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A B S T R A C T   

The rapid proliferation of Wireless Sensor Networks (WSN) and other linked devices has given 
rise to several notions that blend the virtual and real worlds. A vision in which billions of 
intelligent objects are joined together to provide connectivity for anything, not just everyone. The 
data quantities gathered and transferred will expand significantly as the number of participants in 
the future Internet of things grows, rendering the traditional data gathering and processing 
methods impaired. As a result, the volume of data should be decreased so that decision-makers 
can mine and evaluate such massive amounts of data. 

In the Internet of things (IoT), dedicated to healthcare, various data may be collected from 
diverse body sensors, ambient sensors, and other data sources such as cameras, voice recorders, 
and so on. The processing, synchronization, aggregation, and compression of these heterogeneous 
data are crucial tasks for providing accurate real-time healthcare services. Energy efficiency 
imposes a strict limitation on wearable WSNs since wireless transmission consumes a large 
amount of power. Several compression approaches have been presented in the literature to tackle 
the issue of energy consumption. These approaches can be divided into three categories: 
communication compression, sampling compression, and data compression. Data compression 
mechanisms should lessen the data length and compress data using fewer resources. The pecu-
liarities of the data should be addressed during the compression process. Irrelevant data might be 
eliminated depending on the user’s capacity to use or comprehend such data. Data compression 
techniques are extensions of compression algorithms and data aggregation methods. Data 
compression algorithms play a substantial role in WBSNs as the sensors in WBSNs have restricted 
memory and low battery power. Furthermore, data should be transmitted quickly and lossless to 
provide real-time services. Despite the availability of many review papers on data compression 
techniques in wireless sensor networks, there is a lack of surveys that identify gaps in existing 
data compression techniques, highlight areas for future research, and provide a comprehensive 
analysis of the current trends and practices in the IoT-enabled WBSN, primarily the healthcare 
domain. This paper will fill the gap, provide a clear analysis, and review data compression 
mechanisms in IoT-enabled WBSN. We outline the main requirements for IoT-enabled WBSN, 
existing methods, and state-of-the-art solutions. Furthermore, we evaluated the performance of 
the current techniques in the literature based on several criteria such as compression ratio, 
complexity, energy saved, minimized transmission, energy consumption, Net energy saved, en-
ergy efficiency, reliability, and scalability. More importantly, we discussed how data compression 
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methods could be a crucial enabler in solving many IoT problems. The paper also identifies open 
research problems and challenges for IoT-enabled WBSN.   

Introduction 

With the emergence of mHealth and eHealth, the role of technology in healthcare has grown significantly. Many sensors are fitted 
to patients to constantly track their health using a variety of behavioral, physiological, and environmental parameters. One of the 
pivotal inventions that benefit contemporary healthcare applications is smart and wearable devices. Such wearables can collect data on 
an unprecedented scale due to refinements in the Internet of Things (IoT). 

A Wireless Sensor Network (WSN) is a distributed network, including autonomous and scattered sensor nods. Every sensor node 
makes up of a power source (usually a battery), a transceiver (communication component), a microcomputer (computing component), 
and several sensor(s) depending upon the area of application [17,63,108]. Technology for wireless sensor networks (WSNs) is essential 
to the widespread and effective implementation of the Internet of Things (IoT) [40]. WSNs can be employed for diverse applications 
such as national surveillance and defense, natural disaster relief, environmental monitoring and seismic sensing, biomedical health 
monitoring, industrial monitoring, agriculture monitoring, animal monitoring, and military target tracking [17,71]. WSN is an 
illustration of communication between people and machines [110]. WSNs are usually deployed on a short or extensive range (based on 
the applications and requirements) to gather the necessary data from sensors. In healthcare and biomedical applications, sensor nodes 
are placed within, near, or on the human body to provide uninterrupted and continuous monitoring of vital human signs, such as blood 
oxygen, temperature, blood pressure, blood sugar level, electroencephalogram (EEG), electrocardiogram (ECG), and heartbeat. 
Generally, this sort of WSN is referred to as Wireless Body Sensor Network (WBSN). The conventional wired connections in monitoring 
healthcare applications could be problematic and awkward for the patient wearing it because it hinders the mobility of a patient. 
Hence, in a healthcare requirement where a person should be monitored continuously and concerned with mobility, WBSN can be an 
effective solution. 

Wireless Body Sensor Networks (WBSNs) facilitate the ability of enormous wellness and healthcare applications from ongoing vital 
signs and biochemical parameters monitoring of patients. Indeed, WBSNs are evolving as one of the most significant contributors to big 
data in this era. Such networks enclose many sensors deployed in human body to transmit periodic data, about the body’s vital signs, to 
a sink node. This technology enables a variety of novel and intriguing applications in the healthcare and medical fields, including 
distant patient monitoring, examining hospital and elderly patients, and monitoring patients with chronic diseases, in which the vital 
signs of patients are constantly monitored to oversee their healthiness condition and deliver therapy in the event of an emergency 
[109]. 

One of the critical challenges in WBSNs is energy efficiency, as wireless transmission consumes a large amount of energy [63]. 
WBSNs nodes, in particular, should be small to maximize wearability and decrease invasiveness, and they should have a long battery 
life to allow for extensive data collecting. Such criteria are critical because the capacity and the size of the battery is the primary factor 
in establishing the dimensions of a WBSN node [59]. One of the most straightforward methodologies to minimize energy is to limit the 
number of bits that need to be transmitted [76]. WBSN applications gather a tremendous amount of data daily; most of such data is 
useless and redundant. As a result, minimizing the amount of redundant data reduces network power consumption while delivering 
cleansed data to data scientists [53]. Indeed, the power consumption in a network is associated with the quantity of data transmitted 
[96]. 

Data compression could be considered a method to decrease energy consumption. Some data reduction mechanisms, such as 
sampling, adaptive, aggregation, communication compression, and data compression, seek to lower the transmitted data quantity 
[35]. Communication compression aims to reduce the number of packet receptions and transmissions [76]. Data compression 
transforms a data stream into another one that can be represented using fewer bits [53]. Data compression methods can be deployed on 
sensor nodes or intermediate nodes (cluster heads) to compress the gathered vital signs before transmission to extend the lifetime of a 
WBSN [55]. As a result, lowering transceiver unit power consumption is believed to be an efficient way of reducing the WBSN node’s 
energy consumption. Compression is typically more beneficial if it is applied at cluster heads. Cluster heads gather data across time; 
consequently, the temporal and spatial correlation can be employed in compression. Decompression should be conducted at the base 
station (or sink) to restore the original data. Data collection at the sink node may be delayed due to compression techniques. A delay 
occurs because the cluster head should retain the data before the aggregation and compression process. If a lossy compression method 
is applied, the compression-based approach may impact the accuracy of the gathered data. Unfortunately, traditional compression 
algorithms have considerable complexity. Thus, they are designed specifically for PCs and servers to get adequate storage. 

Many papers have reviewed data compression mechanisms in WSNs and IoT [17,49,51,76,77,86,92,101,108]. However, there is a 
lack of dedicated studies that review the data compression mechanisms in IoT-enabled WBSNs, especially in the domain of healthcare. 

This paper presents a comprehensive literature review of data compression techniques of IoT-enabled WBSN systems, along with a 
critical analysis of each mechanism. This study shows an in-depth comparison of the methodologies, a systematic assessment of the 
selected articles, and recommendations for further research. This review aims to highlight the motivations, obstacles, and recom-
mendations regarding the data compression mechanisms in IoT-enabled WBSN and determine the gaps in this research direction, 
representing a new research direction in this area. 

The rest of this paper is structured as follows. Section 2 describes the related work. Section 3 describes the methods. A Background 
and basic concepts are presented in section 4. Section 5 explains data compression in IoT-enabled WBSNs. Section 6 represents the 

I. Nassra and J.V. Capella                                                                                                                                                                                           



Internet of Things 23 (2023) 100806

3

reviewed data compression techniques in IoT-enabled WBSN. Section 7 involves an in-depth comparison and performance analysis. 
Section 8 presents a discussion and analysis. Open research issues and future directions are presented in section 9. Finally, Section 10 
summarizes the conclusion. 

Related works 

Several studies reviewed the data compression techniques in WBSN. In a survey conducted by Raju et al. [75], several lossless data 
compression mechanisms (like Huffman, Lempel Zev Welch (LZW), and Run Length Encoding (RLE)) were evaluated on data from 
wearable devices and compared in terms of savings percentage, compression time, compression ratio, and compression factor. They 
also assessed a data deduplication method used for Low Bandwidth File Systems (LBFS), named the “Two Thresholds Two Divisors 
(TTTD)” algorithm, to decide if it could be applied to WBSN data. However, their study focused on lossless data compression tech-
niques and ignored reviewing lossy data compression mechanisms. 

Azar et al. [12] analyzed the performance of three resource-aware data compression schemes presented in recent studies: Discrete 
Wavelet Transform lifting, Differential Pulse Code Modulation, and Lightweight Temporal Compression scheme. Their findings 
revealed that the Lightweight Temporal Compression lossy approach achieved a better compression ratio on smooth data with 
negligible data loss. Nonetheless, the data reconstruction error was raised when the data got noisy, resulting in the loss of several 
critical features. On the other hand, the lossless discrete Wavelet Transform is lifting, and differential Pulse Code Modulation algo-
rithms produced consistent performance. They reduced data by 35% to 50%, with a slight preference for the differential Pulse Code 
Modulation over the discrete Wavelet Transform lifting scheme. However, their study reviewed only three losses and lossy data 
compression techniques and ignored other data compression techniques. 

Methods 

This paper presents a clear overview with a systematic literature review of data compression techniques of IoT-enabled WBSN 
systems, along with a critical analysis of each mechanism. A systematic review is a direct approach to evaluating the scope of coverage 
of a literature body on a given subject, clearly indicating how many articles and books are available and summarizing the synopsis of its 
emphasis [62]. Language, document type, and publication year were among the criteria the authors initially chose as restrictions and 
recommendations in the search process for article journals in databases. The search strategy by the authors utilizing a database is better 
organized and applied as a suitable basis for their investigation. According to Xiao & Watson [104], there is no comprehensive and 
flawless electronic database, and a combination of at least two databases would be sufficient for the study. Accordingly, this study used 
two academic databases, Web of Science (WOS) and Scopus. This study aims to gather as many relevant details as practical from each 
part of the literature, including analyses, variables, and methodologies. 

Systematic review process 

We use the systematic literature review process based on the PRISMA method to provide a comprehensive and exhaustive synthesis 
of the research topic. The primary purpose of this systematic review is to justify the relevance of the following research questions:  

(a) What are the research challenges in applying data compression techniques with WBSN?  
(b) What are the indicators frequently used to assess the effectiveness of data compression in delivering a real-time pervasive 

healthcare system?  
(c) What are the state-of-the-art data compression mechanisms implemented in IoT-enabled WBSNs?  
(d) What are the research directions for QoS enhancement? 

The following keywords were used: Data compression, Internet of Things, Wireless Body Sensor Network, and Healthcare System. 
Following several adjustments, the following search phrases were created: (combination of data compression and Wireless Body Sensor 
Networks), (IoT-enabled Wireless Body Sensor Networks), (IoT-enabled Wireless Body Area Network), and (Data compression IoT- 
enabled Wireless Body Sensor Networks). 

This study used the IEEE, Sensors, Springer, and Science Direct (Elsevier) databases. We have applied the same search terms across 
all four search indexers, employing their advanced search methods. Only the articles from journals and conferences have been 
explored. The selected articles must have been published between 2004 and 2022. The article must contain the terms "Data 
compression" and "WBSN." The unselected and selected papers were also cross-checked to ensure that no article had been uninten-
tionally excluded or included. 

The search strategy was applied to the sources. Initially, the titles and abstracts of all recovered publications were reviewed and 
examined to the end. Depending on the research questions, the material is collected from the most recent batch of publications. 
Eventually, a form is created with the following details: the paper’s title, authors, publisher, keywords, mechanisms, year of publi-
cation, and any upcoming works. 

Review management and articles classification 

Between 2004 and 2022, we found 22, 11, 7, 4, and 16 studies in IEEE, Science Direct (Elsevier), Sensors, Springer, and other 
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journals, respectively, resulting in a total of 60 papers. After the initial screening, 31 papers were excluded as they were focused on 
delay, routing, telemonitoring, and aggregation of data in WBSN, which does not directly represent the data compression in the IoT- 
based WBSN approaches. The classification of the selected papers by different publishers is shown in Fig. 1. The distribution of the 
obtained papers in each publisher, depending on the publication year, is shown in Fig. 2. It shows the related selected articles from 
2004 to 2022 distributed as follows, 16, 2, 2, 1, and 8 in IEEE, Science Direct (Elsevier), Sensors, Springer, and others, respectively, 
resulting in a total of 29 articles. 

Background and basic concepts 

Internet of Things (IoT) 

IoT refers to an intelligent universe of entities capable of interacting with each other, where each entity is connected to the Internet 
[2]. In 1999 Kevin Ashton coined the term IoT for the first time in supply chain management [57]. 

The concept of the IoT promotes the prospect of data exchange, integration, communication, and aggregation between the objects 
in our environment [1]. To facilitate the communication and management among these objects, the essential IoT technologies, 
including devices, storage systems, RFIDs, sensors, and wireless communication, are updating and advancing daily. In this regard, the 
progress of the utility of wireless sensor networks in IoT as processing (global sensor network), sensors (wireless sensors), wireless 
operators, communications (wireless networks), and locating (wireless sensors with locating capability) has been taken place to 
present and receive a remarkable service automatically [111]. 

Wireless body sensor networks 

A wireless body sensor network (WBSN) is a popular technology for patient tracking in IoT-enabled healthcare technologies, such 
as eHealth and mHealth. In 1996, Zimmerman proposed the idea of a body sensor network, later defined by IEEE 802.15.6. [21]. 

WBSN is a sort of WSN comprising physiological parameter sensors set on the body surface, in the human body, or around the body. 
Such sensors are commonly wearables or occasionally implanted into the patient’s skin, and they can intercommunicate with the 
network [57]. WBSN in the domain of medicine is not just a new kind of disease monitoring, prevention solution, and healthcare 
services but even a significant element of the so-called IoT. The primary purpose of e-health WBSN in IoT is to deliver incorporated 
ubiquitous computing software, hardware, and technology platform for wireless communication. E-health WBSN is an essential 
requirement for the forthcoming evolution of ubiquitous healthcare monitoring applications. 

Data compression in IoT-enabled WBSNs 

Overview 

Recent studies have presented many compression approaches to address the power consumption issue in WBSNs. These approaches 
can be categorized into three classes: communication compression, data compression, and sampling compression [98]. Communi-
cation compression aims to reduce the number of packet transfers and receptions [98]. Sampling compression seeks to reduce the 
number of sensing operations while maintaining an acceptable level of data loss [33]. Data compression converts one data stream into 
another one that may be represented with fewer bits [97]. This paper will focus on reviewing data compression mechanisms in IoT 
WBSNs. 

Data compression is a valuable technique for reducing the quantity of data required to be conveyed before transmission. The 
underlying concept behind data compression is to eliminate irrelevant and redundant data. It compactly conveys the data without 

Fig. 1. Classification of the selected papers by different publishers  
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sacrificing data quality to some extent. Data compression technologies are classified into two categories: lossless compression and lossy 
compression. The primary distinction between the two compression mechanisms is that lossless compression recovers and rebuilds the 
data in its original form after decompression. Whilst lossy compression does not restore data to its original shape after decompression. 
In the latter approach, some data features may be lost during data compression. Lossy compression reduces the quantity of information 
in the data, whereas lossless compression increases the density of information in its representation. 

Applications of data compression in IoT-enabled WBSNs 

IoT can be viewed as a convenient platform for a wide range of applications, including industrial and medical applications. IoT may 
be seen as a viable platform in the context of Industry 4.0, allowing the creation of big industrial systems that connect many intelligent 
sensors and subsequent data collecting for analytic applications. [25]. The large volume of data generated by IoT devices entails 
significant storage and transmission costs. Communication systems are critical infrastructure for IoT objects, and even with the advent 
of low-power networks [72], these systems are responsible for a large portion of device energy consumption. This consumption be-
comes a problem due to the power constraints of various IoT systems [17,39]. A huge dataset used by industrial systems necessitates 
additional processing resources and execution time. To make matters worse, the vast amount of sensed data that should be stored in the 
cloud and fog comes at a considerable monetary cost, as these systems often charge proportionate amounts for the stored data [40]. 
Data compression technologies are a suitable way to handle these challenges specially in the industry domain. 

IoT has a plethora of applications in healthcare, such as intelligent beds to detect the occupancy, track patients and equipment 
inside the healthcare organization [58]. IoT-enabled WBSNs have emerged increasingly in recent decades, enabling pervasive 
healthcare by performing continuous human wellness monitoring and diagnosis using several wearable sensors. [44,9]. The bio signals 
obtained by these wearable sensors, such as photoplethysmography (PPG), respiratory or heart rates (RESP), and electrocardiogram 
(ECG) [41,58], can be used for well-being management, disease diagnosis, and elderly care [6]. As a result, reduced power con-
sumption becomes a significant problem in continuous data collection with limited battery life. Most of the energy consumed by sensor 
nodes is consumed by wireless data transmission [46]. Data compression has long been investigated historically, and it is now gaining 
more attraction as a low-power data transmission method in wearable devices. 

In this context, data compression methods are crucial in meeting scalable storage requirements, energy reduction, and commu-
nication infrastructure, becoming substantial approaches to managing a massive amount of generated sensed data by IoT-enabled 
WBSN systems. 

Security and privacy challenges of data compression in IoT-enabled WBSNs 

IoT in healthcare delivers personalized services, i.e., customized and fast access to healthcare systems, which was previously 
unthinkable. Both healthcare and technology equipment collaborate in these applications to offer a broad range of services. Such 
advancements in this arena are revolutionary, but they must be cautiously adopted due to the challenges posed by health-related data 
security, privacy, and sensitivity [7]. Upstream transmission of compromised data devastates the underlying data compression 

Fig. 2. Distribution of the selected papers over time in the selected publishers  
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techniques and degrades their performance [83]. Furthermore, transmitting compromised compressed data exposes the underlying 
networks to various security threats, including sinkhole, Sybil, DoS, eavesdropping, denial of service (DoS), and sleep deprivation 
attacks [56,68]. These threats remain challenges because of the field’s rapid development and the rising quantity and complexity of 
potential hardware and software vulnerabilities. Moreover, confidential and sensitive healthcare data, such as genetic data, electronic 
medical records, family history, and personal information, should be kept confidential. 72% of malicious traffic was projected to target 
healthcare data [48]. As a result, it is critical to secure such data from attackers by implementing security and privacy policies, both 
virtually and physically [56,91]. 

Security issues, such as access control, verification, authorization, privacy, data storage, system configuration, and management, 
are also considered as prime security challenges in an IoT-enabled WBSN [38,102]. For example, wearable sensors and smartphones 
contribute to a worldwide connection digital environment that facilitates life by being flexible, sensitive, and responsive to human 
requirements. Unfortunately, security and privacy cannot be assured. Users’ privacy may be compromised, and the user’s data may be 
leaked if the user signal is interrupted by an attacker. This issue should be addressed to ensure user confidence in terms of privacy and 
control over personal information. Moreover, an attacker can exploit shared memory technologies to gain access to unauthorized 
content, such as sensitive data and encryption keys [91]. Personal data contains sensitive information, as health record data can be lost 
or can be leaked. If login credentials are lost or leaked can lead to attackers gaining access to vital areas of services and could 
potentially compromise confidentiality, integrity and availability [38,84]. 

Encryption is required in scenarios involving highly sensitive information transit. In some cases, it may be highly advantageous to 
compress the data securely for the previously mentioned benefits. Because compression and encryption simultaneously can 
compromise data confidentiality, it is becoming more common for systems to compress parts that do not contain sensitive information 
[85]. Nevertheless, even if a specific technology, such as Nginx, provides the option to compress only a portion of the data being 
trafficked [93], this capability cannot be used by many IoT applications because user information is used on practically every page. 
Thus, the common factor is applying encryption after compression. According to this principle and considering the possibility of an 
attacker injecting malicious code even before compression and encryption processes, exploiting Side-Channel compression attacks 
becomes feasible. Therefore, even considering the increasing presence of data compression in IoT applications, its use with encryption 
is not the best choice. Developing energy-efficient and lightweight data compression techniques that maintain robust data privacy, 
confidentiality, and security is an intriguing subject for further investigation. 

Impact of data compression on data analytics and machine learning algorithms in IoT-enabled WBSNs 

Data compression can significantly impact data analytics and machine learning algorithms in IoT-enabled WBSNs. WBSN sensors 
produce enormous volumes of data that monitor human physiological signals. Compression techniques can minimize the quantity of 
data that has to be transferred, processed, and stored, allowing quicker and more efficient data processing. 

Several studies had found that the classification accuracy and the performance of the machine learning algorithms did not degrade 
when they trained using the features extracted from compressed data. For example, Azar [11] indicates that by lowering the quantity of 
the data and the number of extracted features from the compressed data, machine learning algorithms can process the data more 
quickly and with fewer computational resources. Thus, the overall performance of the algorithms can be improved, resulting in better 
outcomes, faster data processing, and more effective decision-making [17]. This is especially valuable for applications like remote 
monitoring, anomaly detection, and predictive maintenance, where timely and accurate analysis is critical. In another study conducted 
by Barman et al., [18] the impact of compression on the performance of machine learning algorithms and data analytics in IoT-enabled 
WBSNs was evaluated. They found that the lossless compression methods can improve the accuracy of data analytics and lead to more 
accurate predictions. [18]. According to their study, this is due to the ability of compressed data to minimize noise and other artefacts 
caused during data transmission and storage. The authors in [29] believe that, with appropriate choice, data compression can 
dramatically decrease the quantity of transferred data with limited impact on machine learning methods. Moreover, a trade-off be-
tween compression ratio, error bound, and prediction accuracy should be considered. 

However, some studies [65,36] indicated that compression may negatively impact the performance of machine learning algorithms 
and data analytics. For instance, compression can introduce distortions or noise in the data, which may reduce the accuracy of the 
machine learning models [65]. Another negative impact of compression is that it increases the complexity of data analysis. Due to the 
lower quality of the data, machine learning methods may struggle to discover patterns and make predictions while analyzing com-
pressed data. This can result in longer processing times, increased complexity of data analysis, increased transmitted data points, and 
loss of data fidelity, leading to reduced system efficacy and accuracy [36]. 

One of the prime challenges of implementing data compression in WBSNs is to strike a balance between data quality, compression 
rate, and desired algorithm performance and accuracy level. Excessive compression rates may lead to a loss of information, resulting in 
erroneous data analysis and prediction [106]. On the other hand, meagre compression rates can result in reduced network throughput 
and increased power consumption. 

Impact of network topology and routing protocols on the performance of compression techniques in IoT-enabled WBSNs 

The performance of compression techniques in WBSNs is influenced by various factors, including network topology and routing 
protocols. Network topology refers to the way in which the sensors are interconnected to form a network, while routing protocols 
govern the way in which data is transmitted between sensors. 

The network topology determines the structure of the WBSN and the communication paths between the sensor nodes and the sink 
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node [17]. Designing an appropriate topology for WBSNs is critical for network reliability and energy efficiency [1]. Different to-
pologies, such as mesh, star, and hybrid topologies can significantly affect the performance of compression techniques. According to 
the study in [88], a star topology, where all nodes communicate directly with the sink node, can lead to increased energy consumption 
due to long-range transmissions. Their results show that the relation between the compression rate of the algorithm and nodes con-
sumption energy is not linear. For compression rates around 85%, the network lifetime is tripled. Since the damping is minimized 
proportional to the distance between the transmitter and the receiver, power consumption can be minimized by designing a topology 
with a large number of short-range hops instead of a smaller number of long-range hops [1]. As a result, the choice of network topology 
can have a significant impact on the performance of compression techniques in wireless sensor networks (WSNs). A well-designed 
network topology can lead to better compression ratios, lower energy consumption, and improved data quality. 

Routing protocols are responsible for determining the optimal path for data transmission from the source node to the sink node. 
Different routing protocols, such as Ad-hoc On-demand Distance Vector (AODV), Destination-Sequenced Distance Vector (DSDV), and 
Dynamic Source Routing (DSR) [44,45], have different routing metrics that can impact the performance of compression techniques 
[45]. The goal of routing is to ensure that data is transmitted efficiently and reliably, with minimal delay and energy consumption [73]. 
Depending on the routing protocol used, different data compression techniques may be more or less effective. For example, some 
routing protocols, such as data-centric routing, may require transmitting all data to a central node [66], while others may allow data to 
be transmitted directly between nodes. In the former case, data compression techniques such as lossless compression may be more 
effective, since they do not introduce any errors into the data. In the latter case, lossy compression techniques may be more appro-
priate, since they can reduce the amount of data transmitted while still maintaining acceptable levels of accuracy. Furthermore, the 
choice of a routing protocol can also affect the overall efficiency of the WBSN. For example, some routing protocols such as LTR [15], 
LTRT [94], and ETPA [67] may be designed to minimize the number of hops required to transmit data between nodes, while others 
[105,61,30,5] may prioritize energy efficiency. Depending on the goals of the WBSN, different routing protocols may be more 
appropriate. 

Review of data compression mechanisms in IoT-enabled WBSNs 

This section describes the main state-of-the-art data compression techniques, their advantages, differences, and shortcomings in 
IoT-enabled WBSN. 

Lossless data compression techniques in IoT-enabled WBSNs 

Several lossless compression mechanisms have been used in IoT-enabled WBSN, like Transform-based Compression, Huffman 
Encoding, Dictionary-based Compression, Data Chunking and TTTD, and Run Length Encoding. The aforementioned lossless 
compression mechanisms are comprehensively described and reviewed below. 

Transform-based compression techniques 
Transform-based compression techniques such as Discrete wavelet transform (DWT) and Wavelet Transform decompose a given 

signal into several sets, each of which is a time series of coefficients that describe the signal’s temporal evolution in the associated 
frequency band [52]. DWT is a mathematical transformation, which splits the signal into fine-scale data, referred to as detail co-
efficients, and rough-scale data, referred to as approximate coefficients [89]. The primary benefits of DWT are the time-frequency 
localization and multi-resolution representation feature for signals. The original time-series sketch can generally be reconstructed 
using the low-pass cut-off decomposition coefficients; the details are modelled by applying the middle-level decomposition co-
efficients; the remainder is usually treated as irregularities or noise [86]. With its hierarchical coefficients, DWT can encode the higher 
resolution of the original time sequence. Moreover, DWT may be computed in linear time, which is useful when working with massive 
datasets. However, standard techniques such as DWT do not work well when data are not correlated. 

Because an image is a two-dimensional signal, the two-dimensional counterpart of DWT is used. This involves low and high filters to 
the sample lines, row by row, and then transferring the result to the columns using the same filters. As a result, the image is split into 
non-overlapping multi-resolution sub-bands like LL, LH, HL, and HH. On the first level, an image is divided into four sub-bands, and 
these four sub-bands are then separated into two classes of DWT coefficients. The coarse-scale DWT coefficients are represented by LL, 
whereas the fine-scale DWT coefficients are represented by HL, LH, and HH. The LL contains low-pass data, whereas the other sub- 
bands include high-pass data (diagonal, vertical, horizontal, and orientation). The quantization is performed next to lower the 
number of bits necessary to display an image. Following that, entropy encoding is carried out [26,69]. Encoding in DWT is carried out 
using an arithmetic encoder. Unlike other coder schemes, this one entirely encodes the original message and accepts it as a single 
integer [86]. 

Several studies applied DWT in their compression schemes. For instance, Azar et al. [13] proposed a lossless compression mech-
anism based on the DWT expanded with polynomial interpolation. The proposed mechanism aims to decrease the size of the gathered 
data to be transmitted. The proposed method is a lossless transform method that does not need complicated mathematical compu-
tations and additional memory space. The DWT was applied to transform the duplicative samples in the spatial domain to de-correlated 
coefficients in the time-frequency domain, where the initial samples are represented and compressed with fewer coefficients. 

A mechanism referred to as Lifting Wise has been presented by Aboelela [4]. The LiftingWise technique is a modified version of the 
original DWT Lifting Scheme (LS) algorithm that can be used for any dataset regardless of its size. In contrast, the original LS is used for 
a signal of length 2n. Their approach processes data from objects deployed in a monitoring environment using Haar wavelets. The 
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findings demonstrated that their approach reduced the number of bits in gathered data while considering the restricted resources of 
sensors. 

Hussein et al. [44] proposed an adaptive compression algorithm based on compressive sensing (CS) and DWT techniques to 
compress EEG signals. The proposed approach uses the receiver feedback signals to swap among the two techniques (CS and DWT) 
depending on the hardware specifications and the application demands to build an energy-efficient and low-complexity system. The 
suggested approach reconfigures the compression ratio of the used compression paradigm at run-time based on the channel condition, 
reducing overall distortion. 

Huffman encoding algorithm 
Huffman encoding is a bit-encoding method that assigns smaller bit strings to more frequently occurring symbols [75]. Huffman 

may need a lookup table or an array of frequencies per character in the dataset as input. A test dataset can be used to compute the 
frequency. Huffman codes are the codes created by this method. ASCII codes store characters in files, each character taking up precisely 
one byte. This code has a defined length. The Huffman algorithm allocates codes to characters based on the number of repentances in 
the file, giving the shortest code to the most frequently used characters [39]. 

Huffman algorithm has been applied in a study by Khani and Shirmohammadi [50]. Their study proposed a compression method 
named "Ultra Energy Efficient Lossless Compression (UEELC)". UEELC applied several phases to convert each string to a small code. 
Every input string is transformed to its ASCII counterpart in the first step, and the yielded ASCII code is restored to its binary code. After 
that, the number of ones and zeros in the generated binary code is calculated to pick an ideal traversal. In the last phase, the binary 
code is traversed optimally, resulting in the compression method’s output. Their findings showed an improvement in energy con-
sumption by 2.7% compared with other state-of-the-art techniques. 

Chen [24] proposed a design of a lossless EEG compression circuit to improve the effectiveness of EEG signal transmission via 
WBAN. Their design was built based on a tri-stage entropy encoder, a voting-based scheme, and an adaptive fuzzy predictor. The 
tri-stage entropy encoder comprises "two-stage Golomb-Rice" encoders and Huffman with a static coding table with multiplexer 
components and a simple comparator [24] 

Run length encoding algorithm 
Run-length encoding (RLE) is a relatively naive data compression method where data sequences (referred to as a run, a repeating 

string of characters) are saved in two elements: the count and a single data value instead of the original run [39]. In other words, RLE is 
a method that codes symbols/characters replicated in a sequence only once. For example, the input of "WWWWWWBBBWWWB" 
generates an outcome as "6W3B3W1B" when passed via the RLE algorithm. RLE works well if an input has many repeated characters, 
like a line graph image where the color of pixels in the background is the same [75]. 

In WBSNs, RLE can be employed to improve the bit-compressing rate of biomedical signals. Such an approach got some echo in the 
literature as the study conducted by Sarma and Biswas [80]. Their study presents a lossless compression scheme deepening on Golomb 
Rice and RLE encoding to improve the bit compressing rate. The proposed scheme was tested on the MIT-BIH arrhythmia database, 
attaining a compression ratio of 2.91. The compression method starts by calculating the first derivative from ECG signals. From the 
calculated first derivative samples, an 8-packet size is chosen. The packet size is calculated by determining and computing the mean 
value of several ECG parts, such as the high-amplitude QRS zone. The mean of the chosen sample size may contain fast fluctuations in 
amplitude induced by noise. To further minimize the amplitude, a division process is conducted by picking the appropriate divisor. The 
proper divisor is chosen by subtracting the mean of every packet from the first derivative. Their findings achieved a 6% reduction of the 
transmission power compared with uncompressed ECG for a 1-minute transmission period. 

Dictionary-based compression techniques 
Many lossless compression techniques have been proposed for text data. One prominent example is the Lempel-Ziv Welch (LZW) 

algorithm, which generates a dictionary dynamically for encoding new strings depending on formerly disclosed strings [101]. The LZW 
algorithm was proposed in 1984 by Terry Welch. LZW was enhanced ground on the L78 and LZ77 compression algorithms [47]. 
Without prior likelihood data, the encoder creates an adaptive dictionary representing varying-length strings. The same dictionary is 
dynamically constructed in the encoder by the decoder based on the incoming code. Some characters/symbols frequently appear 
together in text data. These characters can be memorized by the encoder and represented in a single code. According to Badshah et al. 
[14], LZW converts a sequence of characters from a lookup table to a code. The lookup table comprises 0-255 codes that are first 
employed to represent single bytes, and when LZW scans the data, it adds more codes and symbol sequences. 

The LZW technique is computationally simple and has no transmission overhead. Because both the transmitter and the receiver 
contain duplicate initial entries in the dictionary, and all new entries can be derived from the input data stream and the existing 
dictionary entries, the receiver may create on the fly the whole dictionary while receiving the compressed data [19]. Based on the 
above observation, the work conducted by Sadler and Martonosi [79] creates an S-LZW algorithm for data compression in WBSNs. 
S-LZW points out that the decoder should receive all prior items in the block to decode a dictionary item in the LZW algorithm. 
Nevertheless, S-LZW recommends breaking the data stream into tiny, independent blocks because packet loss is prevalent in WBSNs. 
As a result, if a packet is missed due to interference or collision, S-LZW may ensure that this packet only impacts the packets following it 
in its block. Their study outcomes suggest adopting a dictionary with a length of 512 entries to fit the short memory of sensor nodes. 
Moreover, they also recommend compressing the sensor data into blocks of 528 bytes to earn a better performance. 
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Data chunking and TTTD algorithm 
Data Chunking is mainly employed in data deduplication systems to minimize storage costs by deduping data in files. The algorithm 

divides data into smaller pieces known as ’chunks’ during data chunking. After that, the chunks are fingerprinted and utilized to detect 
other duplicates. The most common way of data chunking, known as "Fixed size chunking", is to divide the input into equal, fixed-size 
chunks. Nevertheless, data chunking has several significant drawbacks, such as the "Boundary Shift problem" and considerable 
variation in chunk size [75]. 

Hybrid lossless data compression techniques 
Combining multiple lossless methods carried much attention in scientific research to enhance the performance and the compression 

ratio. Raju et al. [75] pointed out that combining multiple losses algorithms (TTTD with Huffman) leads to a substantial reduction in 
transmitted sensor data and a significant saving on transmission power. Their study proved that implementing Huffman and TTTD in 
succession enhances the compression factor significantly against both Huffman and TTTD. Two WBSN datasets were used for per-
formance evaluation. Their proposed approach outperformed all individual methods but with a slight boost in compression time. 

Harb et al. [37] proposed a data compression mechanism by utilizing the temporal correlation in the gathered data. The proposed 
technique is designed depending on the "simple and computationally efficient 1-D DWT" through the "lifting scheme" and the "Dif-
ferential Pulse Code Modulation (DPCM)". 

Ghosh et al. [31] proposed a real-time encoding system that implements wavelet coefficient approximation and iterative thresh-
olding for sparse encoding of bio-signals (ECG signals) to decrease the WBSN’s bandwidth and energy usage. They employed the 
Wavelet Transform Based Iterative Thresholding (WTIT) method to extract the high-frequency components of the ECG signal. The 
WTIT assigned a lower approximation for higher-level coefficients and a high estimated value for lower-level coefficients. The process 
is repeated until it achieves greater sparsity in the ECG signal while preserving the higher frequency components. After that, the 
Huffman algorithm was applied to encode sparse WTIT coefficient matrices in terms of non-zero values before transmission. In the end, 
the receiver applies inverse wavelet modification and Huffman decoding on the received signal for time domain representation. [31] 

Mohammadi et al. [64] proposed a hybrid scheme combining two lossless compression techniques, Lempel-Ziv-Welch (LZW) and 
Huffman encoding. They applied a binary information arrangement between LZW and Huffman algorithm such that integrating binary 
information achieves an information mapping fully for each piece of information. [64] 

Other lossless data compression techniques 
A data compression technique for WBSN was proposed by Wu et al. [103]. The proposed mechanism was developed by considering 

the opportunity of overhearing transmissions between the sensor nodes connected to the patient body. The authors also noted that the 
compression could be facilitated by spatial correlations and strong temporal between accelerometer readings collected during the 
body’s movement. According to this mechanism, every sensory node samples its data overhears neighboring node transmissions, 
compresses the data, and transmits it. The spatial and temporal correlations are modeled through linear regression and differential 
coding. An offline method was presented to learn those correlations and adjust model parameters. 

Elsayed et al. [28] investigated the use of the Walsh transform in conjunction with "moving average filtering (MAF)" for data 
compression in WBSNs. They applied the Walsh transform to analyze patients’ actual electroencephalogram (EEG) data. Their pro-
posed scheme passes the EEG signal to a parameter optimization block that determines the compression parameters like suitable 
compression ratio and filter length, depending on the chosen application. Walsh transform was used to compress the EEG data, whereas 
the MAF was applied to smooth the data and improve its performance. After that, the EEG data is quantized and sent via a wireless 
channel to the destination. It assesses the channel quality and feeds it back to the sender to adjust its compression ratio. Their results 
show that employing MAF with Walsh transform improves compression ratio up to 30% higher than DWT. In a similar study, 
Al-Nassrawy et al. [8] proposed a lossless fractals compression scheme to reduce the transmitted EEG data from the gateway cloud. The 
proposed method enhances data communication in WBSNs by lowering data traffic across the network. 

In another study, Şişman et al. [90] proposed a data compression technique for electrocardiogram (ECG) signal. Their proposed 
method transmits the successive samples as one octet, whereas the exceeding portion of the data is transmitted with unique codes as 
two octets when the data doesn’t suit into 8 bits. Because the suggested method comprises elementary arithmetic operations, it can be 
used in even the most basic microcontrollers. 

According to Breiholz et al. [23], integrating an accelerator into a transmitter interface decreases the system power and lower user 
overhead. To tackle this issue, the authors proposed a low-complexity compression algorithm for ECG data compression. The algorithm 
is implemented on a health monitoring system as a hardware accelerator. The transmitter cycle is lowered by 3.7x, and the total system 
power is reduced by 2.9x, increasing the sensor node’s lifespan. 

Arulprakash et al. [9] proposed Self-Executing-Dynamic Cross-Propagation Clustering (SE-DCPC) method to reduce node energy 
usage by putting nodes into the accessible state when not in use and reawakening them when necessary. According to their method, the 
clusters are constructed of nodes with higher energies that send packets more sophisticatedly than nodes with lower energies. Root 
nodes are nodes with plenty of power. The root node transmits a data packet to demonstrate that the destination has arrived through 
the root node. A node that requires traditional energy to carry the packets from the cache forwarding node and broadcasts an active 
packet has hit its initial high threshold energy level. This guarantees that the recently found root node is likewise aware of the leaf 
node’s root. 

Mohamed et al. [63] presented a data compression method to eliminate data redundancy and reduce energy consumption. To 
accomplish this objective, their proposed method makes use of temporal and spatial correlations. Various mathematical equations such 
as Cross-Correlation, Average, Median, Min, Max, Count, and Sum are used. Additionally, a cross-correlation function based on three 
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multivariate physiological signals was employed. The control node combines the extracted characteristics sent to it into a single unit 
named during the assembly stage. The features are then XORed after being regrouped using a sum transaction modulo. The results of 
this process are forwarded to the base station. 

Lossy data compression techniques in IoT-enabled WBSNs 

Lossy compression is a type of compression where some data are lost from the original message sequence [86]. Lossy compression 
techniques are usually used to compress audio, video, and images [52]. Accordingly, the compressed sequence cannot regenerate the 
original sequences. The output quality isn’t necessarily lower just because some data is lost. For instance, random noise usually has 
extremely high data content, yet we would normally be content to ignore it if it is present in a sound file or an image. Additionally, 
certain losses in sound or images may be so subtle that a spectator would never notice them (e.g. the loss of too high frequencies). 
Consequently, lossy compression methods on photos may frequently achieve a more excellent compression ratio by a factor of two than 
lossless techniques with an imperceptible loss in quality [56]. Nevertheless, it’s crucial to ensure that quality declines in a way that the 
viewer will find the least offensive when it does start to become noticeable (e.g., losing random pixels is presumably more undesirable 
than losing some color data). 

To compress microclimate data, Schoellhammer et al. [81] proposed a straightforward lossy temporal compression technique 
known as "Lightweight Temporal Compression (LTC)". The authors demonstrated that the LTC performs similarly to wavelet 
compression and LZW, consumes minimal CPU and needs very little storage. It is appropriate for low-power devices. In a similar study, 
Azar et al. [11] used a rapid error-constrained lossy compression on aggregated data before transmission. They use a short 
error-bounded lossy compressor on the acquired data before transmission, considered the largest energy user in an IoT device. In a 
subsequent step, they reconstruct the transmitted data on an edge node and process it with supervised deep-learning techniques. 

Yu et al. [109] proposed an accelerometer lossy data compression for WBSN to monitor and assess the stroke patients’ upper "limb 
motor" status. The presented data compression aims to lower the quantity of data during transmission and sampling. Their findings 
indicated that raw accelerometer signals might be reduced and replicated adequately for automated categorization using the sink 
node. 

Natarajan and Vyas [70] investigated the feasibility of compressing continued bio-signals in a WBSN. A "binary permuted block 
diagonal matrix encoder" was applied in compressing photoplethysmogram and electrocardiogram data. The sink node automatically 
sets compression settings to respond to the detected signals’ sparsity levels and dispatches the parameters to the sensor node. 

In another study, a new technique for the compression of electrocardiogram data was proposed by Huang et al. [41]. the proposed 
method was designed depending on feature dictionary construction and empirical mode decomposition. The proposed mechanism was 
designed to compress the data transferred from a wearable node. Their results have shown that the proposed compression method can 
attain a high compression ratio by employing self-similarities and inheriting properties of the observed signals. 

Data compression based on machine learning in IoT-enabled WBSNs 

Machine learning methods are increasingly being adopted throughout a vast amount of our computing infrastructure, ranging from 
IoT and mobile devices to data centers. As a result, there is an increasing demand for efficient and fast machine-learning mechanisms. 

Recent enhancements in statistical machine learning have enabled compression algorithms to be learned end-to-end from data 
utilizing sophisticated generative models like generative adversarial networks, probabilistic diffusion models, variational autoen-
coders, and normalizing flows [107]. Data compression seeks to minimize the number of bits required to represent valuable infor-
mation. To achieve this goal, neural networks and machine learning techniques can be applied for data compression, known as neural 
or learned compression [87,107]. Learning-based data compression can ease the optimization and development of data compression 
techniques in a data-driven manner. This is especially beneficial for novel or domain-specific data types, such as scientific data or 
VR/AR content when designing native codecs would otherwise be prohibitively expensive. Indeed, learned compression is used for 
emergent data forms such as implicit 3D surfaces [95], point clouds [42,74], and neural radiance fields [22]. The combination of 
machine learning with Lossless compression seeks to represent data with as few bits as feasible so that it can be perfectly reconstructed. 
The basic idea is to create a probabilistic model of the data and then feed its probabilities into an entropy coding method, which turns 
data into compact bit-strings [107]. Current research in neural or learned compression is heavily inspired by the advent of deep 
generative models, such as generative adversarial networks (GANs) [34], VAEs [78], normalizing flows[54], and autoregressive 
models[100]. 

Compression and machine learning are inextricably linked. For optimum data compression, a system that anticipates the posterior 
probability of a sequence based on its complete history is employed (via applying arithmetic coding on the output distribution) [20]. 
This comparability has been applied to justify employing data compression as a "universal intelligence". For instance, Azar proposed an 
error-bound lossy compression strategy for IoT-Edge applications in healthcare based on deep machine learning [10]. Their technique 
combines the SZ with the discrete wavelet transform lifting method, which can manage multivariate and univariate time series. They 
apply deep learning approaches for data compression at the edge level to eliminate damaged zones and time series filtering [10]. 

In another study, Vadori [99] Proposed a lossy compression technique for wearable devices. Their proposed method uses a 
dictionary-based methodology in which the dictionary is adjusted and learnt at runtime to reflect the physiological signals of the 
individual wearing the device. This is accomplished using time-adaptive self-organizing maps, which are modern neural network 
models with continuous adaptability and learning capabilities. The presented mechanism employs the unsupervised learning meth-
odology of the time-adaptive self-organizing map (TASOM) to generate a "subject-adaptive codebook" for the vector quantization of a 
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signal. The codebook is obtained and then dynamically refined in real time without prior knowledge of the signal [99]. 

Hybrid data compression techniques in IoT-enabled WBSNs 

Hybrid compression methods combine lossless and lossy compression techniques to achieve a high compression ratio while 
maintaining the quality of the reconstructed data [82]. Hybrid compression approaches can increase compression quality by applying 
various algorithms to different sections of a data stream [60,16]. For example, one method may perform better on text data than 
another that works better for image data. 

Several researchers were interested in combining lossy with a lossless compression to boost compression capabilities. For instance, 
Giorgi [32] combined Huffman coding with LTC to compress the electrocardiography signal and lower the transmitted data in WBSNs. 
In their work, a zero-latency predictive filter based on differential pulse code modulation is the foundation for the lossy stage. Values 
that exceed a certain tolerance level are chosen for transmission to a central node. To further eliminate data redundancy, a lossless 
compression method based on a modified exponential Golomb code that is solely dependent on the resolution of the analogue to digital 
converter (ADC) is used. Their findings demonstrate that even when shallow values of the maximum tolerable error are considered, 
suitable results may be obtained by combining a lossy and lossless stage. 

Huang et al. [43] combined lossy compression into the lossless compression framework to improve compression efficiency in 
WBSNs. First, the actual bearing vibration signal is divided into two parts with distinct energy characteristics using the discrete cosine 
transform. Depending on the data features, several specially created schemes are then used for data encoding. The original signal can 
be fully recovered because the compression approach doesn’t lose any data. 

In another study, Azar et al. [12] presented an adapt lossy "Lightweight Temporal Compression" algorithm and integrated it with 
the "lossless Differential Pulse Code Modulation" algorithm to acquire a high level of compression and lower the data reconstruction 
error rate. 

Abdulzahra et al. [3] presented a hybrid compression method that operates at the IoT sensor node level. The proposed method has 
two compression stages: a lossy SAX quantization stage that decreases the dynamic range of sensor data readings, followed by a lossless 
LZW compression that compresses the lossy quantization output [3]. 

Performance analysis of data compression algorithms in IoT-enabled WBSNs 

The compression algorithm’s performance is measured by how much data is reduced. Other factors besides compression perfor-
mance may determine a compression algorithm’s suitability for an application. Throughput, latency, size, and power consumption are 
examples. Most designers seeking a hardware implementation of a compression algorithm are attempting to attain throughputs that 
are too high for an effective CPU implementation or trying to minimize system latency or power consumption. 

Performance measures 

The following metrics were used to assess the performance of the reviewed data compression mechanism:  

a) Compression Ratio 
The compression ratio is a ratio, percentage, or fraction representing the data size difference before and after compression. The 

higher the compression ratio, the better the resulting data compression.  
b) Energy Saved due to Minimized Transmission 

This criterion estimates how much each algorithm’s compression ratio affects transmission reduction.  
c) Energy Consumption (during Data Compression) 

This norm evaluates the power consumed when compressing data.  
d) Net Energy Saved 

Net Energy Saved is the difference between the energy consumed during data compression and the energy saved due to mini-
mized transmissions. It is a critical determinant of appropriate algorithms for various applications in WBSNs.  

e) Data Types (Single/Multiple) 
This criterion determines whether a compression algorithm is employed for single or multiple data types for each node  

f) Energy Efficiency 
Energy efficiency refers to the ability of the network to perform its functions while minimizing energy consumption.  

g) Reliability 
This criterion refers to the ability of the compression algorithm to accurately compress the data while maintaining the integrity of 

the original data. The reliability can be evaluated by measuring the compression ratio and the distortion, and using error correction 
codes to improve the accuracy of the compressed data.  

h) Scalability 
Scalability refers to the ability of the compression algorithm to handle large amounts of data generated by a growing number of 

sensors in the network without compromising the efficiency and accuracy of the compression process. The scalability can be 
measured based on several factors, such as compression ratio, compression time, communication overhead, network throughput, 
and resource utilization. 

I. Nassra and J.V. Capella                                                                                                                                                                                           



InternetofThings23(2023)100806

12

Table 1 
A comparative analysis of Lossless data compression technique  

Technique Compression 
Ratio 

Complexity Energy 
Consumption 

Energy Saved: Minimized 
Transmission 

Net Energy 
Saved 

Energy 
Efficiency 

Data Type Reliability Scalability 

Azar et al. [13] 90% O(n log n) Low 45% 62.38% Moderate Single High High 
Aboelela [4] NA O(n) NA NA NA NA Single Moderate Low 
Hussein et al. [44] Depend on SNR Low cost High Yes Yes Low Single Moderate Moderate 
Khani and Shirmohammadi  

[50] 
NA Low cost Moderate 25% 2.7% Low Single Low Low 

Chen [24] 14.6% Low cost Moderate NA 54.77% Moderate Single Moderate Low 
Sarma and Biswas [80] 2.91 Low cost Moderate 55.55% 6% Low Single Moderate Low 
Sadler and Martonosi [79] 39.7% Low cost Moderate NA 16% Moderate Single Low Moderate 
Raju et al. [75] >50% NA Moderate 76.47 30.51 Moderate multiple Moderate Moderate 
Harb et al. [37] 75% - 89% NA Low NA NA Moderate Single High Moderate 
Ghosh et al. [31] NA O(n) Low NA 96% High Single Moderate Moderate 
Mohammadi et al. [64] 37.85% NA Moderate NA NA Low Single Moderate Moderate 
Wu et al. [103] 35% Low cost Moderate NA NA Low multiple Moderate Moderate 
Elsayed et al. [28] up to 30% NA Moderate Yes Yes Low Single Moderate Low 
Al-Nassrawy et al. [8] Depend on SNR NA High Yes Yes Low Single Moderate Moderate 
Şişman et al. [90] 19.4% Low cost Moderate NA NA Low Single Low Low 
Breiholz et al. [23] 24% Low cost Moderate NA NA High multiple Low Low 
Arulprakash et al. [9] NA Low cost Moderate 95% 37% Moderate Single Moderate Low 
Mohamed et al. [63] NA NA NA NA 87.32% High Single Moderate Moderate  
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Performance analysis and evaluation 

This section provides a detailed evaluation and performance analysis of the studied techniques and methods based on the criteria in 
section 7.1. A comparative analysis of the lossless and lossy data compression techniques is shown in Table 1 and Table 2, respectively. 
A comparative analysis of machine learning-based data compression techniques is shown in Table 3. Table 4 shows a comparative 
analysis of hybrid data compression techniques. Finally, a summary of the essential differences between lossless and lossy data 
compression techniques is shown in Table 5. 

Comparative analysis of different compression algorithms in terms of their suitability for specific data types 

IoT-enabled WBSNs generate a wide range of data, such as physiological data, motional data, environmental data, and multimedia 
data which have different characteristics and require different compression algorithms. This section presents a comparative analysis of 
different compression algorithms for specific types of data generated by IoT-enabled WBSNs (Table 6 summarizes the suitability of 
compression algorithms for specific data types):  

1. Physiological/Biomedical data: Physiological data such as EMG (Electromyography), EEG (Electroencephalogram), and ECG 
signals require high accuracy [58], and lossless compression techniques such as Lempel-Ziv-Welch (LZW), Arithmetic coding, and 
Huffman coding are suitable for such types of data. These algorithms can compress data without losing information, which is 
critical in patients’ diagnosis and monitoring. 

2. Motional data: Motion data like angular velocity, velocity, acceleration, are generated by sensors as gyroscopes and acceler-
ometers. These data are frequently noisy and include repetitive patterns. Dictionary-based compression algorithms such as LZ78 
and LZ77 can efficiently compress these kinds of data by exploiting the redundancy in the signal. Furthermore, transform-based 
compression algorithms such as Wavelet Transform and Discrete Cosine Transform (DCT) can also be employed to compress 
motion data.  

3. Environmental data: Environmental data such as air quality, humidity, and temperature data are generated by sensors that 
measure the environment’s parameters. These data are usually correlated and have seasonal trends. Transform-based compression 
algorithms such as Wavelet Transform and DCT are suitable for compressing environmental data, as they can efficiently capture the 
seasonal trends and correlations in data.  

4. Image/Multimedia data: Multimedia and image data captured by WBSNs are frequently enormous in size and require a significant 
amount of storage and high transmission bandwidth. Dictionary-based compression algorithms such as LZ78 and LZ77 can be used 
to compress such data types. 

Analysis and discussion 

Several compression methods were modified to fit the general applications of WBSNs. For instance, Azar et al. [13] and Wu et al. 
[103] concentrated on utilizing the advantage of spatial correlation in sensor data, but they targeted specific applications. By focusing 
on data-centric routing and aggregation, other researchers [9,37,81] attempted to take advantage of the Spatio-temporal correlation. 

Some researchers attempted to adapt existing methods to fit sensor networks, such as Saddler and Martonosi’s work [79] 
concentrating on LZW compression and some of its modifications intended for embedded systems. Their study demonstrates that while 
these techniques are appropriate for embedded systems, they are generally unsuitable for sensor systems. They investigated several 
compression methods, such as PPMd, bzip2, ZLib, and LZO. They concluded that such methods would not be appropriate for sensor 
networks since the usual RAM capacity in many sensor nodes is ten kilobytes. As a consequence, they suggested an approach based on 

Table 2 
A comparative analysis of Lossy data compression techniques  

Technique Compression Ratio Complexity Energy 
Consumption 

Energy Saved: 
Minimized 
Transmission 

Net 
Energy 
Saved 

Energy 
Efficiency 

Data 
Type 

Reliability Scalability 

Schoellha- 
mmer 
et al.  
[81] 

72.6 % - 91.8%, 
based on the 
nature of the 
dataset 

O(n) Low NA NA High Single Moderate High 

Azar et al.  
[11] 

1.33 NA Low 83% 27% Moderate multiple Moderate Low 

Yu et al.  
[109] 

Depend on SNR NA Moderate NA NA Low Single Low Low 

Natarajan 
and 
Vyas  
[70] 

23% NA Moderate yes 3% Moderate Single Moderate Low 

Huang et al.  
[41] 

around 25% Low cost Moderate yes NA Moderate Single Low Moderate  
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LZW termed S-LZW. 
Any compression algorithm in WBSNs should have low processing and low memory requirements while delivering real-time 

outputs. The compression algorithm should have an overall energy saving due to the strict resource constraints of most WBSN 
nodes (i.e. the extra power consumed by the processor performing the compression algorithm should not exceed the saved energy of 
wireless transmission). On-chip memory on WBSN nodes’ embedded CPUs is often limited to a few kilobytes and runs at speeds in the 
tens of megahertz. These limitations may restrict the implementation capability of many compression techniques. However, off-chip 
access time may be relatively long, and the additional resources (in particular power and area) may not be worth it, particularly in 
WBSNs with limited resources. In addition, many WBSN applications have considerably different features and requirements than the 
majority of WSN applications, including both static factors (such as fidelity requirements and high data rates) and dynamic parameters 
(e.g. channel conditions and rapidly varying data characteristics). 

According to the findings of the reviewed studies in this paper, lossy compression algorithms may increase compression ratios on 
smooth data with minimal information loss. Nevertheless, as the data get noisier, the data reconstruction error rises accordingly, and 
specific crucial characteristics are missing. To decrease the number of transferred bits and enhance the percentage of power savings, 
sensor nodes should use a compression technique with a high compression ratio. Similarly, it must have a low memory complexity/ 
computational time such that the energy saved by transferring the compressed data should be larger than the energy wasted by 
carrying out additional processing and computation. 

Many recent studies on sensor data compression have concentrated on lossy compression techniques since they often produce a 
compression ratio (CR) of 2-15 times greater than lossless techniques, which provide a CR of 1-3 times. In most circumstances, the 
quality of compressed data produced by lossy compression may be suitable for clinical use. Unfortunately, most nations’ medical 
regulatory regulations do not specifically support using lossy compression algorithms in commercial equipment [27]. This is due to 
whether such procedures can fully maintain all patient data of potential diagnostic value. 

As a result of these concerns, considerable work has lately been devoted to lossless approaches [27], which have achieved high 
energy efficiency and CR. Most of the existing data compression techniques have many limitations and challenges, such as fixed low 
compression ratio, involving complex algorithms that result in high energy consumption at the sensor level, or having a large 
reconstruction error when compared to original data, or all of them. 

Open research issues and future directions 

The aforementioned data compression techniques and many others proposed in the literature act sufficiently on stationary uni-
variate time sequences. However, many IoT devices currently contain more than one sensor and can gather multiple features. As a 
result, data compression methods that operate competently with multivariate time series are highly required. Most IoT devices today 
have numerous sensors and may collect various data. 

Accordingly, data compression schemes should be able to handle multisensory data on a single device. In real-time applications, the 
algorithm’s decompression time should be short. In other words, the data compression technique should adapt and act well across 
diverse healthcare applications and systems. The loss of data is not desirable, and the lossless compression mechanisms are preferable 
because textual data is highly available in the WBSN datasets. 

Table 3 
A comparative analysis of machine learning-based data compression techniques  

Technique Compression 
Ratio 

Complexity Energy 
Consumption 

Energy Saved: 
Minimized 
Transmission 

Net 
Energy 
Saved 

Energy 
Efficiency 

Data 
Type 

Reliability Scalability 

Azar [11] based on the 
nature of the 
dataset 

O(n log n) Low NA NA Moderate multiple Low Moderate 

Vadori  
[99] 

up to 70% Low cost Moderate NA 3.25%. Moderate Single Moderate Moderate  

Table 4 
A comparative analysis of Hybrid data compression techniques  

Technique Compression Ratio Complexity Energy 
Consumption 

Energy Saved: 
Minimized 
Transmission 

Net 
Energy 
Saved 

Energy 
Efficiency 

Data 
Types 

Reliability Scalability 

Giorgi [32] Up to 100% NA High NA NA Low Single Moderate High 
Huang et al.  

[43] 
59.01%  Low  Up to 

37.75% 
Moderate Single Moderate High 

Azar et al.  
[12] 

91% with smooth 
data, 63% with less 
smooth data 

O(n) Moderate NA up to 
95% 

Moderate Single Moderate Moderate 

Abdulzahra 
et al. [3] 

95% NA Low NA 90% High Single High Low  
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Table 5 
A summary of the essential differences between Lossless and Lossy data compression techniques  

Key Lossy compression Lossless compression 

Capacity Has a considerable data-holding capability. Has low data-holding capacity. 
Uses It is mainly used to compress images, video, and audio data. It primarily compresses text data, program code files, and other crucial data. 
Algorithm used Fractal compression, Discrete Wavelet Transform, Discrete Cosine Transform, Transform coding, etc. Run length encoding, Huffman Coding, Arithmetic encoding, Lempel-Ziv-Welch, etc. 
Size It significantly decreases the size of the data. It decreases data size, but only slightly less than lossy compression. 
Quality Lossy compression degrades quality. This results in some data loss. No quality deterioration happens. 
Restoration It is impossible to restore a data/file to its original state. A data/ file can be converted to its original state. 
Data Elimination Bytes that are deemed undetectable may be eliminated. With lossless compression, even unnoticeable bytes are preserved.  
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WBSNs generate data that can be highly variable over time. Compression techniques that can adapt to changes in data patterns and 
optimize compression performance dynamically are needed to ensure that the network can handle changing conditions and provide 
reliable performance. Furthermore, WBSNs generate different types of data, including text, images, and videos. Future research could 
focus on developing compression techniques that are optimized for specific types of data, to achieve better compression performance 
and minimize energy consumption. 

WBSNs are often used in sensitive applications, such as healthcare, where data security and privacy are critical. Compression 
techniques that can protect sensitive data and ensure that it cannot be accessed by unauthorized parties are needed to ensure the 
privacy and security of the network. 

In large-scale WBSNs, it may be necessary to distribute the compression workload across multiple nodes to reduce the commu-
nication overhead and energy consumption. Future research could explore distributed compression techniques that can be used in 
WBSNs to achieve better scalability and efficiency. 

Hybrid compression techniques that combine multiple compression techniques to improve performance and efficiency are an area 
of active research. By combining techniques such as lossless and lossy compression, or predictive and dictionary-based compression, it 
may be possible to achieve better compression performance and energy efficiency than with individual techniques alone. 

Conclusion 

Wireless Body Sensor Network (WBSN) is a vital component of the Internet of Things (IoT) that aids in collecting data from the 
body’s surface area. WBSN is a sort of wireless network where sensor nodes sense the body’s vital signs and transmit the sensed data to 
a base station. 

Data compression techniques are often employed to maintain the integrity of the observed data transmission. The primary purpose 
of the data compression mechanisms is to compress the data in a well-organized and cost-effective manner, lower traffic load, reduce 
power consumption, minimize delay, increase network lifetime, etc. Given that the wireless transmission of the obtained data con-
sumes most of the overall energy consumption in WBSN systems, data compression approaches are deemed an efficient method to 
improve the power efficiency of WBSNs. 

This paper presents a comprehensive literature review of data compression techniques of IoT-enabled WBSN systems, along with a 
critical analysis of each mechanism. This study shows an in-depth comparison of the methodologies, a systematic assessment of the 
selected articles, and recommendations for further research. 

Overall, the choice of data compression technique depends on the specific requirements of the WBSN application. For example, in 
applications where energy consumption is a critical concern, lossless compression may be preferred because it requires less compu-
tational overhead than lossy compression techniques. Conversely, in applications where storage capacity is a concern, lossy 
compression may be preferred because it can achieve higher compression ratios than lossless compression. 
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[93] M. Suárez-Albela, T.M. Fernández-Caramés, P. Fraga-Lamas, L. Castedo, A practical evaluation of a high-security energy-efficient gateway for IoT fog 

computing applications, Sensors 17 (9) (2017) 1978. 
[94] D. Takahashi, Y. Xiao, F. Hu, LTRT: Least total-route temperature routing for embedded biomedical sensor networks, in: IEEE GLOBECOM 2007-IEEE Global 

Telecommunications Conference, IEEE, 2007, pp. 641–645. 
[95] D. Tang, S. Singh, P.A. Chou, C. Hane, M. Dou, S. Fanello, J. Taylor, P. Davidson, O.G. Guleryuz, Y. Zhang, S. Izadi, Deep implicit volume compression, in: 

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 1293–1303. 
[96] G.B. Tayeh, A. Makhoul, D. Laiymani, J. Demerjian, A distributed real-time data prediction and adaptive sensing approach for wireless sensor networks, 

Pervasive Mob. Comput. 49 (2018) 62–75. 

I. Nassra and J.V. Capella                                                                                                                                                                                           

http://refhub.elsevier.com/S2542-6605(23)00129-4/sbref0052
http://refhub.elsevier.com/S2542-6605(23)00129-4/sbref0052
http://refhub.elsevier.com/S2542-6605(23)00129-4/sbref0053
http://refhub.elsevier.com/S2542-6605(23)00129-4/sbref0053
http://refhub.elsevier.com/S2542-6605(23)00129-4/sbref0054
http://refhub.elsevier.com/S2542-6605(23)00129-4/sbref0054
http://refhub.elsevier.com/S2542-6605(23)00129-4/sbref0055
http://refhub.elsevier.com/S2542-6605(23)00129-4/sbref0055
http://refhub.elsevier.com/S2542-6605(23)00129-4/sbref0056
http://refhub.elsevier.com/S2542-6605(23)00129-4/sbref0056
http://refhub.elsevier.com/S2542-6605(23)00129-4/sbref0057
http://refhub.elsevier.com/S2542-6605(23)00129-4/sbref0057
http://refhub.elsevier.com/S2542-6605(23)00129-4/sbref0058
http://refhub.elsevier.com/S2542-6605(23)00129-4/sbref0059
http://refhub.elsevier.com/S2542-6605(23)00129-4/sbref0059
http://refhub.elsevier.com/S2542-6605(23)00129-4/sbref0060
http://refhub.elsevier.com/S2542-6605(23)00129-4/sbref0060
http://refhub.elsevier.com/S2542-6605(23)00129-4/sbref0061
http://refhub.elsevier.com/S2542-6605(23)00129-4/sbref0062
http://refhub.elsevier.com/S2542-6605(23)00129-4/sbref0062
http://refhub.elsevier.com/S2542-6605(23)00129-4/sbref0063
http://refhub.elsevier.com/S2542-6605(23)00129-4/sbref0063
http://refhub.elsevier.com/S2542-6605(23)00129-4/sbref0064
http://refhub.elsevier.com/S2542-6605(23)00129-4/sbref0064
http://refhub.elsevier.com/S2542-6605(23)00129-4/sbref0065
http://refhub.elsevier.com/S2542-6605(23)00129-4/sbref0065
http://refhub.elsevier.com/S2542-6605(23)00129-4/sbref0066
http://refhub.elsevier.com/S2542-6605(23)00129-4/sbref0067
http://refhub.elsevier.com/S2542-6605(23)00129-4/sbref0067
http://refhub.elsevier.com/S2542-6605(23)00129-4/sbref0068
http://refhub.elsevier.com/S2542-6605(23)00129-4/sbref0068
http://refhub.elsevier.com/S2542-6605(23)00129-4/sbref0069
http://refhub.elsevier.com/S2542-6605(23)00129-4/sbref0069
http://refhub.elsevier.com/S2542-6605(23)00129-4/sbref0070
http://refhub.elsevier.com/S2542-6605(23)00129-4/sbref0070
http://refhub.elsevier.com/S2542-6605(23)00129-4/sbref0071
http://refhub.elsevier.com/S2542-6605(23)00129-4/sbref0071
http://refhub.elsevier.com/S2542-6605(23)00129-4/sbref0072
http://refhub.elsevier.com/S2542-6605(23)00129-4/sbref0072
http://refhub.elsevier.com/S2542-6605(23)00129-4/sbref0073
http://refhub.elsevier.com/S2542-6605(23)00129-4/sbref0073
http://refhub.elsevier.com/S2542-6605(23)00129-4/sbref0074
http://refhub.elsevier.com/S2542-6605(23)00129-4/sbref0074
http://refhub.elsevier.com/S2542-6605(23)00129-4/sbref0075
http://refhub.elsevier.com/S2542-6605(23)00129-4/sbref0075
http://refhub.elsevier.com/S2542-6605(23)00129-4/sbref0076
http://refhub.elsevier.com/S2542-6605(23)00129-4/sbref0076
http://refhub.elsevier.com/S2542-6605(23)00129-4/sbref0077
http://refhub.elsevier.com/S2542-6605(23)00129-4/sbref0077
http://refhub.elsevier.com/S2542-6605(23)00129-4/sbref0078
http://refhub.elsevier.com/S2542-6605(23)00129-4/sbref0079
http://refhub.elsevier.com/S2542-6605(23)00129-4/sbref0079
http://refhub.elsevier.com/S2542-6605(23)00129-4/sbref0080
http://refhub.elsevier.com/S2542-6605(23)00129-4/sbref0082
http://refhub.elsevier.com/S2542-6605(23)00129-4/sbref0083
http://refhub.elsevier.com/S2542-6605(23)00129-4/sbref0084
http://refhub.elsevier.com/S2542-6605(23)00129-4/sbref0085
http://refhub.elsevier.com/S2542-6605(23)00129-4/sbref0086
http://refhub.elsevier.com/S2542-6605(23)00129-4/sbref0087
http://refhub.elsevier.com/S2542-6605(23)00129-4/sbref0087
http://refhub.elsevier.com/S2542-6605(23)00129-4/sbref0088
http://refhub.elsevier.com/S2542-6605(23)00129-4/sbref0088
http://refhub.elsevier.com/S2542-6605(23)00129-4/sbref0089
http://refhub.elsevier.com/S2542-6605(23)00129-4/sbref0089
http://refhub.elsevier.com/S2542-6605(23)00129-4/sbref0090
http://refhub.elsevier.com/S2542-6605(23)00129-4/sbref0090
http://refhub.elsevier.com/S2542-6605(23)00129-4/sbref0091
http://refhub.elsevier.com/S2542-6605(23)00129-4/sbref0092
http://refhub.elsevier.com/S2542-6605(23)00129-4/sbref0092
http://refhub.elsevier.com/S2542-6605(23)00129-4/sbref0093
http://refhub.elsevier.com/S2542-6605(23)00129-4/sbref0093
http://refhub.elsevier.com/S2542-6605(23)00129-4/sbref0094
http://refhub.elsevier.com/S2542-6605(23)00129-4/sbref0094
http://refhub.elsevier.com/S2542-6605(23)00129-4/sbref0095
http://refhub.elsevier.com/S2542-6605(23)00129-4/sbref0095
http://refhub.elsevier.com/S2542-6605(23)00129-4/sbref0096
http://refhub.elsevier.com/S2542-6605(23)00129-4/sbref0096


Internet of Things 23 (2023) 100806

19

[97] Tuama, A.Y., Mohamed, M.A., Muhammed, A., Hanapi, Z.M., Mohamed, R.R. and Abu Bakar, K.A., 2018. Recent advances of data compression in Wireless 
Sensor Network. 

[98] A. Ullah, G. Said, M. Sher, H. Ning, Fog-assisted secure healthcare data aggregation scheme in IoT-enabled WSN, Peer-to-Peer Network. Appl. 13 (1) (2020) 
163–174. 

[99] Vadori, V., 2015. Biometric signals compression with time-and subject-adaptive dictionary for wearable devices. 
[100] A. Van den Oord, N. Kalchbrenner, L. Espeholt, O. Vinyals, A. Graves, Conditional image generation with pixelcnn decoders. Advances in Neural Information 

Processing Systems, 2016, p. 29. 
[101] Y.C. Wang, Data compression techniques in wireless sensor networks, Pervas. Comput. 61 (1) (2012) 75–77. 
[102] P.A. Williams, V. McCauley, Always connected: the security challenges of the healthcare Internet of Things. 2016 IEEE 3rd World Forum on Internet of Things 

(WF-IoT), IEEE., 2016, pp. 30–35, 119. 
[103] C.H. Wu, Y.C. Tseng, Data compression by temporal and spatial correlations in a body-area sensor network: a case study in pilates motion recognition, IEEE 

Trans. Mob. Comput. 10 (10) (2010) 1459–1472. 
[104] Y. Xiao, M. Watson, Guidance on conducting a systematic literature review, J. Plann. Educ. Res. 39 (1) (2019) 93–112. 
[105] L. Yadav, C. Sunitha, Low energy adaptive clustering hierarchy in wireless sensor network (LEACH), Int. J. Comput. Sci. Inf. Technol. 5 (3) (2014) 4661–4664. 
[106] R. Yang, X. Sun, Z. Liu, Y. Zhang, J. Fu, A numerical analysis of the effects of equivalence ratio measurement accuracy on the engine efficiency and emissions at 

varied compression ratios, Processes 9 (8) (2021) 1413. 
[107] Y. Yang, S. Mandt, L. Theis, arXiv preprint, 2022. 
[108] J. Yick, B. Mukherjee, D. Ghosal, Wireless sensor network survey, Comput. Netw. 52 (12) (2008) 2292–2330. 
[109] L. Yu, D. Xiong, L. Guo, J. Wang, A compressed sensing-based wearable sensor network for quantitative assessment of stroke patients, Sensors 16 (2) (2016) 

202. 
[110] A. Zeb, S. Wakeel, T. Rahman, I. Khan, M.I. Uddin, B. Niazi, Energy-efficient cluster formation in IoT-enabled wireless body area network, Computat. Intell. 

Neurosci. (2022) 2022. 
[111] C. Zhang, C.F. Lai, Y.H. Lai, Z.W. Wu, H.C. Chao, An inferential real-time falling posture reconstruction for Internet of healthcare things, J. Netw. Comput. 

Appl. 89 (2017) 86–95. 

I. Nassra and J.V. Capella                                                                                                                                                                                           

http://refhub.elsevier.com/S2542-6605(23)00129-4/sbref0098
http://refhub.elsevier.com/S2542-6605(23)00129-4/sbref0098
http://refhub.elsevier.com/S2542-6605(23)00129-4/sbref0100
http://refhub.elsevier.com/S2542-6605(23)00129-4/sbref0100
http://refhub.elsevier.com/S2542-6605(23)00129-4/sbref0101
http://refhub.elsevier.com/S2542-6605(23)00129-4/sbref0102
http://refhub.elsevier.com/S2542-6605(23)00129-4/sbref0102
http://refhub.elsevier.com/S2542-6605(23)00129-4/sbref0103
http://refhub.elsevier.com/S2542-6605(23)00129-4/sbref0103
http://refhub.elsevier.com/S2542-6605(23)00129-4/sbref0104
http://refhub.elsevier.com/S2542-6605(23)00129-4/sbref0105
http://refhub.elsevier.com/S2542-6605(23)00129-4/sbref0106
http://refhub.elsevier.com/S2542-6605(23)00129-4/sbref0106
http://refhub.elsevier.com/S2542-6605(23)00129-4/sbref0107
http://refhub.elsevier.com/S2542-6605(23)00129-4/sbref0108
http://refhub.elsevier.com/S2542-6605(23)00129-4/sbref0109
http://refhub.elsevier.com/S2542-6605(23)00129-4/sbref0109
http://refhub.elsevier.com/S2542-6605(23)00129-4/sbref0110
http://refhub.elsevier.com/S2542-6605(23)00129-4/sbref0110
http://refhub.elsevier.com/S2542-6605(23)00129-4/sbref0111
http://refhub.elsevier.com/S2542-6605(23)00129-4/sbref0111

	Data compression techniques in IoT-enabled wireless body sensor networks: A systematic literature review and research trend ...
	Introduction
	Related works
	Methods
	Systematic review process
	Review management and articles classification

	Background and basic concepts
	Internet of Things (IoT)
	Wireless body sensor networks

	Data compression in IoT-enabled WBSNs
	Overview
	Applications of data compression in IoT-enabled WBSNs
	Security and privacy challenges of data compression in IoT-enabled WBSNs
	Impact of data compression on data analytics and machine learning algorithms in IoT-enabled WBSNs
	Impact of network topology and routing protocols on the performance of compression techniques in IoT-enabled WBSNs

	Review of data compression mechanisms in IoT-enabled WBSNs
	Lossless data compression techniques in IoT-enabled WBSNs
	Transform-based compression techniques
	Huffman encoding algorithm
	Run length encoding algorithm
	Dictionary-based compression techniques
	Data chunking and TTTD algorithm
	Hybrid lossless data compression techniques
	Other lossless data compression techniques

	Lossy data compression techniques in IoT-enabled WBSNs
	Data compression based on machine learning in IoT-enabled WBSNs
	Hybrid data compression techniques in IoT-enabled WBSNs

	Performance analysis of data compression algorithms in IoT-enabled WBSNs
	Performance measures
	Performance analysis and evaluation
	Comparative analysis of different compression algorithms in terms of their suitability for specific data types

	Analysis and discussion
	Open research issues and future directions
	Conclusion
	Declaration of Competing Interest
	Data availability
	References


