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Abstract

Huntington’s disease (HD) is an inherited, dominant neurodegenerative disorder caused by

an abnormal expansion of CAG triplets in the huntingtin gene (htt). Despite extensive efforts

to modify the progression of HD thus far only symptomatic treatment is available. Recent

work suggests that treating invertebrate and mice HD models with metformin, a well-known

AMPK activator which is used worldwide to treat type 2-diabetes, reduces mutant huntingtin

from cells and alleviates many of the phenotypes associated to HD. Herein we report statisti-

cal analyses of a sample population of participants in the Enroll-HD database, a world-wide

observational study on HD, to assess the effect of metformin intake in HD patients respect

to cognitive status using linear models. This cross-sectional study shows for the first time

that the use of metformin associates with better cognitive function in HD patients.

Introduction

Huntington disease (HD, OMIM entry #143100) is a dominant, inherited neurodegenerative

disease caused by an abnormal CAG expansion within the first exon of the huntingtin gene,

htt. This gene encodes a cytosolic protein, huntingtin (Htt) whose function is still unclear,

although several roles have been suggested [1]. The CAG expansions found in HD patients

encode poly-glutamine tracts (polyQ) which consist of 36 or more Gln residues conferring

abnormal toxic properties on the huntingtin protein. Such mutant Htt (mHtt) tends to aggre-

gate both with itself and with other proteins thus perturbing both its own function and the

function of the other molecules [2]. Whether mHtt aggregation is cause or consequence of the

pathology is a matter of debate [3]. In any case, the resulting cellular function impairment has

a particular devastating effect in neurons resulting in their degeneration and cell death. Neuro-

nal loss causes chorea, which is one of the hallmarks of HD along with psychiatric phenotypes

and cognitive deterioration. The later can be identified in HD patients many years prior to

clinical diagnosis of motor-based changes [4,5,6,7].
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Adenosine monophosphate-activated protein kinase (AMPK) has shown potential as an

HD druggable target as its activation induces improved neuronal survival [8,9] and mHtt

clearance [8] in in vitro and in vivo models of HD. In some cases a neuroprotective effect has

been observed when AMPK activation is induced prior to the occurrence of substantial func-

tional alterations and cell death [8]. This is the case of models of early-stage HD such as Cae-
norhabditis elegans expressing polyQs [10] and striatal neurons from Hdh111Q mice [11].

Metformin is an antiglycemic drug commonly used for the treatment of type-2 diabetes that

has a well described AMPK activator effect, although it also has other targets [12,13]. Experi-

ments in several systems suggest that metformin might have a beneficial effect on HD mod-

els. In a C. elegans model in which worms express toxic polyQs in neurons, the presence of

metformin reduced neuronal impairment [8]. Furthermore, incubation of striatal cells from

Hdh111Q mice in metformin reduced cell death [8]. Finally, in the in vivo R6/2 mouse model

of HD, male mice treated with metformin had a significantly prolonged survival time [9]. In

contrast, over activated forms of AMPK have been found in brain tissue of HD patients

together with data from in vitro and in vivo models [14,15] suggest that AMPK activation

during late stages of HD may have deleterious effects, so that AMPK may be best considered

as a target to treat HD during early phases of the disease.

Cognitive deterioration can be used as a hallmark of the progression of HD pathology, and

hence any observed improvements in cognitive symptoms after a given treatment should

reflect some degree of neuronal protection. Based on our previously published data [16], we

hypothesized that metformin intake might ameliorate neuronal function, and by extension

reduce cognitive decline, in HD patients. A significant number of HD patients, also suffering

from type 2 diabetes, have been prescribed metformin. This data is available in the Enroll-HD

cohort, which is a worldwide observational study on HD. We therefore explored the existence

of an association between metformin intake and cognitive performance in HD individuals by

analyzing the Enroll-HD by statistical means. Using linear regression models we have observed

an association between metformin use and better cognitive results in different cognitive test,

suggesting that metformin may improve cognitive symptoms in HD patients.

Results

Clinical characteristics of the sample

Enroll-HD is a world-wide observational study on HD which derives from the integration of

two existing HD observational studies: REGISTRY (Europe) and COHORT (North America

and Australia). The database includes in-depth clinical records which are collected following

finely stablished methods, so the records form different hospitals and countries can be treated

homogeneously. The database cohort includes HD patients disease together with pre-manifest

carriers of the mutant allele of the htt gene (people with 36 or more CAG triplets), and con-

trols. This database also contains detailed information about educational status, drug abuse

habits, health conditions (others than HD), medication etc. Regarding HD, Enroll-HD con-

tains a wide range of motor and cognitive tests. We have analyzed on a cohort of Enroll-HD

manifest HD patients using linear models, to compare cognitive function between users and

non-users of metformin.

Our sample consisted of a set of 7000 individuals from the Enroll-HD cohort (those who

had their pharmacologic treatments registered). Of these, 4345 (62.1%) were manifest HD,

1271 (18.2%) were pre-manifest and the remaining 1384 (19.7%) were controls. 7.4% of

controls and 2.8% of HD patients were prescribed metformin to treat their type 2 diabetic con-

dition, which is independent of HD. Insulin-dependent diabetics do not regularly use metfor-

min and their pathology has different molecular basis than type 2 diabetes, so they were
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excluded from this analysis. The proportions of type 2 diabetic individuals among the groups

of people in the Enroll-HD database were within the expected range for Western populations

[17]. The age profile of the two groups (controls and patients) was similar, although metformin

users were 5–10 years older on average. With respect to HD’s status, of those carrying a mutant

allele (i.e. >35 CAG triplets) 64.8% (4345) were at the motor-manifest stage (Table 1) and

were included in our analysis. The average number of CAG repeats in the carrier population

was 43.6 (Table 1). As expected, patients at the motor-manifest stage displayed lower scores in

all cognitive tests and also higher values in the UHDRS motor score compared to both carriers

at the pre-manifest stage and non-carrier individuals (Table 2). The latter two groups showed

similar scores (Table 2). In the control group, the people taking metformin, to treat their type

2 diabetic condition, showed worse cognitive scores than non-metformin users, which suggest

that type 2 diabetes has negative consequences on cognitive function in the control population.

This is in agreement with previous literature that shows that type 2 diabetes has a deleterious

effect over cognitive function (reviewed by Zilliox and coworkers [18]). In contrast, amongst

HD patients who were at the motor manifest stage of HD, metformin users, which also were

type 2 diabetics, had slightly better cognitive scores than non-metformin users (Table 2).

HD patients that take metformin show better scores in cognitive tests

In the Enroll-HD study, the assessment of cognitive function used specific neuropsychological

tests to assess different domains of cognitive function. Executive function was assessed using

Verbal Fluency, Trail Making (Part B), and Stroop-interference tests. The working memory

and attention of patients and controls was investigated using Symbol Digit Modalities Test.

Finally, the processing speed was checked using Stroop-Word Reading and Stroop-Colour

Naming tests.

To evaluate the potential association between use of metformin and ameliorated cognitive

function among HD patients, the optimal analysis would have consisted in comparing HD

individuals taking metformin against HD individuals not taking metformin. Unfortunately,

this comparison was not feasible with the Enroll-HD database since both groups were not

Table 1. Description of the population analyzed from the Enroll-HD database.

Non-HD individuals (n = 1384) HD patients (n = 5616)

No metformin (n = 1282) (No

diabetes)

Metformin (n = 102) (Type 2

diabetes)

No metformin (n = 5456) (No

diabetes)

Metformin (n = 160) (Type 2

diabetes)

Genotype

negative

(n = 644)

Family

control

(n = 638)

Genotype

Negative

(n = 37)

Family control

(n = 65)

Pre- Manifest

(n = 1232)

Motor-

Manifest

(n = 4224)

Pre- Manifest

(n = 39)

Motor-

Manifest

(n = 121)

Age 45.6 (14.47) a 46

(34, 56)

56.09 (11.72)

58 (49, 64.5)

52.97 (12.92) 53

(44, 63)

61.97 (10.38)

63 (55, 69)

41.82 (11.9) 41

(33, 51)

53.32 (12.56)

54 (45, 62)

49.77 (13.05)

50 (38.5, 58)

59.39 (10.92)

59 (52, 68)

Sex

Female

Male

470 (73.0%) 174

(27.0%)

395 (61.9%)

243 (38.1%)

24 (64.9%) 13

(35.1%)

23 (35.4%) 42

(64.6%)

813 (66.0%)

419 (34.0%)

2198 (52.0%)

2026 (48.0%)

26 (66.7%) 13

(33.3%)

58 (47.9%) 63

(52.1%)

Body

Mass

Index

27.67 (6.44)

26.5 (23.4, 30.8)

28.88 (6.16)

28 (24.7, 31.6)

36.05 (8.09)

34.6 (31.6, 39)

34.04 (6.39)

32.7 (29.62,

37.78)

26.8 (5.6) 25.8

(22.75, 29.8)

25.04 (5.1) 24.3

(21.6, 27.58)

33.06 (6.54)

32.4 (28.4,

36.5)

29.5 (6.05)

28.85 (25.1,

32)

ISCED b 4.03 (1.14) 4 (3,

5)

3.89 (1.19) 4

(3, 5)

3.27 (1.41) 3 (3,

4)

3.75 (1.24) 4

(3, 5)

3.91 (1.13) 4

(3, 5)

3.37 (1.23) 3 (2,

4)

3.85 (1.11) 4

(3, 5)

3.31 (1.35) 3

(2, 5)

CAG

repeats

20.22 (3.66) 19

(18, 22)

20.05 (3.41)

19 (17, 22)

20.65 (3.03) 21

(18, 22)

20.15 (3.83) 19

(17, 22)

42.29 (2.72) 42

(41, 43)

44.03 (3.95) 43

(42, 45)

40.87 (2.12) 41

(39.5, 42)

42.34 (2.33) 42

(41, 43)

a Data are presented as mean (SD) and median (1st, 3rd quartile).
b International Standard Classification of Education promoted by UNESCO to standardise.

https://doi.org/10.1371/journal.pone.0179283.t001
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comparable as metformin users were all diabetic and diabetes is known to negatively affect

cognitive test results (reviewed by Zilliox and coworkers [18]). A doubled blind placebo con-

trolled clinical trial using metformin, in non-diabetic HD patients, would be required compare

HD patients taking metformin vs not taking.

Thus, we designed the reasonable alternative to analyze the data within the Enroll-HD

cohort: assuming that diabetes affects cognitive performance in a similar way in both HD

patients and non-HD individuals then, if metformin had a positive effect in HD patients, the

effects of metformin intake would be different between HD patients and non-HD individuals.

More specifically, we would expect that metformin intake would associate with lower cognitive

performance in the case of non-HD individuals, because they are diabetic. Conversely, metfor-

min intake would associate with higher or at least not lower cognitive performance in the case

of HD individuals.

Hence we have analyzed the differences between HD motor manifest patients that take met-

formin versus similar patients that do not. We choose to analyze only HD motor manifest

patients, to avoid including participants that carry the mutation, that are far from their age at

onset. The results of the different linear models for each cognitive test and the UHDRS cogni-

tive score are as follows: 1) a statistically significant interaction between metformin use

and status of HD was found in the case of Verbal fluency (p = 0.004), Stroop interference

(p< 0.001), Symbol Digit Modalities (p< 0.001) and Trail Making (p = 0.002) tests; 2) the

Stroop word reading (p = 0.053) and the Stroop color naming tests (p = 0.058), showed a

Table 2. Cognitive results among the HD patients and controls a.

Non-HD individuals HD patients

No metformin

(No diabetes)

Metformin

(Type 2

diabetes)

No metformin (No diabetes) Metformin (Type 2 diabetes)

Cognitive

function

change

Pre- manifest Motor-

manifest

Pre- manifest Motor-

manifest

Cognitive

function

change b

UHDRS

Motorscore

1.97 (3.32) 1 (0,

3)

2.78 (3.94) 1 (0,

4)

- 3.96 (5.84) 2

(0, 6)

40.99 (22.39)

37 (24, 55)

3.67 (4.59) 3

(0, 5.5)

37.73 (18.7) 36

(25, 48)

-

Symbol Digit

Modality Test

49.97 (11.55)

51 (44, 57)

42.63 (13.05)

44 (34, 52)

-14.7% 48.75 (12.8)

50 (41, 57)

21.82 (13.31)

21 (13, 30)

44.56 (12.5)

45 (36, 52.5)

22.52 (13) 22

(13, 30)

+3.2%

Trail Making

Test

59.27 (34.61)

49 (39, 69)

83.19 (57.14)

63 (47.75,

93.25)

-40.4% 61.65 (35.7)

52 (40, 70.75)

156.94

(74.44) 151

(91, 240)

72.21 (56.14)

54 (42.25,

68.5)

157.18 (67.79)

150 (96.5, 240)

-0.2%

Verbal Fluency

Test

21.66 (5.35) 22

(18, 25)

19.59 (6.03) 20

(16, 23)

-9.6% 20.94 (5.82)

21 (17, 25)

11.49 (5.91)

11 (7, 15)

19.46 (5.36)

19 (15, 22.5)

12.07 (5.7) 11

(8, 15)

+5.0%

Stroop

Interference

Test

42.39 (11.19)

42 (35, 49)

36.08 (9.99)

35.5 (29, 43.25)

-14.9% 42.61 (11.27)

43 (35, 50)

22.79 (11.9)

22 (15, 30)

37.18 (11.52)

39.5 (29.25,

46.5)

23.46 (13.73)

22 (15, 29.75)

+2.9%

Stroop Color

Naming Test

74.95 (14.81)

75 (65, 84)

69.96 (14.56)

69.5 (61, 78)

-6.7% 71.83 (15.96)

72 (62, 82)

39.93 (19.49)

40 (28, 52)

64.85 (15.81)

67 (53, 77)

40.89 (16.62)

40 (29.75, 50)

+2.4%

Stroop Word

Reading Test

95.04 (18) 96

(85, 105)

86.42 (18.79)

86 (79, 99)

-9.1% 91.38 (20.01)

93 (80, 103)

52.58 (24.26)

53 (37, 69)

83.41 (20.99)

85 (74, 96.5)

51.7 (21.33) 50

(37.5, 65)

-1.7%

Cognitive

Score

285.26 (46.69)

285 (255, 314)

258.38 (50.88)

255 (228,

287.5)

-9.4% 275.86

(54.09) 279

(241, 312)

158.16

(63.26) 155

(117, 199)

250.55 (58.16)

263.5 (219.3,

289)

158.44 (56.87)

154 (113.25,

191.5)

+0.2%

a Controls include family controls and genotype negative individuals.
b The comparison in performance between HD patients that take metformin and HD patients that do not has been done only with motor-manifest patients.

https://doi.org/10.1371/journal.pone.0179283.t002
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similar trend. A representation of the results regarding the adjusted interactions for each

model is provided to ease the understanding of the linear modeling results (Fig 1).

HD patients that take metformin do not show statistically different

UHDRS Motorscore

Since metformin intake showed such strong interaction with better cognitive function in HD

patients, we asked ourselves whether this would be observed as well in their motor function.

Therefore, we analyzed UHDRS Motorscore using the same linear models used with the

Fig 1. Partial dependence plots showing the interaction between metformin intake and HD status

regarding cognitive scores. (A-F) Result of the analysis of the different cognitive tests. G Graph showing

the result of the analysis of all cognitive tests (Cognitive Score). These plots are produced using the estimates

from the fitted linear regression models, so cognitive values are adjusted for age, gender, BMI and ISCED.

The p-values included are assessing the effect of the interactions, that is, the differential effect of metformin

intake in HD-patients compared to controls.

https://doi.org/10.1371/journal.pone.0179283.g001
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cognitive score. Although the analysis showed a trend for metformin takers to be better, this

difference was not statistically significant (p = 0.09) (Fig 2).

Discussion

In this study we performed a statistical analysis of the Enroll-HD cohort (December 2016

release) to assess the relationship between metformin use and cognitive status in HD patients

and healthy controls. We have controlled multiple variables such as educational status

(ISCED), BMI and age that could potentially contribute to different patterns of cognitive per-

formance. As all the participants that take metformin do so to treat their type 2 diabetes, our

statistical approach was based on assessing the interaction between metformin intake and HD

status using linear models.

Our novel analysis shows that in HD patients the use of metformin is associated with better

results on cognitive tests. For our analysis we took advantage of the fact that in both popula-

tions (patients and controls) there is a proportion of individuals who are being treated for type

2 diabetes using metformin (2.8% and 7.4% respectively). Due to the small number of people

taking metformin represented in the Enroll-HD database it is not yet possible to analyze the

association of metformin over a period of time on the health of HD patients. Despite this limi-

tation, our analysis indicates that metformin intake clearly associates with better cognitive

function of these patients.

In contrast with the cognitive status of HD patients that take metformin, the motor func-

tion didn’t show a statistically significant improvement, though it showed a trend (Fig 2). In

this regard, it is tempting to speculate that HD patients have better neuronal function and

this reflects in several phenotypes, not only in their cognitive function. However, we cannot

rule out that metformin may have just an effect on the symptoms, rather than improving

neuronal function. Why this effect is not statistically significant can be explained by the

nature of the motor tests, which methods of data collection are in general more complex

Fig 2. Partial dependence plot showing the interaction between metformin intake and motor

impairment (UHDRS Motorscore). Result of the analysis of the UHDRS Motorscore. This plot was produced

using the estimates from the fitted linear regression models, so the UHDRS Motorscore values are adjusted

for age, gender, BMI and ISCED. The p-value is assessing the effect of the interaction, that is, the differential

effect of metformin intake in HD-patients compared to controls.

https://doi.org/10.1371/journal.pone.0179283.g002
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and prone to different interpretations, and therefore are less sensitive to change, than cogni-

tive tests.

Metformin has for many years been the first-line drug for the treatment of diabetes type 2

[19]. However, it has also proved useful in the treatment of other diseases, such as polycystic

ovary syndrome [16], cardiovascular disease and cancer (see for example [20,21,22]).

Despite research to clarify the mechanisms by which this drug acts at the cellular level our

understanding of the basis for its effectiveness in a variety of etiologies is still poor. One sim-

ple and plausible explanation is that this substance has a pleiotropic effect on tissues and

cells. For example, it has been described that metformin sensitizes cells to respond more effi-

ciently to insulin [23], although it is also able to activate glucose transporters to facilitate glu-

cose intake by cells [24], among other potential effects.

At the cellular level several targets of metformin have been described (reviewed by Viollet

and co-workers [25]). For example, it has been shown that metformin is a mild inhibitor of the

complex I of the electron transfer chain, in mitochondria [26]. This leads to a lower ATP con-

centration and higher AMP levels, which in turn results in activation of AMP-activated protein

kinase (AMPK), activating pro-health span events such as autophagy, among others. In this

regard, it has been shown that metformin protects dopaminergic neurons in mouse models of

Parkinson disease, through a AMPK-dependent activation of autophagy [27]. Moreover, some

studies have shown that activation of AMPK, by metformin or by other means, alleviates phe-

notypes related to HD in in vitro and in vivo models of this disease [8,9]. These results are in

agreement with the results presented in the current article and strongly suggest that metformin

may be used to treat HD symptoms.

It has been shown that type 2 diabetes mellitus has a negative impact on the cognitive

function of patients (reviewed by Zilliox and coworkers [18]). The results of our study are

compatible with this conclusion as the presence of type 2 diabetes in controls and pre-mani-

fest carriers of the mutation is associated with a trend to lower marks in cognitive tests (Fig

1). However, metformin treated HD patients that also have type 2 diabetes show statistically

significant better scores in some cognitive tests (Symbol Digit Modality Test, Verbal Fluency

Test, Stroop Interference Test and Trail Making Test) and a trend to higher marks in the

rest. How can these results be reconciled? One explanation may be that cognition in HD

patients that are also type 2 diabetics, is more severely affected (and by different mecha-

nisms) than in non-HD type 2 diabetics. Hence, metformin in HD patients is able to func-

tion in a range of pathways (e.g. on glycaemia to alleviate type 2 diabetes, on autophagy to

clear out mutant huntingtin, etc.) to improve cognitive function. We cannot rule out the

possibility that type 2 diabetes is improving cognitive function in HD patients, and that this

is what we observe in our analysis. However, we believe that is reasonable to say that this

seems improbable. Moreover, HD patients may have other conditions, and/or drugs against

these conditions, that may alter their cognitive status. These potential confounding factors

cannot be taken into account in our study, due to the number of participants taking

metformin.

Another potential confusing variable is the weight of patients, which is widely believed to

affect the progression of the disease in HD patients [28,29,30] and in rodent models of HD

[31]. Hence, it is widely believed that weight loss has a very negative impact in the progression

of the disease. However, all analyses described in the present work included BMI as control

variable, so our results already correct for differences in BMI values between groups. That

means that the effect of metformin is estimated by comparing groups were the differences in

BMI have been nullified (i.e. they have the same BMI).

Based on the results of this observational study, together with previous preclinical studies

[8,9] we believe that it is important to undertake further basic studies to gain mechanistic
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insights about the effect of metformin, in HD models. And more importantly, these results

indicate the need of clinical trials with metformin to investigate its potential beneficial effects

on non-diabetic HD patients.

Methods

Sample

We analyzed in this study controls and HD manifest patients, included in the Enroll-HD data-

base as of December 2016 (https://www.enroll-hd.org), whose entry included pharmacologic

treatment (n = 7000). Enroll-HD is a global clinical research platform designed to facilitate

clinical research in Huntington’s disease. Core data sets are collected annually on all research

participants as part of this multi-center longitudinal observational study of Huntington’s dis-

ease. Data are monitored for quality and accuracy using a risk-based monitoring approach. All

sites are required to obtain and maintain local Ethics Committee approvals. More information

can be found at https://clinicaltrials.gov/ct2/show/NCT01574053.

Clinical and functional assessments

The Unified Huntington’s Disease Rating Scale—total motor score (UHDRS-TMS) [32] was

used to assess the presence of a wide range of motor alterations characteristic of HD. These

include oculomotor function, dysarthria, chorea, dystonia, Parkinsonism, postural instability,

and gait. The UHDRS-TMS is the sum of all individual item scores, with higher scores indicat-

ing greater impairment.

Cognitive performance was assessed using the UHDRS cognitive score [32]. The Cognitive

score consists of the sum of the scores of five cognitive tasks: the Verbal Fluency Test (FAS),

the Stroop word naming, the Stroop color naming, the Stroop interference, and the Symbol

Digit Modality Test (SDMT). We also recorded the performance on parts A and B of the Trail

Making Test. As a rule, higher score in these tests indicate better performance, since it indi-

cates more hits achieved by the individual. In the trail making test, in contrast, lower marks

indicates less time to finish the test, and hence better cognitive function.

Statistical analyses

Continuous variables were summarized using mean (standard deviation) and median (1st, 3rd

quartiles). Categorical variables were summarized using absolute and relative frequencies (%).

To assess the association between metformin intake and cognitive function seven different lin-

ear models were fitted, each one including the score of a different cognitive test as response

variable. These linear models included as predictors metformin intake and HD status. Age,

body mass index and educational status, based on ISCED (International Standard Classifica-

tion of Education; UNESCO Institute for Statistics), were also included as covariates to control

for them and avoid confounding and effect modification. Since all patients with metformin

intake were diabetic and diabetes is known to negatively affect cognitive test results, we also

included an interaction between metformin use and HD status to avoid this bias. In the case of

the Trail Making Test a logarithm transformation was applied to the values to avoid heterosce-

dasticity. P values < 0.05 were considered statistically significant. All statistical analyses were

performed using R (version 3.3.2).
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