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The nematode Caenorhabditis elegans (C. elegans) is of significant interest for research into neurodegenerative 
diseases, aging, and drug screening. However, conducting these assays manually is a tedious and time-consuming 
process. This paper proposes a methodology to achieve a generalist C. elegans detection algorithm, as previous 
work only focused on dataset-specific detection, tailored exclusively to the characteristics and appearance of 
the images in a given dataset. The main aim of our study is to achieve a solution that allows for robust 
detection, regardless of the image-capture system used, with the potential to serve as a basis for the automation 
of numerous assays. These potential applications include worm counting, worm tracking, motion detection and 
motion characterization. To train this model, a dataset consisting of a wide variety of appearances adopted by 
C. elegans has been curated and dataset augmentation methods have been proposed and evaluated, including 
synthetic image generation. The results show that the model achieves an average precision of 89.5% for a 
wide variety of C. elegans appearances that were not used during training, thereby validating its generalization 
capabilities.
1. Introduction

The nematode Caenorhabditis elegans (C. elegans) is an important 
model for assays in the field of biomedical research [1]. Its small size, 
approximately 1 mm, and short life expectancy, between 2 and 3 weeks, 
are factors that allow for a large number of worms to be easily han-

dled. In addition, the C. elegans genome has been fully sequenced and 
the transparency of its body greatly facilitates observation of both its 
anatomy and development under the microscope. All these characteris-

tics make it an ideal model for the study of aging and neurodegenerative 
diseases, as well as useful for the screening of new drugs.

Despite being easy to handle and observe in large numbers, C. ele-
gans experimentation entails a high time cost for laboratory technicians 
performing the tasks necessary to carry out these studies, such as the 
individual observation of each worm and live-dead classification, for ex-

ample. This is why it is of great interest to automate these assays, thus 
freeing the technician from tedious and repetitive tasks, and speeding 
up the duration of these experiments.

In recent years, various solutions have been proposed to automate 
assays, such as lifespan [2] [3] or healthspan [4] [5] [6], which are 
the most widespread assays performed in C. elegans to study aging. On 
developing these solutions, those based on deep learning, using neural 
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networks, currently stand out due to the variety of problems for which 
they are able to offer effective and robust results. In many cases, when 
these solutions are implemented, the first step entails the detection of 
the C. elegans individuals themselves.

On the one hand, in object detection-related problems, the cur-

rently predominant architectures [7], such as single stage (e.g., YOLO) 
and two-stage (e.g., Faster R-CNN) convolutional neural networks or 
transformer-based architectures (e.g., Swin Transformer), offer very 
good results for this task, as the state of the art has evolved greatly in 
recent times. On the other hand, observing the implementation of these 
architectures for C. elegans detection, one can see how different solu-

tions have been explored with the Faster R-CNN [8], Mask R-CNN [9]

or YOLO [10] models. In all these cases, very good results are achieved, 
with Average Precision equal to or higher than 0.9, but it is important 
to highlight how, in all these cases, a specific dataset has been used for 
training in each case, adjusting the training of these models to a very 
specific appearance of C. elegans.

Generally, when training neural networks for these tasks, pre-

trained or randomly initialized models are used as starting points. These 
pre-trained models use datasets with a large number and variety of im-

ages; however, these have nothing to do with the images of nematodes.
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Fig. 1. Images used in (a) training, validation and (b) test.
We propose a different approach to the ones listed above, work-

ing with a model that reaches a good level of Domain Generalization, 
both for zero-shot inference and for fine-tuning purposes. Although 
many methods have been proposed for this [11][12], for example self-

supervised learning [13] [14] [15] or meta-learning [16] [17] [18], 
here we mainly focus on dataset augmentation methods.

In this paper, we seek to train a convolutional neural network capa-

ble of performing generalist C. elegans detection, regardless of the image 
capture system used and, therefore, of their appearance. In doing so, we 
aim to achieve a model that has learned a broad representation of the C. 
elegans domain, being able to offer more robust detection. Such a model 
could be trained with a smaller number of images to reach the desired 
results, and could therefore be used as a basis for the development of 
numerous applications for the automation of C. elegans assays.

2. Materials and methods

2.1. Dataset

Since the goal sought is to achieve generalist detection, regardless of 
the particular appearance of the worms in the image, and as there is no 
public dataset specifically designed for this, having not been addressed 
previously, the first step was to create a dataset with a wide variety of 
different C. elegans appearances.

This dataset consists of a collection of public datasets [19] (BBBC011

and BBBC010) [8] [9] [20] and manually labeled images using CVAT. 
The manually labeled images have been extracted from public videos 
available on the Internet. These videos have been divided into frames 
and, in the event of having a good number of frames per second, non-

consecutive images have been selected to avoid identical images.

The dataset has been split into 10,612 images for training, 3,773 
images for validation (which share the same appearances) and 2,828 
images for testing, which consists of 14 worm appearances that are 
never used in training, in order to evaluate the generalization capac-

ity of the model on new appearances. Altogether, the dataset contains 
17,213 images, with 27 appearances from different image capture sys-

tems, as can be seen in Fig. 1.

2.2. Detection method

The YOLO architecture [21] was chosen to perform the C. elegans

detection. The YOLOv5s model was used, being one of the fastest 
of this version. The implementation of (https://github.com/ultralyt-

ics/yolov5) has been used.

The fast inference time of this particular model presents a clear 
advantage over other CNN architectures, allowing its use in real-time 
applications, without presenting a loss of accuracy in exchange for this 
feature [22]. This allows the model to be used in a wide variety of ap-
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plications, both similar to those already explored and validated such 
as [10] or [23] as well as the integration of this model in hardware 
systems like [24], allowing real-time tracking of C. elegans.

When training this model, we always start from its default weights, 
pre-trained with the COCO dataset [25], with a batch size=16 for 150 
epochs using the SGD optimizer, and a learning rate=0.01 and momen-

tum=0.973.

When training with data augmentation we use, as proposed in the 
implementation of this model, HSV augmentation (H=0.015, S=0.7, 
V=0.4), image translation=0.1, image scale=0.5, horizontal flip=0.5 
and mosaic probability=1.

This model resizes all images to a fixed size multiple of 32. A size 
of 1728x1728 pixels has been chosen as it serves as a compromise be-

tween the different resolutions, allowing sufficient information to be 
maintained in macro images, where C. elegans have a reduced number 
of pixels, and allowing for faster training compared to larger dimen-

sions. The hardware used to train the model includes a Ryzen 9 3900X 
processor with 12 cores running at 3.8 GHz, 128 GB of DDR4 3200 MHz 
memory, and a Nvidia RTX 3090 GPU with 24 GB of DDR4 memory.

2.3. Dataset augmentation methods

Given that we seek to achieve the maximum possible generalization 
in the detection of C. elegans, the ideal situation for training would 
be to have as many different images as possible with various worm 
appearances and sources.

There are two main problems, on the one hand, the public avail-

ability of C. elegans images, and on the other hand, the cost of labeling 
these images.

First of all, the number of public datasets is not very high, and in 
some cases, these have not been labeled for either object detection or 
segmentation tasks. For this reason, we have had to resort to the search 
for public videos, which have the disadvantage that the frames of the 
same video offer less variability than the different images in a dataset.

Secondly, the labeling of these images, which is necessary in most 
cases, can be time-consuming, a fact that also limits the number of im-

ages to be added to the dataset.

To try to remedy these problems, a series of methods will be used to 
augment the dataset, providing more images, and improving the overall 
variability.

2.3.1. Style transfer

This method aims to create images, with different appearances from 
those already included in the initial dataset, by transferring image styles 
that will serve as a source of new appearances to the training images. 
For this, the AdaIN style transfer model proposed in [26] will be used.

As proposed in [27], this method may allow a convolutional neural 
network to be less dependent on texture and surface appearance and to 
focus more on shapes and contours, favoring in this case a more robust 

detection of the C. elegans against variations in their semblance. Also, 

https://bbbc.broadinstitute.org/BBBC011
https://bbbc.broadinstitute.org/BBBC010
https://www.cvat.ai/
https://github.com/ultralytics/yolov5
https://github.com/ultralytics/yolov5
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Fig. 2. Dataset augmentation methods proposed: (a) Style Transfer, (b) Pix2Pix and (c) Supervised self-labeling.
as can be seen in [28], it has been shown to improve generalization of 
segmentation in MR images.

We used (https://github.com/bethgelab/stylize-datasets) as an im-

plementation of the AdaIN model in PyTorch to perform the style trans-

fer. Five different styles have been applied to each of the training images 
(Fig. 2), producing more than 53,000 new images.

No significant differences were observed in the training results be-

tween using an alpha=1 or an alpha=0.5, a parameter that allows the 
control, between 0 and 1, of the degree to which the style transfer is 
applied. This test was performed to check if, in this way, preserving 
more information in the images where the C. elegans have less contrast 
with the background or where they are very small, better results were 
obtained.

2.3.2. Pix2Pix

This method seeks to create synthetic images, but, unlike style trans-

fer, being able to provide realistic C. elegans appearances, as well as 
different distributions of these in the image, since an image to which 
style transfer has been applied has the same number of C. elegans, with 
the same pose and in the same place as the original image.

For this purpose, the Pix2Pix model initially proposed in [29] has 
been used. This model is a conditional GAN model capable of image-to-

image translation between two different domains. In order to generate 
synthetic images, the problem has been reduced to the generation of 
individual C. elegans from binary masks, thus simplifying the problem 
that the model must face. In this way, the mask provides the shape and 
pose of the C. elegans and the Pix2Pix network is trained to provide 
4916

different appearances extracted from real images. Between 10 and 15 
mask-image pairs were used to train each appearance, although in cases 
where very few images of an appearance were available, good results 
were obtained with as few as five mask-image pairs. The model has 
been trained to generate C. elegans for 14 different appearances, as can 
be seen in Fig. 2.

These individual images are then cropped using the masks that 
served as an input and randomly assembled into different backgrounds, 
from which the C. elegans have been removed, to generate the final im-

ages, as shown in Fig. 3. While being assembled, data augmentation is 
applied, this is done both to prevent a possible mode collapse in some 
aspects such as brightness or contrast of the generated C. elegans, as well 
as to increase the variation in the appearance of the images, thus also 
aiming to favor the generalization capacity of the model. During the 
process of assembling these images, the labeling corresponding to each 
one is produced simultaneously, since the placement of each of the C. 
elegans in the background is known. It should be noted that, in this case, 
only the labeling for object detection, with the bounding boxes corre-

sponding to each image, is generated; however, since we are working 
with the masks of each of the C. elegans, it would be very simple to 
also generate the labeling for segmentation, assembling the masks in 
the same position as the C. elegans.

To validate this synthetic image generation method, the Pix2Pix 
model was trained with the appearance of an already labeled dataset 
(BBBC011). With the generated C. elegans and an empty background of 
this dataset, a dataset with only synthetic images (Fig. 4) was gener-

ated.

A YOLOv5s network has been trained on synthetic images only 

and validated on real images. The model reaches a Precision=0.924, 

https://github.com/bethgelab/stylize-datasets
https://bbbc.broadinstitute.org/BBBC011
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Fig. 3. Example of synthetic images generated with the Pix2Pix method.

Fig. 4. Example of background, C. elegans and synthetic images.
Recall=0.867 and AP@0.5=0.931, thus validating this method of syn-

thetic image generation, capable of matching a given real appearance.

2.3.3. Supervised self-labeling

Unlike the previous methods, this method seeks to provide real im-

ages, with appearances that have not been seen before, but using a 
model formerly trained with the previous methods and which, there-

fore, already has a good generalization capacity and ability to signifi-

cantly reduce the time and work required to label new images.

The trained model is used to perform inference on unlabeled images, 
which are then manually reviewed to incorporate the correct ones in 
training.

The procedure (Fig. 2) is as follows:

1. All images are separated according to the number of C. elegans in 
each image.

2. Inference is performed using the –max-detect parameter to avoid 
detecting a higher number of C. elegans than there actually are.

3. Reading the .txt file of the labels, a Python script is used to delete 
all the images in which no C. elegans have been detected, or the 
number detected is lower than the real number.

4. Only the images in which the exact number of C. elegans has been 
detected remain. They are manually reviewed and only the cor-

rectly labeled images are selected.

5. The model is trained incorporating these images and the process is 
repeated.

Training with the correctly labeled images allows images that were 
previously missed to be correctly detected in subsequent iterations, as 
can be seen in Fig. 5.

A total of 6,000 images with 26 completely new appearances were 
labeled, using this method through three iterations, involving roughly 
six hours of work. In these 6,000 images there are a total of 10,468 C. 
elegans, assuming that manual labeling can be done at an average speed 
of 5 seconds per C. elegans, it would have taken 14.5 hours to label all 
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the images manually.
Fig. 5. C. elegans missed in the first iteration but correctly detected in the fol-

lowing.

2.4. Evaluation methods

2.4.1. Training evaluation

To compare the effectiveness of the different augmentation meth-

ods, the model is always evaluated against the test dataset having only 
appearances that the model has never been shown during training, in 
order to evaluate its generalization capability.

Precision, Recall and AP@0.5 will be used as evaluation metrics.

• Precision. It represents the ratio of detections that are true posi-

tives to the total number of detections.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(1)

• Recall. It represents the ratio of model detections that are true 
positives of the total number of C. elegans in the image.

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(2)

• AP. It represents the Average Precision, being the area under the 
Precision-Recall curve. AP@0.5 will be used, representing the use 
of an IoU threshold of 0.5 to determine whether a detection is a 
true positive or false positive.

𝐴𝑃 =

1

𝑃 (𝑅)𝑑𝑟 (3)
∫
0
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Fig. 6. Strains generated using the Pix2Pix model, simulating dpy (left) and lon 
(right) strains.

To properly evaluate the impact of each method, the experiments 
will be performed incrementally, with the only difference between one 
training and the next being the incorporation of only one of the dataset 
augmentation methods.

2.4.2. Performance evaluation

Two experiments were conducted to evaluate the practical perfor-

mance of the model.

Fine-tuning analysis On the one hand, it may be interesting to use this 
model as a pre-trained starting point to perform fine-tuning on a par-

ticular image capture system to reduce the number of labeled images 
required.

To check its usefulness in this respect, the model was sequentially 
trained, several times, on a dataset that it had not been shown before 
(since it was included in the test dataset) progressively increasing the 
number of images, starting from a limited number, and measuring the 
AP@0.5 in each step. This was done both with the model trained with 
the methods described above and with the default weights of YOLO, in 
order to make a comparison.

Robustness to strain change analysis On the other hand, it would be 
interesting to find out if, for a given image capture system, the use of 
this model can offer greater robustness when different C. elegans strains 
are used, as their appearance may vary.

To obtain images of C. elegans with the same appearance, but per-

taining to different strains, two datasets have been generated using 
the Pix2Pix method, using masks that simulate two notably different 
strains, but using the same Pix2Pix weights in both cases. These images 
(Fig. 6) simulate dpy-like (short and wide) and lon-like (long and nar-

row) strains. The first dataset was used for training and the second one 
for validation, checking whether there was a drop in the AP@0.5. This 
was done both for our pre-trained model and for the default weights of 
YOLO.

2.4.3. Architecture evaluation

We also evaluated the impact that the model used had on the gen-

eralization capabilities. To do so, once the best training mode had 
been determined, after evaluating the proposed methods, YOLOv7 and 
YOLOv8 models were trained, since these architectures have proven ca-

pable of pushing forward the state of the art on the COCO dataset.

The models implemented in (https://github.com/WongKinYiu/

yolov7) and (https://github.com/ultralytics/ultralytics) were used. The 
YOLOv7-tiny, YOLOv8n and YOLOv8s were selected as they are similar 
in size to the YOLOv5s model. The same hyperparameters were used 
for training, and the proposed data augmentation parameters of each 
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implementation were used.
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Table 1

AP@0.5 results after training with the proposed methods: style transfer 
(ST), Pix2Pix (P2P) and supervised self-labeling (SSL). The experiments 
are repeated three times on the test dataset and the AP@0.5 values are 
evaluated with the Shapiro-Wilk test.

val test_1 test_2 test_3 p-value

Base dataset 0.938 0.493 0.579 0.508 0.313

BD with data augmentation 0.954 0.693 0.725 0.701 0.463

BD + ST 0.951 0.735 0.742 0.731 0.702

BD + P2P 0.956 0.816 0.810 0.827 0.679

BD + ST + P2P 0.935 0.79 0.795 0.770 0.360

BD + ST + P2P + SSL 0.951 0.864 0.857 0.854 0.566

Table 2

Results of the Student’s 
t-test for the proposed 
methods.

p-value

Style Transfer 0.0544

Pix2Pix 0.0137

Self-labeling 0.0074

2.5. Statistical methods

In order to ensure the statistical validity of the results of the above 
methods, they were repeated three times and the data was evaluated 
using the Shapiro-Wilk test to check whether the results conform to 
those of a normal distribution. To do so, the implementation of this test 
in scipy was used.

Further analysis of the statistical significance of these methods in 
the results of the experiments were conducted. Depending on the nor-

mality of the distributions, given by the Shapiro-Wilk test, this can be 
done either with the Student’s t-test (for normal distributions) or the 
Wilcoxon signed-rank test (for non-normal distributions).

3. Results

3.1. Training evaluation

As mentioned above, the model was trained incrementally, chang-

ing only one of the dataset augmentation methods at a time. The default 
weights of the YOLOv5s were always used as the starting point. Af-

ter the second training, in which the data augmentation techniques 
described in point 2.2 were included, all the following training experi-

ments included this data augmentation.

The following results displayed in Table 1 were obtained on the 
validation and test dataset.

As can be seen in Table 1, the best results were achieved using the 
three proposed methods, reaching a Precision=0.889, Recall=0.764 
and AP@0.5=0.864 on the test dataset.

After evaluating the results with the Shapiro-Wilk test, all the p-

values obtained range from 0.3 up to 0.7, therefore the null hypothesis 
of normality cannot be rejected.

Given that a normal distribution is assumed, a Student’s t-test was 
carried out to test the statistical significance of the proposed methods 
in the AP@0.5 values. The Style Transfer and the Pix2Pix result values 
were compared with the results of training with only the base dataset 
with data augmentation and the Supervised self-labeling result values 
were compared against the results of training with the Style Transfer 
and the Pix2Pix methods together.

Table 2 shows the p-values for each method and how each one pro-

vides stronger evidence against the null hypothesis than the previous 
one, being this hypothesis the idea that the methods are not statisti-
cally significant in improving the results.

https://github.com/WongKinYiu/yolov7
https://github.com/WongKinYiu/yolov7
https://github.com/ultralytics/ultralytics
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.shapiro.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.ttest_rel.html#scipy.stats.ttest_rel
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.wilcoxon.html
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Fig. 7. Results of the fine-tuning analysis with the default weights, pre-trained on the COCO dataset, of the YOLOv5s model (blue), and our proposed weights 
(green).
Table 3

Results of the robustness to strain change 
analysis.

dpy-like lon-like

Default model 0.995 0.814

Generalist model 0.995 0.968

Table 4

Results of the architecture evaluation. Different models based 
on the YOLO architecture with similar sizes have been trained 
and evaluated both on the validation and test datasets.

parameters (M) val AP@0.5 test AP@0.5

YOLOv5s 7.022 0.951 0.864

YOLOv7-tiny 6.014 0.939 0.895

YOLOv8n 3.005 0.928 0.851

YOLOv8s 11.135 0.944 0.860

3.2. Performance evaluation

The training weights obtaining the best results, those of the model 
trained with the three methods, were selected and the two experiments 
to evaluate the model performance described previously were carried 
out.

Fine-tuning analysis On performing the experiment, as shown in Fig. 7, 
with a much smaller number of images the pre-trained model achieved 
a higher AP@0.5 than the one obtained after training with the default 
weights.

Robustness to strain change analysis On performing the experiment, it 
can be seen how the model trained with the default weights experienced 
a drop in AP@0.5 of 18% on changing to the validation dataset, whereas 
when the pre-trained model was used there was only a 2.7% drop, as 
shown in Table 3.

3.3. Architecture evaluation

Training different YOLO models with the same methods applied be-

fore, results in Table 4 show how the YOLOv7-tiny model achieved 
the highest AP@0.5 on the test dataset, while the YOLOv5s model still 
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achieved the highest AP@0.5 on the validation dataset.
4. Discussion and conclusions

In view of the results, we can confirm that the methods proposed 
achieved a satisfactory outcome. The models trained with them provide, 
on the one hand, better results when working with a reduced dataset, 
or even reach optimal results with a smaller number of images. On the 
other hand, they offer great robustness in the event of changes in the 
appearance of C. elegans, such as a change of strain.

In the training evaluation, the YOLOv5s model, for instance, man-

ages to reach values of AP@0.5 up to 0.95 on the validation dataset, 
while on the test dataset it reaches a maximum of 0.864, by contrast, 
testing the model on images from a dataset for this type of task (with 
good lighting, contrast and resolution) like BBBC010, the model reaches 
a Precision=0.954, Recall=0.921 and AP@0.5=0.964 without prior 
training for that dataset. Despite this, it is necessary to note that in 
many cases, when optimal precision is required or when the perfor-

mance of the model does not reach accuracy requirements, fine-tuning 
these models to the specific images to be used is recommended, as the 
model will most likely perform better after this adjustment.

Some examples of correct and incorrect detections on the test dataset 
can be seen in Figs. 8 and 9, respectively. After reviewing these, some 
recurrent sources of error are (a) aggregation of worms, (b) partial ob-

struction of the body and (c) agar patterns resembling C. elegans. The 
aggregation of multiple worms is a very well-known problem in C. el-
egans detection, segmentation and tracking, and many solutions have 
been proposed [30] [10] [31] [32]. Errors (b) and (c), on the other 
hand, are logical faults of the model and could be reduced with fine-

tuning on the target image capture system if this is expected to happen.

In conclusion, we have trained and evaluated several YOLO mod-

els to perform generalist C. elegans detection, having the potential to 
serve as a basis for the automation of numerous assays. The best re-

sult is achieved by the YOLOv7-tiny model, with Precision=0.830, 
Recall=0.861 and AP@0.5=0.895 on a test dataset, composed of 2,828 
images from 14 image capture systems that are never used in training. 
Some possible applications of this model include well-known automatic 
image processing tasks like lifespan, healthspan or tracking [33] [34], 
but also individual worm detection for posterior analysis such as Life 
Stage classification [23] or strain identification [35].

With this work we aim to provide a methodology to obtain generic 
models, based on neural networks, which serve as basic worm-detection 
models. These models are characterized by performing fully auto-

mated worm detection, based on images captured under extremely 
different conditions, without requiring human input. In this work, 

we obtain a generic model that serves as a detection model (or as 

https://bbbc.broadinstitute.org/BBBC010
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Fig. 8. Example of correctly detected C. elegans in the test dataset with YOLOv5s (red) and YOLOv7-tiny (blue).

Fig. 9. Recurring sources of error observed on the test dataset with YOLOv5s (red) and YOLOv7-tiny (blue), being (a) Aggregation of worms, (b) Partial obstruction 
of body and (c) Agar patterns resembling C. elegans.
a base model for further refinement or fine-tuning) to achieve end-
4920

to-end automation of a wide variety of different assays. With ref-
erence to end-to-end automation, this model would enable the lo-
calization of all the C. elegans in the image for further process-
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ing, as done in [36], for example. It should be highlighted that, 
depending on the assay, it would be necessary to use specific al-

gorithms or models, as required by the assay, as in [23] or [35], 
since the detection represents only the first step in image process-

ing.

Also, a new method to generate synthetic images of C. elegans using 
the Pix2Pix model, capable of matching a given real appearance, has 
been proposed. Further exploration of this method could be interesting 
for future work, perhaps evaluating its use for segmentation tasks, since 
this method also allows producing labeled images for segmentation, 
with their respective masks.

CRediT authorship contribution statement

Santiago Escobar-Benavides: Conceptualization, Data curation, 
Methodology, Software, Writing – original draft. Antonio García-

Garví: Conceptualization, Methodology, Software, Visualization. Pablo 
E. Layana-Castro: Conceptualization, Methodology, Software, Visual-

ization. Antonio-José Sánchez-Salmerón: Conceptualization, Fund-

ing acquisition, Investigation, Methodology, Project administration, Re-

sources, Writing – original draft.

Declaration of competing interest

None Declared.

Availability of data and materials

We created a repository on github with the weights of our trained 
models and a list of the original video sources:

github.com/SantiagoEscobarBenavides/GeneralistCelegansDetection

Acknowledgements

This study was supported by Universidad Politécnica de Valen-

cia through Instituto de Automática e Informática Industrial, FPI 
Predoctoral contract PRE2019-088214, Ministerio de Universidades 
(Spain) under grant FPU20/02639 and by European FEDER funds. 
The authors also thank the EU-FEDER Comunitat Valenciana 2014-

2020 grant IDIFEDER/2018/025. ADM Nutrition, Biopolis SL, and 
Archer Daniels Midland provided support in the supply of C. ele-

gans.

References

[1] Biron D, Haspel G, editors. C. elegans. Humana Press; 2015.

[2] Garví AG, Puchalt JC, Castro PEL, Moya FN, Sánchez-Salmerón A-J. Towards lifes-

pan automation for Caenorhabditis elegans based on deep learning: analysing con-

volutional and recurrent neural networks for dead or live classification. Sensors 
2021;21(14):4943. https://doi .org /10 .3390 /s21144943.

[3] Puchalt JC, Castro PEL, Sánchez-Salmerón A-J. Reducing results variance in lifespan 
machines: an analysis of the influence of vibrotaxis on wild-type Caenorhabditis 
elegans for the death criterion. Sensors 2020;20(21):5981. https://doi .org /10 .3390 /
s20215981.

[4] Rosa GD, Brunetti G, Scuto M, Salinaro AT, Calabrese EJ, Crea R, et al. Healthspan 
enhancement by olive polyphenols in C. elegans wild type and Parkinson’s models. 
Int J Mol Sci 2020;21(11):3893. https://doi .org /10 .3390 /ijms21113893.

[5] Hahm J-H, Kim S, DiLoreto R, Shi C, Lee S-JV, Murphy CT, et al. C. elegans max-

imum velocity correlates with healthspan and is maintained in worms with an 
insulin receptor mutation. Nat Commun Nov. 2015;6(1). https://doi .org /10 .1038 /
ncomms9919.

[6] Le KN, Zhan M, Cho Y, Wan J, Patel DS, Lu H. An automated platform to monitor 
long-term behavior and healthspan in Caenorhabditis elegans under precise envi-

ronmental control. Commun Biol Jun. 2020;3(1). https://doi .org /10 .1038 /s42003 -
020 -1013 -2.

[7] Zaidi SSA, Ansari MS, Aslam A, Kanwal N, Asghar M, Lee B. A survey of modern 
deep learning based object detection models. Digit Signal Process 2022;126:103514. 
https://doi .org /10 .1016 /j .dsp .2022 .103514.

[8] Bates K, Le KN, Lu H. Deep learning for robust and flexible tracking in behavioral 
studies for C. elegans. PLoS Comput Biol 2022;18(4):e1009942. https://doi .org /10 .
4921

1371 /journal .pcbi .1009942.
Computational and Structural Biotechnology Journal 21 (2023) 4914–4922

[9] Fudickar S, Nustede EJ, Dreyer E, Bornhorst J. Mask r-CNN based C. elegans detec-

tion with a DIY microscope. Biosensors 2021;11(8):257. https://doi .org /10 .3390 /
bios11080257.

[10] Mori S, Tachibana Y, Suzuki M, Harada Y. Automatic worm detection to solve over-

lapping problems using a convolutional neural network. Sci Rep May 2022;12(1). 
https://doi .org /10 .1038 /s41598 -022 -12576 -9.

[11] Zhou K, Liu Z, Qiao Y, Xiang T, Loy CC. Domain generalization: a survey. https://

doi .org /10 .48550 /ARXIV .2103 .02503. https://arxiv .org /abs /2103 .02503, 2021.

[12] Wang J, Lan C, Liu C, Ouyang Y, Qin T, Lu W, et al. Generalizing to unseen domains: 
a survey on domain generalization. https://doi .org /10 .48550 /ARXIV .2103 .03097. 
https://arxiv .org /abs /2103 .03097, 2021.

[13] Carlucci FM, D’Innocente A, Bucci S, Caputo B, Tommasi T. Domain generalization 
by solving jigsaw puzzles. https://doi .org /10 .48550 /ARXIV .1903 .06864. https://

arxiv .org /abs /1903 .06864, 2019.

[14] Kim D, Park S, Kim J, Lee J. SelfReg: self-supervised contrastive regularization 
for domain generalization. https://doi .org /10 .48550 /ARXIV .2104 .09841. https://

arxiv .org /abs /2104 .09841, 2021.

[15] Wang S, Yu L, Li C, Fu C-W, Heng P-A. Learning from extrinsic and intrinsic super-

visions for domain generalization. https://doi .org /10 .48550 /ARXIV .2007 .09316. 
https://arxiv .org /abs /2007 .09316, 2020.

[16] Li D, Yang Y, Song Y-Z, Hospedales TM. Learning to generalize: meta-learning 
for domain generalization. https://doi .org /10 .48550 /ARXIV .1710 .03463. https://

arxiv .org /abs /1710 .03463, 2017.

[17] Balaji Y, Sankaranarayanan S, Chellappa R. MetaReg: towards domain generaliza-

tion using meta-regularization. In: Bengio S, Wallach H, Larochelle H, Grauman K, 
Cesa-Bianchi N, Garnett R, editors. Advances in neural information processing sys-

tems, vol. 31. Curran Associates, Inc.; 2018. URL https://proceedings .neurips .cc /
paper _files /paper /2018 /file /647bba344396e7c8170902bcf2e15551 -Paper .pdf.

[18] Li Y, Yang Y, Zhou W, Hospedales TM. Feature-critic networks for heterogeneous do-

main generalization. https://doi .org /10 .48550 /ARXIV .1901 .11448. https://arxiv .
org /abs /1901 .11448, 2019.

[19] Ljosa V, Sokolnicki KL, Carpenter AE. Annotated high-throughput microscopy image 
sets for validation. Nat Methods 2012;9(7):637. https://doi .org /10 .1038 /nmeth .
2083.

[20] Evgeniy Galimov ZP, Yakimovich A. Caenorhabditis elegans microscopy dataset 
with lifespan, movement and segmentation annotations.

[21] Redmon J, Divvala S, Girshick R, Farhadi A. You only look once: unified, real-time 
object detection. https://doi .org /10 .48550 /ARXIV .1506 .02640. https://arxiv .org /
abs /1506 .02640, 2015.

[22] Rico-Guardiola EJ, Layana-Castro PE, García-Garví A, Sánchez-Salmerón A-J. 
Caenorhabditis elegans detection using YOLOv5 and faster r-CNN networks. In: 
Communications in computer and information science. Springer International Pub-

lishing; 2022. p. 776–87.

[23] Song Y, Liu J, Zhao Z, Wang J. Predict the Caenorhabditis elegans life stage through 
hybrid deep neural network. In: 2021 IEEE international conference on bioinformat-

ics and biomedicine (BIBM). IEEE; 2021.

[24] Puchalt JC, Gonzalez-Rojo JF, Gómez-Escribano AP, Vázquez-Manrique RP, 
Sánchez-Salmerón A-J. Multiview motion tracking based on a Cartesian robot to 
monitor Caenorhabditis elegans in standard Petri dishes. Sci Rep Feb. 2022;12(1). 
https://doi .org /10 .1038 /s41598 -022 -05823 -6.

[25] Lin T-Y, Maire M, Belongie S, Hays J, Perona P, Ramanan D, et al. Microsoft COCO: 
common objects in context. In: Computer vision – ECCV 2014. Springer International 
Publishing; 2014. p. 740–55.

[26] Huang X, Belongie S. Arbitrary style transfer in real-time with adaptive in-

stance normalization. https://doi .org /10 .48550 /ARXIV .1703 .06868. https://arxiv .
org /abs /1703 .06868, 2017.

[27] Geirhos R, Rubisch P, Michaelis C, Bethge M, Wichmann FA, Brendel W. ImageNet-

trained CNNs are biased towards texture; increasing shape bias improves accu-

racy and robustness. https://doi .org /10 .48550 /ARXIV .1811 .12231. https://arxiv .
org /abs /1811 .12231, 2018.

[28] Kline TL. Improving domain generalization in segmentation models with neural style 
transfer. In: 2021 IEEE 18th international symposium on biomedical imaging (ISBI). 
IEEE; 2021.

[29] Isola P, Zhu J-Y, Zhou T, Efros AA. Image-to-image translation with conditional 
adversarial networks. https://doi .org /10 .48550 /ARXIV .1611 .07004. https://arxiv .
org /abs /1611 .07004, 2016.

[30] Castro PEL, Puchalt JC, Garví AG, Sánchez-Salmerón A-J. Caenorhabditis elegans 
multi-tracker based on a modified skeleton algorithm. Sensors 2021;21(16):5622. 
https://doi .org /10 .3390 /s21165622.

[31] Alonso A, Kirkegaard JB. Fast spline detection in high density microscopy data. 
https://doi .org /10 .48550 /ARXIV .2301 .04460. https://arxiv .org /abs /2301 .04460, 
2023.

[32] Castro PEL, Puchalt JC, Sánchez-Salmerón A-J. Improving skeleton algorithm for 
helping Caenorhabditis elegans trackers. Sci Rep Dec. 2020;10(1). https://doi .org /
10 .1038 /s41598 -020 -79430 -8.

[33] Javer A, Currie M, Lee CW, Hokanson J, Li K, Martineau CN, et al. An open-

source platform for analyzing and sharing worm-behavior data. Nat Methods 
2018;15(9):645–6. https://doi .org /10 .1038 /s41592 -018 -0112 -1.

[34] Koopman M, Peter Q, Seinstra RI, Perni M, Vendruscolo M, Dobson CM, et al. 

Assessing motor-related phenotypes of Caenorhabditis elegans with the wide field-

https://github.com/SantiagoEscobarBenavides/GeneralistCelegansDetection
http://refhub.elsevier.com/S2001-0370(23)00352-5/bib65D2EA03425887A717C435081CFC5DBBs1
https://doi.org/10.3390/s21144943
https://doi.org/10.3390/s20215981
https://doi.org/10.3390/s20215981
https://doi.org/10.3390/ijms21113893
https://doi.org/10.1038/ncomms9919
https://doi.org/10.1038/ncomms9919
https://doi.org/10.1038/s42003-020-1013-2
https://doi.org/10.1038/s42003-020-1013-2
https://doi.org/10.1016/j.dsp.2022.103514
https://doi.org/10.1371/journal.pcbi.1009942
https://doi.org/10.1371/journal.pcbi.1009942
https://doi.org/10.3390/bios11080257
https://doi.org/10.3390/bios11080257
https://doi.org/10.1038/s41598-022-12576-9
https://doi.org/10.48550/ARXIV.2103.02503
https://doi.org/10.48550/ARXIV.2103.02503
https://arxiv.org/abs/2103.02503
https://doi.org/10.48550/ARXIV.2103.03097
https://arxiv.org/abs/2103.03097
https://doi.org/10.48550/ARXIV.1903.06864
https://arxiv.org/abs/1903.06864
https://arxiv.org/abs/1903.06864
https://doi.org/10.48550/ARXIV.2104.09841
https://arxiv.org/abs/2104.09841
https://arxiv.org/abs/2104.09841
https://doi.org/10.48550/ARXIV.2007.09316
https://arxiv.org/abs/2007.09316
https://doi.org/10.48550/ARXIV.1710.03463
https://arxiv.org/abs/1710.03463
https://arxiv.org/abs/1710.03463
https://proceedings.neurips.cc/paper_files/paper/2018/file/647bba344396e7c8170902bcf2e15551-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/647bba344396e7c8170902bcf2e15551-Paper.pdf
https://doi.org/10.48550/ARXIV.1901.11448
https://arxiv.org/abs/1901.11448
https://arxiv.org/abs/1901.11448
https://doi.org/10.1038/nmeth.2083
https://doi.org/10.1038/nmeth.2083
https://doi.org/10.48550/ARXIV.1506.02640
https://arxiv.org/abs/1506.02640
https://arxiv.org/abs/1506.02640
http://refhub.elsevier.com/S2001-0370(23)00352-5/bib26572F9BC14FBC788A5AFDEA9AB35E9Bs1
http://refhub.elsevier.com/S2001-0370(23)00352-5/bib26572F9BC14FBC788A5AFDEA9AB35E9Bs1
http://refhub.elsevier.com/S2001-0370(23)00352-5/bib26572F9BC14FBC788A5AFDEA9AB35E9Bs1
http://refhub.elsevier.com/S2001-0370(23)00352-5/bib26572F9BC14FBC788A5AFDEA9AB35E9Bs1
http://refhub.elsevier.com/S2001-0370(23)00352-5/bib47D98E14B2DE1E3AF38C9A8498EE5A43s1
http://refhub.elsevier.com/S2001-0370(23)00352-5/bib47D98E14B2DE1E3AF38C9A8498EE5A43s1
http://refhub.elsevier.com/S2001-0370(23)00352-5/bib47D98E14B2DE1E3AF38C9A8498EE5A43s1
https://doi.org/10.1038/s41598-022-05823-6
http://refhub.elsevier.com/S2001-0370(23)00352-5/bibDBBD143200F9EF4E417D6CC938836B3Bs1
http://refhub.elsevier.com/S2001-0370(23)00352-5/bibDBBD143200F9EF4E417D6CC938836B3Bs1
http://refhub.elsevier.com/S2001-0370(23)00352-5/bibDBBD143200F9EF4E417D6CC938836B3Bs1
https://doi.org/10.48550/ARXIV.1703.06868
https://arxiv.org/abs/1703.06868
https://arxiv.org/abs/1703.06868
https://doi.org/10.48550/ARXIV.1811.12231
https://arxiv.org/abs/1811.12231
https://arxiv.org/abs/1811.12231
http://refhub.elsevier.com/S2001-0370(23)00352-5/bibDA6C4CE4100624A98380F717C906C4BDs1
http://refhub.elsevier.com/S2001-0370(23)00352-5/bibDA6C4CE4100624A98380F717C906C4BDs1
http://refhub.elsevier.com/S2001-0370(23)00352-5/bibDA6C4CE4100624A98380F717C906C4BDs1
https://doi.org/10.48550/ARXIV.1611.07004
https://arxiv.org/abs/1611.07004
https://arxiv.org/abs/1611.07004
https://doi.org/10.3390/s21165622
https://doi.org/10.48550/ARXIV.2301.04460
https://arxiv.org/abs/2301.04460
https://doi.org/10.1038/s41598-020-79430-8
https://doi.org/10.1038/s41598-020-79430-8
https://doi.org/10.1038/s41592-018-0112-1


Computational and Structural Biotechnology Journal 21 (2023) 4914–4922S. Escobar-Benavides, A. García-Garví, P.E. Layana-Castro et al.

of-view nematode tracking platform. Nat Protoc 2020;15(6):2071–106. https://

doi .org /10 .1038 /s41596 -020 -0321 -9.

[35] Javer A, Brown AEX, Kokkinos I, Rittscher J. Identification of C. elegans strains 
using a fully convolutional neural network on behavioural dynamics. In: Lecture 
notes in computer science. Springer International Publishing; 2019. p. 455–64.

[36] García-Garví A, Layana-Castro PE, Sánchez-Salmerón A-J. Analysis of a C. elegans 
lifespan prediction method based on a bimodal neural network and uncertainty es-

timation. Comput Struct Biotechnol J 2023;21:655–64. https://doi .org /10 .1016 /j .
csbj .2022 .12 .033.
4922

https://doi.org/10.1038/s41596-020-0321-9
https://doi.org/10.1038/s41596-020-0321-9
http://refhub.elsevier.com/S2001-0370(23)00352-5/bibAAC5F83A163E6E6F5728CEE2A4309AC4s1
http://refhub.elsevier.com/S2001-0370(23)00352-5/bibAAC5F83A163E6E6F5728CEE2A4309AC4s1
http://refhub.elsevier.com/S2001-0370(23)00352-5/bibAAC5F83A163E6E6F5728CEE2A4309AC4s1
https://doi.org/10.1016/j.csbj.2022.12.033
https://doi.org/10.1016/j.csbj.2022.12.033

	Towards generalization for Caenorhabditis elegans detection
	1 Introduction
	2 Materials and methods
	2.1 Dataset
	2.2 Detection method
	2.3 Dataset augmentation methods
	2.3.1 Style transfer
	2.3.2 Pix2Pix
	2.3.3 Supervised self-labeling

	2.4 Evaluation methods
	2.4.1 Training evaluation
	2.4.2 Performance evaluation
	Fine-tuning analysis
	Robustness to strain change analysis

	2.4.3 Architecture evaluation

	2.5 Statistical methods

	3 Results
	3.1 Training evaluation
	3.2 Performance evaluation
	3.3 Architecture evaluation

	4 Discussion and conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Availability of data and materials
	Acknowledgements
	References


