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Abstract

Compromise programming (CP) aims to find solutions by minimising distances to an ideal point with max-
imum achievement which is usually infeasible. A common assumption in CP is that it is highly unlikely that
the optimum decision will lie out of the bounds of the compromise set given by metrics p = 1 and p = ∞ of
the Minkowski distance function. This assumption excludes the use of multiplicative functions as a measure
of achievement. We propose geometric CP (GCP) to provide alternative solutions based on multiplicative
functions to overcome this limitation. This methodology is an extension of CP that allows to incorporate the
principle of limited compensability. An additional interesting feature of GCP is that, under reasonable as-
sumptions, characterises extreme seekers’ behaviour with non-concave utility functions (expressing no pref-
erence for any of the extremes). We discuss the practical implications of our approach and present three
numerical illustrations in the context portfolio selection.

Keywords: multiple-objective programming; multiplicative utility functions; extreme seekers; compromise set

1. Introduction

The increasing complexity of financial decision making highlights the need of using efficient quan-
titative analysis techniques (Zopounidis and Doumpos, 2002). In portfolio selection, new lines of
research have been developed to extend the classical mean-variance model by Markowitz (1952).
One of these techniques is compromise programming (CP). As pointed out in the literature review
on multi-criteria decision aid techniques in the portfolio optimisation problem conducted by Aouni
et al. (2018), the goal programming technique is the most widely used technique followed by CP. In
order to elicit the best compromise solutions, CP relies on the minimisation of a parametric family
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of additive distance functions with respect to an ideal point as a surrogate for utility (Yu, 1973;
Zeleny, 1973; Yu, 1985).

The pioneering applications of CP for portfolio selection are due to Ballestero and Romero
(1996). Since then, several works have extended the CP approach in this area of research (Balles-
tero and Pla-Santamaria, 2003, 2004; Bilbao-Terol et al., 2014; Pla-Santamaria et al., 2021). In
addition, Parra et al. (2005) and Bilbao-Terol et al. (2006) proposed a new CP model for portfo-
lio selection including the imprecision and subjectivity inherent to some data. Gharakhani and
Sadjadi (2013) also combined fuzzy logic and CP to integrate the investor’s view about future
asset returns.

The portfolio selection problem is usually represented as a bi-criteria optimisation problem in
which profitability is measured by expected returns and risk is measured by portfolio variance of
returns. Some authors argue that these two factors cannot capture all relevant information in invest-
ment decisions and suggest alternative candidates for a third criterion such as liquidity, dividends,
number of securities in a portfolio and social responsibility. Li and Xu (2013) and Qi et al. (2017)
considered three criteria: returns, risk and liquidity. Gong et al. (2021) proposed a cloud theory
based multi-objective portfolio selection model which incorporates four objectives, mean, variance,
skewness and liquidity. When additional criteria are incorporated to the portfolio selection, com-
plexity increases and the need for some principles to motivate the selection of the best solutions
becomes more important. In this paper, we discuss those principles.

The concept of compromise set, given by metrics p = 1 and p = ∞ of the Minkowski distance
function, is central to CP. It is assumed that it is highly unlikely that the optimum decision will lie
out of the bounds of the compromise set (Ballestero and Romero, 1998). However, this assump-
tion excludes the incorporation of the principle of limited compensability by means of multiplica-
tive functions. Compensability is defined as the possibility of offsetting the shortfall in some crite-
ria with a superior performance in other criteria (Garcia-Bernabeu et al., 2020). Maximum com-
pensability is achieved when using metric p = 1 and no compensability (or maximum balance) is
achieved when using p = ∞. We here propose geometric CP (GCP) as an extension of CP by means
of multiplicative utility functions as a measure of achievement.

One of the main properties derived from the use of the Minkowski family of distance functions
in CP is the uniqueness of solutions. There is only one solution that minimises the distance to
the ideal point. However, this feature prevents undifferentiated extreme seekers from using CP to
characterise their decision-making process. Note that extreme solutions can be attained by setting
objectives weights appropriately. However, this way of action implies that a subset of objectives
outweighs all other objectives and we here focus on extreme seekers with no preference for any
of the objectives. As a result, one of the main goals of this paper is to provide a new class com-
promise solutions for undifferentiated extreme seekers. Undifferentiated extreme seekers get very
little utility from balanced solutions (with a similar amount for any of the outcomes) and, at the
same time, there is no a particular preference for any of the outcome extremes. All extremes are
alternative optimal. Conventional theory usually ignores extremes even though maximum devia-
tions from average behaviour are central to some high impact works in statistics (Gumbel, 1958)
and economics (Stigler and Becker, 1977; Schelling, 1978) and other social sciences (Barthold and
Hochman, 1988).

Within the context of CP, we here explore the use multiplicative functions and their relation to
the more conventional additive functions. To this end, we first consider the case in which the usual

© 2022 The Authors.
International Transactions in Operational Research published by John Wiley & Sons Ltd on behalf of International Federation
of Operational Research Societies

 14753995, 2023, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/itor.13178 by U

niversitaet Politecnica D
e V

alencia, W
iley O

nline L
ibrary on [06/02/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



F. Salas-Molina et al. / Intl. Trans. in Op. Res. 30 (2023) 2571–2594 2573

family of parametric distance functions takes parameter p = 0. It can be shown that the Minkowski
function with p = 0 of a q-dimensional vector of non-negative normalised criteria differences with
respect to an ideal point is equivalent to the geometric mean of order q of these set of distances. In a
CP context, q is the number of criteria under consideration. From a set of multiplicative utility func-
tions, we analytically show the conditions under what the best compromise solutions are connected
to the extremes of the compromise set. As a theoretical result, we find that maximum geometric
distances from the anti-ideal point (with minimum independent achievement) yield solutions that
are connected to those obtained by minimising the maximum distances to the ideal of alternative
solutions (maximin principle). This connection is established by means of a theorem stating that
the condition is that weights for alternative criteria must be equal to the partial derivatives of the
non-dominated frontier in a normalised space of criteria. We illustrate our approach in the context
of portfolio selection.

The main results of this work imply some kind of duality. On the one hand, the particu-
lar value of parameter p in CP distance functions has been interpreted as a measure of bal-
ance of solutions (Ballestero, 2007) and also as a representation of ethical principles (Romero,
2001; González-Pachón and Romero, 2011, 2016). In social choice theory, ethical principles
refer to criteria that serve as a basic justification for policy evaluation. In GCP, the interpreta-
tion of p must be subjected to the direction of optimisation. In order to provide the appropri-
ate semantics, recall that p = 1 represents the Benthamite principle of maximum efficiency and
p = ∞ represents the Rawlsian principle of maximum fairness as proposed in González-Pachón
and Romero (2016). With p = 0, we are able to represent the principle of maximum imbalance
that characterises the behaviour of extreme seekers when minimising distances to the ideal. For
instance, fund managers trying to focus on particular features of their funds and product man-
agers aiming to differentiate their products by focusing on unusual features within the prod-
uct space (Tirole, 1988). On the other hand, we are also able to represent the principle of lim-
ited compensability with p = 0 when maximising distances from the anti-ideal point. As a re-
sult, we here argue that GCP embodies a novel and interesting area of research due to its dual-
ity.

The structure of this paper is as follows. In Section 2, we provide basic background on the use
of parametric distance functions in CP. Next, in Section 3, we describe novel theoretical results for
three different cases of GCP. In Section 4, we discuss the practical implications of GCP and present
two numerical illustrations in portfolio selection. Finally, in Section 5, we give some concluding
remarks and highlight natural extensions of this work.

2. Parametric distance functions in compromise programming

Due to the usual conflict among criteria, CP relies on the concept of distance to an ideal point
where all criteria are simultaneously optimised. This point is usually infeasible but it plays a key
role as a reference because Zeleny’s axiom of choice states that alternatives that are closer to the
ideal point are preferred to those that are further (Zeleny, 1973). Given a feasible set X and solution
x ∈ X in a maximisation context, the ideal and anti-ideal (or nadir) points are defined as follows
(Zeleny, 1973; Ehrgott, 2005):
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Definition 1. Point zI = (zI
1, . . . , zI

j, . . . , zI
q) given by zI

j := maxx∈X z j (x) is called the ideal point of
the multi-criteria problem max

x∈X
(z1(x), . . . , z j (x), . . . , zq(x)).

Definition 2. Point zN = (zN
1 , . . . , zN

j , . . . , zN
q ) given by zN

j := minx∈X z j (x) is called the anti-ideal
point of the multi-criteria problem maxx∈X (z1(x), . . . , z j (x), . . . , zq(x)).

Using zI as a reference point, we develop a CP model as a method to evaluate any pair of feasible
alternatives, denoted by z1 and z2, by means of the next preference relations (Ballestero and Romero,
1998):

z1 � z2 ⇐⇒ L(z1) < L(z2) (1)

z2 � z1 ⇐⇒ L(z2) < L(z1) (2)

z1 ∼ z2 ⇐⇒ L(z1) = L(z2), (3)

where � means ‘is preferred to’, ∼ means ‘is indifferent to’ and L(z) is a distance function between
any feasible solution z and ideal point zI .

In order to avoid meaningless comparison among criteria, all elements of vector z must be nor-
malised. By assuming that we want to maximise all criteria, we can use the following normalisation
for each criterion z j ∈ z:

z j (x) = g j (x) − g j,min

g j,max − g j,min
, (4)

where g j,max and g j,min are, respectively, the maximum and minimum value achievements as mea-
sured by objective function g j (x). As a result, the ideal point in a bi-dimensional criteria space is
(1,1) and the anti-ideal point is (0,0). As a result, Zeleny–Yu utility (UZY) for each point z in a
q-dimensional criteria space can be expressed as the difference of a sufficiently large number M and
the Minkowski distance of order p from any point z to the ideal point (Ballestero, 2007):

UZY = M − Lp(z, w) = M −
⎡
⎣ q∑

j=1

wp
j (1 − z j )p.

⎤
⎦

1/p

, (5)

where z and w are q-dimensional vectors with criteria achievements and weights attached to each
criterion, respectively.

In CP, metric p in Equation (5) is a topological metric belonging to the closed interval [1, ∞].
The extremes of the previous interval define the compromise set as the subset of the non-dominated
frontier between points:

• L1 with minimum Manhattan distance (p = 1) to the ideal point.
• L∞ with minimum Chebyshev distance (p = ∞) to the ideal point.

Figure 1 shows the most relevant points in CP bi-criteria space and represents the compromise set
as the part of the non-dominated frontier T (z1, z2) = K between points L1 and L∞. Given weights
w, we say that point z belongs to compromise set S when its parametric distance Lp(z, w) to the
ideal point is minimum. Formally, S = {z ∈ R

q|min
z
Lp(z, w), p ∈ [1, ∞]}.
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Fig. 1. Most relevant points in CP and the compromise set (bolded).

The value of metric p can also be interpreted as a measure of balance of solutions. As described
in Ballestero (2007) in a portfolio selection context, p = 1 tends to yield corner or imbalanced
solutions, and larger values of p, in the limit p = ∞, yield more balanced solutions. In addition,
metric p is also as a representation of ethical principles (González-Pachón and Romero, 2016).
Metric p = 1 represents the Benthamite (Bentham, 1789) principle of maximum efficiency (full
compensability among criteria) and p = ∞ represents the Rawlsian principle of maximum fairness
(Rawls, 1973). However, we next extend the analysis in CP by considering alternative values of
metric p that lead to multiplicative functions.

3. Compromise programming with multiplicative functions

We here explore the case p = 0 in the Minkowski distance function as a way to find a new class
of solutions in CP. This approach leads to consider multiplicative functions as a measure of utility
in CP such as the geometric mean of criteria values or Cobb–Douglas functions. As a result, we
call this technique GCP. This extension of CP allows us to characterise extreme seeking behaviour
(Stigler and Becker, 1977; Schelling, 1978; Barthold and Hochman, 1988) and to incorporate the
concept of limited compensability in decision-making analysis. As mentioned in the introduction,
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the concept of compensability is defined as the possibility of offsetting low achievement in some
criteria with a superior performance in other criteria (Munda, 2005; Garcia-Bernabeu et al., 2020).
Maximum compensability is achieved when using metric p = 1 and no compensability (or maxi-
mum balance) is achieved when using p = ∞.

It can be shown that the parametric distance function Lp(z) with p = 0 of a vector z of positive
numbers is the geometric mean of order q:

L0(z) = lim
p→0

[ q∑
i=1

zp
i

](1/p)

=
[ q∏

i=1

zi

](1/q)

. (6)

When considering vector of weights w in Zeleny–Yu utility in Equation (5), we find two different
approaches in the literature. In CP, we usually find weights raised to metric p (see, e.g., Balles-
tero and Romero, 1996; Salas-Molina et al., 2019). This course of action results in the following
weighted multiplicative function as shown in the Appendix:

lim
p→0

⎡
⎣ q∑

j=1

wp
j z

p
j

⎤
⎦

(1/p)

=
⎡
⎣ q∏

j=1

wjz j

⎤
⎦

(1/q)

. (7)

On the other hand, we find other approaches in which individual weights are not affected by
exponent p (see, e.g., Merigó and Gil-Lafuente, 2008; Xian et al., 2016). This approach leads to the
following weighted multiplicative function as shown in the Appendix:

lim
p→0

⎡
⎣ q∑

j=1

wjz
p
j

⎤
⎦

(1/p)

=
q∏

j=1

zw j

j . (8)

From Equations (7) and (8), we next follow two different approaches: (i) minimisation of dis-
tances to the ideal point in Section 3.1; (ii) maximisation of distances to the anti-ideal point in
Sections 3.2 and 3.3.

3.1. A new class of compromise solutions for extreme seekers by minimising geometric distances to
the ideal

Intuitively, one can expect that minimising distances to the ideal point results in similar solutions
to maximising distances to the anti-ideal. In general, this intuition may be appropriate for additive
distance functions in traditional CP but not for multiplicative distances in GCP. Geometric utility is
dual. Let us denote the first geometric utility function by UG1 and, similar to Zeleny–Yu utility UZY,
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consider the minimisation of the geometric distance to the ideal point derived from Equation (7)
within a normalised criteria space as follows:

UG1 = M − L0(z) = M −
⎡
⎣ q∏

j=1

wj (1 − z j )

⎤
⎦

1/q

. (9)

Clearly, UG1 reaches a maximum when z j = 1 for any of the j criteria under consideration because
z j is restricted to the interval [0, 1] after normalisation. In other words, maximum utility is achieved
when any of the criteria achievements takes an extreme value. While extreme solutions may seem
quite undesired at first glance within a context of multiple-criteria decision making, it is actually
not unrealistic, at least for extreme seekers. To illustrate this statement, let us consider the following
scenario described in Steuer (1986). A man would like to collect both stamps and coins. The more
he has of each, the better. However, with regard to his collections, he must live within a limited
budget and other restrictions. He is an extreme seeker. That is, he gets very little gratification from
doing things halfway. Within this situation, it is conceivable that a larger stamp collection and a
larger coin collection could be alternative optimal. To move forward, it seems reasonable to propose
formal definitions of the degree of balance and extreme seekers in a maximisation context.

Definition 3. Given a feasible set X and solution x ∈ X in a multi-criteria maximisation problem
max
x∈X

(z1(x), . . . , z j (x), . . . , zq(x)), the degree of balance of a solution in a normalised criteria space

z = (z1, . . . , z j, . . . , zq) is a real function b(z) that reaches its global maximum when z1 = · · · = z j =
· · · = zq.

An example of a balance function that fits this definition when z j : X → [0, 1] is

b(z) = 1 − var(z), (10)

where operator var is the variance of the elements of vector of achievements z. Another example
of a balance function can be constructed using the Gini coefficient (Gini, 1912; Ceriani and Verme,
2012). Note that the balance function from Definition 3 simultaneously reaches its global maximum
both at the ideal point and the anti-ideal point because, by definition, z1 = · · · = z j = · · · = zq both
at the ideal and the anti-ideal point.

Definition 4. An extreme seeker is a decision maker with the following preference relations for solu-
tions in a multi-criteria optimisation problem:

z1 � z2 ⇐⇒ b(z1) < b(z2) (11)

z1 ∼ z2 ⇐⇒ b(z1) = b(z2). (12)

As a result, criterion vectors with well-balanced solutions (smaller and similar stamp and coin
collections) might be much less desirable because little satisfaction is drawn from either collection.
This scenario leads to consider a non-concave utility function with respect to the ideal point as
represented in Fig. 2. The solid line represents the frontier of the feasible criterion vector set Z,
and the dashed line is a non-concave utility function describing an undifferentiated extreme seeker
behaviour. Points z1 and z3 are alternative optimal and point z2 is not. As a result, a utility function
that describes well the behaviour of an extreme seeker as the stamps–coins collector in our example
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Fig. 2. Extreme seekers criteria space.

is the geometric utility encoded in Equation (9). In order to provide the appropriate semantics to
these results, recall that large values of p (in the limit, p = ∞) yield balanced solutions. Smaller
values of p tend to yield corner or imbalanced solutions (in the other limit, p = 1) (Ballestero,
2007). Finally, if we move one step further (beyond the compromise set) by setting p = 0, we get
exactly the extreme values of the non-dominated frontier as the optimal solutions.

In order to illustrate our point, consider the following scenario in the context of portfolio selec-
tion. Steuer et al. (2005) suggested a list of alternative objectives to be maximised:

1. max {z1 = portfolio return};
2. max {z2 = dividends};
3. max {z3 = amount invested in R&D};
4. max {z4 = social responsibility};
5. max {z5 = liquidity};
6. max {z6 = portfolio return over that of a benchmark};
7. max {z7 = −deviations from asset allocation percentages};
8. max {z8 = −number of securities in portfolio} ;
9. max {z9 = −turnover (i.e., costs of adjustment)};

10. max {z10 = −maximum investment proportion weight};
11. max {z11 = −amount of short selling};
12. max {z12 = −number of securities sold short}.
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It seems reasonable to assume that among all possible investors, there is a set of extreme seeking
investors that are alternatively interested in maximising z1 and z3. Many other combinations of
objectives would presumably characterise the behaviour of an extreme seeker.

3.2. Maximising geometric distances to the anti-ideal: a theorem connecting geometric utility and
Zeleny–Yu utility

Within a normalised bi-criteria space derived from the application of max-min normalisation as
described in Equation (4), the ideal point is (1,1) and the anti-ideal point is (0,0). Maximising
geometric distances to the anti-ideal point as a measure of utility seems to be an additional suitable
strategy to find compromise solutions. Let us consider the following a second geometric utility
function UG2:

UG2 =
⎡
⎣ q∏

j=1

wjz j

⎤
⎦

1/q

. (13)

By means of the following lemma, we show that weights in utility UG2 have no effect for optimi-
sation purposes.

Lemma 1. Weights wj have no influence in the maximisation of geometric utility UG2 in Equation (13)
subject to non-dominated frontier T (z1, . . . , zq) = K.

Proof. For optimisation purposes, we can remove exponent 1/q in Equation (13) without affecting
the optimal solutions. Let us form the Lagrangean:

q∏
j=1

wjz j + λ(K − T (z1, . . . , zq)). (14)

The first-order conditions are

w1

q∏
j 
=1

wjz j − λT1 = 0

w2

q∏
j 
=2

wjz j − λT2 = 0

... (15)

wq

q∏
j 
=q

w jz j − λTq = 0

T (z1, . . . , zq) = K,
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where T1, T2, . . . , Tq are the partial derivatives of T with respect to z1, z2, . . . , zq respectively. By
dividing equations in system (15) in pairs with the exception of the last one and rearranging terms
we obtain

(w1w2 . . . wq) · (z2z3 . . . zq)
(w1w2 . . . wq) · (z1z3 . . . zq)

= T1

T2

(w1w2 . . . wq) · (z1z3 . . . zq)
(w1w2 . . . wq) · (z1z2 . . . zq)

= T2

T3

... (16)

(w1w2 . . . wq) · (z1z3 . . . zq−2zq)
(w1w2 . . . wq) · (z1z2 . . . zq−1)

= Tq−1

Tq
.

Cancelling weights wj and combining all equations in system (16), we find that optimal solutions
do not depend on weights because

T1z1 = T2z2 = · · · = Tqzq. (17)

�
Furthermore, there is a close relationship between geometric utility UG2 in Equation (13) and

Zeleny–Yu utility UZY in Equation (5). It is shown elsewhere (Ballestero and Romero, 1998) that
Zeleny–Yu utility UZY for p = ∞ is maximised when the following chain of equations holds:

w1z1 = w2z2 = · · · = wqzq. (18)

In other words, the L∞ solution represents a point where weighted deviations to the ideal point
are equal. By comparing conditions in Equations (17) and (18), the following result is direct.

Theorem 1. Zeleny–Yu utility UZY in Equation (5) for p = ∞ and geometric utility UG2 in Equa-
tion (13), both subject to non-dominated frontier T (z1, . . . , zq) = K, lead to the same optimal solu-
tions when weights wj in UZY are equal to partial derivatives Tj.

Proof. Immediate from Lemma 1 and Equation (18). �
A situation in which weights for each criterion are equal to partial derivatives of the non-

dominated frontier with respect to each criterion is not as unrealistic as it may seem at first glance.
To show this aspect, let us consider the following common two cases in a bi-dimensional criteria
space:

• Linear non-dominated frontier described by z1 + z2 = 1. In this case, T1 and T2 are equal to 1.
As a result, a neutral decision maker with no particular preference for any of the two criteria
(w1, w2 = 1) will find no difference between optimising UZY for p = ∞ and geometric utility UG2.
In both cases, the optimal solutions are z∗

1 = 0.5 and z∗
2 = 0.5.

• Quadratic non-dominated frontier described by z2
1 + z2

2 = 1. In the quadratic case, T1 = 2z1 and
T2 = 2z2. Similar to the linear case, a neutral decision maker with no particular preference for
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any of the two criteria (w1, w2 = 1) will find no difference between optimising UZY for p = ∞ and
geometric utility UG2. In both cases, the optimal solution is z∗

1 = √
1/2 and z∗

2 = √
1/2.

Moreover, we know that Zeleny–Yu utility UZY for p = 1 is maximised when the following chain
of equations holds (Ballestero and Romero, 1998):

w1

T1
= w2

T2
= · · · = wq

Tq
. (19)

By relying on Theorem 1 and Equation (19), we derive the following theoretical result.

Theorem 2. If the compromise set in non-dominated frontier T (z1, . . . , zq) = K derived from Zeleny–
Yu utility UZY in Equation (5) for p = 1 and p = ∞ is a single point, then this point attains maximum
geometric utility UG2 in Equation (13).

Proof. If the compromise set is a single point, then Equations (18) and (19) hold. By dividing
equations in (18) into equations in (19), we obtain the set of equations in (17). Then, it follows that
this point attains maximum geometric utility UG2 in Equation (13) as Lemma 1 shows. �

Theorem 2 implies that if one point within the non-dominated frontier T (z1, . . . , zq) = K attains
maximum geometric utility UG2 and coincides with any of the bounds of the compromise set L1

and L∞, then the compromise set is a single point.

3.3. Cobb–Douglas multiplicative utility

If optimal solutions for geometric utility UG2 do not depend on weights, one may ask how can a
decision maker consider weights within a context of multiplicative functions. One possible answer
to this question is Cobb–Douglas utility. Note that optimisation problems with monomial objec-
tive functions can be efficiently solved by means of geometric programming and interior-point al-
gorithms (Duffin, 1970; Boyd et al., 2007). However, we next follow an analytical approach for
completeness and illustrative purposes.

Consider the following Cobb–Douglas utility function derived from Equation (8) by setting
p = 0 when weights in the Zeleny–Yu utility are not raised to exponent p:

UCD =
q∏

j=1

czw j

j , (20)

with weights satisfying condition
∑q

j=1 wj = q/2 as described in Ballestero (2007). Constant c in
Equation (20) is irrelevant for optimisation purposes. To solve the maximisation of UCD subject to
T (z1, . . . , zq) = K, consider the Lagrangean:

q∏
j=1

zw j

j + λ(K − T (z1, . . . , zq)), (21)
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with the following first-order conditions:

w1zw1−1
1

q∏
j 
=1

zw j

j − λT1 = 0

w2zw2−1
2

q∏
j 
=2

zw j

j − λT2 = 0

... (22)

wqzwq−1
q

q∏
j 
=q

zw j

j − λTq = 0

T (z1, . . . , zq) = K.

Again, by dividing equations in system (22) in pairs with the exception of the last one, we obtain

w1zw1−1
1 zw2

2 . . . zwq
q

zw1
1 w2zw2−1

2 . . . zwq
q

= T1

T2

zw1
1 w2zw2−1

2 . . . zwq
q

zw1
1 zw2

2 w3zw3−1
3 . . . zwq

q
= T2

T3

... (23)

zw1
1 zw2

2 . . . wq−1zw(q−1)−1
q−1 zwq

q

zw1
1 zw2

2 . . . wqzwq−1
q

= Tq−1

Tq
.

Cancelling terms and combining all equations in system (23), we obtain the following chain of
equations:

w1z1

T1
= w2

z2T2
= · · · = wq

zqTq
. (24)

w2z2

T2
= w3

z3T3
= · · · = wq

zqTq
. (25)

wq−1zq−1

Tq−1
= wq

zqTq
. (26)

Then, we conclude that weights are relevant to find optimal solutions in the case of the Cobb–
Douglas multiplicative utility as a geometric utility function. Again, we can consider the cases of a
linear and a quadratic non-dominated frontier in combination with Cobb–Douglas utility:
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• Linear non-dominated frontier described by z1 + z2 = 1. In this case, T1 and T2 are equal to 1.
Then, the optimal solution must satisfy z1z2 = w2/w1 and z1z2 = w1/w2, which ultimately leads
to w1 = w2.

• Quadratic non-dominated frontier described by z2
1 + z2

2 = 1. In the quadratic case, T1 = 2z1 and
T2 = 2z2. Then, the optimal solutions are

z1z2 = w22z2

w12z1
→ z1 =

√
w2

w1
(27)

z2
1 + z2

2 = 1 → z2 =
√

1 − w2

w1
. (28)

3.4. Theoretical insights

The implications derived from the previous results are manifold. In contrast to what we observe
in CP with additive distance functions, we find a duality between the minimisation of geometric
distances to the ideal in UG1 and the maximisation of the same geometric distances to the anti-
ideal in UG2. In the first case, we describe the behaviour of extreme seekers and, in the second case,
we integrate the principle of limited compensability in multiple-criteria decision making. More
precisely, we find that minimum geometric distances to the ideal point (with maximum independent
achievement) yield extreme solutions. On the contrary, maximum geometric distances from the anti-
ideal point (with minimum independent achievement) yield balanced solutions in which weights
attached to different criteria are not relevant.

This duality implies a redefinition of Zeleny’s axiom of choice to include not only minimum
distances to the ideal but also maximum distances to the anti-ideal point as follows:

z1 � z2 ⇐⇒ U (z1) > U (z2) (29)

z1 ∼ z2 ⇐⇒ U (z1) = U (z2), (30)

where U is some utility function based on any possible distance function.
Furthermore, we analytically show the conditions under which the best geometric compromise

solutions are within the bounds of the compromise set. Theorem 1 proves that Zeleny–Yu utility
UZY in Equation (5) for p = ∞ and geometric utility UG2 in Equation (13), both subject to non-
dominated frontier T (z1, . . . , zq) = K, lead to the same optimal solutions when weights wj in UZY

are equal to partial derivatives Tj . In other words, the best geometric compromise solutions are
within the bounds of the compromise set, at least, when the equality of weights and partial deriva-
tives of the non-dominated frontier occur. In addition, Theorem 2 shows the relation between the
compromise set and geometric utility UG2. This connection leads us to propose the definition of a
geometric compromise set between points L0 and L1 in the non-dominated frontier:

• L1 with minimum Manhattan distance to the ideal point.
• L0 with maximum geometric distance to the anti-ideal point.
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Table 1
Alternative utility functions and their corresponding ethical principle

Utility function Distance function Optimisation direction Ethical or social principle

UZY1 L1 Min to ideal Maximum efficiency
UZY2 L2 Min to ideal Minimum deviation
UZY∞ L∞ Min to ideal Maximum fairness
UG1 L0 Min to ideal Extreme seekers
UG2 L0 Max to anti-ideal Limited compensability
UCD L0 Max to anti-ideal Weighted compensability

Note that we do not claim that L0 always belongs to the L1 − L∞ conventional definition of the
compromise set. On the contrary, we argue that an L1 − L0 extension of the compromise set to
integrate geometric utility is possible and useful.

Finally, we mentioned in the introduction that different values of topological metric p lead to
different distance functions as a representation of desired ethical or social principles in multiple-
criteria decision making. A summary of utility functions, optimisation directions and principles
integrated in the different CP approaches considered in this paper are summarised in Table 1. The
first block of utility functions corresponds to the conventional Zeleny–Yu utility UZY in which met-
ric p can take values between 1 and ∞. As proposed in Romero (2001) and González-Pachón and
Romero (2016), p = 1 corresponds to the utilitarian principle and p = ∞ corresponds to the fair-
ness principle. This correspondence between metrics and principles implies that, at least in theory,
there is a social principle that is represented by any value of p greater than 1 and below ∞. An
example of this intermediate principle is p = 2 representing solutions with minimum deviation (in
terms of the Euclidean distance) with respect to the ideal point (or any other given reference).

The second block of utility functions in Table 1 includes the geometric distance functions pro-
posed in this paper by setting metric p = 0. In this case, we differentiate between the minimisation
of geometric distances to the ideal characterising extreme seeking behaviour and the maximisation
of geometric distances to the anti-ideal integrating the principle of limited and weighted compens-
ability. The main difference between geometric utility UG2 and Cobb–Douglas utility UCD derives
from the particular treatment of weights in the initial definition of the Minkowski distance function
within Zeleny–Yu utility before setting p = 0.

4. An application in portfolio selection

In this section, we discuss the relevance of our GCP approach in the context of portfolio selection.
We first illustrate the concept of compensability by means of a numerical example. Second, we
describe an empirical case study to validate our approach using real data. Next, we study the impact
of risk preferences in both additive and geometric portfolio selection. Finally, we further elaborate
on the practical implications of GCP.

4.1. A numerical illustration of compensability in portfolio selection

In this section, we compare most of the utility functions in Table 1 by means of a numerical example
derived from the results reported by Ballestero and Pla-Santamaria (2003). As a starting point, we
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Table 2
Alternative utility functions in portfolio selection (best values in bold)

i Return Safety UZY1 UZY2 UG1 UG2 �UZY1 �UZY2 �UG1 �UG2

1 0.0000 1.0000 0.0000 0.0000 1.0000 0.0000
2 0.0588 0.9981 0.0569 0.0588 0.9577 0.2423 0.0569 0.0588 0.0423 0.2423
3 0.1176 0.9942 0.1118 0.1176 0.9285 0.3419 0.0549 0.0588 0.0293 0.0997
4 0.1765 0.9841 0.1606 0.1763 0.8856 0.4168 0.0488 0.0588 0.0429 0.0748
5 0.2353 0.9770 0.2123 0.2350 0.8674 0.4795 0.0517 0.0586 0.0182 0.0627
6 0.2941 0.9639 0.2580 0.2932 0.8404 0.5324 0.0457 0.0582 0.0270 0.0530
7 0.3529 0.9471 0.3000 0.3507 0.8150 0.5781 0.0420 0.0576 0.0254 0.0457
8 0.4118 0.9280 0.3398 0.4074 0.7942 0.6182 0.0398 0.0567 0.0208 0.0401
9 0.4706 0.9032 0.3738 0.4618 0.7736 0.6520 0.0340 0.0544 0.0206 0.0338
10 0.5294 0.8717 0.4011 0.5122 0.7543 0.6793 0.0273 0.0504 0.0193 0.0274
11 0.5882 0.8328 0.4210 0.5556 0.7376 0.6999 0.0199 0.0433 0.0167 0.0206
12 0.6471 0.7858 0.4329 0.5872 0.7251 0.7131 0.0119 0.0316 0.0125 0.0132
13 0.7059 0.7278 0.4337 0.5993 0.7171 0.7168 0.0008 0.0121 0.0080 0.0037
14 0.7647 0.6544 0.4191 0.5819 0.7148 0.7074 0.0146 0.0174 0.0022 0.0094
15 0.8235 0.5661 0.3896 0.5316 0.7233 0.6828 0.0295 0.0503 0.0084 0.0246
16 0.8824 0.4501 0.3325 0.4377 0.7457 0.6302 0.0571 0.0939 0.0224 0.0526
17 0.9412 0.2629 0.2041 0.2606 0.7918 0.4974 0.1284 0.1771 0.0461 0.1328
18 1.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.2041 0.2606 0.2082 0.4974

use the data required to construct an efficient frontier in a normalised return–safety space. Each pair
of return–safety elements in the second and third columns of Table 2 corresponds to a particular
portfolio and the goal of the analyst is to select one of them by relying on some utility function.

Within the traditional CP context, Manhattan (L1) and Euclidean (L2) distances to the ideal
point (1,1) are commonly used as alternative surrogates for Zeleny–Yu utility functions. To this end,
we compute UZY1 and UZY2 for each pair of return–safety values using Equation (5) with M = 1,
q = 2, weights equal to 1 and parameter p = 1 and p = 2, respectively. Moreover, we compute UG1

and UG2 as GCP utility functions using Equations (9) and (13) respectively, with M = 1, q = 2 and
weights equal to 1. The results in Table 2 show that the best values for utilities UZY1, UZY2 and
UG2 are obtained for portfolio 13. On the contrary, UG1 reaches its maximum in both extremes of
the efficient frontier characterising the extreme seekers’ behaviour. Note that a limitation in using
UG1 as a measure of utility is that its optimisation is equivalent to searching for the maximum
achievement of a single-criterion disregarding the achievement of the rest. This drastic approach
cancels out the idea of simultaneous multi-objective optimisation. However, recall that any of these
single-criterion optimisations are equally desirable for an extreme seeker.

We also pay special attention to compensability. According to Munda (2005), compensability
refers to the possibility of offsetting a disadvantage on some criteria by a sufficiently large advan-
tage on another criterion. Complete compensability implies that an excellent performance in one
criterion can justify a bad performance in the other criteria. We here follow the approach of ex-
ploring compensability by computing the difference in utility between two near solutions using the
following expression:

�Ui j = |Ui j − U(i−1) j|, ∀i > 1. (31)
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Fig. 3. Efficient frontier and different utility functions.

In our portfolio selection context, a concurrent excellent performance in profits (safety) and a
bad performance in safety (profits) is observed in the extremes of the efficient frontier (i = 1 and i =
18). If solutions near to the extremes present a similar utility, the compensability is high because the
cost in terms of utility of going from a near-to-the-extreme solution to an extreme solution is low.
On the contrary, if solutions near to the extremes present a much larger utility, the compensability
is limited because the cost in terms of utility of going from a near-to-the-extreme solution to an
extreme solution is high. This fact can also be observed in Fig. 3. The dotted line represents the
efficient frontier in a normalised profit-safety space. The rest of the marked lines depict the values
for each to the four alternative utility functions. Clearly, the use of utility function UG2 implies
limited compensability because the change in utility of going from a near-to-the-extreme solution
to an extreme solution is higher than in the cases of UY Z1 y UY Z2.

4.2. Empirical case study

To validate our GCP proposal using real data, we next solve a portfolio selection problem following
the classical mean-variance formulation by Markowitz (1952), but using UG2 in Equation (13) as a
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measure of the achievements for an investor concerned with the limited compensability principle
(see Table 1). From Lemma 1, we know that weights in utility UG2 have no effect for optimisation
purposes. As a result, our hypothetical investor is neutral with respect to return and risk.

In order to obtain the best portfolios, we use a data set with weekly returns in the Spanish Stock
Exchange comprising 35 alternative assets that were part of the IBEX35 index from 2014 to 2019.
The major benefit of using this period of time is that it is a good representation of a sideways trend
in the market with an average weekly return of −0.001%. Interested readers can obtain the data
themselves at http://es.finance.yahoo.com.

The first step in our case study is the derivation of the efficient frontier with minimum variance
portfolios for 50 target annualised returns (E0) ranging from 0 to 0.24, this last value correspond-
ing to the maximum return obtained by any of the assets in this period. To this end, we solve 50
instances of the following quadratic program varying E0:

min xTV x (32)

subject to

μT x = E0 (33)
35∑
j=1

xj = 1, (34)

where x is a 35 × 1 column vector of weights, V is the 35 × 35 covariance matrix of returns and μ is
the 35 × 1 column vector of average returns. In order to solve the previous optimisation problems,
we use the open-source library SciPy in Python (Version 3.6.4), Jupyter Notebooks (Kluyver et al.,
2016) and the SLSQP (sequential least squares programming) method originally implemented by
Kraft (1988).

From the set of non-dominated pairs of risk and return obtained after the optimisation, we
derive the efficient frontier within a normalised Return (θ1)-Safety (θ2) bi-criteria space after the
application of the following max–min normalisation indexes:

θ1 = E − Emin

Emax − Emin
(35)

θ2 = Smax − S
Smax − Smin

, (36)

where E is the return of any portfolio in the efficient frontier and Emin and Emax are, respectively,
the minimum and the maximum returns of portfolios in the efficient frontier. Similarly, S is the
standard deviation of any portfolio in the efficient frontier and Smin and Smax are, respectively, the
minimum and the maximum standard deviations of portfolios in the efficient frontier.

Once derived, the efficient frontier in the normalised Return (θ1)-Safety (θ2) space, investors con-
cerned with limited compensability are able to make a final decision by selecting the portfolio that
maximises the geometric distance to the anti-ideal point (0,0) using UG2 in Equation (13) as shown
in Fig. 4. Note that by using normalised index θ2 described in Equation (36), we change the per-
spective from minimising risk to maximising safety.
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Fig. 4. Normalised efficient frontier and UG2. Portfolio with maximum UG2 marked with ‘x’.

4.3. The impact of risk preferences in additive and geometric portfolio selection

From Lemma 1, we know that weights have no impact in the maximisation of UG2. An alterna-
tive geometric utility function that incorporates weights to reflect the preference of investors in a
portfolio selection context is Cobb–Douglas utility, denoted by UCD. Indeed, UG2 in Equation (5)
is equivalent for optimisation purposes to UCD in Equation (20) when weights wj are set to one.
In this section, we evaluate the impact that different risk preferences expressed in terms of weights
assigned to returns and safety pairs from Table 2. Each pair of returns and safety represents a can-
didate portfolio from the efficient frontier to be ultimately selected according to the preferences of
investors. As a result, an interesting research question is establishing the sensitiveness of the final
portfolio choice to changes in the risk profile of different investors when using alternative additive
and geometric utility functions.

In Table 3, we summarise the best portfolios from Table 2 according to additive and geometric
utility functions for different risk preferences. We consider nine different risk profiles ranging from
extremely conservative investors to extremely risky investors. Each risk profile is expressed in terms
of weights w1 and w2 that add up to 1. The closer the value of w1 to 1, the riskier the investor
because portfolios with high returns and low safety are preferred to those with low returns and high
safety. The final selection of the best portfolio not only depends on the risk preferences but also on
the utility function used to evaluate the available options. In Table 3, we consider several types of
utility functions: (1) UZY1 representing the principle of maximum efficiency; (2) UZY2 representing
the principle of minimum deviation in terms of Euclidean distances; (3) UZY∞ representing the
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Table 3
Best portfolios from Table 2 according to additive and geometric utility functions for different risk preferences

w1 w2 Risk profile UZY1 UZY2 UZY∞ UCD UZY3 UZY10

0.10 0.90 Extreme safety 3 6 7 7 7 7
0.20 0.80 Very strong safety 6 8 10 9 9 10
0.30 0.70 Strong safety 9 10 11 11 11 11
0.40 0.60 Moderate safety 11 12 12 12 12 12
0.50 0.50 Neutral 13 13 13 13 13 13
0.60 0.40 Moderate risk 14 14 14 14 14 14
0.70 0.30 Strong risk 16 15 15 15 15 15
0.80 0.20 Very strong risk 17 16 16 16 16 16
0.90 0.10 Extreme risky 18 17 17 17 17 17

principle of maximum fairness; (4) UCD representing the principle of weighted compensability; and
(5) UZY3 and UZY10 representing approximate cases of maximum fairness. Recall that in the context
of CP functions UZY1, UZY2, UZY∞, UZY3 and UZY10 are additive utility functions and that UCD is
a geometric utility function. This classification of functions allows us to evaluate the differences in
the final selection due to the change of perspective introduced by GCP in this paper.

The first conclusion that we extract from the results of Table 3 is that neutral investors are not
affected by the selection of any of the different utility functions considered. Note that this conclu-
sion is restricted to the context of the particular form of the empirical efficient frontier depicted
in Fig. 3. However, it is also worth noting that we expect small deviations from this behaviour be-
cause efficient frontiers derived from the mean-variance optimisation by Markowitz (1952) usually
present this quadratic form in the normalised returns–safety space due to the minimisation of the
variance of the returns. Indeed, Merton (1972) showed that the analytic derivation of the efficient
frontier in portfolio selection is a parabola. As a result, all utility functions considered in the ex-
ample recommend the choice of portfolio 13, including geometric utility UG2 in which weights have
no impact. Then, we conclude that the choice of any of these utility functions, either additive or
multiplicative, is not a critic step when dealing with neutral investors with no preference for safety
or risk.

We also find that the use of utility UZY1 tends to recommend portfolios that are closer to the
extremes of the efficient frontier, especially when the risk profile is biased to extreme safety. This
behaviour can be partially offset by using utility UZY2. In the case of additive utility functions, we
observe the most balanced portfolios (non-corner solutions) when utility function UZY∞ is used.
These empirical results agree with other theoretical results presented by Ballestero (2007) and Salas-
Molina et al. (2019) in the same context of portfolio selection. These results can be summarised as
follows: the larger the value of p in Zeleny–Yu utility UZY from Equation (5), the more balance is
achieved by recommended portfolios or, in other words, the further the portfolios from corner so-
lutions.

An additional interesting finding is that increasing p from values greater than 2 as in UZY2 to
larger values to approach ∞ as in UZY∞, has a very low impact in the selection of the best portfolios.
For comparative purposes, we include in Table 3 utility UZY3 we find that p = 3 results in only one
change in the set of recommended portfolios for the whole range of risk profiles. Similarly, p = 10
for utility UZY10 results in the same set of recommended portfolios. Then, we conclude that setting p
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to small integer values, provided that p > 2, results in similar portfolio recommendations to setting
p = ∞ when using additive utility functions.

We derive a final conclusion from the use of geometric utility UCD: the balance of recommended
portfolios is not only achieved by increasing the value p in Equation (5) but also by setting p to zero,
hence changing the perspective to geometric utility. The principle of maximum fairness is not only
achieved by applying the implicit maximisation of the minimum distance to the ideal when setting
p = ∞ but also by considering the principle of compensability introduced by geometric utility UCD.
Summarising, the main point that motivates us to propose the use of geometric utility functions is
that it allows to incorporate the principle of compensability in CP.

4.4. Practical implications in portfolio selection

In this section, we discuss the practical implications derived from the use of GCP in relation to
portfolio selection publications using CP from a recent review by Aouni et al. (2018). To this end,
we first assume that preferences for profitability and safety are already known. Then, portfolio
selection using CP usually follows a two-step method: (1) construction of the efficient frontier; and
(2) selection of one point of the efficient frontier according to the risk preferences. We here focus
on the second step to extend the range of principles that may help investors in the selection of the
best portfolio.

It is usually assumed in CP that the optimum portfolio belongs to the compromise set given
by bounds L1 and L∞ of the efficient frontier. We here extend the concept of compromise set to
account for compensability by considering point L0. Maximum compensability is achieved in point
L1 and limited compensability is achieved in point L0 as shown in Section 4.1. Indeed, an investor
concerned by compensability that wants to select one of the portfolios from Table 2 should select
UG2. This comment relates to the results reported by Ballestero and Pla-Santamaria (2003), but the
same reasoning is appropriate to similar efficient frontier results in Ballestero and Romero (1998),
Ballestero and Pla-Santamaria (2004) and Ballestero et al. (2012).

Within a fuzzy environment Bilbao-Terol et al. (2006), reported points L1 and L∞ in a numerical
example as alternative solutions for a an investor. This set of alternative solutions could be straight-
forwardly extended by considering point L0 as proposed in this paper. As a result, point L0 can be
viewed as an extension of the compromise set reflecting preferences for compensability.

Amiri et al. (2011) proposed nadir CP by changing the usual perspective of minimising distance
to the ideal values to maximising distance from the nadir (anti-ideal) values. The authors rely on a
parametric distance function similar to Equation (5). Similarly, Xia et al. (2001) and Hasuike and
Katagiri (2014) restrict their analysis for simplicity to cases p = 2 and p = 1, respectively. Salas-
Molina et al. (2019) proposed different practical tools to deal with discrete efficient frontiers and
uncertain risk preferences for cases p = 1 and p = 2. Caçador et al. (2021) proposed a new method-
ology for computing relative-robust portfolios based on the minimax regret, which is equivalent to
setting p = ∞ in Equation (5). From the review of the previous works, we argue that further insight
can be obtained from the analysis of an alternative set of solutions by setting p = 0 as proposed
by GCP.

We also consider that a prominent field of application of the GCP model is in the field of
socially responsible investments. In recent years, some scholars have attempted to develop new
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approaches for integrating sustainable targets within investment and financial decisions (Haller-
bach et al., 2004; Bilbao-Terol et al., 2014; Utz et al., 2014; Ballestero et al., 2015; Garcia-Bernabeu
et al., 2019; Liagkouras et al., 2020). In these investigations, the sustainability component is inte-
grated as an objective or constraint to determine the set of solutions of the efficient frontier. The
GCP approach is a suitable way to better reflect the preferences of those investors because bias
for financial or ESG criteria can be described in extreme positions such as ESG agnostic or ESG
motivated investor profiles. Then, an additional added value of GCP in portfolio selection is the
possibility of offering investment solutions that integrates information on the preferences about the
level of compensability. Thus, investors showing limited or weighted compensability among a given
set of criteria could use UG2 or UCD, respectively, as shown in Table 1. On the other hand, extreme
seekers are better characterised by utility function UG1 because both extremes are equally desirable
for them. However, recall that using UG1 as a measure of utility is equivalent to searching for the
maximum achievement of a single-criterion disregarding the achievement of the rest of the criteria
under consideration.

Along the lines of the insights derived from Section 4.3, we also argue that GCP adds meaning
to the traditional CP approach. First, we show that the final solution not only depends on the
risk preferences but also on the utility function used to evaluate the available options. Finally, the
solutions obtained by applying the principle of maximum fairness are very similar to those obtained
by applying the principle of weighted compensability.

5. Concluding remarks

In this paper, we extend conventional CP by proposing a new class of solutions based on geometric
utility functions. We set up our decision-making model by pivoting around a common assumption
in CP, namely, the bounds of the compromise set. To this end we consider metric p = 0 as an
additional way to find compromise solutions that derive from multiplicative utility functions. One
of our main findings is the existence of some kind of duality in the optimisation directions derived
from the use of multiplicative functions. By minimising geometric distances to the ideal point, we
find a new class of compromise solutions that fits well the behaviour of extreme seekers without no
preference for any of the extremes.

GCP implies a generalisation of Zeleny’s axiom of choice by means of additive and multiplicative
utility functions. GCP incorporates the principle of limited compensability as a desired requirement
in many multiple criteria decision-making contexts. An additional interesting feature of GCP is
that, under reasonable assumptions, it is connected to the principle of minimising the maximum
regret (the so-called maximin principle). This connection leads us to extend the L1 − L∞ concept
of compromise set to propose the notion of geometric compromise set based on point L1, with
minimum additive distance to the ideal point, and point L0, with maximum geometric distance to
the anti-ideal point.

We believe that the GCP approach presented in this paper can be applied to any other field
in which CP is used to evaluate solutions in terms of the distance to a reference point. A non-
comprehensive list of suitable fields of application include credit risk management (Pla-Santamaria
et al., 2021), cash management (Salas-Molina, 2019), water management (Fattahi and Fayyaz,
2010), forestry and agricultural planning (Diaz-Balteiro and Romero, 2008) and public policy
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design (André et al., 2010). In addition, we consider that the design of additional utility func-
tions to characterise in a different way the behaviour of extreme seekers is a natural extension of
this work. Furthermore, we firmly believe that alternative values of p in the range of negative or
fractional numbers could lead to an interesting extension of CP.
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Appendix

In this Appendix, we show how setting p = 0 leads to two different geometric utility functions
in Equations (7) and (8). In both cases, we consider the natural logarithm of the limit and apply
L’Hopital’s rule.

First case: weights raised to p.

ln(L0) = lim
p→0

ln
(∑q

j=1 wp
j z

p
j

)
p

= lim
p→0

∑q
j=1 wp

j z
p
j ln(wjz j )∑q
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p
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(A1)
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∑q

j=1 ln(wjz j )

q
= ln

⎛
⎜⎝

⎡
⎣ q∏

j=1

wjz j

⎤
⎦

1/q
⎞
⎟⎠ (A2)

L0 =
⎡
⎣ q∏

j=1

wjz j

⎤
⎦

1/q

. (A3)

Second case: weights not raised to p and
∑q

j=1 wj = 1.
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p→0
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