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Abstract
One of the most frequently used inventory policies is the order-point, order-up-to-
level (s, S) system. In this system, the inventory is continuously reviewed and a 
replenishment request is placed whenever the inventory position drops to or below 
the order point, s. The variable replenishment order quantity and the variable replen-
ishment cycle characterize the system by the use of complex mathematical computa-
tions. Different methodological approaches diminish the mathematical complexity 
by neglecting the undershoots, i.e., the quantity that the inventory position is below 
the order point when it is reached. In this paper, we conceptually and empirically 
analyse the bias that neglecting the undershoots introduces into the estimation of the 
fill rate. After that, we suggest a new methodology developed under a data-driven 
perspective that uses a state-dependent parameter algorithm to correct such a bias. 
As a result, we propose two new methods, one parametric and the other nonpar-
ametric, to enhance the fill rate estimate. Both methods, named analytics fill rate 
methods, remove the bias that neglecting the undershoots introduces and are used to 
illustrate the practical implications of this hypothesis on the performance and design 
of the (s, S) system. This research is developed in a lost sales context with simulated 
stochastic and i.i.d. discrete demands as well as actual sales data.
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1  Introduction

Inventory management plays a critical role in the success of most enterprises 
because of its direct implication for decision-making both at the operational and 
strategic levels. In the current markets, with more demanding customers and 
higher costs, effective inventory management systems are essential. Therefore, 
developing an intelligent inventory management system and transforming inven-
tory data into valuable insights becomes a key factor in achieving competitive 
advantages (Stefanovic 2015; Zhou et al. 2017).

The core purpose of inventory management is to address two important key 
issues: (1) when to launch a replenishment order, and (2) the size of this replen-
ishment order. The control parameters of inventory policies are devoted to deter-
mining these issues according to a specific objective, normally using a cost or 
a customer service criterion. Even though the cost approach often leads to less 
mathematical complexity, the use of the service criterion avoids the difficulty of 
accurately estimating the stockout cost due to the presence of intangible compo-
nents such as the loss of customer goodwill and the diminishing of future busi-
ness (Gutgutia and Jha 2018) opportunities. For that reason, this paper follows 
a customer service approach that introduces a control parameter known as the 
service level that becomes a constraint in determining the control parameters of 
the system (Silver et al. 2017; Escalona et al. 2019). The service level addressed 
in this paper is the fraction of the demand that is immediately satisfied from the 
stock without causing a shortage (Brown 1962), which is known as the fill rate. 
Despite its simple definition, its calculation hides complex mathematical nuances, 
especially when the system is managed by a continuous review system (the sta-
tus of the inventory is known at any given moment) and unfilled demand is lost, 
as happens in highly competitive sectors such as retail, machinery spare parts, 
service sector, or e-commerce of fixed-date services (Gruen et al. 2002; Breugel-
mans et al. 2006; Diels and Wiebach 2011; Disney et al. 2021).

This paper focuses on the order-point, order-up-to-level (s, S) system due to 
its versatility and extended use in practice (Caplin and Leahy 2010; Bijvank 
et  al. 2015). By definition, this system assumes continuos review and, in a sto-
chastic demand context, both the replenishment cycle, i.e., time elapsed between 
two consecutive order deliveries, and the order quantity, are variable; therefore, 
simultaneous determination of the parameters is necessary to guarantee the math-
ematical optimality of the policy once a service objective is set. However, as Sil-
ver et  al. (2017) point out, in practice, the most common approach consists of 
assuming that all the demand transactions are unit sized (see for example Sil-
ver 1970; Vincent 1983; Platt et  al. 1997; Agrawal and Seshadri 2000; Axsater 
2000; Larsen and Thorstenson 2014). This means that the inventory position 
always exactly reaches the order point, s (known also as reorder point or ROP), 
and therefore, the order quantity is constant and equal to the order-up-to-level, 
S, minus the order point, s, (i.e. S − s). However, in real situations, the inventory 
position may not exactly be at the ROP but at a certain amount below it, known as 
the undershoot at ROP. Neglecting undershoots greatly reduces the mathematical 
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complexity of the problem but can severely reduce the service level of the system 
(Schneider 1981), which leads to increased stockout costs, especially when man-
aging lumpy or erratic demand items for which the unitary demand assumption is 
not appropriate (Cardós and Babiloni 2011a).

In the research literature, we find several studies that address the complexity of 
estimating undershoots. We find quite a number of works that calculate the under-
shoots based on the asymptotic results of renewal theory (Schneider 1981; Tijms and 
Groenevelt 1984; Baganha et al. 1999; Johansen and Hill 2000; Kouki et al. 2009). 
Other authors, in contrast, compute probability distribution functions to estimate the 
expected value of the undershoots and incorporate it into service measures (Cohen 
et al. 1988; Baganha et al. 1996; Gutierrez and Rivera 2021). However, in general, 
these studies approximate the value of the undershoots, which may have an impact 
on many aspects of inventory management. Regarding the fill rate estimations in ser-
vice models, Schneider (1981), Tijms and Groenevelt (1984), Moors and Strijbosch 
(2002), Silver et al. (2009) and Silver et al. (2012) suggest different approximations 
of the fill rate that consider undershoots under the backordering assumption. In the 
lost sales context, only Cohen et al. (1988) present a fill rate method in a order-point, 
order-up-to-level (s, S) system; however in this approach, the undershoot estimations 
are calculated from an approximate distribution function that may bias the fill rate 
estimation.

Then, although the (s, S) system is widely used in practice, there is no optimal 
approach to establish the control parameters when the fill rate is the service con-
straint of the system and the unfilled demand is lost. The objective of this research 
is to propose a new methodology to obtain the fill rate based on a bias analysis and 
a correction of the undershoot assumption. The methodology follows a data-driven 
perspective that avoids any assumption regarding the undershoot distribution and is 
suitable for service models.

The implementation of business intelligence affects the agile efficiency of the 
supply chain (Kaur 2021). In general, the digitalization of companies offers a large 
amount and variety of data (Big Data) that transforms the way supply chain manage-
ment works (Wang et al. 2016). In particular, Gandomi and Haider (2015) indicate 
the need to develop appropriate and efficient methods to leverage such data, and they 
review big data analytics areas such as text analytics or predictive analytics. In this 
sense, this work is an example of how to extract more value from inventory data 
and proposes use of a novel area called stock control analytics, where data-driven 
methods, which include machine learning and artificial intelligence techniques, can 
enhance the state-of-the art inventory management methods.

Although the nomenclature may be new, the use of data analytics tools to 
overcome the limitations associated with theoretical inventory models is not that 
new. For instance, Strijbosch et  al. (2000) correct the bias introduced by using 
demand forecasts instead of statistical demand distribution first moments, which 
are unknown prior to the commencement of any inventory processes. That article 
proposes a heuristic method based on simulations, which substantially reduces 
the bias. Novel methods based on this data-driven perspective have been recently 
published to deal with the uncertainty of demand distributions. Huber et  al. 
(2019) revisit the newsvendor problem subject to a target cycle service level by 
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employing machine learning and quantile regression approaches that circumvent 
the need to assume a statistical distribution for the demand. Regarding the uncer-
tainty of statistical demand distribution, Trapero et al. (2019a) investigate para-
metric and nonparametric methods to enhance the safety stock estimation prob-
lem for a certain target cycle service level. Their results show that nonparametric 
approaches such as kernel density estimators provide a good performance in 
terms of cost and service for lower lead time values, and parametric approaches 
such as GARCH outperform the rest of the methods for higher lead time values. 
Trapero et al. (2019b) continue with this line of research by proposing a combina-
tion scheme of GARCH and Kernel whose weight parameters are determined by 
minimizing the tick-loss (newsvendor) linear asymmetric cost function. Addition-
ally, regarding the performance of machine learning forecasting methods versus 
traditional counterparts, Spiliotis et al. (2020) compared both methods for daily 
SKU demand forecasting. The work highlights the improvements possible with 
machine learning methods.

Previous articles show how data-driven approaches offer versatile solutions 
to address the limitations of traditional theoretical assumptions. In this work, 
following the same philosophy, we focus on the assumption of neglecting the 
undershoots on the (s, S) system when the demand is modelled by any discrete 
distributions for a lost sales case. To the best of the authors’ knowledge, this par-
ticular topic has been overlooked in the literature. Basically, this research aims 
to determine the extent of the bias introduced by such an assumption and pro-
poses a methodology to reduce it. The data-driven approach employed to cope 
with this problem is the state-dependent parameter (SDP) estimation technique. 
SDP estimation involves the nonparametric identification of the state dependency 
using recursive methods for time variable parameter estimation, which allow for 
rapid (state dependent) parametric change (Young et  al. 2001). SDP estimation 
has been successfully applied in a supply chain context in Trapero et al. (2011), 
particularly to correct judgemental forecast biases. Once the nonparametric esti-
mation between the state and the parameter is available, another advantage of 
the SDP procedure is that it reveals any potential nonlinear pattern between the 
state and the parameter and can thus be further parametrized, obtaining a fully 
self-contained model with just a few parameters (Young et al. 2001). Following 
this methodology, we propose two methods to estimate the fill rate, one para-
metric and another nonparametric; the methods remove the bias and outperform 
the initial approach. These methods are named analytics fill rate methods, by the 
authors, to distinguish them from the conventional formulas.

The rest of this paper is organized as follows. Section 2 describes the problem 
the paper addresses and states the main assumptions and the notations. Section 3 
introduces the initial approach of the fill rate formula, which neglects the presence 
of undershoots. This section provides insight of the potential bias introduced by 
neglecting the undershoots. In Sect. 3, the experimental setup is also detailed. Sec-
tion 4 explores the SDP approach to correct the bias associated with the initial fill 
rate estimation and proposes the new analytics fill rate methods. Section 5 assesses 
the methodology using a case study. Practical implications and a discussion of the 
results are presented in Sect. 6. Finally, the main conclusions are drawn in Sect. 7.
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2 � Problem formulation and description

2.1 � System description, notation, and assumptions

This paper considers a single-echelon, single-item inventory system where the 
demand is stochastic. The system is modelled by a discrete time model where the 
demand arriving during a given interval of time comes from a discrete distribution. 
The stock is controlled following a continuous review order-point, order-up-to-level 
(s, S) system for the lost sales case. In this system, when the inventory position is at 
or below the ROP, a sufficient amount is ordered to raise the inventory position up 
to the order-up-to-level, S. The replenishment order is received L units of time after 
being launched. We consider that the replenishment cycle (also referred to as just, 
the cycle, further on) is the time between two consecutive deliveries and starts at 
order delivery. Figure 1 shows an example of the evolution of the on-hand stock and 
the inventory position when the system is not out of stock (a) and when it is out of 
stock (b).

The notations in Fig. 1 and in the rest of the paper are as follows:
s = order point, ROP (units),
S = order-up-to-level (units),
L = lead time (time),
τ = elapse of time from the beginning of the cycle to the ROP is reached (time),
zt = on-hand stock at t (units),
dt = demand at instant t (units),
Dt = accumulated demand over t (units),
fL(·) = probability function of demand during L,
X+ = maximum [X, 0] for any expression X,

Fig. 1   Evolution of the stock in a (s, S) inventory policy and lost sales when the system is not out of 
stock (a) and when it is out of stock (b)
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Qt = order quantity at instant t (units),
βA = achieved fill rate,
β0 = initial fill rate,
βi = estimated fill rate for method i, i = LR, SDP.
The general assumptions of this paper are as follows: (1) the lead time, L, is con-

stant and known; (2) there is never more than one outstanding order, which implies 
that the condition s < S − s is always true; (3) the demand process is considered sta-
tionary and i.i.d., and is defined by any discrete distribution function; (4) unfilled 
demand is lost and; (5) zt is the on-hand used to satisfy dt. Note that assumption (3) 
is generally accepted in inventory research since, if it is not the case, the numerical 
difficulties are insurmountable (Schneider 1981), especially for the lost sales case 
(see, for example, Hadley and Whitin 1963; Cohen et al. 1988; Johansen 2001).

This research considers that time is discrete and is organized into a numerable 
and infinite succession of equally spaced instants, which is tantamount to assuming 
that each transaction is updated in a specific instant of time considering a sequence 
of discrete and infinitely small intervals. This procedure is indeed the way IT sys-
tems that are used to control continuous inventories work, i.e., they report every 
transaction that occurs in a specific instant of time.

2.2 � Problem description

The (s, S) system implicitly states that both the replenishment cycle and the order 
quantity are variable. These two characteristics make it truly difficult to find a math-
ematical approach with the potential for a practical implementation.

First, the size of the replenishment order depends on the stock level when the 
ROP is reached, i.e., Q = S − z. In a stochastic context, to compute the expected value 
of zτ, bearing in mind that the evolution of the on-hand stock can be modelled as 
an ergodic Markov chain, it is necessary to know the probability transition matrix 
of the on-hand stock between two consecutive replenishment cycles M in such a 

way that limn→∞ P(z) ⋅M
n

= P(z0) , where P(z) is an arbitrary vector and P
(
z0
)
 is 

the principal left eigenvector of M , i.e., the probability vector of the on-hand stock 
levels at order delivery. This procedure is very time-consuming, especially for large 
values of S, since it determines the dimension of the transition matrices (Cardós 
et al. 2017). If the undershoots are negligible such that zτ = s, the order quantity is 
simply Q = S − s.

Second, the estimation of the total demand and concretely D is not straightfor-
ward and depends on the expected values of the stock levels and on the unknown 
number of periods until the ROP is reached, τ. To delve into this problem, please 
refer to Cardós and Babiloni (2011b). As a result, the replenishment cycle is vari-
able, which, in a stochastic demand context, hinders the calculation of the demand 
distribution from the order delivery until the ROP is reached. Nevertheless, if the 
undershoots are neglected, the demand consumed from the beginning of the cycle 
until the order point is reached is the difference between the on-hand stock at the 
beginning of the cycle and the ROP.
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For these reasons, in practice, “the values of the control parameters are set in a 
rather arbitrary fashion” (Silver et al. 2017), and the common derivation of the (s, 
S) system consists of assuming that all the demand transactions are unit sized or, 
stated another way, that undershoots at ROP are not possible.

However, what does neglecting undershoots mean? The answer is related to 
the expected value of the stockouts (also known as expected shortages) during the 
replenishment cycle. The assumption that the replenishment order is launched at the 
precise moment the ROP is reached implies that the on-hand stock at launch may 
be greater than it actually is, since zτ ≤ s, in such a way that there is a higher prob-
ability of stockouts than expected. In the following sections, we describe the bias 
that neglecting undershoots introduces into the estimation of the fill rate as a conse-
quence of underestimating the stockout probability of the system; we then propose 
a data-driven approach that eliminates this bias. The results are validated using a 
simulation since there is not an exact method able to compute the fill rate in the con-
text of our research.

3 � The bias of the initial approach of the fill rate

3.1 � Conceptual analysis of the bias

The fill rate is commonly defined as the fraction of demand that is immediately ful-
filled from the on-hand stock. However, this simple-looking definition hides many 
technical details and nuances that are often overlooked in the literature. In fact, the 
fill rate has been simplified through the traditional approximation which computes 
the fill rate in terms of units short, i.e., as the complement of the ratio between the 
expected shortage per replenishment cycle (ESPRC) and the total expected demand 
per replenishment cycle (EDPRC) (Bijvank and Vis 2011, 2012; Guijarro et  al. 
2012; Babiloni and Guijarro 2020), i.e.,

Although the definition of the fill rate does not introduce any assumption regard-
ing the inventory system, as pointed out before, one possible approach to avoid the 
computational complexity that undershoots introduce is to assume that they are neg-
ligible at ROP. This assumption implies that, (1) the order quantity is constant and, 
(2) the system will only be out of stock during the lead time. Figure 2 shows the evo-
lution of the stock levels when the undershoots are neglected, where both features 
can be easily appreciated.

When the stock exactly reaches the ROP, the system is only out of stock if 
DL > s, and therefore, the stockouts only take place during the lead time. Hence, 
the expected shortage per replenishment cycle is straightforwardly computed as 
ESPRC =

∑∞

i=s+1
(i − s) ⋅ fL(i).

To compute the expected total demand per replenishment cycle (EDPRC), we 
sum the accumulated demand from the beginning of the cycle until the ROP 

� = 1 −
ESPRC

EDPRC
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is reached, D, and the accumulated demand over the lead time, DL. The lat-
ter is simply computed when the demand distribution is known. However, to 
compute Dτ, we need to know the on-hand stock balance at the beginning of 
the cycle, i.e., at order delivery, which, in a lost sales context, is obtained by 
z0 = S − s + E[s − DL]

+ . Therefore, taking into account that Dτ must guarantee 
that the ROP is exactly reached, then D� = z0 − s = S − 2s + E[s − DL]

+.
Consequently, the expression to estimate the fill rate when the undershoots 

are neglected (named initial fill rate, β0, further on) for the lost sales case that 
applies to any discrete distribution is:

It is clear that conceptually neglecting undershoots leads to a systematic 
overestimation of the fill rate and, therefore, introduces a bias in its estimation, 
which can be clearly appreciated in the following example. If the stock at t is 
one unit above the ROP, and demand at t + 1 is 2 units, the ROP is reached, and 
a replenishment order is placed. The real stock at launch is s − 1 units. There-
fore, the on-hand stock remaining on the shelves available to meet the demand 
during the lead time is one unit less than what is assumed if the undershoot is 
neglected. Thus, the initial fill rate is higher than the real rate, and thus, the 
stockouts are larger than expected. This simple example shows why neglecting 
undershoots introduces a significant bias in the estimation of the fill rate.

(1)�0 = 1 −

∑∞

i=s+1
(i − s) ⋅ fL(i)

S − 2s +
∑s

j=0
(s − j) ⋅ fL(j) +

∑∞

k=0
k ⋅ fL(k)

Fig. 2   Evolution of the stock in a (s, S) inventory policy when the undershoots are neglected
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3.2 � Empirical analysis of the bias

To analyse the bias of the initial fill rate, we designed an experiment based on simu-
lations as follows (see Fig. 3): (1) we combine a set of input parameters that define 
the inventory policy and the simulated demand; (2) for each combination of the 
input data, we simulate a (s, S) inventory system using the Monte Carlo method and 
calculate the achieved fill rate; (3) for each input data combination, we also compute 
the initial fill rate using expression (1). Note that inventory simulation is an adequate 
approach given the complexities of the system (Chinello et al. 2020).

With regard to the input data, an extensive range of values for s, S and L is 
selected to provide realistic values of the fill rate (from 0.5 to 0.99). Regarding 
the demand, we select a set of parameters (r, θ) for the negative binomial distribu-
tion based on the consideration of four demand categories suggested by Syntetos 
et al. (2005): smooth, lumpy, intermittent and erratic, where r is the number of suc-
cesses and θ is the probability of success. Moreover, the negative binomial distribu-
tion reproduces some characteristics typically seen in demand data; for instance, it 
is positive and asymmetric, which models potential marketing campaigns. Tables 1 
and 2 present the set of data used in the experiment, which considers every feasible 
combination of these values per factor, that leads to 1360 different cases (exclud-
ing cases where s ≥ S − s to ensure that, as we assume, there is never more than one 

Fig. 3   Experimental design

Table 1   Inventory input data
Reorder point s = 2, 3, 5, 6
Order-up-to-level S = 5, 7, 12, 15
Lead time L = 1, 2, 3, 4

Table 2   Demand input data

Negative binomial (r, θ)
 Smooth (3, 04); (3, 0.5); (3, 0.6); (3.5, 0.4); (3.5, 0.5); (3.5; 0.6); (4, 0.4); (4, 0.5); (4; 

0.6)
 Erratic (1, 0.1); (1.5, 0.1); (1.5, 0.3); (2, 0.1); (2, 0.3)
 Lumpy (0.1, 0.1); (0.1, 0.3); (0.25, 0.1); (0.25, 0.3); (0.5, 0.1); (0.5, 0.3); (1, 0.1); (1, 

0.3)
 Intermittent (0.1, 0.5); (0.1, 0.8); (0.1, 0.9); (0.25, 0.5); (0.5, 0.5); (0.5, 0.8); (0.5, 0.9); 

(0.75, 0.5); (0.75, 0.8); (0.75, 0.9); (1, 0.8); (1, 0.9)
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outstanding order). The inventory system simulation follows the diagram (Fig. 4), 
and for each input data combination, the fill rate achieved (βA) is obtained as the 
average fraction of the complement of the unfulfilled demand over the total demand 
in every replenishment cycle when considering 20,000 consecutive periods, i.e.:

where N indicates the total number of replenishment cycles. To assure the consist-
ency of the results, Monte Carlo simulations undertake thirty replications of each 
case using the average of these replications as the final achieved fill rate.

Figure 5 compares the achieved (βA) and the initial (β0) fill rates plotted as red 
circles and illustrates the bias introduced in the calculation of the initial fill rate due 
to neglecting the undershoots. The larger the distance between the red circles and 
the blue line, the larger the bias. Note that the initial fill rate always overestimates 
the achieved fill rate, as explained in Sect. 3.1. What is empirically found is that the 
bias size is not constant, and it seems to increase over the central part of the figure.

Therefore, the problem is to find the bias between β0 and βA, which appears to 
have a nonlinear pattern.

4 � Analytics fill rate methods

To model the bias shown in the previous section, we assume that the data are cross-
sectional, i.e., the relationship between the achieved fill rate and the initial fill rate 
does not depend on time. The initial number of experiments was 1360. We focused 
on fill rates greater than 50%, filtering the number of experiments to 1011. The 
training and test sets are divided by random sampling, where 70% of the data (708 
experiments) are used for estimation purposes and the rest of the data (303 experi-
ments) are used for validation.

Figure 5 shows that the bias between the fill rates is nonlinear and is greater for 
fill rates between approximately 0.55 and 0.9, where the maximum bias is reached at 
approximately 0.6 and 0.75. To model that bias, this work adopts an SDP approach. 

(2)�A =
1

N

N∑

n=1

(
1 −

unfilled demandn

total demandn

)

Fig. 4   Diagram of the simulation



1 3

Stock control analytics: a data‑driven approach to compute… Page 11 of 25     18 

The approach requires that we define the state and the parameter that results in a 
variance of the state. An initial model could be as follows:

where α1 is the state that somehow depends on the parameter β0. Note that we do 
not exactly know the relationship between the state (α1) and the parameter (β0), and 
it will be the SDP algorithm, using the fill rate simulated data, that will provide a 
curve to give us some insights about the pattern of such a dependency. In this sense, 
�SDP approximates βA.

4.1 � A nonparametric approach: the SDP algorithm

The SDP approach can be seen as an extension of the time variable parameter 
estimation (TVP) (Young 2012), where the unknown parameters are slowly vari-
able with time. Typically, TVP estimations are represented by a two-dimensional 
state (level and slope) to model its stochastic behaviour by means of a general-
ized random walk (GRW), which is a generic model to unify the different ver-
sions of the random walk as an integrated random walk (IRW), random walk 
(RW) and smoothed random walk (SRW). More information about the use of 
TVPs in time series analysis and forecasting can be found in Young et al. (2001). 
The SDP approach employs a similar procedure but the main difference is that 
the parameters evolve stochastically with respect to another variable instead of 
time. Such parameters are denoted as state-dependent parameters (SDPs). This 
can be achieved by “sorting” the data in a nontemporal order. If the new order-
ing provides a smoother and less rapid variation in the SDP, a GRW will be able 

(3)�SDP = �1
(
�0
)
⋅ �0

Fig. 5   Achieved fill rate versus initial fill rate (red circles)
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to describe its evolution in the transformed observation space. Utilizing a fixed 
interval smoothing (FIS) estimation, the estimated SDP can be “unsorted” to the 
original order.

In our particular case, the SDP α1 can be sorted with respect to β0. This new 
organization of data is indexed by k, and thus, the stochastic dynamics of the SDP 
can be expressed as an integrated random walk defined in a state space framework 
as follows:

where α1 is the level and �∗
1
 is the slope. Small variations with respect to the new 

sorting are introduced with the random Gaussian noise �∗(k) with zero mean and the 
constant variance σ2

α. Such a variance is often referred to as a hyperparameter to 
differentiate it from the states that are the main object of the estimation analysis. The 
observation equation needed to complete the state space representation is:

The last term � is the typical error component that assumes a Gaussian distri-
bution with zero mean and constant variance σ2.

Fortunately, these routines are already implemented in the CAPTAIN toolbox 
of MATLAB available in http://​capta​intoo​lbox.​co.​uk. See “Appendix” for more 
information about the recursive filtering/smoothing algorithms used. Figure  6 
shows the estimated SDP α1(β0) sorted with respect to the parameter β0 for the 
training set. This figure shows the nonlinear pattern of the SDP coherently with 
the nonlinear bias found between βA and β0 in Fig. 6.

(4)
(
�1(k + 1)

�∗
1
(k + 1)

)
=

(
1 1

0 1

)(
�1(k)

�∗
1
(k)

)
+

(
0

�∗(k)

)

(5)�SDP = �1
(
�0
)
⋅ �0 + �

Fig. 6   SDP �
1

(
�
0

)
 sorted with respect to the parameter �

0

http://captaintoolbox.co.uk
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Figure 7 depicts the SDP estimation of the fill rate (βSDP) together with the initial 
and achieved fill rates for the training set. That figure clearly shows how the SDP 
approach is capable of considerably reducing the bias. Essentially, the fill rate esti-
mates provided by βSDP estimate the mean of βA, correcting the systematic deviation 
found for its initial counterpart β0.

4.2 � Parameterization based on the SDP graph

The SDP approach provides a nonparametric estimation of the relationship of α1(β0) 
based on a graph, as shown in Fig. 6. Furthermore, this approach can be comple-
mented by parameterizing such a curve and proposing another parametric alterna-
tive. Figure 8 shows two polynomial (quadratic and cubic) functions that could be 
used to fit the resulting nonlinear SDP α1(β0) curve.

Considering that, the following model can be proposed:

where �i for i = 0, 1, 2, 3,4 are constants that can be estimated by means of a linear 
regression and � is the typical error component that assumes a Gaussian distribution 
with a zero mean and a constant variance. Again, �LR approximates �A.

It is important to note that, despite the nonlinearities involved in the initial fill 
rate bias, thanks to the SDP identification, we have arrived at a nonlinear model that 
is linear with respect to the parameters �i. Note that such parameterization makes the 
model fully self-contained and clearly reveals the nature of the graphically identified 
nonlinearity with just a few parameters.

(6)�LR = �0 + (θ1 + �2 ⋅ �0 + �3 ⋅ �
2

0
+ �4 ⋅ �

3

0
) ⋅ �0 + �

Fig. 7   Fill rate estimations provided by the initial ( �
0
 ) and the SDP ( �

SDP
 ) approaches for the training set
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Table 3 summarizes the estimation results for the quadratic and cubic polyno-
mials. The table shows that all parameters are statistically significant for a signifi-
cance level of 1%. Although both approaches perform well, the cubic polynomial 
achieves a smaller RMSE in the estimation and a slightly better goodness of fit 
( R2).

To validate that the parameters can be used to correct the bias with data that 
have not been used in the training set, we used those estimated parameters in the 
data test set. Figure 9 shows the fill rate estimates provided by the nonparametric 
SDP (βSDP) and the parametric cubic polynomial model (βLR) compared to the 
achieved and initial fill rates. That figure shows that the performance provided by 
βSDP and βLR is very similar, corroborating the utility of both models.

Fig. 8   SDP �
1

(
�
0

)
 modelled with quadratic (dotted line) and cubic (dashed line) polynomials

Table 3   OLS estimation results 
for the parameters in (6)

*Significant at the 1% confidence level

Parameter Value (std dev.)

Cubic Quadratic

�
0

7.6 (1.9)* − 1.93 (0.3)*
�
1

− 40.9 (10.1)* 9.9 (1.2)*
�
2

86.4 (19.8)* − 13.4 (1.5)*
�
3

− 79.4 (17)* 6.4 (0.6)*
�
4

27.3 (5.4)* –
R
2 0.967 0.965

RMSE 0.0299 0.0304
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4.3 � Error assessment

We can define the fill rate error as:

where βij for i = 1, 2, 3 is the fill rate estimated by the initial equation, the nonpara-
metric SDP and the parametric linear regression, respectively. The index j = 1, 2, …, 
J is the number of fill rate observations for the entire test set J. The performance of 
the different fill rate estimates can be summarized by the mean error (ME) and the 
root mean squared error (RMSE), respectively, such that:

Note that the ME measures the error bias, whereas the RMSE focuses on the 
error size.

Figure 10 shows the ME and RMSE obtained for the different fill rate estimation 
techniques. First, the high positive value of ME for β0 quantifies the overestimation 
produced by the expression (1). Note that such a formula also displays a high error 
variability as measured by the RMSE. This figure also clearly shows how the para-
metric approach (βLR) and the SDP (βSDP) alternatives outperform the initial (β0) in 

ei,j = �i,j − �A,j

(7)MEi =

∑J

j=1
ei,j

J

(8)RMSEi =

�∑J

j=1
e2i,j

J

Fig. 9   Fill rate estimations provided by the initial formula (β0), SDP approach (βSDP) and parametric 
model (βLR) for the test set
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terms of the bias (ME) and error variability size (RMSE). On the other hand, the dif-
ferences found between βSDP and βLR are minimal.

5 � Case study

To verify the performance of the proposed methods for a real dataset, sales data 
previously used by Barrow and Kourentzes (2016) were utilized as the demand 
estimates. This dataset belongs to a major UK fast-moving consumer goods manu-
facturer specializing in the production of household and personal care products. In 
total, 229 products at the SKU level were available, with 173 weekly observations 
per product. According to Barrow and Kourentzes (2016), there are no seasonal 
SKUs, and only a minority (21%) exhibit a slightl trend. To calculate the achieved 
fill rate for real data, we introduced the demand data of every SKU in our simula-
tion, indicating the values of S, s and L for each product, and following the proce-
dure summarized in Fig. 4, we calculated the fill rate with expression (2).

Proceeding as in the previous simulations, 70% of the data are held as a training 
set, and 30% are held as a test set. Figure 11 shows the initial (β0) and achieved (βA) 
fill rates for the training set of the case study. As previously occurred with the simu-
lated demands, there is a nonlinear positive bias of β0 with respect to βA. That bias is 
higher around fill rates of 0.8 and 0.9.

Figure 12 depicts the results obtained in the test set, where βSDP and βLR have been 
reestimated using the training dataset. Note that βLR was computed by means of a 
quadratic polynomial function. In general, the bias of βSDP and βLR was significantly 

Fig. 10   ME (left panel) and RMSE (right panel) obtained for the different fill rate estimates with respect 
to the achieved fill rate for the test set
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Fig. 11   Relationship between the initial fill rate (β0) and achieved fill rate (βA) for the training set of the 
case study data

Fig. 12   Fill rate estimations provided by the initial formula (β0), SDP approach (βSDP) and parametric 
model (βLR) for the test set of the case study dataset
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reduced. The bias reduction is quantified in Fig. 13. Again, the ME and RMSE of β0 
with regard to the proposed alternatives are larger.

6 � Discussion and practical implications

The previous sections showed that analytics fill rate methods successfully remove 
the bias associated with the initial fill rate formula. In this section, we will illustrate 
the managerial implications and benefits of using them in practice. Essentially, we 
will describe two possible applications: (1) a system performance measurement and 
(2) a policy design. In both examples, we will use the parametric alternative (βLR), 
since it provides similar results when compared with the nonparametric counterpart 
(βSDP).

6.1 � System performance measurement

For companies, one possible application is to measure the performance of a deter-
mined (s, S) pair of parameters in terms of the fill rate. Consider a manager that 
sets a fixed value of S for physical restrictions, and s is defined judgementally. The 
manager would like to know beforehand what the resulting fill rate for those cho-
sen parameters will be, given past sales as demand estimates and a given lead time. 
By using the initial formula, they would obtain �0 . However, as previously demon-
strated, such a formula overestimates the real fill rate, and the system will be less 

Fig. 13   ME (left panel) and RMSE (right panel) obtained for the different fill rate estimates with respect 
to the achieved fill rate for the test set of the case study dataset
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protected than the manager expects with an unexpected increase in stockout costs. 
Thus, it should be corrected by means of �LR.

An example of that application is shown in Fig.  14. Given the sales data from 
SKU 126, S = 1000 and L = 2, the figure shows that for different values of s, the �0 
overestimates the fill rate achieved �A . In contrast, �LR follows �A in a closer fashion.

6.2 � Parameter design

Another application of the proposed methodology is to design an inventory policy 
with the fill rate as a constraint. In other words, given a target fill rate, which val-
ues of s and S should be chosen? In this case, we have two options. First, if we do 
not apply the bias correction, then �0 = �target , and by means of Eq.  (1), s can be 
obtained, denoted by s0. Alternatively, to avoid the bias associated with �0 , we set 
�LR = �target , and we can obtain �′

0
 from expression (9). Note that, unlike Eq. (6), in 

the expression (9), �LR acts as an input, and �′
0
 is the output. Proceeding in the man-

ner shown in Sect. 4, �′
i
 for i = 0, 1, 2, 3,4 should be reestimated with the training 

dataset. Note that the parameters in (6) and (9) are not the same.

With the new value of �′
0
 together with Eq.  (1), we can obtain the value of s, 

which is denoted by sLR. Next, these values of s0 and sLR are fed into the simula-
tion to obtain �A(s0, S) and �A(sLR, S) , whose values are subject to a comparison with 
respect to the initially defined �target.

(9)��
0
= ��

0
+ (��

1
+ ��

2
⋅ �LR + ��

3
⋅ �2

LR
+ ��

4
⋅ �3

LR
) ⋅ �LR + �

Fig. 14   Fill rate calculations (β0, βLR, βA) for different values of s for SKU 126, L = 2, S = 1000
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Table 4 shows various examples for three different SKUs of the real dataset. For 
instance, the first row of the table is an example for SKU 126, given L = 2, S = 1000 
and �target = 0.75. The calculation of the reorder points is s0 = 104 and sLR = 300, 
depending on whether the bias is corrected. These ROPs are fed as inputs into the 
simulation, and the fill rates achieved are 0.72 and 0.76, respectively. Since the fill 
rate achieved by �A

(
sLR, S

)
 is closer to �target , it corroborates the usefulness of the 

proposed method to more effectively design the inventory policy, which means a 
reduction in stockout costs. Similar conclusions can be drawn regarding the rest of 
the SKUs in the table.

7 � Summary and conclusions

This paper focuses on the versatile order-point, order-up-to-level (s, S) system in 
the lost sales context. The control procedure of this system consists of continuously 
reviewing the status of the inventory in order to know exactly when the inventory 
position is at or below the ROP in order to launch a replenishment order to raise 
the inventory position to the order-up-to-level, S. Despite this system being widely 
used in practice, it is normally implemented assuming that the undershoots at ROP 
are negligible, i.e., assuming the inventory position always exactly reaches the ROP, 
which is only possible if demand transactions are unit sized. However, if demand is 
not unitary, the assumption regarding neglecting the undershoots leads to a bias in 
the performance of the system. This paper shows both conceptually and experimen-
tally that the initial formula to compute the fill rate is biased. It can provide an over-
estimate of almost 7% in the estimation of the fill rate and lead to wrong decisions 
that directly affect the performance and costs of the inventory system.

This paper proposes a new methodology from a data-driven perspective that uses 
a nonparametric SDP algorithm to model the bias and subsequently suggests two 
analytics fill rate methods that outperform the initial approach. Note that, despite 
the unknown complex nonlinearities involved in the initial fill rate bias, the SDP has 
revealed the nature of such a nonlinearity, which has been subsequently parameter-
ized by a parametric nonlinear model, linear in the parameters, that allows the use of 
linear regression. The importance of the analytics fill rate methods is that both are 
unbiased and easily implemented in practice.

Table 4   ROP computed without 
considering bias ( sLR) and 
considering bias ( s

0
) for several 

SKUs of the real dataset

L �target Policy Fill rate achieved

S s0 sLR �A(s0, S) �A(sLR, S)

SKU126 2 0.75 1000 104 300 0.72 0.76
SKU126 2 0.85 1100 283 481 0.72 0.85
SKU100 1 0.90 5000 244 1155 0.84 0.88
SKU100 1 0.95 4600 860 2227 0.87 0.95
SKU51 2 0.70 1675 498 774 0.66 0.71
SKU51 2 0.65 1500 417 695 0.62 0.65
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Although the SDP approach can be seen as a data-driven tool, it is important 
to distinguish it from other black-box data-driven tools typically associated with 
machine learning alternatives. In this work, the SDP approach was employed to learn 
the nature of the nonlinearities involved in the initial fill rate bias by neglecting the 
undershoots in the (s, S) system. Once those nonlinearities were identified by means 
of a curve, the expert model could develop a parametric solution taking advantage 
of the solid theory that underpins parametric theory. In this case, a simple linear 
regression was enough to model a complex nonlinearity. Note that this philosophy 
follows the Data Based Mechanistic approach proposed by Young (2012), where the 
author explains that “a model should not just explain the time series data well, but 
it should also provide a mechanistic description of the system under investigation”.

Practitioners interested in applying the methodology proposed should proceed as 
follows. First, they should compute the potential bias between their theoretical fill 
rate expression used and their achieved fill rate; if that bias is similar to the one 
presented here in the simulations and case study, then they can directly utilize the 
parametric model (�LR) . If the bias found does not follow a similar nonlinear pat-
tern, then the previous SDP identification step should be carried out. Note that the 
improvements obtained per SKU might mean a significant reduction in the stockout 
costs when applied to a large portfolio of SKUs.

Further research should analyse the effect on replacing the statistical demand 
distributions in the fill rate initial formula with the probabilistic forecasts of real 
demands. In addition, further research is also needed to extend these promising 
results to other systems.

Appendix

This appendix shows the recursive filtering/smoothing algorithms that are usu-
ally employed to reflect the TVP evolution (Young 2011) and how they have been 
extended and modified for SDP estimation. More details about this methodology can 
be found in Young (2011) and Young et al. (2001).

An overall SS model can be defined by these two equations:

where xt is known as the state vector. In our case, the observation equation is defined 
in (5) and the state equation in (4). Then, xt =

[
α1,t, α

∗
1,t

]T
 . The remaining matrices 

and vectors are defined as follows:

The white noise inputs, �t, are assumed to be independent of the observation 
noise, σ2, and have a covariance matrix Q. These noise inputs determine the stochas-
tic behaviour of the states.

(10)
Observation equation ∶ yt = Htxt + et
State equation ∶ xt = Fxt−1 + G�t

(11)F =

(
1 1

0 1

)
, G =

(
0 0

0 1

)
, Ht =

(
βc 0

)
, �t =

(
0 η∗

t

)T
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The SDP estimation can be divided into two steps. First, forward and backwards 
recursive algorithms are employed. Second, a backfitting algorithm is applied with 
the sorted data with respect to the dependent variable. Note that both the backwards 
pass smoothing and backfitting algorithms can be applied only if it is not necessary 
to work in real time.

Forward pass recursive LS equations

Prediction:

Correction:

Backwards pass smoothing equations

Note that Qr and Pt are normalized with respect to the observation equation noise 
(σ2), such as:

 P∗
t
 is the error covariance matrix related to the state estimates. The parameters 

inside that NVR matrix are estimated by a maximum likelihood prior to applying 
the recursive algorithms (Young et al. 2001).

Backfitting algorithm for SDP models.

1.	 Assume that FIS estimation has yielded an initial TVP estimate of α̂0
1,t|N

2.	 Iterate k = 1, 2,… , kc

a.	 sort both βA and βc according to the ascending order of βA.
b.	 obtain an FIS estimate α̂k

1,t|N in the relationship �a = �1
(
�a
)
⋅ �c

(12)
x̂t|t−1 = Fx̂t−1

Pt|t−1 = FPt−1F
T + GQrG

T

(13)
x̂t = x̂t|t−1 + Pt|t−1H

T
t

[
1 +HtPt|t−1H

T
t

]−1(
yt −Htx̂t|t−1

)

Pt = Pt|t−1 − Pt|t−1H
T
t

[
1 +HtPt|t−1H

T
t

]−1
HtPt|t−1

(14)

x̂t|N = F−1
[
x̂t+1|N + GQrG

TLt

]

Lt =
[
I − Pt+1H

T
t+1

Ht+1

]T[
FTLt+1 −HT

t+1

(
yt+1 −Ht+1x̂t+1

)]

Pt|N = Pt + PtF
TP−1

t+1|N
[
Pt+1|N − Pt+1|t

]
P−1
t+1|tFPt

Lt = 0

(15)Qr =
Q

σ2
; Pt =

P∗
t

σ2
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3.	 Continue Step 2 until iteration kc, that is, when the SDP (which is a series of 
length N) remains approximately constant.
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