

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

http://hdl.handle.net/10251/202320

Pons-Escat, L.; Petit Martí, SV.; Pons Terol, J.; Gómez Requena, ME.; Huang, C.;
Sahuquillo Borrás, J. (2023). Stratus: A Hardware/Software Infrastructure for Controlled
Cloud Research. IEEE Computer Society. 299-306.
https://doi.org/10.1109/PDP59025.2023.00053

https://ieeexplore.ieee.org/document/10137097

IEEE Computer Society

Stratus: A Hardware/Software Infrastructure for
Controlled Cloud Research

Lucia Pons∗, Salvador Petit∗, Julio Pons∗, Marı́a E. Gómez∗, Chaoyi Huang† and Julio Sahuquillo∗

∗ Universitat Politècnica de València, Spain
{lupones,spetit,jpons,megomez, jsahuqui}@disca.upv.es

† Huawei Technologies Co. Ltd., China
joehuang@huawei.com

Abstract—Cloud systems deploy a wide variety of shared
resources and host a large number of tenant applications. To
perform cloud research, a small experimental platform is com-
monly used, which hides the huge system complexity and provides
flexibility. Despite being simpler, this platform should include
the main cloud system components (hardware and software)
to provide representative results. A wide set of platforms have
spread in recent years; however, most of them only include
a major cloud component or lack the deployment of virtual
machines (VMs) to provide isolation.

This paper presents Stratus, an experimental platform that is
currently being used to carry out cloud research. To the best of
our knowledge, Stratus is the only platform that jointly provides
three main features: uses VMs to isolate tenant applications,
deploys the three types of cloud nodes (server, client, and storage),
and manages all main shared system resources (CPUs, LLC
space, memory, network, and disk bandwidth). Moreover, Stratus
implements a software manager to ease the research and aid the
design of QoS-aware policies. The manager integrates three main
functionalities: management and control of the execution of VMs
and running applications, monitoring of hardware performance
counters and system resource utilization, and partitioning of the
main shared system resources by using technologies available in
commercial processors.

Index Terms—cloud computing, shared resource management,
resource monitoring, resource partitioning, virtualization, exper-
imental framework

I. INTRODUCTION

Cloud platforms allocate a wide variety of tenant applica-
tions, so they need to provide high computing and storage
capabilities. To this end, and as the cloud evolves with time,
cloud platforms consist of a variety of computing nodes, each
composed of a set of resources. To improve performance
and reduce costs, most of these resources (e.g., cores, main
memory, and storage) are shared among tenant applications.
To provide isolation and privacy to cloud users, tenant appli-
cations are hosted by virtual machines (VMs) [1] in the public
cloud. These features make cloud platforms complex systems
to deploy, not only from a hardware point of view but also
from the software stack perspective, since it needs to support
the virtualization of the real hardware. Additionally, it should
provide functionalities to meet cloud system requirements such
as resource efficiency, SLA (Service of Level Agreement) [2]
compliance, and multi-tenancy.

To conduct research in cloud platforms, many companies
develop a small experimental platform to reduce complexity

and provide flexibility, as the experimental workload is under
control. For instance, it allows checking if SLA could be
violated when applying a resource-management policy and
drawing conclusions before implementing it in the real plat-
form. Developing such a controlled experimental platform,
however, is challenging since it should be able to provide
representative results. To this end, an experimental platform
should provide three main features: i) include the main type
of hardware nodes (server, client, and storage), ii) provide
isolation with VMs to tenant applications, and iii) provide the
capabilities to partition all the major shared resources (e.g.,
main memory, last level cache, network, ...). An important set
of platforms or experimental testbeds have spread in recent
years to carry out cloud research. However, most platforms
used in existing works fail in that they are composed of a
single machine [3]–[7], do not provide virtualization [3]–[5],
or do not consider the management of important components
such as the network [3]–[5] and the remote storage [4], [5],
[8]–[10].

This paper presents Stratus, an experimental platform that
fulfills the three aforementioned features and that is currently
being used to carry out cloud research [11], [12]. Regarding
the hardware infrastructure, Stratus includes the three main
types of nodes: a server node hosting the tenant applications,
a client node launching requests to the server, and a storage
node. In this way, network latencies are taken into account.
Regarding the software infrastructure, that is, the software
stack, we implemented the full software stack (e.g., QEMU,
Libvirt, ...) to provide isolation to tenant applications by using
VMs. Finally, when purchasing the experimental machines,
we checked they were equipped with recent technologies
that allow partitioning the last level cache (LLC), memory
bandwidth, and so on. In this way, Stratus is allowed to
partition the main shared resources.

An important component of Stratus is the manager that
integrates three main functionalities: management and control
of the execution of VMs and running applications, monitoring
of hardware performance counters and system resource utiliza-
tion, and partitioning the main shared system resources using
the technologies available in experimental machines.

Finally, Stratus supports the execution of both client-server
workloads (e.g., TailBench [13], CloudSuite [14]) as well as
best-effort or batch workloads (e.g., stressor microbenchmarks

[15], [16] or SPEC CPU workloads [17]).
The remainder of this work is organized as follows. Section

II compares other platforms used in previous works against
Stratus. Section III presents an overview of Stratus’ exper-
imental platform considering, both the deployed hardware
and system software. Section IV describes Stratus’ resource
and application manager and summarizes the technologies
used in Stratus in order to monitor and partition the main
shared system resources. In Section V some experimental
results are presented for illustrative purposes and finally, some
conclusions are drawn in Section VI.

II. EXISTING SOLUTIONS

As cloud infrastructures evolve with time, the number
and variety of tenant applications as well as the available
tools are continuously increasing. This situation has prompted
researchers to create new testbeds to conduct their research.

At a large scale, testbeds such as Grid’500 [19], Cloudlab
[20], and Chamaleon [21] have been built to allow researchers
to carry out experiments on distributed systems deployed in
multiple sites spread geographically. Under these testbeds,
users request the desired resources for a limited amount of time
using a reservation system, and then, configure such resources
for their use (e.g., deploy a custom software stack).

This paper focuses on built-in experimental testbeds for
small-scale research that users deploy in their research facili-
ties without relying on external systems. Table I summarizes,
for a representative subset of testbeds recently appeared, how
they fulfill the three aforementioned features: i) if they support
virtualization with VMs, ii) the type of nodes the platform
includes, and resources that can be monitored or managed.
For comparison purposes, the bottom row of the table includes
our experimental platform, Stratus. The table shows that, to the
best of our knowledge, there is no existing work that has made
use of a controlled experimental platform that includes all the
features included in Stratus.

Stratus deploys the three types of nodes, uses VMs to
allocate tenant applications, and provides monitoring and
partitioning capabilities of the main system resources. As it
can be seen in the table, only the testbed used to evaluate
Skynet [18] includes the three types of nodes that Stratus
deploys. Some approaches [3] run server and clients on the
same machine or use single-node experimental platforms [4],
[5], obviating the network interference.

Regarding virtualization, only three of the listed works
use VMs to contain the tenant applications. Two of these
approaches [3], [9] also use Linux KVM to deploy VMs. Some
approaches use containers, which allow better performance
at the expense of worse isolation. Software isolation tools
(e.g., cgroups) indeed enable resource isolation in containers.
However, containers are forced to use the same kernel as the
host; thus, isolation is not possible at the kernel level.

Concerning the management of the shared resources, only
PARTIES [8] takes into consideration all the shared resources
similar to Stratus, but notice that this platform lacks a storage
node and makes use of containers instead of VMs. From

the listed resources, the CPU (which embraces hardware
performance counters and CPU utilization monitoring, as well
as allocation of CPU cores) is the only resource considered in
all of the works. On the other hand, the network and disk are
the shared resources least considered.

Apart from the platforms analyzed in Table I, other research
works make use of experimental platforms that focus on a sin-
gle specific shared resource. Less Provisioning [22] and Twig
[7] focus on CPU resource allocation by dynamically adjusting
the CPU resources based on resource utilization and hardware
performance counters, respectively. ReTail [6] also focuses
on CPU resources but manages these resources by adjusting
the CPU frequency. QWin [23] was devised to guarantee tail
latency SLO of distributed storage servers by partitioning cores
of storage servers among tenants applications. Finally, LIBRA
[24] proposes a framework for dynamic memory bandwidth
management.

III. OVERVIEW OF STRATUS’ EXPERIMENTAL
FRAMEWORK

Figure 1 presents an overview of Stratus’ experimental
framework. The framework is made up of three main nodes:
server, client, and storage. The server node acts as the server
side in our client-server architecture. This node runs the
VMs hosting the server applications, which are managed by
Stratus’ resource and application manager software described
in Section IV. The server node is interconnected to the client
and storage nodes with two distinct 20 Gbps networks. The
client node is an auxiliary node that emulates client behavior
by executing client applications that perform requests to the
VMs in the server node. Finally, the storage node provides
remote storage resources for the VMs.

The design choices to set up Stratus’ experimental platform
are taken in two main axes: the deployed hardware and
the system software. This section presents and motivates the
choices we selected for each axis.

A. Deployed Hardware

Types and Number of Nodes. A key design decision is
selecting the node types and the amount of them in the exper-
imental framework. On the one hand, the huge complexity of
managing a high number of machines that are found in real
environments should be avoided. On the other hand, the results
provided by the framework must be representative of real
scenarios. For this purpose, the number of nodes is minimized
while keeping at least one node for each of the existing actors
in real cloud environments.

The first step when selecting the number of nodes is to
analyze which actors are typically present in cloud systems.
A cloud system includes two main types of nodes: comput-
ing nodes and storage nodes. Thus, a minimal experimental
framework requires at least one node of each of these types. In
addition, a separate node is needed to emulate client behavior.

Hardware Specifications. Regarding server and storage
nodes, they should be representative of typical nodes in cloud
infrastructures. This implies appropriate specifications for the

TABLE I: Summary of experimental infrastructure used in general resource-oriented works.

Paper Year VMs Type of Node Resource Monitoring/Partitioning
Server Client Storage CPU LLC Mem.BW Disk Net.

ServerMore [3] 2021 ✓ ✓ × ✓ ✓ ✓ ✓ × ×
Skynet [18] 2021 ×, containers ✓ ✓ ✓ ✓ × × ✓ ✓
Alita [4] 2020 ✓ ✓ × × ✓ ✓ ✓ × ×
CLITE [5] 2020 × ✓ × × ✓ ✓ ✓ ✓ ×
PARTIES [8] 2019 ×, containers ✓ ✓ × ✓ ✓ ✓ ✓ ✓
Scavenger [9] 2018 ✓ ✓ ✓ × ✓ ✓ × × ✓
Vertical Elasticity [10] 2018 ×, containers ✓ ✓ × ✓ ✓ × ✓ ✓
Stratus 2022 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Fig. 1: Overview of Stratus’ experimental framework.

TABLE II: Node hardware specifications (processor package
and main memory).

Node Processor Package Main MemoryProcessor #Cores (#Threads)
Main 2x Intel Xeon

Silver 4116
48 (96) 12 x DDR4-2666

16GB DIMMs
Client Intel E5-2658A 12 (24) 1 x 32GB DIMM

Storage Intel i5-9400F 6 (6) 2 x DDR4-2666
16GB DIMMs

processor package (like the number and type of cores) as well
as main memory features (e.g., number of channels, DIMMs,
and storage capacities). In the case of the storage node, the
persistent solid state (SSD) or hard disk (HDD) drives must
also be taken into account.

Table II shows the specifications (processor package and
main memory) for each of the nodes. The specifications of
the server and storage nodes can be considered representative
of the nodes implemented in real cloud systems. For example,
Google Cloud CPU platforms [25], Amazon EC2 C6 and C5

instances [26] and Huawei Elastic Cloud servers [27] use Intel
Xeon Scalable Processors including from tens to hundreds of
main memory capacity.

Regarding the storage media in the storage node (shown in
Figure 1), it is composed of two SSD devices. The first one
(SSD1) contains the storage node OS and system software
while the second one (SSD2) with 960GB is exclusively
devoted to acting as remote persistent storage for server
applications running in the server node VMs. This persistent
storage is served to the server node as a Ceph Object Storage
Device (OSD). Ceph [28] is an open-source distributed storage
platform that is commonly installed in cloud environments.

Finally, the client and storage nodes are interconnected to
the server node with two dedicated 20 Gbps networks. More
specifically, the server node has two 20 Gbps network cards
(dual port, 10 Gbps per port) that connect to the client and
storage nodes.

Note that, as in real cloud systems, the actual hardware spec-
ifications of Stratus’ experimental hardware can be replaced
and upgraded as technology, the market, and applications’
requirements evolve.

B. System Software

To build our experimental framework we analyzed the main
components of OpenStack [29]. OpenStack is an open-source
cloud computing software stack and it is a de facto standard for
the management of virtual services in both public and private
clouds. OpenStack is a complex software framework, with
multiple components and add-ons supporting different types
of hardware devices (e.g., network devices, storage devices,
etc.) from multiple vendors. To avoid dealing with such com-
plexity, we built a simpler framework that includes the main
software components that can be found in a typical OpenStack
deployment. The major simplification lies on the top software
levels, which aim to reduce management complexity but have
a negligible or null impact on performance monitoring and
partitioning, which is the main purpose of Stratus’ framework.

Figure 2 presents the main components of the system
software deployed in the server node and their interactions.
These components, which manage the VMs and the network
interconnections, are described below.

Fig. 2: Stratus’ system software deployed in the server node.

VM Infrastructure. The execution and management of
VMs involve a complex software stack, where three main
levels can be distinguished: the hypervisor, the virtual resource
manager, and the guest OS and applications. The hypervisor
refers to the OS installed in the host physical machine (PM).
A wide set of both open-source and proprietaries hypervisors
are being used currently in the industry. Examples of open-
source hypervisors are Linux with KVM [30] and Xen [31].
The former is one of the current industry trends, and it is
being used by Amazon [32] and Google [33]. The latter
is also supported by Amazon. The virtualization manager
refers to the software platform that manages the PM hardware
resources and distributes them among VMs. One example of a
virtualization manager is Libvirt [34]. Some virtualizers, like
QEMU [35], also support both KVM and Xen. Finally, the
guest OS and tenant applications run in the different VMs.
Guest OS and applications can be either proprietary or open
source (e.g., a Linux server distribution executing several
Internet services).

Network Software. To interconnect the VMs with the
physical network interface cards (NICs) of the server node,
a virtual switch is used. The virtual switch is set up with
Open vSwitch (OvS) [36]. Emulated NICs at the VMs (i.e.,
virtio [37] NICs) and each physical NIC (both ports) in the
server node are accessed from the virtual switch through the
Data Plane Development Kit (DPDK) [38]. DPDK enables the
direct transfer of packets between virtio NICs and physical
NICs, bypassing the host OS kernel network stack. This setup
boosts network performance compared to the default packet
forwarding mechanism implemented in the Linux kernel.

IV. STRATUS’ RESOURCE AND APPLICATION MANAGER

Providing an experimental framework that allows automat-
ing the setup and execution of experiments is crucial when

Workloads list
Template with experiment parameters

Configuration file

Template to
configuration file

Monitoring

Setup resource
monitoring

and partitioning

Configure resource shares Partitioning

Start VMs Load
snapshot

Set
#cores

VM

Snap. name
VM domain

Main loop

Read HW counters &
resource utilization

Apply QoS policy

Sleep during
quantum time

End execution

Stratus
manager

Launch
script

Setup performance events
with Perf, Intel and libvirt

CPUs

Execute
workload

Send SSH
cmd to VM Workload

args. Send SSH cmd
to Client node

Prepare environment
(e.g., CPU frequency)

1

2

3

4

Fig. 3: Workflow followed by Stratus’ resource and applica-
tion manager to launch experiments. Yellow boxes represent
actions that are optional.

carrying out research. The goal of Stratus’ resource and
application manager is to assist the researcher in this task,
providing a friendly interface. To this end, it implements three
main functions: i) to manage and control the execution of
one or more VMs, each one running an application, ii) to
monitor hardware performance counters and system resource
utilization, iii) to partition system resources and assign them
to VMs.

A. Execution of Experiments

To illustrate how Stratus’ resource and application manager
performs experiments, Figure 3 shows a block diagram of the
workflow when carrying out experiments using Stratus’s man-
ager. The diagram illustrates the main steps performed when
launching one or more VMs together with the applications to
be run on them (VM-application pairs). Next, each of the steps
is discussed in detail.

1) Define experiment workload and parameters: As a prior
step, the workload (i.e., VMs and applications to be run
on them) and experimental conditions must be defined. To
ease this task, Stratus makes use of MAKO templates [39],
which provides a simple and intuitive language to specify the
parameters of the experiments: VMs and applications to be
executed (domain name, workload, number of CPUs, etc.),
VCPUs core pinning, performance events to be monitored,

length of the quantum, etc. The template can also specify
if VMs are only allowed to use a partition of a shared
resource (LLC, memory bandwidth, network bandwidth, or
disk bandwidth).

2) Execute Launch script to start the manager: To start
running an experiment, the user executes the launch script.
First, the script prepares the execution environment. For
instance, fixing the processor frequency to avoid variability
among experiments. Additionally, the server clocks of both the
server and client machines are synchronized to ensure server-
and client-collected metrics are aligned, using the Network
Time Protocol (NTP) [40] with a known NTP time server
(europe.pool.ntp.org). When the environment is ready, the
configuration file is generated with the workloads to execute
and all the experiment parameters from the MAKO template.
Then, the manager starts to run.

3) Prepare VMs for execution: The first step the manager
performs is setting up and starting the VMs. To reduce the
start-up overhead, the manager makes use of the snapshots
feature of Libvirt. A snapshot is a copy of the state of a
VM, including the disk and main memory contents. This
feature preserves a VM’s actual state and data at a given time.
Therefore, this state can be reverted at any moment. For each
VM, we have taken a snapshot that has already performed
the OS boot process and is ready to receive the command
to launch the target benchmark. Once the VMs are started,
and the snapshots are loaded, the number of CPUs of each
VM (i.e., VCPUs) can be modified in case a multi-threaded
application is going to be executed and more than one CPU
is required.

4) Setup resource monitoring and partitioning: With
QEMU, each VCPU is associated with a processor ID (PID)
in the host OS. These PIDs are required to monitor hardware
performance counters with Perf individually for each thread
(i.e., VCPU) of the VM. Similarly, LLC and memory band-
width monitoring is performed on a PID basis. The remaining
resources, network, and disk bandwidth are monitored per
VM. The manager also allows partitioning of the main system
shared resources and assigns each VM a share of a given
resource. Therefore, if specified in the template, a resource
share is allocated to the VM.

5) Start running applications in the VMs: When the VMs
are operative and ready to start executing the applications, an
SSH command is sent to each VM to start the execution of
each workload. Stratus’ manager is adapted to support the ex-
ecution of client-server workloads (e.g., TailBench benchmark
suite) as well as best-effort or batch workloads (e.g., stressor
microbenchmarks or SPEC CPU benchmarks). In the case of a
client-server workload, an SSH command is sent to the client
node to start running the clients, which send requests to the
server (already running).

6) Perform actions in each quantum: Once the execution
starts, the manager executes the main loop (see Figure 3)
for the rest of the execution time. In each iteration, the
manager is suspended for a given quantum length (established
in the template). Then, data is collected from different sources

(e.g., hardware performance counters, Linux file system, Intel
library, or Libvirt) to monitor the main system resources
(CPU usage, LLC occupancy, memory, network, and disk
bandwidth). Additionally, the manager is adapted to allow im-
plementing and applying QoS policies. For instance, policies
that manage resource sharing among VMs [4], [8], [9], predict
interference among VMs [5], [6], [10], [12], [41] or schedule
VMs [42].

7) Execution end: The main loop ends when the manager
detects that all the VMs have finished running their applica-
tions, the moment at which it shuts down the running VMs.

All the data collected from the hardware performance
counters and system resources are stored in CSV files, ready to
be processed. Additionally, for characterization and debugging
purposes, statistics and data are also collected inside the VMs.
For instance, in Tailbench workloads, the clients report results
such as latency per query, queries per interval, tail latency, etc.

B. Monitoring & Partitioning Main Shared Resources

Tenant applications compete for shared resources in cloud
systems. This means that the performance of a given tenant
application (or VM) will depend on the co-running applica-
tions. In other words, on the share of the resource that is able
to use. As a consequence, it is worth studying to which extent
the performance of a given application is affected by varying
the amount of share allocated to the application.

To perform this kind of experiments, and help researchers
in their decision-making, we need to define the tools to
be implemented. In the last few years, server processors
have been provided with advanced technologies that allow
monitoring and partitioning of the major system resources.

Below, we explain how monitoring and partitioning of each
shared resource is implemented in Stratus without relying on
any external tool.

CPU Utilization. CPU utilization accounts for the percent-
age of time a CPU is active. It is a crucial metric in cloud
environments since CPU utilization has been proven to be low
(less than 20%) most of the time [43], [44], and thus, many
resource provisioning strategies [9], [22], [45] seek to improve
the CPU usage. To obtain the utilization of each CPU, we use
the data collected from the file /proc/stat, which reports
statistics about the kernel activity aggregated since the system
first booted. To pin the VMs’ VCPUs to logical cores of the
physical machine, Stratus uses Libvirt’s API [34].

Last Level Cache (LLC). Due to the high latency to
access to main memory upon LLC misses, the LLC is one
of the critical shared resources in current multi-core proces-
sors. Recently, some processor manufacturers like Intel have
developed technologies that allow monitoring and partitioning
of the LLC. In Intel processors, these technologies are known
as Cache Monitoring Technology (CMT) and Cache Alloca-
tion Technology (CAT) [46]. Partitioning is performed using
Classes of Service (CLOS), which can be defined either as
groups of applications (PIDs) or as groups of logical cores
to which a partition of the LLC is assigned. The LLC is

partitioned in a per way basis, that is, a cache way acts as
the granularity allocated to CLOS.

Memory Bandwidth. Memory bandwidth can considerably
impact the performance or responsiveness of applications. For
instance, in a server system with different VMs accessing
the main memory, the inter-VM interference can significantly
grow and make the most memory-sensitive VMs perform
below an acceptable level, compromising the QoS. Recent
Intel Xeon Scalable processors introduce Memory Bandwidth
Allocation (MBA) [47], which allows to distribute memory
bandwidth between the running applications. More precisely,
it allows controlling the memory bandwidth between the L2
and the L3 (i.e., LLC) caches. Similarly to CAT, MBA works
using CLOS. That is, MBA bandwidth limits apply only to
CLOS, to which the user can assign tasks (PIDs) or cores.
However, MBA works on a per-core basis. If the individual
memory bandwidths of two applications running on the same
core are limited with different values, the maximum limitation
is the one that will apply to that core.

Disk Bandwidth. Many workloads operate on big data
files or databases that cannot be completely loaded to main
memory. Consequently, these workloads need to constantly
rely on the I/O system to access the disk and load/store
the required data. Monitoring and partitioning this subsystem
is, therefore of high interest. I/O access to the disks can
be monitored using the virsh tool or Libvirt’s API. Both
mechanisms offer the same functionality and allow monitoring
the number of read, write, and flush operations, the number
of bytes read and written, as well as the total duration of the
read, write, and flush operations.

Network Bandwidth. VMs running on the same physical
machine share network resources whose bandwidth and la-
tency play an important role in the QoS of tenant applications.
Consequently, network resources should be monitored and
partitioned to minimize inter-VM interference. The number of
network packets or bytes that go through a network interface
can be monitored with Libvirt’s API.

V. CASE STUDIES: LATENCY-CRITICAL WORKLOADS

Latency-critical applications are increasingly common in
data centers. These applications typically support online inter-
active services (e.g., web search) and must respond to the input
requests within certain latency bounds to guarantee QoS (e.g.,
the 95th or 99th percentile latency) and provide a satisfactory
user experience. Cloud benchmark suites [13], [14], [48] have
been designed to include representative applications of to-
day’s latency-critical applications. Among these, the TailBench
benchmark suite [13] offers a set of representative latency-
critical applications that can be easily configured (e.g., number
of server threads, client requests) and report results from the
client-side (e.g., 95th tail latency).

This section presents, for illustrative purposes, some exper-
imental results obtained with the xapian application from
the TailBench suite to show the experimental capabilities of
Stratus. Xapian [49] is an open-source online search engine
that is widely used on many popular websites. The benchmark

100 150 200 250 300 350 400 450 500
Client QPS

101

102

103

104

95
th

 ta
il

la
te

nc
y

(m
s)

No_part MemBW_limit_250MB/s

(a) Latency

100 150 200 250 300 350 400 450 500
Client QPS

0

100

200

300

M
BL

 (M
B/

s)

No_part MemBW_limit_250MB/s

(b) Memory bandwidth

Fig. 4: Response latency and memory bandwidth of the
xapian server when limiting the memory bandwidth to
250MB/s

is configured so that it represents a leaf node in a search
engine populated with the English version of Wikipedia. We
have configured the server to launch xapian in a VM with 1
VCPU. The number of requests of the experiment has been set
to 10000, and an additional 1000 requests are used to warm up
the server. To explore the server performance under different
load levels, the clients have been set to generate a number of
queries per second (QPS) ranging from 100 to 500 in steps of
50.

A. Memory Bandwidth Allocation

This case study discusses the functionality of partitioning
the memory bandwidth implemented in Stratus using Intel
MBA technology (see Section IV-B). Unlike LLC partitioning,
memory bandwidth allocation has been less explored in exist-
ing solutions even though many popular applications in today’s
data centers (big data, graph processing) make intensive use
of this resource.

Figure 4 shows the results of xapian executed under no
restrictions (No_part, yellow bars) and the results when
the memory bandwidth (blue bars) is limited to 250MB/s
for different values of client QPS. Figure 4a shows the 95th

percentile latency and Figure 4b shows the consumed mem-
ory bandwidth (the dashed line shows the imposed memory
bandwidth limit).

As it can be observed in Figure 4b, xapian shows a
low memory bandwidth consumption (at most 350 MB/s)
compared to the maximum peak bandwidth achievable per core
(around 9-10 GB/S). Despite this, results show that reducing

100 150 200 250 300 350 400 450 500
Client QPS

101

102

103

104

95
th

 ta
il

la
te

nc
y

(m
s)

No_part DiskBW_limit_6MB/s

(a) Latency

100 150 200 250 300 350 400 450 500
Client QPS

0.0
2.5
5.0
7.5

10.0
12.5
15.0

Di
sk

 B
W

 (M
B/

s)

No_part DiskBW_limit_6MB/s

(b) Disk bandwidth

Fig. 5: Response latency and disk I/O bandwidth of the
xapian server when limiting the disk overall bandwidth of
the VM to 6MB/s.

the available memory bandwidth impacts the response latency.
An interesting observation is that tail latency grows most in
experiments with a high QPS value which presents the lowest
bandwidth consumption. However, notice that results reported
in this graph represent average values, and in experiments with
high QPS, more peak values are observed in the memory band-
width, which is affected by the imposed limit and significantly
hurts the response latency.

B. Disk I/O Throttling

Interference in disk bandwidth is one of the least studied
system resources in literature. However, the trend of increasing
the working set of applications to a point where it does not
fit in the main memory will eventually force applications to
make use of disk storage.

This case study evaluates the 95th tail latency and the total
disk bandwidth (read and write) achieved by xapian while
varying the client QPS and setting a bandwidth constraint.
Figure 5 presents the 95th tail latency and the disk bandwidth
achieved by xapian varying the QPS from 100 to 500. The
figure presents both metrics when the VM runs without any
resource constraint (No_part, yellow bars) and when the
total disk bandwidth is limited to 6MB/s (orange bars).

Results show that the disk bandwidth constraint hurts sig-
nificantly the performance of xapian, increasing the tail
latency up to three orders of magnitude. This means that
special consideration should be given to contention at the disk
bandwidth, as delaying read and/or write operations to disk
has proved to have a severe impact on the response latency.

VI. CONCLUSIONS

Research in cloud systems is becoming increasingly popular.
However, before deploying solutions to public cloud systems,
research, and tests should be performed in controlled exper-
imental platforms. Existing solutions make use of testbeds
to evaluate their work, but these platforms do not jointly
deploy the main features of real cloud systems (types of nodes,
virtualization, resource management) and thus, do not provide
representative results.

This paper presents Stratus, an experimental platform used
to carry out cloud research and controlled experiments. Un-
like experimental setups used in existing work, Stratus com-
plies with all the features of cloud environments in terms
of hardware and software deployment. Additionally, Stratus
implements an application and resource manager that assists
the researcher in the execution of experiments and resource
management, which is key to designing QoS policies to
mitigate inter-VM interference.

VII. ACKNOWLEDGMENTS

This work has been partially supported by Huawei Cloud,
by the Spanish Ministerio de Universidades under the grant
FPU18/01948, and by the Spanish Ministerio de Ciencia
e Innovación and European ERDF under grants PID2021-
123627OB-C51 and TED2021-130233B-C32, and by Gener-
alitat Valenciana under Grant AICO/2021/266.

REFERENCES

[1] J. Sahoo, S. Mohapatra, and R. Lath, “Virtualization: A survey on
concepts, taxonomy and associated security issues,” in 2010 Second
International Conference on Computer and Network Technology, 2010,
pp. 222–226.

[2] D. Serrano, S. Bouchenak, Y. Kouki, F. A. de Oliveira Jr., T. Ledoux,
J. Lejeune, J. Sopena, L. Arantes, and P. Sens, “Sla guarantees for cloud
services,” Future Generation Computer Systems, vol. 54, pp. 233–246,
2016.

[3] A. Suresh and A. Gandhi, “Servermore: Opportunistic execution of
serverless functions in the cloud,” in Proceedings of the ACM Symposium
on Cloud Computing, ser. SoCC ’21, 2021, p. 570–584.

[4] Q. Chen, S. Xue, S. Zhao, S. Chen, Y. Wu, Y. Xu, Z. Song, T. Ma,
Y. Yang, and M. Guo, “Alita: Comprehensive performance isolation
through bias resource management for public clouds,” in Proceedings
of SC20: International Conference for High Performance Computing,
Networking, Storage and Analysis, 2020, pp. 1–13.

[5] T. Patel and D. Tiwari, “Clite: Efficient and qos-aware co-location of
multiple latency-critical jobs for warehouse scale computers,” in Pro-
ceedings of 2020 IEEE International Symposium on High Performance
Computer Architecture (HPCA), 2020, pp. 193–206.

[6] S. Chen, A. Jin, C. Delimitrou, and J. F. Martı́nez, “Retail: Opting
for learning simplicity to enable qos-aware power management in the
cloud,” in 2022 IEEE International Symposium on High-Performance
Computer Architecture (HPCA), 2022, pp. 155–168.

[7] R. Nishtala, V. Petrucci, P. Carpenter, and M. Sjalander, “Twig: Multi-
agent task management for colocated latency-critical cloud services,” in
Proceedings of 2020 IEEE International Symposium on High Perfor-
mance Computer Architecture (HPCA), 2020, pp. 167–179.

[8] S. Chen, C. Delimitrou, and J. F. Martı́nez, “PARTIES: QoS-Aware
Resource Partitioning for Multiple Interactive Services,” in Proceedings
of the 24th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), Apr. 2019,
pp. 107–120.

[9] S. A. Javadi, A. Suresh, M. Wajahat, and A. Gandhi, “Scavenger: A
black-box batch workload resource manager for improving utilization in
cloud environments,” in Proceedings of the ACM Symposium on Cloud
Computing (SoCC), 2019, p. 272–285.

[10] S. Shekhar, H. Abdel-Aziz, A. Bhattacharjee, A. Gokhale, and X. Kout-
soukos, “Performance interference-aware vertical elasticity for cloud-
hosted latency-sensitive applications,” in Proceedings of the IEEE 11th
International Conference on Cloud Computing (CLOUD), Jul. 2018, pp.
82–89.

[11] L. Pons, J. Feliu, J. Puche, C. Huang, S. Petit, J. Pons, M. E.
Gómez, and J. Sahuquillo, “Effect of hyper-threading in latency-critical
multithreaded cloud applications and utilization analysis of the major
system resources,” Future Generation Computer Systems, vol. 131, pp.
194–208, 2022.

[12] L. Pons, J. Feliu, J. Sahuquillo, M. E. Gómez, S. Petit, J. Pons, and
C. Huang, “Cloud white: Detecting and estimating qos degradation
of latency-critical workloads in the public cloud,” Future Generation
Computer Systems, vol. 138, pp. 13–25, 2023.

[13] H. Kasture and D. Sanchez, “Tailbench: a benchmark suite and eval-
uation methodology for latency-critical applications,” in 2016 IEEE
International Symposium on Workload Characterization (IISWC), 2016,
pp. 1–10.

[14] M. Ferdman, A. Adileh, O. Kocberber, S. Volos, M. Alisafaee, D. Jevd-
jic, C. Kaynak, A. D. Popescu, A. Ailamaki, and B. Falsafi, “Clear-
ing the clouds: A study of emerging scale-out workloads on modern
hardware,” Proceedings of the Seventeenth International Conference
on Architectural Support for Programming Languages and Operating
Systems, 2012.

[15] Canonical Ltd, “Ubuntu manpage: stress-ng,” Available at https://
manpages.ubuntu.com/manpages/artful/man1/stress-ng.1.html, 2020, ac-
cessed: 2022-11-20.

[16] ESnet, NLANR, DAST, “iperf tool for network bandwidth measure-
ments,” Available at https://iperf.fr/, 2020, accessed: 2022-11-20.

[17] “Why would a cloud computing company use the spec cpu2017 bench-
mark suite?” Available at https://www.spec.org/cpu2017/publications/
DO-case-study.html, 2017, accessed: 2019-08-02.

[18] Y. Sfakianakis, M. Marazakis, and A. Bilas, “Skynet: Performance-
driven resource management for dynamic workloads,” in 2021 IEEE
14th International Conference on Cloud Computing (CLOUD), 2021,
pp. 527–539.

[19] S. Badia, A. Carpen-Amarie, A. Lèbre, and L. Nussbaum, “Enabling
large-scale testing of iaas cloud platforms on the grid’5000 testbed,” in
Proceedings of the 2013 International Workshop on Testing the Cloud,
2013, pp. 7–12.

[20] D. Duplyakin, R. Ricci, A. Maricq, G. Wong, J. Duerig, E. Eide,
L. Stoller, M. Hibler, D. Johnson, K. Webb et al., “The design and
operation of cloudlab.” in USENIX Annual Technical Conference, 2019,
pp. 1–14.

[21] K. Keahey, J. Anderson, Z. Zhen, P. Riteau, P. Ruth, D. Stanzione,
M. Cevik, J. Colleran, H. S. Gunawi, C. Hammock et al., “Lessons
learned from the chameleon testbed,” in Proceedings of the 2020
USENIX Conference on Usenix Annual Technical Conference, 2020, pp.
219–233.

[22] B. Cai, K. Li, L. Zhao, and R. Zhang, “Less provisioning: A hybrid
resource scaling engine for long-running services with tail latency
guarantees,” IEEE Transactions on Cloud Computing, vol. 10, no. 3,
pp. 1941–1957, 2022.

[23] L. Ma, Z. Liu, J. Xiong, and D. Jiang, “Qwin: Core allocation for
enforcing differentiated tail latency slos at shared storage backend,” in
2022 IEEE 42nd International Conference on Distributed Computing
Systems (ICDCS), 2022, pp. 1098–1109.

[24] Y. Zhang, J. Chen, X. Jiang, Q. Liu, I. M. Steiner, A. J. Herdrich,
K. Shu, R. Das, L. Cui, and L. Jiang, “Libra: Clearing the cloud through
dynamic memory bandwidth management,” in 2021 IEEE International
Symposium on High-Performance Computer Architecture (HPCA), 2021,
pp. 815–826.

[25] “Google cloud compute engine - cpu platforms [online],” Available at
https://cloud.google.com/compute/docs/cpu-platforms, 2022, accessed:
2022-11-14.

[26] “Amazon’s ec2 [online],” Available at https://aws.amazon.com/ec2/
instance-types/?nc1=h ls, 2022, accessed: 2022-11-14.

[27] “Huawei elastic cloud server (ecs) [online],” Available at https://www.
huaweicloud.com/intl/en-us/product/ecs.html, 2022, accessed: 2022-11-
14.

[28] S. Weil, S. Brandt, E. Miller, D. Long, and C. Maltzahn, “Ceph: A
scalable, high-performance distributed file system.” in Proceedings of
the 7th symposium on Operating systems design and implementation
(OSDI), Nov. 2006, pp. 307–320.

[29] O. Sefraoui, M. Aissaoui, and M. Eleuldj, “Openstack: Toward an open-
source solution for cloud computing,” International Journal of Computer
Applications, vol. 55, no. 3, pp. 38–42, Mar. 2012.

[30] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori, “kvm: the
linux virtual machine monitor,” in Proceedings of the Linux symposium,
vol. 1, no. 8. Dttawa, Dntorio, Canada, 2007, pp. 225–230.

[31] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neuge-
bauer, I. Pratt, and A. Warfield, “Xen and the art of virtualization,” ACM
SIGOPS operating systems review, vol. 37, no. 5, pp. 164–177, 2003.

[32] “Amazon web services [online],” Available at https://aws.amazon.com/
ec2/faqs/?nc1=h ls, 2022, accessed: 2022-11-28.

[33] “Google compute engine faq [online],” Available at https://cloud.google.
com/compute/docs/faq, 2022, accessed: 2022-11-28.

[34] “ibvirt: The virtualization api [online],” Available at https://libvirt.org,
2022, accessed: 2022-11-28.

[35] “Qemu [online],” Available at https://www.qemu.org, 2022, accessed:
2022-11-28.

[36] B. Pfaff, J. Pettit, T. Koponen, E. Jackson, A. Zhou, J. Rajahalme,
J. Gross, A. Wang, J. Stringer, P. Shelar, K. Amidon, and M. Casado,
“The design and implementation of open vSwitch,” in 12th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
15). Oakland, CA: USENIX Association, May 2015, pp. 117–
130. [Online]. Available: https://www.usenix.org/conference/nsdi15/
technical-sessions/presentation/pfaff

[37] R. Russell, “virtio: towards a de-facto standard for virtual i/o devices,”
ACM SIGOPS Operating Systems Review, vol. 42, no. 5, pp. 95–103,
2008.

[38] “Dpdk [online],” Available at https://www.dpdk.org/, 2022, accessed:
2022-11-28.

[39] Michael Bayer et al., “Mako Templates,” Available at http://www.
makotemplates.org/, 2019.

[40] D. L. Mills, “Internet time synchronization: the network time protocol,”
IEEE Transactions on communications, vol. 39, no. 10, pp. 1482–1493,
1991.

[41] R. Jia, Y. Yang, J. Grundy, J. Keung, and L. Hao, “A systematic review of
scheduling approaches on multi-tenancy cloud platforms,” Information
and Software Technology, vol. 132, p. 106478, 2021.

[42] Z. Wang, C. Xu, K. Agrawal, and J. Li, “Adaptive scheduling of multi-
programmed dynamic-multithreading applications,” Journal of Parallel
and Distributed Computing, vol. 162, pp. 76–88, 2022.

[43] C. Lu, K. Ye, G. Xu, C.-Z. Xu, and T. Bai, “Imbalance in the cloud: An
analysis on alibaba cluster trace,” in 2017 IEEE International Conference
on Big Data, 2017, pp. 2884–2892.

[44] Q. Liu and Z. Yu, “The elasticity and plasticity in semi-containerized
co-locating cloud workload: A view from alibaba trace,” in Proceedings
of the ACM Symposium on Cloud Computing (SoCC), 2018, p. 347–360.

[45] E. Cortez, A. Bonde, A. Muzio, M. Russinovich, M. Fontoura, and
R. Bianchini, “Resource central: Understanding and predicting work-
loads for improved resource management in large cloud platforms,” in
Proceedings of the 26th Symposium on Operating Systems Principles
(SOSP), 2017, p. 153–167.

[46] Intel, “Improving real-time performance by utilizing cache allocation
technology,” Intel Corporation, April, 2015.

[47] Andrew H., Abbasi, Khawar M., Marcel C., “Introduction to mem-
ory bandwidth allocation,” Available at https://software.intel.com/en-us/
articles/introduction-to-memory-bandwidth-allocation, 3 2019.

[48] L. Wang, J. Zhan, C. Luo, Y. Zhu, Q. Yang, Y. He, W. Gao, Z. Jia, Y. Shi,
S. Zhang, C. Zheng, G. Lu, K. Zhan, X. Li, and B. Qiu, “Bigdatabench:
A big data benchmark suite from internet services,” in 2014 IEEE 20th
International Symposium on High Performance Computer Architecture
(HPCA), 2014, pp. 488–499.

[49] “Xapian project [online],” Available at https://github.com/xapian/xapian,
2022, accessed: 2022-11-30.

