroff topologies are related to quasiordered spaces
through a bijective correspondence.

Functional Alexandroff spaces, also known as primal spaces, are presented in Chapter 4.
The distinct classes of sets and their interrelations are shown within the framework of this
particular case. Finally, some attention is turned up on the Collatz Conjecture, under the
light of primal spaces. A list of propositions are shown to be equivalent to the conjecture, so
that proving one of them would solve this prominent open problem. Further investigation is
required along this direction.

This work thus contributes to the comprehensive understanding of Alexandroff spaces but
also underscores their relevance across various mathematical domains.
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