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Abstract. Musical consonances are most times assumed to be associ-
ated with the absence of beats or roughness, which can only be achieved,
in a strict sense, in just intonation. In this paper, signals representing
consonant intervals and chords are analyzed, both in just intonation and
in an arbitrary slight deviation from it. Analytical approximate formulas
for their envelopes are obtained and then applied to the particular case of
equal temperament. It was found that, in just intonation, the envelopes
are flat but, in the other cases, the envelopes have a ripple which corre-
sponds to beats or roughness, thus indicating a loss of consonance. Both
the amplitudes and periodicities of the ripples are obtained for all types
of consonances.

Keywords: consonance · beat · roughness · envelope · just intonation ·

equal temperament.

1 Introduction

Searching for the basis of musical consonances has grabbed the attention of
many musicians, musical instrument manufactures, and all kind of scientists for
centuries. . . and is still under discussion. Relevant answers to this phenomenon
have been given from different areas of knowledge, such as: mathematics, physics,
biology, psychology or sociology [1–8]. Apart from the theoretical models, also
experimental results, based on tests and surveys, have been obtained. Unfortu-
nately, most of the studies have been carried out on intervals and not on chords.

In spite of the difficulty to give an answer covering every point of view, it is
generally accepted that there are 6 basic types of consonances: 4 related to the
intervals and 2 to the chords. In the first case, they are the octave, perfect fifth,
major and minor thirds (the unison is not here considered, because it is a trivial
consonance); and, in the second case, the major and minor chords (which are,
in fact, combinations of consonant intervals). As well, the inversions both of the
intervals and chords are considered consonant, too.

This study has been carried out for pure tones, that is, simple sinusoids,
in contrast to complex tones, which are formed by a series of harmonics that
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affect the sensation of consonance differently. Then, in our case, all types of
consonances will be combinations of (pure) tones whose frequencies are small
multiples of a fundamental one, that is, tones belonging to a harmonic series,
particularly the harmonics 2 (octave), 3 (perfect fifth) and 5 (major third).
But, additionally, there is another important characteristic of the consonances
that is pointed out in many studies: the absence of beats or roughness, which
are rhythmical fluctuations of the amplitude as a result of constructive and
destructive interferences.

In parallel to those discussions there is another ancient problem: the tun-
ing of musical instruments. Thus, in [9], more than 180 systems are described,
which fortunately can be reduced to about 20 basic ones. As well, [10] is a good
reference on this matter in Spanish. Among those systems, the Pythagorean
tuning perfectly matches the harmonics 2 and 3, while the just intonation also
matches the harmonic 5. Other systems, called temperaments, slightly deviate
from those harmonics in order to meet other requirements. For example, the
meantone temperament reduces the Pythagorean fifths in a quarter of syntonic
comma in order to match the major thirds, that is, the harmonic 5, but at the
expense of deviating from harmonic 3. Another important example is the 12-tone
equal temperament (12-TET) or, simply, equal temperament, which divides the
octave into 12 equal parts (in a logarithmic frequency scale), thus resulting in
a uniform and closed system. As a matter of fact, most tuning systems tend to
approach the just intonation.

Then, on the one hand, the consonances are combinations of harmonics 2,
3 and 5 from a harmonic series and, on the other hand, those harmonics are
perfectly matched by the just intonation. Therefore, the following question arises:
how consonant is a consonance with respect to its deviation from just intonation?
This paper is devoted to answer that question. To do that, signals containing 2 or
3 pure tones corresponding to a consonance are analyzed, both in just intonation
and in an arbitrary slight deviation from it. It was found that, in just intonation,
the envelopes of those signals are flat, but when there is a slight deviation from
it, the envelopes have a ripple which corresponds to beats or roughness. This
fact is closely related to the above-mentioned characteristic of the consonances,
which indicates that the ripple is a measure of the loss of consonance. The ripple
resembles a vibrato in amplitude and is characterized by its amplitude and its
“periodicity”, which may include one or more periods.

The simplest type of beat arises from the combination of two tones with
similar frequencies, and is well-known. However, in this study the beats corre-
spond to the combination of two or three tones whose frequencies are “almost
multiples” of a fundamental one, and obtaining analytical expressions of their
envelopes is not an easy task. Thus, in sections 2 and 3, approximate formu-
las for those envelopes are obtained, which represents the main contribution of
this paper. In section 4, these formulas are applied to just intonation and equal
temperament, although they are general formulas that can be applied to most
tuning systems. To keep this study under a reasonable extension, the inversions
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of the consonances were not analyzed. As well, the octave was not considered
here, because it is perfectly matched by practically all tuning systems.

2 Consonant Intervals

The combination of two pure tones whose frequencies are almost multiples of a
fundamental one, f0, gives rise to the signal

s(t) = cos kω0t+ cos(lω0t+ α)

α = at+ θ
(1)

ω0 = 2πf0 being the fundamental angular frequency and θ the initial angle or
phase. In just intonation, a = 0 and the overall period of s(t) is T0 = 2π/ω0 =
1/f0 divided by the greatest common divisor of (k, l), which will be 1 in all cases
here considered. In other tuning systems, the angular frequency a represents a
slight deviation from it, which gives rise to the period Ta = 2π/a. Throughout
this paper, it will be assumed that Ta ≫ T0. This condition assures that Ta ≫
T0/k, T0/l, as well.

Excluding the unison and the octave, there are 3 types of consonant intervals
(apart from their inversions): the perfect fifth, where the pair (k, l) = (2, 3), the
major third, where (k, l) = (4, 5), and the minor third, where (k, l) = (5, 6).

As explained in [11], the “force” (loudness) of a sound is related to the am-
plitude of the oscillations. In our case, except in just intonation, the amplitude
of s(t) varies with time, giving rise to an envelope formed by the maximum and
minimum values of s(t) in each period T0. For the perfect fifth, those maximum
and minimum values will be represented by functions E5

1(α) and E5
2(α), respec-

tively. The solid line in Fig. 1 named (2, 3) shows the upper envelope E5
1(α) of

s(t) as a function of α/π ∈ [0, 2]. The graph was obtained with 200 points for
α/π; and, for each of them, 2000 values of t were used to obtain the maximum
of s(t).

Due to the shape of this graph, the function | cosx | will be used to approxi-
mate E5

1(α), in the following form

F1(α) = A+B| cosα | (2)

To obtain the coefficients A, B, the function F1(α) is forced to have the same
maximum and minimum values as E5

1(α). The result is

A = 1.6342, B = 0.3658 (3)

The same procedure was followed to approximate the lower envelope E5
2(α)

of s(t), the final formulas being

F1(α) = 1.6342 + 0.3658| cosα |

F2(α) = −1.6342− 0.3658| sinα |
(4)
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Fig. 1. Upper envelopes of s(t) for consonant intervals (solid lines), along with their
approximating functions (dashed lines). Curve (2, 3) corresponds to the perfect fifth,
(4, 5) to the major third, and (5, 6) to the minor third.

Regarding the major and minor thirds, and in order to distinguish their
formulas from those of the perfect fifth, the following expression for s(t) will be
used:

s(t) = cos kω0t+ cos(mω0t+ β)

β = bt+ ϕ
(5)

Let us first consider the major third. The upper and lower envelopes will
be represented by functions E3

1(β) and E3
2(β), respectively. The solid line in

Fig. 1 named (4, 5) shows the upper envelope E3
1(β) of s(t) as a function of

β/π ∈ [0, 2], obtained as in the previous case. Following the above procedure,
the approximating function for the upper envelope now takes the form

G1(β) = A+B| cos 2β | (6)

The coefficients A, B are obtained by imposing the same conditions as in the
previous case, the result being

A = 1.8809, B = 0.1191 (7)

and the final formulas for approximating the upper and lower envelopes are,
respectively,

G1(β) = 1.8809 + 0.1191| cos 2β |

G2(β) = −1.8809− 0.1191| sin 2β |
(8)

With respect to the minor third, the upper and lower envelopes will be rep-
resented by functions Eb3

1 (β) and Eb3
2 (β), respectively. The solid line in Fig. 1
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named (5, 6) shows the upper envelope Eb3
1 (β) of s(t) as a function of β/π ∈ [0, 2],

obtained as in the previous cases. Following the same procedure, the approxi-
mating function for the upper envelope now takes the form

H1(β) = A+B| cos 2.5β | (9)

The coefficients A, B are obtained by imposing the same conditions as in the
previous cases, the result being

A = 1.9197, B = 0.0803 (10)

and the final formulas for approximating the upper and lower envelopes are,
respectively,

H1(β) = 1.9197 + 0.0803| cos 2.5β |

H2(β) = −1.9197− 0.0803| sin 2.5β |
(11)

In order to assess the accuracy of this approximation, Fig. 1 also includes the
graphs of F1(α), G1(β) and H1(β) (dashed lines), and good agreement between
every two paired curves is observed. In the three types of intervals, the envelope
has a ripple whose amplitude equals the coefficient B, and its period is defined
by α or β.

3 Consonant Chords

The combination of three pure tones whose frequencies are almost multiples of
a fundamental one, f0, gives rise to the signal

s(t) = cos kω0t+ cos(mω0t+ β) + cos(lω0t+ α)

α = at+ θ, β = bt+ ϕ
(12)

ω0 = 2πf0 being the fundamental angular frequency and θ, ϕ the initial angles
or phases. Letters k, l, m, as well as α, β, are assigned following the order of
harmonics, while the addends in (12) follow the order of notes in the chord. In just
intonation, a = b = 0 and the overall period of s(t) is T0 = 2π/ω0 = 1/f0 divided
by the greatest common divisor of (k,m, l), which will be 1 in all cases here
considered. In other tuning systems, the angular frequencies a and b represent
slight deviations from it, which give rise to the periods Ta = 2π/a and Tb = 2π/b,
respectively. Throughout this paper, it will be assumed that Ta, Tb ≫ T0. This
condition assures that Ta, Tb ≫ T0/k, T0/l, T0/m, as well.

There are 2 types of consonant chords: the major chord, where the triplet
(k,m, l) = (4, 5, 6), and the minor chord, where (k,m, l) = (10, 12, 15).

As in last section, except in just intonation, the amplitude of s(t) varies with
time, giving rise to an envelope formed by the maximum and minimum values of
s(t) in each period T0. For major chords, those maximum and minimum values
will be represented by functions EM

1 (α, β) and EM
2 (α, β), respectively. Solid lines

in Fig. 2 show the upper envelope EM
1 (α, β) of s(t) as a function of β/π ∈ [0, 2]

for different values of α/π ∈ [0, 0.5]. Each graph was obtained with 200 points for
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Fig. 2. Upper envelope EM

1 (α, β) of s(t) as a function of β/π for α/π ∈ [0, 0.5] (solid
lines), along with its approximating function P1(α, β) (dashed lines)
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β/π; and, for each of them, 2000 values of t were used to obtain the maximum
of s(t). The corresponding graphs for α/π ∈ [0.5, 1] are shown in Fig. 3.

As in the previous section, the function | cosx | will be used for approximating
EM

1 (α, β), which now takes the form

P11(α, β) = A+B| cos(β − 0.6α) |+ C| cosα |, 0 ≤ α ≤ π/2

P12(α, β) = A+B| cos(β − 0.6α+ 0.1π) |+ C| cosα |, π/2 ≤ α ≤ π
(13)

The phase shift between P11(α, β) and P12(α, β), which occurs at α = π/2,
can be expressed by the sawtooth function arctan(tanx), thus allowing to com-
bine the two formulas (13) in just one:

P1(α, β) = A+B| cos[β − 0.5α− 0.1 arctan(tanα)] |+ C| cosα | (14)

Note that Figs. 2 and 3 correspond to half a period in the variable α. For the
other half, however, the graphs of EM

1 (α, β) are the same, but moved β/π = 0.5
to the right. Therefore, the formula (14) is valid for all α, β.

To obtain the coefficients A, B, C, a first condition is A + B + C = 3, so
that the maximum value P1,max(α, β) = 3. Then, in order to achieve a good
approximation for most values of α, the function P1(α, β) is forced to have the
same maximum and minimum values as EM

1 (α, β) for α = 0.4π. The result is

A = 1.91, B = 0.75, C = 0.34 (15)

Since this is a different kind of approximation compared to the one used in
last section, in this case it was considered exact enough to use coefficients to
two decimal places. The same procedure was followed to approximate the lower
envelope EM

2 (α, β) of s(t), the final formulas being

P1(α, β) = 1.91 + 0.75| cos[β − 0.5α− 0.1 arctan(tanα)] |+ 0.34| cosα |

P2(α, β) = −1.91− 0.75| cos[β − 0.5α+ 0.1 arctan(cotα)] | − 0.34| sinα |
(16)

In order to assess the accuracy of this approximation, Figs. 2 and 3 also
include the graphs of P1(α, β) (dashed lines), and good agreement between every
two paired curves is observed. The greatest error occurs for α/π = 0.5 at the
minimum values, which is less than 5%. The value of arctan(tanα) for α/π = 0.5
in Fig. 2 was obtained from the left (0.5−) and in Fig. 3 from the right (0.5+).

Regarding the minor chords, the upper and lower envelopes will be repre-
sented by functions Em

1 (α, β) and Em
2 (α, β), respectively. Following the above

procedure, which again requires the use of the sawtooth function, the approxi-
mating function for the upper envelope now takes the form

Q1(α, β) = A+B| cos[2.5β − 1.4 arctan(tanα)] |+ C| cosα | (17)

which is valid for all α, β. The coefficients A, B, C are obtained by imposing the
same conditions as in the previous case, the result being

A = 2.53, B = 0.13, C = 0.34 (18)
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and the final formulas for approximating the upper and lower envelopes are,
respectively,

Q1(α, β) = 2.53 + 0.13| cos[2.5β − 1.4 arctan(tanα)] |+ 0.34| cosα |

Q2(α, β) = −2.53− 0.13| sin[2.5β + 1.4 arctan(cotα)] | − 0.34| sinα |
(19)

Now, the greatest error also occurs for α/π = 0.5 at the minimum values,
which in this case is less than 2.5%.

In both types of chords, the envelope has a ripple whose amplitude is the
sum of the coefficients B and C, and its periodicity is defined by α and β.

4 Results

Formulas obtained in sections 2 and 3 are valid for any kind of tuning or temper-
ament, with the only condition that Ta, Tb ≫ T0. In this section, results are given
for just intonation and equal temperament. In the first case, a = b = 0, while
in the second one, a = kω0(2

7/12 − 3/2) = −1.693 · 10−3kω0 (perfect fifth) and
b = kω0(2

4/12 − 5/4) = 9.921 · 10−3kω0 (major third) or b = kω0(2
3/12 − 6/5) =

−10.793 · 10−3kω0 (minor third). Then, the periods defined by a and b range
from Ta = 295T0 (perfect fifth) to Tb = 9.27T0 (minor chord). Therefore, in
all cases, the required condition is fulfilled. Additionally, we can obtain the
corresponding values for other tuning systems. For example, in Pythagorean
tuning, a = 0 and b = kω0(81/64 − 5/4) = 15.625 · 10−3kω0 (major third) or
b = kω0(32/27−6/5) = −14.815 ·10−3kω0 (minor third). And in meantone tem-
perament, a = kω0[(3/2)(81/80)

−1/4−3/2] = −4.651·10−3kω0 (perfect fifth) and
b = 0 (major third) or b = kω0[(32/27)(81/80)

3/4−6/5] = −3.721 ·10−3kω0 (mi-
nor third). Therefore, the only period being less than previous ones is obtained
for the Pythagorean tuning, minor chord, where Tb = 6.75T0, the approximation
being still acceptable.

All signals in the following examples last 4 s and their graphs were obtained
by sampling them at 44,100 Hz, as in the WAV audio format. In fact, the cor-
responding audio files were generated, too. For simplicity, all the examples will
start with note C4, whose frequency is 261.626 Hz and, therefore, kω0 = 1643.842
rad/s.

Regarding the consonant intervals, Figs. 4 and 5 show s(t) and its envelopes
F1(α) and F2(α) for the perfect fifth C4G4, in just intonation and equal tem-
perament, for θ = 0, obtained with (1) for (k, l) = (2, 3) and (4). Fig. 6 shows a
detail of s(t) and F1(α). In the cases of major and minor thirds, the correspond-
ing graphs are similar to Figs. 4 and 5, but with different ripples. Fig. 7 shows
a detail of s(t) and its upper envelope G1(α) for the major third C4E4 in equal
temperament, for ϕ = −0.7π, obtained with (5) for (k,m) = (4, 5) and (8), while
Fig. 8 shows a detail of s(t) and its lower envelope H2(α) for the minor third
C4Eb4 in equal temperament, for ϕ = 0.3π, obtained with (5) for (k,m) = (5, 6)
and (11).

With respect to consonant chords, Figs. 9–11 show s(t) and its envelopes
P1(α, β) and P2(α, β) for the major chord C4E4G4, in just intonation and equal
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temperament, for θ = 0.3π, ϕ = −0.7π, obtained with (12) for (k,m, l) = (4, 5, 6)
and (16). And Figs. 12–14 show s(t) and its envelopes Q1(α, β) and Q2(α, β)
for the minor chord C4Eb4G4, in just intonation and equal temperament, for
θ = −0.2π, ϕ = 0.6π, obtained with (12) for (k,m, l) = (10, 12, 15) and (19).
Since in equal temperament a ≪ b, the ripples in these graphs include a fast
variation with a short period, defined by b, superimposed to a slow variation
with a large period, defined by a.
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Fig. 4. Perfect fifth C4G4 in just intona-
tion for θ = 0
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Fig. 5. Perfect fifth C4G4 in equal tem-
perament for θ = 0
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Fig. 6. Perfect fifth C4G4 in equal temperament for θ = 0 (detail)
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Fig. 7. Major third C4E4 in equal tem-
perament for ϕ = −0.7π (detail)
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Fig. 8. Minor third C4Eb4 in equal tem-
perament for ϕ = 0.3π (detail)

5 Conclusions

Signals corresponding to consonant intervals and chords have been analyzed.
They were combinations of 2 or 3 pure tones whose frequencies are almost mul-
tiples of a fundamental one. The procedure for obtaining approximate formulas
for the envelopes of those signals has been developed. In just intonation, the
envelopes are flat, but when there is a slight deviation from it, they have a
ripple which corresponds to beats or roughness, thus indicating a loss of conso-
nance. Both the amplitudes and periodicities of the ripples have been obtained
for all types of consonances. It has been found that the amplitude of a ripple is
determined by the type of consonance itself, while its periodicity is defined by
the frequency deviations from just intonation. In the case of intervals (2 tones),
the ripple includes one period, while in the case of chords (3 tones) the ripple
includes two periods superimposed.

Conducting a survey to evaluate the human perception of ripples in consonant
intervals and chords is now under consideration, but preliminary results indicate
that ripples with small amplitudes (as in minor third intervals) or large periods
(as in perfect fifth intervals) are hardly perceived, while ripples with greater
amplitudes and lesser periods (as in major chords) are clearly perceived.
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0 0.5 1 1.5 2 2.5 3 3.5 4

Time, s

-3

-2

-1

0

1

2

3

A
m

p
lit

u
d

e

C4 Eb4 G4 Temp

Fig. 13. Minor chord C4Eb4G4 in equal
temperament for θ = −0.2π, ϕ = 0.6π
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Fig. 14. Minor chord C4Eb4G4 in equal temperament for θ = −0.2π, ϕ = 0.6π (detail)
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