

Tesis Doctoral

Marco para la Captura de Requisitos de

Usabilidad en Entornos de MDD

Yeshica Isela Ormeño Ayala

Directores:

Dr. Óscar Pastor López

Dr. José Ignacio Panach Navarrete

Diciembre 2023

Marco para la Captura de Requisitos de Usabilidad

en Entornos de MDD

Esta tesis fue realizada por:

Yeshica Isela Ormeño Ayala

Tutores

Dr. Óscar Pastor López (Universitat Politècnica de València)

Dr. José Ignacio Panach Navarrete (Universitat de València)

Centro de Investigación en Métodos de Producción de Software

Universitat Politècnica de València

Camìno de Vera s/n, Edificio 1F

46022, Valencia, España

Tel. (+34) 963 877 007 ext. 83533

Fax: (+34) 963 877 359

Web: http://www.pros.upv.es

Comentarios: La tesis es presentada para la obtención del grado de

Doctor en Informática por la Universidad Politécnica de Valencia.

Derechos: © Yeshica Isela Ormeño Ayala, 2023.

http://www.pros.upv.es/

5

Dedicatoria

A mi madre porque siempre ha sido el pilar que me sostuvo durante esta

travesía, gracias por estar ahí cuando más te necesito.

A mis hijos por todos los momentos de ausencia, gracias por vuestra

comprensión y paciencia.

6

Agradecimientos

Comienzo agradeciendo la generosidad de mis directores, el Dr. Ignacio

Panach y el Dr. Óscar Pastor. Ignacio, gracias por guiarme y

acompañarme, pero sobre todo gracias por tu paciencia y confianza que

me brindabas durante todo este tiempo. Gracias Óscar por recibirme en

el grupo de investigación PROS, por apoyarme y ampliar mis

horizontes. Gracias a todos mis compañeros de laboratorio L104 (Nelly,

Sergio, Raúl, Karolyne, Nathalie, José Luis y Yhu) y del laboratorio

L204 (Ana, Urko, los Perris, Otto y María Eugenia) con quienes pase

inolvidables momentos en la UPV y mis amigos (Nubia, Flabio, Ani,

Raúl, Eva, Alejandro, Lili y demás integrantes del grupo el pulpo

anhelado) que siempre me dieron todo su apoyo y muchos alientos para

seguir adelante pase lo que pase, gracias por vuestra amistad.

Gracias a mis colegas del DAII en especial al profesor Lauro por sus

sabios consejos, a Esthercita que como madre me entendía en los

avatares de la vida, y a todos que de una u otra forma confiaron en mi

persona y me brindaron su apoyo incondicional. Un agradecimiento

especial a la Universidad Nacional de San Antonio Abad del Cusco, que

a través del programa Yachayninchis Wiñarinanpaq en convenio con

Concytec Fondecyt hicieron posible el financiamiento de esta tesis.

7

Resumen

La investigación desarrollada en esta tesis representa un marco

novedoso para capturar requisitos de usabilidad durante el desarrollo de

un sistema software. Estos requisitos, están representados como

alternativas de diseños de Interfaces de Usuario (IU). El objetivo es

desarrollar un proceso de captura de requisitos de usabilidad basado en

entrevistas estructuradas con el apoyo de una herramienta que ayude a

resolver problemas como: (1) la omisión de la usabilidad desde las

primeras etapas de desarrollo, en general, las características de

usabilidad solo se tienen en cuenta al diseñar las interfaces en las

últimas etapas de desarrollo; (2) resulta tedioso la captura de requisitos

para analistas que no son expertos en usabilidad; (3) los métodos y

herramientas que se utilizan para desarrollar software no admiten la

elicitación de requisitos de usabilidad. A partir de estos problemas

encontrados en la literatura se definen las preguntas de investigación:

¿Es posible capturar requisitos de usabilidad en etapas iniciales de

desarrollo al mismo tiempo que los requisitos funcionales? Para

responder a esta pregunta, la tesis ha definido un método de elicitación

de requisitos de usabilidad llamado UREM (por sus siglas en inglés,

Usability Requirements Elicitation Method) y ha propuesto un método

para tratarlo dentro de entornos MDD.

El desarrollo de este trabajo de investigación se ha llevado a cabo

siguiendo la metodología Design Science. Esta metodología considera

dos ciclos: el primer ciclo es un ciclo de ingeniería en el que se diseña

un método para incluir requisitos de usabilidad durante el proceso de

elicitación de requisitos. El segundo ciclo corresponde a la validación

del método propuesto mediante una evaluación empírica dentro de un

contexto académico.

La propuesta de captura de requisitos de usabilidad mediante UREM

consiste en la definición de una estructura de un árbol donde las guías

de usabilidad y las guías de diseño de IU están almacenadas. El árbol

se define como un grafo conectado sin ciclos y una raíz; compuesto de

4 elementos: pregunta, respuesta, grupo de preguntas y diseño.

Las preguntas y las alternativas de diseño (respuestas) son extraídas de

las guías de usabilidad y de diseño, y marcan el camino por el cual el

8

analista navega hasta llegar a los nodos hoja que son los diseños de la

interfaz de usuario que se han alcanzado durante el proceso de captura

de requisitos de usabilidad. Son los usuarios finales quienes eligen la

alternativa más adecuada dependiendo de sus requisitos y/o siguiendo

las recomendaciones ya preestablecidas en la estructura del árbol. La

construcción del árbol la lleva a cabo un experto en usabilidad y puede

ser utilizado en reiteradas ocasiones, generando así diversas alternativas

de diseño de interfaz de usuario.

La tesis presenta el trabajo relacionado en tres áreas: elicitación de

requisitos de usabilidad, uso de guías de usabilidad e ingeniería

empírica de software.

9

Resum

La investigació desenvolupada en aquesta tesi representa un marc nou

per a capturar requisits d'usabilitat durant el desenvolupament d'un

sistema programari. Aquests requisits, estan representats com a

alternatives de dissenys d'Interfícies d'Usuari (IU). L'objectiu és

desenvolupar un procés de captura de requisits d'usabilitat basat en

entrevistes estructurades amb el suport d'una eina que ajude a resoldre

problemes com: (1) l'omissió de la usabilitat des de les primeres etapes

de desenvolupament, en general, les característiques d'usabilitat només

es tenen en compte en dissenyar les interfícies en les últimes etapes de

desenvolupament; (2) resulta tediós la captura de requisits per a

analistes que no són experts en usabilitat; (3) els mètodes i eines que

s'utilitzen per a desenvolupar programari no admeten l’elicitació de

requisits d'usabilitat. A partir d'aquests problemes trobats en la literatura

es defineixen les preguntes d'investigació: És possible capturar requisits

d'usabilitat en etapes inicials de desenvolupament al mateix temps que

els requisits funcionals? Per a respondre a aquesta pregunta, la tesi ha

definit un mètode d’elicitació de requisits d'usabilitat anomenat UREM

(per les seues sigles en anglés, Usability Requirements Elicitation

Method) i ha proposat un mètode per a tractar-lo dins d'entorns MDD.

El desenvolupament d'aquest treball de recerca s'ha dut a terme seguint

la metodologia Design Science. Aquesta metodologia considera dos

cicles: el primer cicle és un cicle d'enginyeria en el qual es dissenya un

mètode per a incloure requisits d'usabilitat durant el procés d’ elicitació

de requisits. El segon cicle correspon a la validació del mètode proposat

mitjançant una avaluació empírica dins d'un context acadèmic.

La proposta de captura de requisits d'usabilitat mitjançant UREM

consisteix en la definició d'una estructura d'un arbre on les guies

d'usabilitat i les guies de disseny d'IU estan emmagatzemades. L'arbre

es defineix com un graf connectat sense cicles i una arrel; compost de

4 elements: pregunta, resposta, grup de preguntes i disseny.

Les preguntes i les alternatives de disseny (respostes) són extretes de

les guies d'usabilitat i de disseny, i marquen el camí pel qual l'analista

navega fins a arribar als nodes fulla que són els dissenys de la interfície

d'usuari que s'han aconseguit durant el procés de captura de requisits

10

d'usabilitat. Són els usuaris finals els qui trien l'alternativa més

adequada depenent dels seus requisits i/o seguint les recomanacions ja

preestablides en l'estructura de l'arbre. La construcció de l'arbre la duu

a terme un expert en usabilitat i pot ser utilitzat en reiterades ocasions,

generant així diverses alternatives de disseny d'interfície d'usuari.

La tesi presenta el treball relacionat en tres àrees: elicitació de requisits

d'usabilitat, ús de guies d'usabilitat i enginyeria empírica de programari.

11

Abstract

The research developed in this thesis represents a novel framework for

capturing usability requirements during the development of a software

system. These requirements are represented as alternative User

Interface (UI) designs. The objective is to develop a usability

requirements capture process based on structured interviews with the

support of a tool that helps solve problems such as: (1) the omission of

usability from the early stages of development, in general, the

characteristics of Usability is only taken into account when designing

interfaces in the later stages of development; (2) it is tedious to capture

requirements for analysts who are not usability experts; (3) the methods

and tools used to develop software do not support the elicitation of

usability requirements. Based on these problems found in the literature,

the research questions are defined: Is it possible to capture usability

requirements in initial stages of development at the same time as

functional requirements? To answer this question, the thesis has defined

a usability requirements elicitation method called UREM (Usability

Requirements Elicitation Method) and has proposed a method to treat

it within MDD environments.

The development of this research work has been carried out following

the Design Science methodology. This methodology considers two

cycles: the first cycle is an engineering cycle in which a method is

designed to include usability requirements during the requirements

elicitation process. The second cycle corresponds to the validation of

the proposed method through an empirical evaluation within an

academic context.

The proposal to capture usability requirements through UREM consists

of the definition of a tree structure where the usability guides and UI

design guides are stored. The tree is defined as a connected graph

without cycles and a root; composed of 4 elements: question, answer,

group of questions and design.

The questions and design alternatives (answers) are extracted from the

usability and design guides, and mark the path along which the analyst

navigates until reaching the leaf nodes, which are the user interface

designs that have been achieved. during the usability requirements

12

capture process. It is the end users who choose the most appropriate

alternative depending on their requirements and/or following the

recommendations already pre-established in the tree structure. The

construction of the tree is carried out by a usability expert and can be

used repeatedly, thus generating various user interface design

alternatives.

The thesis presents related work in three areas: usability requirements

elicitation, use of usability guides, and empirical software engineering.

13

Índice General

Dedicatoria .. 5

Agradecimientos ... 6

Resumen.. 7

Resum ... 9

Abstract ... 11

Estructura de la Tesis .. 15

I. Introducción .. 16

1.1 Motivación y Planteamiento del Problema 18

1.2 Objetivos y Preguntas de Investigación 20

1.3 Compendio de Artículos .. 22

1.4 Metodología de la Investigación .. 28

1.5 Contribuciones de la tesis .. 37

1.6 Contexto de la tesis .. 38

II Compendio de publicaciones ... 39

2.1 Mapping Study about Usability Requirements Elicitation 40

2.2 Towards a proposal to capture usability requirements through

guidelines .. 63

2.3 A Proposal to Elicit Usability Requirements within a Model-

Driven Development Environment .. 92

2.4 An Empirical Experiment of a Usability Requirements Elicitation

Method based on Interviews .. 124

14

III. Discusiones ... 191

IV. Conclusiones ... 198

4.1 Contribuciones a partir de los Objetivos 200

4.2 Fortalezas y Debilidades de la Tesis .. 201

4.3 Trabajos Futuros .. 203

Referencias .. 204

15

Estructura de la Tesis

Siguiendo la normativa de la Universidad Politécnica de Valencia para

la tesis por compendio de artículos, la estructura de este trabajo se ajusta

a las siguientes cuatro partes:

Parte I (Introducción). La primera parte de la tesis presenta la

motivación de la investigación, la descripción del problema, los

objetivos del trabajo, la relación de artículos científicos publicados para

el cumplimiento de los objetivos de la tesis y la metodología seguida

para desarrollar la investigación.

Parte II (Publicaciones). La segunda parte de la tesis, compuesta por

cuatro capítulos (capítulos 1, 2, 3 y 4) contiene el compendio de

artículos científicos que resultan de la investigación realizada para la

tesis. Las contribuciones están ordenadas cronológicamente, y su

formato ha sido adaptado al formato de esta tesis.

Parte III (Discusiones). En la tercera parte de la tesis se realiza una

discusión general de los resultados relacionando los aportes de la tesis

con el contexto de la investigación.

Parte IV (Conclusiones). La cuarta y última parte de la tesis presenta

las conclusiones sobre el trabajo realizado y las futuras líneas de

investigación.

16

 PARTE I

INTRODUCCION

I

 Los temas que se cubren en esta parte son:

1.1 Motivación y Planteamiento del Problema

1.2 Objetivos y Preguntas de Investigación

1.3 Compendio de Artículos

1.4 Metodología de la Investigación

1.5 Contribuciones de la tesis

1.6 Contexto de la tesis

I. Introducción

17

Esta parte presenta la motivación para realizar la tesis, incluyendo el

análisis del problema a resolver, los objetivos a alcanzar, y las preguntas

de investigación que conducirán a la construcción del marco de

desarrollo de requisitos de usabilidad. Además, se describe la

metodología seguida con la que se llevó a cabo la investigación, así

como las contribuciones y el contexto de la tesis.

18

1.1 Motivación y Planteamiento del Problema

La interacción persona ordenador ha desarrollado guías y

recomendaciones para mejorar la usabilidad en los sistemas de

información que son usualmente aplicados en las etapas finales del

proceso de desarrollo software. Por otro lado, la comunidad de la

ingeniería del software ha desarrollado métodos conocidos para

capturar requisitos funcionales en etapas tempranas, siendo los

requisitos como la usabilidad postergada a etapas finales conjuntamente

con otros requisitos no funcionales. La captura de requisitos de

usabilidad permite a los ingenieros de software, diseñadores, y analistas

crear software que no solo cumpla con los requisitos funcionales [1].

Además, no existen métodos que capturen requisitos de usabilidad

durante el desarrollo del software en ambas comunidades y la mayoría

de trabajos para optimizar la usabilidad se centran en el uso real de la

aplicación final [2]. Un claro ejemplo de este problema se manifiesta en

la aplicación del paradigma de desarrollo dirigido por modelos en

donde los métodos y herramientas no soportan la captura de requisitos

de usabilidad.

El desarrollo de interfaces de usuario, que va desde los primeros

requisitos hasta la implementación del software, se ha convertido en un

proceso costoso y lento en el ciclo de vida del desarrollo de software

(SDLC) [3]. Este proceso sería más efectivo si se incluyeran los

requisitos de usabilidad para que el software cumpla con los requisitos

de los usuarios y además brinde una interacción con el software acorde

con el tipo de tarea a realizar. Existen propuestas para utilizar guías de

diseño que mejoren la usabilidad pero cómo relacionar estas guías con

la elicitación de requisitos es un ámbito aún no explorado [4].

Las áreas de la Interacción Persona Ordenador (IPO) e Ingeniería del

Software (IS) tienen como objetivo común desarrollar sistemas usables.

En ambas comunidades, la usabilidad suele considerarse en las últimas

etapas del proceso de desarrollo de software, cuando las interfaces ya

han sido diseñadas. El incluir características de usabilidad en estas

últimas etapas podría afectar a la arquitectura del sistema. Para

19

minimizar este problema, la usabilidad debe incluirse en la etapa de

captura de requisitos [5], [6]. La comunidad de la IS tiene una amplia

experiencia en la obtención temprana de requisitos y existen métodos

sólidos. Sin embargo, estos métodos solo se centran en los requisitos

funcionales (RF), y los requisitos no funcionales (NFR) como la

usabilidad han sido olvidados en esta etapa temprana. Según muchos

autores, cumplir con los requisitos funcionales no es suficiente para

crear y asumir que un producto es de calidad [7]. La usabilidad es un

factor clave para obtener niveles de aceptación.

Model-Driven Development (MDD) ha sido bastante popular en la

comunidad académica [8] en los últimos años, y se han introducido

varias propuestas diferentes para desarrollar sistemas de software.

MDD es un paradigma de desarrollo de software que se basa en

modelos y transformaciones de modelos para obtener un producto final

mediante la generación automática de código considerando algunas

reglas de transformación.

En un campo donde la tecnología cambia rápidamente, una metodología

basada en modelos es una opción válida por algunas razones:

• El dominio del conocimiento está representado en modelos, siendo

éstos independientes de la tecnología [9],

• La solución para el desarrollo de un sistema software no se ve afectada

por la evolución de la plataforma hardware.

• Cuando se considera una nueva tecnología como plataforma de

destino para desarrollar software, no es necesario volver a describir todo

el sistema sino generar un nuevo modelo específico de plataforma

(PSM) que incluya los cambios en la plataforma de destino.

• Las tareas relacionadas con el ciclo de vida del desarrollo

(mantenimiento, nuevos requisitos, proceso de actualización) son

menos complicadas de realizar [10].

Esta tesis presenta un método para el proceso de elicitación de

requisitos de usabilidad (UREM, por sus siglas en inglés, Usability

Requirements Elicitation Method) representados en diseños de IU

20

construidos siguiendo guías de usabilidad, de diseño, estándares e ISOs

dentro del entorno de MDD con el apoyo de una herramienta de soporte.

El método tiene como objetivo representar los requisitos de usabilidad

mediante alternativas de diseños de IU que serán seleccionados por el

usuario final durante la captura de requisitos. Este método propone

representar los diseños de las interfaces en modelos conceptuales que

después puedan ser la entrada a un proceso de desarrollo MDD.

En resumen, el enunciado del problema en esta tesis es:

No existe un método para capturar los requisitos de usabilidad que

tenga en cuenta guías de diseño y recomendaciones de usabilidad

que ayuden a analistas poco expertos en el desarrollo de sistemas

usables bajo el enfoque MDD.

Nuestro trabajo tiene como objetivo definir un método de captura de

requisitos de usabilidad (UREM) para analistas que no son expertos en

ingeniería de usabilidad y deseen incorporar la especificación de

requisitos de usabilidad en un entorno de MDD.

1.2 Objetivos y Preguntas de Investigación

El objetivo principal de la Tesis es definir UREM: un método

estructurado basado en normas y guías de usabilidad que incorporan

requisitos de usabilidad durante la captura de requisitos mediante

entrevistas entre el analista y el usuario final, obteniendo diseños de IU

como resultado de las entrevistas.

Para lograr el objetivo principal, es necesario responder las siguientes

preguntas de investigación (RQ), que debido a su amplitud son

subdividas en sub preguntas de investigación (SQ):

• RQ1: ¿Es posible capturar requisitos de usabilidad en etapas

iniciales de desarrollo software?

21

- SQ1.1: ¿Que métodos, guías de usabilidad, estándares y

normas se requieren en el proceso de captura de requisitos de

usabilidad que apoyen la labor del analista?

- SQ1.2: ¿Es posible desarrollar una estructura de árbol que

facilite el proceso de captura de requisitos en un entorno MDD?

- SQ1.3: ¿Es posible representar alternativas de diseño de IU en

una estructura de árbol en base a las guías de usabilidad y

diseño para la captura de requisitos de usabilidad?

• RQ2: ¿Qué impacto produce UREM en la captura de requisitos de

usabilidad?

- SQ2.1 ¿Cuál es el impacto del uso de las guías de usabilidad en

el diseño de IU?

- SQ2.2 ¿Cuál es el impacto de la aplicación del UREM en un

contexto académico?

- SQ2.3 ¿Cuál es el impacto de las recomendaciones de

usabilidad propuestas por UREM?

Para contestar estas preguntas, se plantean los siguientes objetivos

específicos:

Objetivo 1 (RQ1). Para contestar la RQ1, se identificarán las

limitaciones y problemas existentes en el desarrollo del software por la

ausencia de mecanismos que garanticen una adecuada captura de

requisitos de usabilidad. Para contestar la SQ1.1, se analizarán métodos,

estándares, normas y guías de usabilidad existentes en la literatura que

deben ser incluidas en el desarrollo del software y durante el diseño de

IU. Para contestar la SQ1.2, se definirá un mecanismo de captura de

requisitos de usabilidad que consiste en desarrollar una estructura de

árbol en base a preguntas, grupo de preguntas y respuestas, que resulten

en diseños de IU usables. Para contestar la SQ1.3 se implementarán las

guías de usabilidad y diseños dentro de la estructura del árbol que

conduzcan a la generación de diseños de IU usables.

Objetivo 2 (RQ2). Para contestar la RQ2, se realizará el experimento

empírico. El experimento, está orientado a responder las SQ2.1, SQ2.2

y SQ2.3, es un experimento con 2 réplicas para comparar UREM con

un método de elicitación de requisitos de usabilidad no estructurado (y

22

sin guías de usabilidad). Los diseños de IU son el resultado de la captura

de requisitos de usabilidad realizado y se plasman en los diseños de IU

obtenidos al final de la entrevista.

1.3 Compendio de Artículos

Como resultado de la investigación se han elaborado y publicado cuatro

artículos de investigación que abarcan las preguntas de investigación y

responden más explícitamente a las sub preguntas de investigación

definidas.

1.3.1 Mapping study about usability requirements elicitation

Ormeño, Yeshica, Ignacio Panach y Óscar Pastor. En International

Conference Advanced Information Systems Engineering (CAiSE

2013). Springer 2013, págs. 672-687, DOI:

https://doi.org/10.1007/978-3-642-38709-8_43.

Este artículo publicado en la conferencia CORE A CAiSE aborda la sub

pregunta de investigación SQ1.1: ¿Que métodos, guías de usabilidad,

estándares y normas se requieren en el proceso de captura de requisitos

de usabilidad que apoyen la labor del analista?

En el primer artículo se ha desarrollado un estudio sistemático

siguiendo la metodología de Kitchenham, cuyo objetivo es identificar

las propuestas existentes para la elicitación de requisitos de usabilidad

desde las primeras etapas de desarrollo software, la misma que ha sido

subdividida en 6 sub preguntas referentes a: 1) Métodos para elicitar los

requisitos de usabilidad. Los métodos existentes inician el proceso de

elicitación de los NFRs mediante técnicas tradicionales (entrevistas,

cuestionarios, etc.) teniendo que ser personalizables en caso de

aplicarse a otros contextos diferentes, es decir deben ser adaptados.

Además, solo proporcionan soporte básico a la gestión de requisitos por

https://doi.org/10.1007/978-3-642-38709-8_43

23

medio de extensiones para la captura de requisitos. 2) Métodos para

elicitar requisitos de interacción. Se caracterizan porque realizan un

análisis exhaustivo de los requisitos para encontrar y aliviar los

problemas de interacción donde los modelos están basados en el análisis

sistemático de un conjunto de propiedades de interfaces estándar, y/o

patrones estructurales, buscando potenciar la usabilidad y experiencia

de usuario. 3) Guías de usabilidad utilizadas para elicitar los requisitos

de usabilidad. Las guías encontradas ayudan a superar en parte el

obstáculo de la integración de la usabilidad y su significado por los

stakeholders. No obstante, para su aplicación se requiere la

interpretación de un experto en usabilidad. 4) Herramientas de apoyo a

la elicitación de requisitos. Las herramientas son de apoyo y presentan

funcionalidad limitada cuando se orientan a la elicitación de requisitos.

En general, están orientadas a la identificación de requisitos para que

las interfaces de usuario sean más comprensibles por los usuarios. Se

utilizan más en el diseño de sistemas interactivos, pero su uso exige

cierto grado de esfuerzo en la comprensión y aplicación por parte del

analista. 5) Tipo de notación para la elicitación de los requisitos. Las

notaciones son utilizadas por los métodos en sus diferentes fases de

desarrollo. Algunos tipos de representación son patrones, escenarios y

plantillas. En algunos métodos se han utilizado más de una notación en

combinación con más de un artefacto, siendo de gran uso para el

analista, aunque no son tan comprendidos por el usuario final. y 6)

Entorno de validación empírica. Los casos de estudio, experimentos o

pruebas de concepto que se plantean dentro del plano académico e

industrial no muestran métricas explícitas que determinen el nivel de

usabilidad logrado por el sistema. Además, los métodos están

desarrollados para ciertas características de usabilidad consideradas de

mayor impacto sobre la funcionalidad. Las listas de verificación,

sesiones y gestión de escenarios son los artefactos generalmente

utilizados para evaluar la usabilidad. Generalmente, la usabilidad se

evalúa mediante encuestas en términos de efectividad, eficiencia y

satisfacción.[1].

Analizando los resultados del estudio sistemático, podemos concluir

que existe una clara línea de investigación en el campo de los requisitos

de usabilidad en entornos MDD. Por lo general, los métodos MDD

24

históricamente se han centrado en modelar el comportamiento y la

persistencia, pero relegando la interacción y particularmente la

usabilidad a una implementación manual. Esta implementación manual

contradice claramente el paradigma MDD, que aboga por que el analista

trabaje con modelos conceptuales holísticos, en los que se puedan

representar todas las características del sistema (incluidas las

características de usabilidad).

1.3.2 Towards a proposal to capture usability requirements through

guidelines

Ormeño, Yeshica, Ignacio Panach, Nelly Condori y Óscar Pastor. En

International Conference Research Challenges in Information Science

(RCIS 2013). IEEE 2013, Págs.1-12, DOI:

10.1109/RCIS.2013.6577677

Este artículo publicado en el congreso CORE B RCIS, aborda la sub

preguntas de investigación SQ1.2: ¿Es posible desarrollar una

estructura de árbol que facilite el proceso de captura de requisitos en un

entorno MDD?.

En este segundo artículo se define el proceso para capturar los requisitos

de usabilidad consistente en construir una estructura de árbol utilizando

las guías de diseño de interfaz usuario y las guías de usabilidad que

ayudan al analista a capturar los requisitos de usabilidad. El enfoque se

basa en un formato de pregunta-respuesta de tal manera que los

requisitos se capturan con una entrevista con el usuario final. El

resultado de la entrevista es un conjunto de diseños que el sistema debe

satisfacer. Si especificamos estos diseños formalmente, podemos

transformarlos en primitivas conceptuales de un método MDD

existente.

Los componentes del modelo para el árbol son: 1) Las preguntas, que

son formuladas en base a las diversas alternativas de diseño que existen

para la especificación de los componentes de una IU extraídas de las

guías de diseño y estándares de usabilidad existentes. Se pregunta al

usuario que alternativa es de su preferencia. 2) Las respuestas, que son

http://dx.doi.org/10.1109/RCIS.2013.6577677

25

establecidas como opciones exclusivas para ser presentadas al analista,

quien elige cuál se adapta mejor a los requisitos. La decisión del analista

no solo se basa en los criterios del usuario final, sino que toma en

consideración las respuestas que están definidas en el árbol en base a

las guías de usabilidad según el tipo de usuario, tarea y contexto. Estas

son las respuestas que son recomendadas al usuario durante su elección.

3) Los grupos de preguntas, que están formadas por un conjunto de

preguntas, agrupadas por una característica de diseño de IU. Las

preguntas no son mutuamente excluyentes, es decir, se deben consultar

todas ellas al usuario independientemente de las respuestas que se

elijan. 4) Los diseños, que son las hojas del árbol alcanzadas a través de

las alternativas que el analista ha ido eligiendo como resultado de las

selecciones realizadas por el usuario final.

La estructura de árbol y la transformación entre los diseños y el método

MDD se definen una sola vez y se pueden reutilizar indefinidamente

para desarrollar cualquier sistema.

1.3.3 A proposal to elicit usability requirements within a model-

driven development environment.

Ormeño, Yeshica, Ignacio Panach, Nelly Condori y Óscar Pastor. En

International Journal of Information System Modeling and Design

(2014) 5(4), Págs.1-21, DOI:

http://dx.doi.org/10.4018/ijismd.2014100101

Este artículo publicado en una revista internacional aborda la sub

preguntas de investigación SQ1.3: ¿Es posible representar alternativas

de diseño de IU en una estructura de árbol en base a las guías de

usabilidad y diseño para la captura de requisitos de usabilidad?

En este tercer artículo se presenta el proceso para elicitar requisitos de

usabilidad basado en alternativas de diseño propuestas y lineamientos

de usabilidad existentes. El enfoque se basa en la construcción de una

estructura de árbol que representa todas las alternativas de diseño. Se

explica en detalle cómo construir la estructura de árbol y cómo usarla.

El usuario final participa en el proceso, eligiendo la alternativa de

http://dx.doi.org/10.4018/ijismd.2014100101

26

diseño que mejor se ajuste a sus requerimientos. La navegación

comienza desde la raíz del árbol y continua mientras el analista hace las

preguntas a los usuarios. La posible navegación entre dos nodos de la

estructura de árbol puede ser: i) De un grupo de preguntas a una

pregunta, o a otro grupo de preguntas; ii) De una pregunta a una

respuesta iii) De una respuesta a una pregunta o a un grupo de preguntas

o a un diseño.

El enfoque ha sido validado con 4 sujetos a través de una demostración

de laboratorio. En el ejemplo, se han utilizado dos guías de usabilidad:

ISO 9126-3 y los criterios ergonómicos. Nuestro enfoque acepta tantas

guías como el analista quiera considerar. Una contradicción entre dos

guías no significa un problema, ya que el usuario final decide la

alternativa de diseño más adecuada. Sin embargo, es importante

mencionar que demasiadas recomendaciones para los posibles diseños

pueden confundir a los usuarios finales.

Como resultado del proceso de elicitación obtenemos algunos modelos

conceptuales incompletos. En los próximos pasos de desarrollo, el

analista debe mejorar estos modelos con primitivas que representen la

funcionalidad y la apariencia visual del sistema para obtener un sistema

completamente funcional.

1.3.4 An Empirical of a Usability Requirements Elicitation Method

based on Interviews

Ormeño, Yeshica, Ignacio Panach y Óscar Pastor. En Information and

Software Technology (2023), Págs. 107324, DOI:

https://doi.org/10.1016/j.infsof.2023.107324

Este artículo publicado en la revista JCR IST (Q2 en JCR) aborda las

sub preguntas de investigación SQ2.1 ¿Cuál es el impacto del uso de

las guías de usabilidad en el diseño de IU?, SQ2.2 ¿Cuál es el impacto

de la aplicación del UREM en un contexto académico? y SQ2.3 ¿Cuál

es el impacto de las recomendaciones de usabilidad propuestas por

UREM?

https://doi.org/10.1016/j.infsof.2023.107324

27

En el cuarto artículo se ha realizado un experimento que compara

entrevistas estructuradas con entrevistas no estructuradas para obtener

requisitos de usabilidad. Las entrevistas estructuradas se

operacionalizan con UREM, que es un método basado en un árbol de

decisiones en el que el analista guía la entrevista navegando por la

estructura del árbol. Cada rama del árbol incluye una pregunta para el

usuario final con posibles respuestas. Además, se recomienda la

respuesta que cumpla más con las guías de usabilidad existentes. Con

el método de entrevista no estructurada, el analista debe obtener

requisitos de usabilidad sin ninguna guía. En el experimento, el

tratamiento de control se denomina entrevista no estructurada. La

evaluación se realiza para analizar cuatro variables de respuesta: 1)

Efectividad en la elicitación de requisitos de usabilidad;2) Efectividad

en la aplicación de las guías de usabilidad; 3) Eficiencia; y 4) la

satisfacción tanto del analista como la del usuario final. Como

resultados significativos, UREM es más efectivo en la obtención de

requisitos de usabilidad y también más efectivo en el diseño de

interfaces que cumplen con las guías de usabilidad.

Se han aprendido algunas lecciones durante la realización del

experimento: 1) El esfuerzo para construir el árbol con UREM es alto.

Esto es algo que no se analizó en el experimento, pero el esfuerzo

requerido no es despreciable en base a la experiencia vivida por los

experimentadores. Cabe destacar que este esfuerzo se amortiza debido

a que la misma estructura de árbol es útil para cualquier desarrollo

futuro; 2) Las recomendaciones realizadas durante la navegación por la

estructura del árbol pueden ser diferentes según las guías de usabilidad

utilizadas para construir el árbol. Si bien la mayoría de las guías de

usabilidad coinciden en las características que optimizan la usabilidad,

existen algunas guías que pueden presentar algunas contradicciones. Al

final, el experto en usabilidad que construye la estructura de árbol es

quien elige las guías de usabilidad más adecuadas para las

recomendaciones; 3) La mayoría de los usuarios finales aceptaron las

recomendaciones de usabilidad. Este valor podría haber sido diferente

si los sujetos hubieran tenido más experiencia en las características de

usabilidad.

28

1.4 Metodología de la Investigación

Para el desarrollo de la tesis se ha seleccionado la metodología “Design

Science” (DS) [11] por su enfoque en la investigación de proyectos de

Sistemas de Información e Ingeniería de Software a través de la

experimentación, observación del estudio y análisis de resultados. Todo

ello hace de esta metodología una guía adecuada para llevar a cabo la

investigación.

DS se basa en el diseño e investigación de artefactos en un contexto.

Los artefactos que estudiamos están diseñados para interactuar con un

contexto problemático a fin de mejorar en ese contexto. Esta tesis aplica

la metodología DS para investigar cómo se pueden capturar requisitos

de usabilidad a partir de la gestión de un modelo basado en guías y

estándares de usabilidad que promuevan el diseño de interfaces de

usuario usables, y que satisfagan los requisitos del usuario.

El objeto de estudio de cualquier proyecto basado en DS es “estudiar

un artefacto interactuando en su contexto del problema”, a lo cual la

metodología lo denomina tratamiento. Cuando se menciona “artefacto”

se refiere a un elemento de software (por ejemplo, método, aplicación

de software, etc.) diseñado por los investigadores del proyecto DS y se

usa por personas como solución a un problema.

El objeto de estudio de esta tesis es: proponer UREM (nuestro artefacto)

para resolver el problema de capturar requisitos de usabilidad mediante

entrevistas estructuradas (preguntas y respuestas) que se realicen en el

proceso de diseño de IU. La siguiente Fig.1 muestra la relación

existente.

29

Figura 1. Artefacto que captura requisitos de usabilidad interactuando con el contexto

para resolver un problema de ese contexto.

Como resultado de esta investigación se pretende que la aplicación de

UREM contribuya a la captura de requisitos de usabilidad en etapas

tempranas del desarrollo software facilitando la generación de diseños

de IU usables. El tratamiento, el artefacto y las investigaciones

asociadas a la creación de este método brindan un avance en la

investigación científica.

1.4.1 Marco Metodológico Aplicado a la tesis

Para alcanzar los objetivos y responder a las preguntas de investigación,

la metodología provee un marco de trabajo que consiste en dos

contextos interactuando con el proyecto DS. Se tiene dos contextos que

son: el contexto social y el contexto de conocimiento, como se muestra

en la siguiente figura.

30

Figura 2. Marco de trabajo de la metodología DS aplicado a la tesis

El contexto social representa a las partes interesadas del proyecto

incluyendo a las personas o instituciones que financian el proyecto y/o

definen los objetivos o requisitos para UREM. Las partes interesadas se

dividen en 2 grupos. El primero lo conforman las partes interesadas que

patrocinan el proyecto de investigación:

• Universidad Nacional de San Antonio Abad del Cusco –

CONCYTEC PROCIENCIA .

• Departamento de Sistemas y Computación de la Universidad

Politécnica de Valencia.

• PROS Centro de Investigación.

El segundo grupo lo conforman las partes interesadas que son

beneficiarios directo del UREM.

• Universidades e investigadores en el área de desarrollo de software

dirigido por modelos.

• Analistas de sistemas y desarrolladores de software

31

El contexto de conocimiento representa la literatura científica

existente que se ha utilizado para poder llevar a cabo la

investigación. En esta tesis, el contexto de conocimiento incluye las

fuentes primarias de conocimiento como son la literatura científica,

profesional, técnica y comunicaciones orales en las disciplinas HCI,

desarrollo de software dirigido por modelos, usabilidad, ingeniería

de requisitos, estudios empíricos.

1.4.2 Ciclo de Diseño y Ciclo Empírico

La metodología DS para realizar las actividades de diseño e

investigación en un proyecto, provee de 2 ciclos iterativos y anidados:

i) Ciclo de Diseño y ii) Ciclo Empírico. Cada ciclo está compuesto de

tareas y cada tarea involucra resolver problemas de diseño y preguntas

de conocimiento.

i) Ciclo de diseño

El ciclo de diseño es un proceso orientado al diseño del artefacto de la

investigación y puede ser visto como un sub-ciclo de un tipo de

ingeniería enfocado a la resolución de problemas. El ciclo de ingeniería

está compuesto de 4 tareas de diseño (TD).

- TD1. Investigación del problema. Identificar las causas del

problema, para poder ser mejorado.

- TD2. Diseño del tratamiento. Diseñar artefactos para tratar el

problema, se especifican los requisitos, se estudian tratamientos

existentes, para ver si se adapta el tratamiento o si se diseña un

nuevo tratamiento.

- TD3. Validación del tratamiento. Verificar que el diseño del

tratamiento abarca el problema.

- TD4. Implementación del tratamiento. Tratar el problema con el

artefacto diseñado.

32

De estas 4 tareas del ciclo de ingeniería, el ciclo de diseño abarca las

tareas, como se muestra en la Figura 3.

Figura 3. Ciclo de diseño de la metodología de DS. Adaptado de [19]

En el desarrollo de esta Tesis, aplicamos un Ciclo del Diseño con las

Tareas (TD) indicando en qué parte, capítulo o sección de la tesis se

encuentran:

- TD1) Problema de Investigación: Definido por el investigador y la

necesidad de investigar un método de captura de requisitos de

usabilidad a partir de entrevistas (Parte II, Sección 1).

- TD2) Estado del Arte: Investigar propuestas existentes relacionadas

con métodos de captura de RF y NFR, requisitos de interacción,

notación, guías, validaciones empíricas (Parte II, Sección 1).

33

- TD3) Definir el método estructurado: A partir de la estructura de

un árbol donde se definen preguntas y respuestas para generar

alternativas de diseño de IUs. Estas preguntas y respuestas fueron

extraídas de la revisión de guías y estándares de usabilidad

existentes en la literatura (Parte II, Sección 2).

- TD4) Definir alternativas de diseños de IU: Al definir las preguntas

de la estructura en árbol, cuando las preguntas tienen más de una

respuesta (alternativa de diseño), se utilizan guías de usabilidad

para recomendar la alterativa apropiada en base a los estándares y

guías de usabilidad. Se asignan preguntas y respuestas a cada

alternativa que conducen a la especificación de un diseño de IU

(Parte II, Sección 3).

- TD5) Definir recomendaciones de usabilidad: Cuando las

preguntas cuentan con más de una alternativa que conlleva a los

diseños de IUs, se proporciona las alternativas que contienen

recomendaciones de usabilidad para saber qué alternativa es más

adecuada (Parte II, Sección 4).

ii) Ciclo Empírico

El ciclo empírico es un proceso orientado a contestar preguntas de

conocimiento científico de manera racional, donde el investigador

diseña la configuración de la investigación (o estudio empírico, como

por ejemplo un experimento) y analiza los datos producidos de esta

experimentación. El ciclo empírico se muestra en la Figura 4, y se

compone de 5 tareas que se identifican con (TE).

- TE1. Análisis del problema de investigación, que consiste en

definir las preguntas de investigación sobre las cuales vamos a

realizar el estudio, y reclutar los sujetos del experimento de quienes

obtenemos los datos.

- TE2. Diseño de la investigación, que consiste en diseñar el estudio

empírico definiendo las variables y las métricas (como medirlas),

definir los problemas experimentales (los problemas que los sujetos

tienen que resolver), definir los tratamientos de la investigación, y

definir los métodos estadísticos que serán utilizados para obtener

resultados.

34

- TE3. Validación de la investigación, que consiste en validar las

amenazas que puedan afectar el estudio empírico y a los resultados.

Utilizamos 4 tipos de validaciones [12]: validez de la conclusión,

validez interna, validez del constructo, y validez externa. Se

describe cómo se ha minimizado o cubierto las amenazas del

experimento para cada tipo de validación.

- TE4. Ejecución del experimento, que consiste en ejecutar el

experimento empírico según el diseño del experimento.

- TE5. Análisis de los datos, que consiste en analizar los datos

obtenidos en el experimento de acuerdo a los métodos estadísticos

definidos en el diseño del experimento.

Figura 4. Ciclo Empírico de la metodología DS. Adaptado de [13]

35

En esta Tesis se ha definido un ciclo empírico que se muestran en la

Parte II Sección 4:

El ciclo empírico TE: La validación de UREM y sus diseños de IU

incluyendo recomendaciones para optimizar la usabilidad se encuentra

en la Parte II Sección 4. A continuación, se muestran las tareas (TE)

relacionadas con este ciclo:

- TE1) Análisis del problema de investigación: Se definieron 5

preguntas de investigación. El experimento consiste en 2 réplicas,

los sujetos son estudiantes del Grado y Master de Ingeniería

Informática de la Universidad Nacional de San Antonio Abad del

Cusco (Perú).

- TE2) Diseñar un experimento para validar UREM: El investigador

propuso 2 problemas experimentales en contextos diferentes, donde

cada problema requiere la elicitación de distintos requisitos de

usabilidad. En el experimento participan sujetos con dos roles: el

rol de analista que elicita los requisitos de usabilidad y diseña las

IUs, y el rol del cliente que explica sus requisitos y valida el

resultado. La captura de requisitos de usabilidad se realiza con un

método de entrevistas no estructurado y UREM (haciendo uso del

árbol implementado para este proceso) para comparar el grupo de

control con el tratamiento respectivamente. Después de realizar la

entrevista con uno u otro método, el analista debe dibujar los

diseños de IUs que satisfagan los requisitos de usabilidad del

cliente. Las variables y las métricas utilizadas en la

experimentación son: Efectividad aplicada en dos contextos:

Efectividad en la captura de requisitos (se mide como el porcentaje

de requisitos de usabilidad satisfechos por el analista usando el

método no estructurado y UREM), y efectividad en la aplicación de

las guías de usabilidad (se mide como el porcentaje de requisitos de

usabilidad que han sido incluidos en el diseño de la IU usando el

método no estructurado y el UREM). Eficiencia (se mide como el

ratio del tiempo destinado en la captura de requisitos de usabilidad

sobre la efectividad lograda en la captura de requisitos por el

analista con el método no estructurado y UREM). Satisfacción

aplicada desde dos perspectivas: Satisfacción del analista que

36

diseña las IU (se mide como el nivel de satisfacción del analista

durante la elicitación de requisitos usando el método no

estructurado y UREM) y satisfacción del usuario final quien

utilizará las IUs (se mide a través del cuestionario CSUQ

(https://garyperlman.com/quest/quest.cgi), para el método no

estructurado y UREM). Para la satisfacción del analista se mide en

términos de Facilidad de Uso Percibida, Utilidad Percibida y la

Intención de Uso a través de un cuestionario de escala de Likert de

5 puntos) para el método no estructurado y el método UREM.

- TE3) Validación de la investigación: El experimento valida las

amenazas que puedan afectar el estudio empírico y a los resultados,

utilizamos 4 tipo de validaciones [12]: validez de la conclusión

(Poder estadístico bajo, Supuestos transgredidos de estadística,

Pesca, Fiabilidad de las medidas, Fiabilidad de la implementación

de los tratamientos y Heterogeneidad aleatoria de los sujetos),

validez interna (Historia, Maduración, Instrumentación, Selección,

Mortalidad y Rivalidad compensatoria), validez del constructo

(Explicación preoperacional inadecuada de los constructos, Sesgo

mono-operación, Sesgo mono-metodo y Homogeneidad del

problema), y validez externa (Interacción de selección y

tratamiento, Interacción de entornos y tratamiento e Interacción de

historia y tratamiento). Se describe cómo se ha cubierto y

minimizado las amenazas del experimento para cada tipo de

validación.

- TE4) Ejecutar el experimento para validar el método: El

experimento se ejecuta en 2 réplicas, el investigador elaboró dos

listas de requisitos de usabilidad para cada problema y se

desarrollaron sesiones de capacitación del manejo de UREM a

todos los sujetos experimentales días antes del experimento.

Además de una introducción de UREM con una duración de 10

minutos antes del experimento, se realiza un cuestionario

demográfico para saber el nivel de conocimiento de captura de

requisitos, diseño de IU y guías de usabilidad de cada uno de los

sujetos.

- TE5) Analizar resultados del método: El análisis muestra el

resultado del Eficiencia, Eficacia y la Satisfacción del método no

estructurado y UREM.

37

La Figura 5 muestra los ciclos aplicados a la Tesis.

Figura 5. Ciclos aplicados a la tesis

1.5 Contribuciones de la tesis

Esta tesis presenta los siguientes aportes:

Contribución 1: Definición de un método de captura de requisitos de

usabilidad basado en un árbol de decisiones. El método captura

requisitos de usabilidad a través del diseño de interfaces usuario

mediante la estructura de un árbol que contiene las guías de usabilidad

y diseño. El árbol lo construye un experto en usabilidad.

Contribución 2: Una herramienta para apoyar el método de requisitos

de usabilidad descrito en la Contribución 1.

Contribución 3: La validación del método propuesto mediante una

evaluación comparativa empírica.

38

1.6 Contexto de la tesis

Este trabajo de investigación se ha desarrollado en el contexto del

Centro de Investigación PROS (Centro de Investigación en Métodos de

Producción de Software), y DSIC (Departamento de Sistemas de

Información y Computación) de la Universitat Politècnica de València,

España.

Este trabajo ha sido financiado por la Universidad Nacional de San

Antonio Abad del Cusco a través del Consejo Nacional de Ciencia y

Tecnología Secretaría Nacional de Educación Superior, Ciencia

Tecnología e Innovación Tecnológica-CONCYTEC de Perú, bajo el

Programa Yachayninchis Wiñarinanpaq UNSAAC.

39

 PARTE II

COMPENDIO

DE

PUBLICACIONES
II

 Los temas que se cubren en esta parte son:

2.1 Revisión sistemática acerca de la captura de

requisitos de usabilidad

2.2 Hacia una propuesta de Captura de Requisitos

de Usabilidad mediante guías

2.3 Una propuesta para capturar requisitos de

usabilidad en el entorno de desarrollo dirigido

por modelos

2.4 Un experimento de captura de requisitos de

usabilidad basado en entrevistas

II Compendio de publicaciones

40

2.1 Mapping Study about Usability Requirements

Elicitation

The HCI community has developed guidelines and recommendations

for improving the usability system, usuability applied at the last stages

of the software development process. On the other hand, the SE

community has developed sound methods to elicit functional

requirements in the early stages, but usability has been relegated to the

last stages together with other non-functional requirements. Therefore,

there are no methods of usability requirements elicitation to develop

software within both communities. An example of this problem arises if

we focus on the Model-Driven Development paradigm, where the

methods and tools that are used to develop software do not support

usability requirements elicitation. In order to study the existing

publications that deal with usability requirements from the first steps of

the software development process, this work presents a mapping study.

Our aim is to compare usability requirements methods and to identify

the strong points of each one.

41

1.1 Introduction

The goal of developing usable systems has been dealt with by the

Human Computer Interaction (HCI) and Software Engineering (SE)

fields. In both communities, usability is usually considered in the last

stages of the software development process, when the interfaces have

already been designed. Including usability characteristics at these last

stages could affect the system architecture. To minimize this problem,

usability should be included at the requirements elicitation stage [5],

[20]. The SE community has broad experience in early requirements

elicitation and there are sound methods. However, these methods are

mainly focused on functional requirements and Non-Functional

Requirements (NFR) have historically been forgotten at this early stage.

According to many authors, fulfilling functional requirements is not

enough to create a quality product [49]. Usability is a key factor in

obtaining good acceptance rates.

In this study, we aim to identify the existing methods for capturing

usability requirements. To do this, we perform a Mapping Study (MS)

based on the works performed by Kitchenham [29]. A MS provides an

objective procedure for identifying the nature and extent of the research

that is available to answer a particular question. These studies are also

useful to identify gaps in current research and to suggest areas for

further investigation. Of all the software development methods, we

focus on the Model-Driven Development (MDD). MDD aims to

develop software by means of a conceptual model, which is the input

for a model compiler that generates the system code implementation.

The SE community has been working with this paradigm, and,

nowadays, there are sound methods and tools (e.g. OO-Method [39],

WebRatio [2], OOHDM [12]). However, to the authors’ knowledge,

Versión del autor del artículo: Ormeño, Y. I., & Panach, J. I. (2013). Mapping

study about usability requirements elicitation. In Advanced Information

Systems Engineering: 25th International Conference, CAiSE 2013, Valencia,

Spain, June 17-21, 2013. Proceedings 25 (pp. 672-687). Springer Berlin

Heidelberg. https://doi.org/10.1007/978-3-642-38709-8_43

https://doi.org/10.1007/978-3-642-38709-8_43

42

none of these methods deal with usability. In general, existing MDD

methods deal with usability when the models that represent the

functional requirements have been defined and the code has been

generated. At this stage, if the analyst needs to improve the system

usability, the code must be modified manually. Moreover, some

changes require the architecture to be re-worked [5], [20]. These are the

reasons why more efforts should be made to include usability in MDD

methods, and this MS aims to be a step forward this direction.

Our long term target is twofold: (1) to improve current practices of

usability requirements elicitation; and (2) to enhance the existing MDD

methods to support usability requirements elicitation. The MS can help

us to identify the advantages and disadvantages of each existing capture

method, as a previous step for our target. However, the MS is not

exclusive to MDD; it can analyze in detail any software development

method that includes usability requirements elicitation.

This study is structured as follows. Section 2 reviews related works

about usability requirements elicitation. Section 3 describes the design

process of the MS. Section 4 shows the results obtained from the study.

Section 5 presents a discussion about the results. Section 6 presents our

conclusions and future work.

1.2 Related Work

Usability has been studied in several mapping studies and systematic

reviews. The MS provides a systematic and objective procedure for

identifying all the information that is available to answer a particular

research question, topic area, or phenomenon of interest [29]. This

section summarizes the different studies on requirements elicitation

techniques, NFRs, and development methods based on usability.

First, we focus on studying techniques for capturing requirements that

deal with usability. In this area, Dieste [13] updates a Systematic

Review (SR) where interview-based techniques seem to be the most

effective capture techniques. Carrizo [7] presents a framework to

support decision-making, where some capture techniques respond

better to certain project features than other capture techniques. Second,

43

we focus on NFRs, since usability is considered by many authors to be

a NFR. In the state-of-the-art written by Chung [11], the reviewed

works are classified into six are- as: software variability, requirements

analysis, requirements elicitation, requirements reusability,

requirements traceability, and aspect-oriented development. Svensson

[50] performs a SR to identify: elicitation requirements, metrics,

dependencies, cost estimation, and prioritization as important areas for

managing quality requirements. Mellado [34] carries out a SR about

security requirements engineering in order to summarize evidence

regarding security. The precision and reliability of the information are

his main contribution. Mehwish [33] reports a SR to collect evidence of

software maintainability prediction. The results suggest that there is

little evidence for the effectiveness of these predictions. Third, we focus

on studies that deal with methods to build usable systems. Folmer [20]

performs a survey to explore the feasibility of a framework that can be

applied to usability at the architectural level, taking into account design

methods for usability design and evaluation tools. He concludes that

there are no techniques for dealing with usability at the architectural

level. In Fernandez’s work [18], the objective of the MS is to

summarize the current knowledge of methods in order to evaluate

usability in web applications. The results show the need for usability

evaluation methods that are specific to the web.

In summary, we state that most of the existing research publications

related to usability are focused on: inclusion of usability features at the

design stage; usability evaluation at early phases; methods to assess

usability at the implementation stage; usability evaluation throughout

the web development process; and techniques for usability specification

during the software development process. However, we have not found

mapping studies or SRs focused on usability requirements elicitation at

early phases. We aim to study the existing literature concerning

usability requirements elicitation in order to summarize current

knowledge. This information will be used in a future work to design a

framework for usability requirements elicitation using existing

guidelines.

44

1.3 Mapping Study Design

The MS provides a wide overview of a research area to identify the

quantity and type of research and results available within it. We

considered the following elements: research questions, search strategy,

selection criteria, quality assessment, data extraction strategy [28].

Next, we apply these elements to our MS.

Our research question is: “What are the proposals to elicit usability

requirements throughout the software development process?”. It

includes methods, notations, guidelines, tools, and empirical

validations which are related to the usability area. The main goal is

divided into six subgoals since the general research question is very

abstract and involves many concepts. Each subgoal has been formulated

as a research sub question. These are: SQ 1.1 Methods to elicit usability

requirements. It aims to study whether or not the proposed methods

(including NFR methods) can capture usability requirements at early

stages; SQ1.2 Methods to elicit interaction requirements. It aims to

study the existing methods to elicit interaction requirements related to

usability. These methods are included because some authors improve

usability by means of visual characteristics; SQ 1.3 Usability guidelines

to elicit usability requirements. It aims to study the recommendations

that help the analyst to identify usability requirements; SQ 1.4 Tools to

support usability requirements elicitation. It aims to study the tools or

prototypes that support the methods to elicit usability requirements;

SQ1.5 Notations to elicit usability requirements. It aims to identify the

existing representations in which the usability requirements are

depicted. The target is to identify which notations are the most

frequently employed for capturing usability requirements; SQ1.6

Empirical validation environment. It aims to study whether the proposal

to elicit requirements was validated in an academic context or in

industry.

The search strategy is composed of:

Defining the search sources. These sources are based on digital libraries

that include peer-reviewed literature, such as: IEEExplore, ACM

Digital Library, Springer Link, and Science Direct. Our main tool for

45

searching in all these libraries was Sciverse Scopus, since it allows

searching in all the mentioned digital libraries (among others). The

sources explored were the proceedings of conferences, journals, books,

and workshops. The search area is restricted to the computer science

area. The search period is from 2000 to 2011.

Building and applying the search string. The search string is a set of

terms to obtain the publications that answer the research question. Our

search string is composed of two substrings: Usability Requirements

and Software Engineering. With the first we collect publications related

to how to elicit Usability Requirements, including software quality

features and works related to requirements elicitation. The second

substring is related to Software Engineering concepts based on

requirements elicitation.

Search string = (Usability Requirement) AND (Software Engineering)

Usability Requirement = (usability requirement OR user requirement

OR usability elicitation OR interaction requirement OR non-functional

OR usability guidelines). Software Engineering = (MDD OR model-

driven OR MDA OR notation OR tool OR interface OR engineering OR

test).

We have included the term “non-functional” into the “Usability

Requirements” group since usability is frequently considered as a NFR.

The selection criteria contain:

Inclusion criteria (IC): IC1) Does the work define how to extract

usability requirements?; IC2) Is the proposal applied to an environment

based on MDD conceptual models?; IC3) Does the work define how to

represent the requirements of usability?.

Exclusion criteria (EC): EC1) Publications focused on guidelines,

notations, and tools where usability has not been considered or has not

been included; EC2) Publications that consider only functional

requirements; EC3) Publications written in a language that is not

English.

Next, we select the publications through a systematic process:

46

Reading the title and the abstract. A total of 150 publications are

returned by the search string, which are divided into three groups (50

publications) to be independently evaluated by three reviewers in order

to apply the inclusion and exclusion criteria. The publications whose

inclusion is doubtful must be discussed by the three reviewers until they

arrive at a consensus. The result of this selection is a total of 65

publications, which are based only on the title and abstract of the

publications. This selection is called “potential publications”. Reading

the whole publication. At this time, the whole publication is read. The

inclusion and exclusion criteria are applied again for each potential

publication, which are divided into three groups (one group per

reviewer). The result of this selection is a total of 27 “initial selected

publications”, which are considered to be relevant.

Searching in references. In several cases there may be some relevant

publications prior to the year 2000, such as Nielsen’s work [36]. In

order to avoid discarding these interesting older publications, we review

all the publications referenced in publications from 2000 to 2011. If a

publication was written before 2000 and it has not been referenced in

the last 12 years, then that work is not relevant for the community, and

it is therefore discarded from our study. The process to review the

references of publications from initial selected publications obtains 5

publications. 2 publications support inclusion criteria and are added to

initial selected publications. Finally, a total of 29 publications are our

“selected publications”.

In order to assess the reliability of inclusion, we apply the statistical

measure of Fleiss’ Kappa [19]. This statistic assesses the reliability of

agreement between a fixed number of rates when classifying items. Its

value ranges between 0 (poor agreement) and 1 (full agreement). We

take a sample of 20 publications of the 65 potential publications, 10 of

which are randomly selected and 10 of which are defined by the

reviewers from the 29 selected publications. The Fleiss’ Kappa value is

0.63, which is considered to be a “Considerable level”.

47

 Table 1. Likert-Scale Questionnaire

Subjective Questions 1=Yes 0=Partially -1=No

1. Is the method to capture the usability requirements clear?

2. Are the guidelines to capture requirements comprehensible?

3. Are the guidelines to capture requirements useful in other contexts?

4. Are the publications tools downloadable?

5. Is there a clear case study or example illustrating the proposal?

6. Is the whole proposal empirically validated?

7. Are the results clearly explained?

8. Is the notation to capture requirements easy to learn?

Objective Questions

9. Has the publication been published in journal or conference

proceedings?

1=Very important 0=Important -1=Not important

10. Has the publication been cited by other authors?

1= More than 4 0=Between 2 and 4 -1=Less than 2

In order to perform the quality assessment, we use the Likert-Scale to

be filled out by three reviewers for each selected publication. Table 1

contains closed-questions that are classified into two groups: Subjective

Questions and Objective Questions. For question Nº 9, we consider

conferences at CORE ranking [38]. The publication is “Very important”

if the conference is CORE A or B or if it is a book section, “Important”

if the conference is CORE C or if it is a Workshop, “Not important”

when the conference is not any CORE. For journals, the Journal

Citation Report (JCR) [23] classification is used. The publication is

considered to be “Very important” when it appears in JCR, “Important”

when it does not appear in JCR but is indexed in other lists, and “Not

important” when it is not published in any known list. For question N°

10, we use the H factor, which identifies the number of citations that

each publication receives from other authors. The Publish or Perish [1]

tool was used. In order to identify the quality of each publication, the

three reviewers filled out the quality questionnaire. The aggregation of

all the reviewers is performed by means of an arithmetic mean. After

calculating the arithmetic mean for each question, we add these values,

providing a single number between -10 and 10 which is denominated

Quality Score. We consider that the Quality Score publication is “Very

48

good” if it is more than 3, “Good” if it is between -2 and 2.99, and “Bad”

if it is less than -2 (See Fig. 2b).

The data extraction strategy consists of classifying the possible

answers for each research subquestion. The classifications are defined

to facilitate the answer for our research question. These are:

- SQ1 Methods to elicit usability requirements. a) Yes b) No

- SQ2 Methods to elicit interaction requirements. a) Yes b) No

- SQ3 Guidelines to elicit usability requirements. a) Existing b) New

c) Not exist

- SQ4 Tools to support the usability requirements elicitation a)

Interface design (assistant to design) b) Model development c) Not

Exist

- SQ5 Notations to elicit usability requirements. a) UML b) Natural

Language (workshop sessions, checklists, questionnaires,

heuristics, brainstorming, or interviews) c) i* framework d) CTT

(Concur Task Trees) [40] e) Formal. (logical operators or

grammars) f) QOC (Question Option Criteria) [31] g) BPMN h)

Not Exist .

- SQ6 Empirical validation environment. a) Industrial b) Academic

c) Not Exist.

1.4 Results

Summary sources from search studies. The selected publications

used in our MS are published in different sources. Table 2 shows the 65

potential publications and the 29 selected publications, classified by

conference, journal, book, workshop, and other sources. Table 3 shows

publications presented in conferences only. They are classified by level

of the conference according to the CORE list. Finally, Table 4 shows

publications published in journals only. The classification is based on

the JCR list.

49

Table 2. Publications by Source Table 3. Publications by

Conferences

Source Potential Selected

Conference 31 14

Journal 16 9

Book 4 3

Workshop 4 1

Other 10 2

Total 65 29

CORE Potential Selected

A 12 6

B 10 4

C 9 4

Total 31 14

Table 4. Publication by JCR

JCR Potential Selected

Yes 10 8

No 6 1

Total 16 9

Selected publication analysis. Table 5 shows the results of the 29

selected publications according to the data extraction strategy. Note that

the answer for research subquestion SQ5 is not exclusive, i.e. more than

one choice can be the answer.

Table 5. Mapping of selected publication

SQ1 SQ2 SQ3 SQ4 SQ5 SQ6 Quality

Score
ID

A B A B A B C A B C A B C D E F G H A B C

 X X X X X X 5,00 [14]

 X X X X X X 3,67 [15]

 X X X X X X 7,00 [16]

 X X X X X X 1,00 [17]

 X X X X X X -1,00 [18]

 X X X X X X X 1,33 [19]

X X X X X X 3,67 [20]

 X X X X X X 1,00 [21]

 X X X X X X X 0,00 [22]

 X X X X X X X -0,33 [23]

 X X X X X X X -0,67 [24]

X X X X X X X X 3,00 [25]

X X X X X X X X 4,67 [26]

 X X X X X X -0,33 [27]

X X X X X X -2,00 [28]

50

 X X X X X X 0,33 [29]

 X X X X X 0,33 [30]

 X X X X X X 0,67 [31]

 X X X X X X 4,00 [32]

 X X X X X X -2,67 [33]

 X X X X X X X 2,67 [34]

 X X X X X X 5,00 [35]

 X X X X X X 2,67 [36]

 X X X X X X 0,33 [37]

 X X X X X X X 4,00 [38]

 X X X X X X 1,33 [39]

X X X X X X X X 7,67 [40]

X X X X X X X X X X 6,67 [41]

X X X X X X 4,00 [42]

SQ1: A) Yes 24.14% B) No 75.86%; SQ2: A) Yes 17.24% B) No

82.76%; SQ3: A) Existing 31.03% B) New 24.14% C) Not Exist

44.83%; SQ4: A) Interface Design 17.24% B) Model Development

24.14% C) Not Exist 58.62%; SQ5: A) UML 41.38% B) Natural

Language 27.59% C) i* 27.59% D) CTT 13.79% E) Formal 6.9% F)

QOC 6.9% G) BPMN 3.45% J) Not Exist 17.24% SQ6: A) Industrial

10.34% B) Academic 58.62% C) Not Exist 31.03%.

Next, we summarize the most relevant outcomes for each research

subquestion:

SQ1 Methods to elicit usability requirements. There are few methods

that propose capturing usability requirements, and usually they are

included within NFR methods. In general, the requirements elicitation

process uses traditional techniques (e.g. interviews, questionnaires,

checklists, workshops) to elicit NFR at the same time the system

functionality and architecture are defined [45], [14], [25]. The most

common goals of the studied NFR methods are to elicit measurable

NFRs such a way they can be evaluated [14], [24]. These methods can

be customizable for a different context if some settings are applied to a

specific context. Therefore, a holistic quality model that fits every

context does not exist, and NFR methods only provide basic

requirements management by means of extensions [14]. The major

benefits are the enhancement of the communication between the

51

stakeholders and an increase in the flexibility of their applications,

although some methods [25] tend to use more resources than others.

The results indicate a limited number of approaches that deal with

usability requirements at early stages.

SQ2 Methods to elicit interaction requirements. Methods to specify

interaction requirements are based on the construction of a model and

the definition of structural patterns for different design solutions [38],

[37], [6]. These models support the systematic analysis of interaction

requirements that can be selected from artefacts like a library of

interaction attributes [47], [45]. These methods improve usability by

means of applying formal modelling to analyze interactive systems

systematically [6]. How-ever, further work is needed to deal with

dynamic specifications that depend on system functionality.

SQ3 Guidelines to elicit usability requirements. The publications aim

to overcome the obstacle of the usability inclusion in the methods to

elicit usability requirements and the different interpretations of the

guidelines by the stakeholders. The methods that use existing

guidelines, for instance ISO 9241-11 or ISO 9126, provide guidelines

to determine usability requirements according to the definition of

usability. They are understandable and can be implemented in a specific

context [8], [32], [14], [51]; however, their application is not an easy

task [25], [21], [47]. The guidelines related to functional usability

features are more practical, but they need to specify the usability feature

by means of design patterns in the architectural design [37]. On the

other hand, the new guidelines show a variety of representations (e.g.

catalogues, method-ologies, styles) [10], [22], [30] that are used to elicit

usability requirements in different situations. All these representations

allow to reuse its knowledge, to add new knowledge, to combine

organizational memory or to combine different requirement scenarios.

Other representations are based on patterns, templates, or models [27],

[26], [38]. These artefacts can be improved or adapted according to

which usability requirements are being captured. Nowadays, the

guidelines do not provide precise, practical support to address usability

requirements elicitation at the early stages.

52

SQ4 Tools to support usability requirements elicitation. These

publications present tools to support: frameworks [45], structured styles

[21], scenarios [48], notations [32], and methods [47]. The interface

design tools support the requirements specification and validation

through task flows and scenarios. Their main goals are focused on

relating design options with functional and non-functional requirements

within the design process of interactive systems. In order to reach this

goal, it is necessary to incorporate a mechanism of transformation, (for

example, from task flow diagrams to formal representations [45], [48])

and to solve traceability problems. The tools that are model-based can

resolve this inconvenience by means of a global integration approach

among notations and tools. However, this is not an easy task [4], since

most tools focus specifications on requirements models or requirements

metamodels. In order to define an elicitation process, the use of

templates that are obtained through interviews [15], [16] or the use of

patterns that provide a concise description of the users (detailing every

significant characteristic [21]) are common.

SQ5 Notations to elicit usability requirements. The different notations

are used in different stages of the software development process, and

more than one notation is usually applied to the development method

[28], [51]. The user requirements specifications are usually presented

to end-users in normal text, even though the analyst works with

languages based on models (SysML, UML). These requirements are

based on a series of interviews and studies with end-users [46], [25],

[14]. Some proposals aim to integrate functional requirements and NFR

in the same elicitation process. These works propose a metamodel that

combines UML with PLUS [51], [35], [45]. Therefore, UML and

Natural Language are the most widely used notations (41.38% and

27.59%). In Formal notation, the specification is structured using

hierarchical interfaces components that describe all the actions and

visible attributes of the system [6]. In general, the other studied

notations are currently supported by patterns, scenarios, and formatted

templates in order to visualize and implement usability require-ments

[6], [38], [48], [25]. These representations help analysts to elicit

requirements, even though they are not always easily understood by the

end-user.

53

SQ6 Empirical validation environment. We observe that case studies,

experiments and illustrative examples that have been presented in

Industrial or Academic environments do not have explicit metrics to

evaluate the usability requirements elicitation. In general, existing

validations are focused on quantitative [24], [35], [27] and qualitative

usability requirements [25]. The users’ usability evaluation is often

based on test and usability scenarios [27]. All the studied publications

share the same protocol for the empirical validation. First, the

publication proposes a method, technique or model to elicit usability

requirements. Second, the publication details the results of the

validation. Third, there is a discussion where a qualitative analysis is

performed in detail and some lessons learned are shown. [47], [27],

[48], [15]. Studied publications are focused on evaluating a few

usability features; however, the study of a reduced number of features

is not enough to consider software as being usable. The patterns [6],

[47], [37], [15], scenario management [48], [9], [21], checklists [14],

work sessions [25], and templates [6] are the most common artefacts

used to evaluate usability and other NFRs.

Graphics of mapping results. We present four graphics of the MS

results. Two correspond to comparison between research subquestions

and the others correspond to the potential and selected publications and

to the Quality Score of the selected publications. The six research

subquestions give us an overview of the usability require-ments and

how they are related. Apart from reinforcing our conclusions of this

study, this information can highlight some gaps that should be

researched further.

Fig. 1a shows comparisons between research subquestions SQ1, SQ2,

SQ3, and SQ4. The most important outcomes are the following: there

is not any new guideline to elicit usability requirements or interaction

requirements; there is the same number of publications where the tool

is a support for interface design and model development; there are a

large number of publications that do not address methods of usability

requirements elicitation or methods of interaction requirements

elicitation.

54

Fig. 1b shows comparisons between the research subquestions SQ4 and

SQ5. The most important outcomes are the following: UML, Natural

Language, and CTT are notations used by model development tools and

by design interface tools; BPMN and QOC are notations that are not

used by model development tools; i* and Formal are notations that are

not used by interface design tools.

Fig.1a) Mapping results SQ1,SQ2,SQ3,SQ4 Fig.1b) Mapping results SQ4,SQ5

Fig. 2a) Frequency of publications by year Fig. 2b) Publications by Quality Score

Fig. 2a shows the number of potential publications and selected

publications classified by year. It can be observed that there are very

few publications published each year. Of the 29 selected publications,

8 of them were published in 2008. This is the year that had the most

publications for improving usability requirements elicitation. The year

1998 is included in the graphics because the two publications obtained

from the referenced publications were published that year. None of the

selected publications were published in 2001, 2002, 2003, and 2011.

55

Fig. 2b shows a frequency graphic that describes the quality assessment

of the selected publications. This graphic is obtained from the Quality

Score of selected publications, which can be “Very good”, “Good”, and

“Bad”, according to our quality criteria. The graphic shows a high

number of publications that are considered to be “Good” publications

and “Very good” publications. Both results make up 95% of the total of

the selected publications

1.5 Discussion

In the selected publications, the usability requirements elicitation is

usually performed at the analysis stage [46], [15], i.e., once all

functional requirements have been captured. This late capture involves

changes in system architecture since some usability requirements are

related to functionality [5], [20]. In general, the methods used to elicit

usability requirements deal with usability when the functional

requirements have been previously captured by means of traditional

techniques (e.g. interviews, questionnaires, focus groups, use cases)

[35], [3].

The analysis of the results shows that there are very few publications

that clearly address how to perform the capture process of usability

requirements at early stages. Moreover, existing approaches do not

propose a precise and unambiguous notation to represent these

requirements, which makes difficult to apply them in real systems.

There are some publications where usability requirements elicitation is

performed at the design stage together with interaction requirements

elicitation [25], [45], [24].

When the usability topic is dealt with at requirements elicitation, the

ISO standards are used as guidelines to be applied in software

development systems. For instance, the ISO 9241-11 is considered to

be a basic reference for some practitioners, re-searchers, and designers

[25], and for any kind of requirements the standard ISO 9126-1 is used

[32]. The application of guidelines is necessary, but it is not enough;

the main problem is the correct application and complete understanding

by the end user. Guidelines are only built up in a general way, but they

are not a total support for usability system development. There are some

56

proposals that aim to help the require-ments engineers to address

usability requirements from the early stages by means of GUIDE rules

[22] and a catalogue based on the i* framework [10]. Both techniques

are context-specific, even though GUIDE uses a case-based repository

for taking decisions and i* framework collects a large amount of

knowledge to achieve usability goals.

Another aspect that is observed in selected publications is the use of

artefacts, such as: patterns, scenarios, and templates, which are

frequently used as support for methods to elicit usability requirements

and interaction requirements [6], [48], [16]. The methods proposed in

the selected publications are inflexible and require considerable effort

to be applied in contexts that are different from the contexts where they

have been defined [22]. The guidelines, notations, and artefacts used in

these methods are closer to elicit interaction characteristics rather than

usability characteristics. In general, guidelines for usability

requirements elicitation are defined in a very generic way for different

abstraction levels [8].

The tools to represent usability requirements which are based on a

conceptual model have great possibilities of being useful for building

extensions to other models (e.g. finite state machine) [45] or for being

used in different contexts with other usability requirements. For large

project, these tools are too limited, since the identification of

requirements and modularization of the system need more special

processes, methods and techniques. Moreover, once these requirements

have been structured and gathered in a tool, they could be reused in later

projects. Only few approaches include tools to support existing eliciting

methods. Most approaches must be applied manually, or they require a

tool that is not provided by the authors [17], [42], [38]. This makes

difficult the adoption of those approaches in industrial environments.

The necessity of a tool is more urgent in those proposals that use several

notations and combine the use of different artifacts (e.g. templates,

questionnaires, workshops) [30], [14], [47]. Working with all these

items manually is a huge effort for the analyst.

Validation methods are another crucial aspect for the evaluation of a

proposal. The selected publications present case studies, experiments,

and examples that do not show whether or not the inclusion of usability

requirements produces a positive im-pact on the final product. In

57

addition, only a small percentage of proposals have been applied in an

industrial context [24].

Many works propose eliciting usability requirements with a graphical

notation [10], [9], [6]. This enhances the abstraction for the

requirements engineer but some-times can difficult the end-user

participation, who usually cannot understand those notations. Other

proposals elicit usability requirements textually [25], [8], [48]

facilitating the end-user participation. However, these proposals cannot

be used for a development method based on models, since models do

not exist.

If we focus our analysis on approaches to capture usability requirements

in MDD environments, we notice that there are few proposals [38],

[17], [46], [4]. Moreover, usability requirements are not usually

considered as a main topic in those proposals. Usability requirements

are combined with other NFR or with functional requirements, which

makes difficult to focus the elicitation process on usability issues.

Moreover, transformations among models are not discussed in those

publications even though this is a basic pillar in the MDD paradigm

(where transformations can be automated or semi-automated). Another

problem of the existing proposals within the MDD paradigm is that

there are not evaluations or tools to demonstrate that they can work in

real systems. Existing approaches are just theoretical proposals that

have not been implemented yet.

Note that our mapping study has some limitations. The first one is that

we cannot ensure that all existing publication related to usability

requirements have been considered. We have focused our research on

Scopus, which is a tool that looks for publications in several digital

libraries, such as IEEExplore, ACM Digital Library, Springer Link, and

Science Direct (among others). In order to minimize the loss of some

important publications, we have analyzed references from publications

retrieved by Scopus. However, publications that have not been

published in those libraries or publications that have not been

referenced are out of our search. Second, some found publications were

not accessible (our university had no license to read them). This

happened with 6 publications from 65. If we compare inaccessible

publications with the total amount of publications, we notice that the

percentage of unread publications is a minimum portion 9.23%.

58

Throughout the whole mapping study we have been guided by an expert

at mapping studies and systematic reviews. This expert helped us in the

application of the protocol and recommended us some tools. For

example, the use of Refworks [41] to eliminate duplicities in our search

of publications, since the search string can find the same publication

more than once.

1.6 Conclusions and Future Works

This MS combines usability aspects from both the Software

Engineering (SE) community and the Human-Computer Interaction

(HCI) community. We have explored the development methods that

consider usability as a requirement from the SE community. We have

studied the guidelines and heuristics from the HCI community that are

used to develop usable applications. The MS aims to review existing

studies related to usability requirements in both communities. Our main

target is specially focused on proposals to elicit usability requirements

from the early stages of the software development process.

The MS has been performed according to Kitchenham’s methodology,

focusing on the last 12 years. A total of 29 publications were selected

from an initial set of 150 publications returned by the search string. The

quality assessments of the publications were developed in order to

contrast the significance of the selected publications, where 97% is

composed of good publications and very good publications.

Using the results of the MS, we can conclude that there is a clear

research line in the field of usability requirements in MDD

environments. Usually, MDD methods have historically been focused

on modelling behaviour and persistency, but relegating interaction (and

particularly usability) to manual implementation. This manual

implementation clearly contradicts the MDD paradigm, which

advocates that the analyst must work with holistic conceptual models,

where every feature of the system (including usability features) could

be represented. We plan to develop a framework to elicit usability

requirements in such a way that it could be used in any MDD method.

The main benefit of embedding usability requirements in a MDD

method is that the next steps of the software development process can

59

be derived from the requirements elicitation step. We plan to develop

transformation rules from the usability requirements to generate

analysis and design models. Furthermore, the MS can also be used as a

starting point for future systematic reviews based on usability

requirements elicitation.

References

1. Publish or Perish, http://www.harzing.com

2. Acerbis, R., Bongio, A., Brambilla, M., Butti, S.: WebRatio 5: An

Eclipse-Based CASE Tool for Engineering Web Applications. In

7th International Conference on Web Engineering, Springer-

Verlag, Berlin, Heidelberg, 501-505. (2007)

3. Akoumianakis, D., Katsis, A., Vidakis, N.: Non-functional User

Interface Requirements Notation (NfRn) for Modeling the Global

Execution Context of Tasks. In 5th International Conference on

Task Models and Diagrams for Users Interface Design, Springer-

Verlag , Hasselt, Belgium, 259-274. (2007)

4. Ameller, D., Franch, X., Cabot, J.: Dealing with Non-Functional

Requirements in Model-Driven Development. In 18th IEEE

International Conference on Requirements Engineering (RE).

Sydney, NSW, 189-198. (2010)

5. Bass, L., John, B.: Linking Usability to Software Architecture

Patterns through General Scenarios. Journal of Systems and

Software, Vol. 66, No. 3, 187-197. (2003)

6. Campos, J., Harrison, M., Graham, T., Palanque, P.: Systematic

Analysis of Control Panel Interfaces Using Formal Tools

Interactive Systems. Design, Specification, and Verification.

Springer-Verlag, Vol. 5136, Berlin, Heidelberg, 72-85. (2008)

7. Carrizo, D., Dieste, O., Juristo, N.: Study of Elicitation Techniques

Adequacy. In 11th Workshop on Requirements Engineering. Spain,

Barcelona, 104-114. (2008)

8. Cronholm, S. and Bruno, V.: Do you Need General Principles or

Concrete Heuristics?: A Model for Categorizing Usability Criteria.

In 20th Australasian Conference on Computer-Human Interaction:

Designing for Habitus and Habitat, ACM, Cairns, Australia. (2008)

9. Cysneiros, L. M., Leite, J.C.S.P.: Nonfunctional Requirements:

from Elicitation to Conceptual Models. IEEE Trans. on Softw.

Eng., Vol. 30, No. 5, 328-350. (2004)

10. Cysneiros, L.M., Werneck, V. M. Kushniruk, A.: Reusable

Knowledge for Satisficing Usability Requirements. In 13th IEEE

60

International Conference on Requirement Engineering, IEEE

Computer Society, Washington, DC, USA, 463-464. (2005)

11. Chung, L. Leite, J.C.S.P.: On Non-functional Requirements in

Software Engineering. LNCS, Springer, Vol. 5600, Berlin,

Heidelberg, 363-379. (2009)

12. Daniel, S., Rita de Almeida, P., Isbela, M.: OOHDM-Web: An

Environment for Implementation of Hypermedia Applications in

the WWW. SIGWEB Newsl., Vol. 8, No. 2, 18-34. (1999)

13. Dieste, O., Lopez, M., Ramos, F.: Updating a Systematic Review

about Selection of Software Requirements Elicitation Techniques

In 11th Workshop in Requirements Engineering, Barcelona, Spain.

(2008)

14. Doerr, J., Kerkow, D., Koenig, T., Olsson, T., Suzuki, T.: Non-

functional Requirements in Industry - Three Case Studies Adopting

an Experience-based NFR Method. In 13th IEEE International

Conference on Requirements Engineering, Washington, DC, USA,

373-384. (2005)

15. Escalona, M.J., Arag, G.: NDT. A Model-Driven Approach for

Web Requirements. IEEE Trans. Softw. Eng., Vol. 34, No. 3, 377-

390. (2008)

16. Escalona, M.J., Koch, N., Filipe, J., Cordeiro, J., Pedrosa, V.:

Metamodeling the Requirements of Web Systems Web Information

Systems and Technologies. Springer-Verlag, Berlin, Heidelberg,

Vol 1, 267-280. (2007)

17. Fatwanto, A. and Boughton, C.: Analysis, Specification and

Modeling of Non-Functional Requirements for Translative Model-

Driven Development. In International Conference on

Computational Intelligence and Security, Washington, DC,USA,

405-410. (2008)

18. Fernandez, A., Insfran, E., Abrahão, S.: Usability Evaluation

Methods for the Web: A Systematic Mapping Study. Information

and Software Technology, Vol. 53, No. 8, 789-817. (2011)

19. Fleiss, J.L.: Statistical Methods for Rates and Proportions. John

Wiley & Sons, New York, Ed. (1981)

20. Folmer, E., Bosch, J.: Architecting for usability: A Survey, Journal

of Systems and Software, Vol. 70, No. 1, 61-78. (2004)

21. Grosse-Wentrup, D., Stier, A., Hoelscher, U., Dössel, O., Schlegel,

W.C.: Supporting Tool for Usability Specifications. In World

Congress on Medical Physic and Biomedical Engineering.

Springer-Verlag, Munich, Germany, 845-847. (2009)

61

22. Henninger, S.: A Methodology and Tools for Applying Context-

specific Usability Guidelines to Interface Design. Journal

Interacting with Computers, Vol. 12, No. 3, 225-243. (2000)

23. Journal Citation Reports, http://ip-science.thomsonreuters.com

24. Jokela, T., Koivumaa, J., Pirkola, J., Salminen, P., Kantola, N.:

Methods for Quantitative Usability Requirements: A Case Study on

the Development of the User Interface of a Mobile Phone. Personal

Ubiquitous Comput., Vol. 10, No. 6, 345-355. (2006)

25. Jokela, T., Seffah, A., Gulliksen, J., Desmarais, M.C.: 8 Guiding

Designers to the World of Usability: Determining Usability

Requirements Through Teamwork. Springer Netherlands, Vol. 8,

127-145. (2005)

26. Juristo, N.: Impact of Usability on Software Requirements and

Design. Springer-Verlag, Vol. 55-77. (2009)

27. Juristo, N., Moreno, A. M., Sánchez, M. I.: Guidelines for Eliciting

Usability Functionalities, IEEE Trans. Softw. Eng., Vol 33, No. 11,

744-758. (2007)

28. Kitchenham, B.: Procedures for Performing Systematic Reviews,

Technical Report TR/SE-0401. (2004)

29. Kitchenham, B. A., Charters, S.: Guidelines for performing

Systematic Literature Reviews in Software Engineering, EBSE

Technica Report. (2007)

30. Lauesen, S. Younessi, H.: Six styles for usability requirements. In

REFSQ’98 (1998)

31. MacLean, A., Young, R. M., Bellotti, V. M. E., Moran, T.P.:

Questions, Options, and Criteria: Elements of Design Space

Analysis. Human-Computer Interaction, Vol. 6, No. 3, 201-250.

(1996)

32. Martinie, C., Palanque, P., Winckler, M., Conversy, S.,

DREAMER: A Design Rationale Environment for Argumentation,

Modeling and Engineering Requirements. In 28th International

Conference on Design of Communication. Säo Paulo, Brazil.

(2010)

33. Mehwish, R., Emilia, M., Ewan, T.: A Systematic Review of

Software Maintainability Prediction and Metrics. IEEE Computer

Society, Washington, DC, USA, 367-377. (2009)

34. Mellado, D., Blanco, C., Sánchez, L. E., Fernandez, E.: A

Systematic Review of Security Requirements Engineering.

Comput. Stand. Interfaces, Vol. 32, No. 4,153-165. (2010)

35. Nguyen, Q.L., Non-Functional Requirements Analysis Modeling

for Software Product Lines. In ICSE Workshop on Modeling in

Software Engineering, Washington, DC, USA, 56-61. (2009)

62

36. Nielsen, J.: Usability Engineering. Morgan Kaufmann. (1993)

37. Panach, J.I., España, S., Moreno, A. and Pastor, Ó.: Dealing with

Usability in Model Transformation Technologies. In ER 2008,

Springer LNCS Barcelona, 498-511. (2008)

38. Panach, J.I., España, S., Pederiva, I., Pastor, O.: Capturing

Interaction Requirements in a Model Transformation Technology

Based on MDA. Journal of Universal Computer Science (JUCS),

Vol. 14, No. 9, 1480-1495. (2007)

39. Pastor, O., Molina, J.: Model-Driven Architecture in Practice.

Springer, Ed. (2007)

40. Paterno, F.: Model-based Tools for Pervasive Usability. In

Interacting with Computers 17 (3), Elsevier, 291-315. (2004)

41. Refworks, http://www.refworks.com/

42. Röder, H.: Using Interaction Requirements to Operationalize

Usability. In ACM Symposium on Applied Computing, Sierre,

Switzerland. (2010)

43. Sajedi, A., Mahdavi, M., Pourshirmohammadi, A., Nejad, M. M.:

Fundamental Usability Guidelines for User Interface Design. In

International Conference on Computational Sciences and Its

Applications ICCSA.Washington, DC, USA, 106-113. (2008)

44. Shehata, M., Eberlein, A., Fapojuwo, A., O.: A Taxonomy for

Identifying Requirement Interactions in Software Systems.

Comput. Netw., Vol. 51, No. 2, 398-425. (2007)

45. Sindhgatta, R. and Srinivas, T. Functional and Non-Functional

Requirements Specification for Enterprise Applications. Springer-

Verlag,Vol. 3547, Berlin, Heidelberg, 189-201. (2005)

63

2.2 Towards a proposal to capture usability

requirements through guidelines

The Model-Driven Development (MDD) paradigm states that analysts

can build a conceptual model that represents the system abstractly. This

conceptual model is the input for a set of transformation rules that can

generate the code that implements the system automatically. Nowadays,

there are sound MDD methods that deal with functional requirements,

but, in general, usability is not taken into consideration from the early

stages of the development. Analysts who work with MDD implement

usability features manually once the code has been generated. This

manual implementation contradicts the MDD paradigm, and it can

affect the system architecture, involving a lot of reworking. This paper

proposes a method to capture usability requirements at the early stages

of the software development process in such a way that non-experts in

usability can use it. The approach consists of organizing several

interface design guidelines and usability guidelines in a tree structure.

These guidelines are shown to the analyst through questions that she/he

must ask the end-users. Answers to these questions mark the path

through the tree structure. At the end of the process, if we gather all the

end-user’s answers, we have the usability requirements. Then, by

means of model to model transformations, we could transform usability

requirements into a conceptual model of any existing MDD method

64

2.1 Introduction

The Software Engineering (SE) community has been working for

several years on the Model-Driven Development (MDD) paradigm [1],

which states that the analysts’ entire effort should be focused on a

conceptual model, and the system should be implemented by means of

model to code transformations. In MDD, a conceptual model is used to

represent a system, independent of the platform and technology. This

conceptual model is the input for a model compiler which includes

transformation rules to generate the code according to the target

platform.

Even though existing MDD methods (e.g. WebML [2] or UWE [3]) are

very powerful for building conceptual models, they do not have a

process to capture usability requirements. In general, usability features

are manually implemented once the code has been generated. This

manual implementation contradicts the MDD paradigm, which

proposes focusing the analyst’s entire effort on building a holistic

conceptual model. According to Bass [4] and Folmer [5], these manual

changes may involve changes in the system architecture, which can

result in a lot of extra effort. Moreover, these manual implementations

can produce a source code that contradicts the system’s characteristics

expressed in the conceptual model.

So, why are usability requirements not captured in the early software

development stages together with functional requirements? One reason

for this is that usability is strongly related to human behavior (software

psychology [6]) and, unfortunately, analysts who capture system

requirements are not experts in this field. In order to facilitate the

software development process, the Human Computer Interaction (HCI)

community has defined usability guidelines for non-experts in usability.

Versión del autor del artículo: Ormeño, Y. I., Panach, J. I., Condori-Fern, N., &

Pastor, Ó. (2013, May). Towards a proposal to capture usability requirements

through guidelines. In IEEE 7th International Conference on Research

Challenges in Information Science (RCIS) (pp. 1-12). IEEE,

10.1109/RCIS.2013.6577677

http://dx.doi.org/10.1109/RCIS.2013.6577677

65

For example, Shneiderman [7], and Nielsen’s [8] usability design

guidelines are widely accepted and used as tools to measure usability.

However, these guidelines are usually described in such an abstract way

that they are difficult to apply (directly) in software development.

Moreover, the evolution and presence of new technologies and

communication devices encourages the development of usability

guidelines oriented to different platforms (contexts) such as: the Web,

development tools, phones, tablets and media devices [9]. According to

Nielsen [10], there are around 2394 guidelines. The Web is the software

platform with the most guidelines. It contains 874 user-experience

design guidelines, 144 guidelines for commercial businesses, 103 for

corporate sites and 614 usability design guidelines on the intranet. This

huge number of guidelines hinders the analyst when he/she is searching

for the most suitable guideline for a specific system.

Thus, the main contribution of this work is to define an approach to

facilitate the usability requirements capture process for analysts who

are not experts in usability engineering. This approach can be included

in an MDD method in such a way that these requirements generate part

of the conceptual model of the MDD method. This is in accordance with

the MDD paradigm, which states that models used in the early stages

of the software development process can be transformed into models

for the next stages. The approach is based on textual questions, and

design alternatives for each question that end-users must be asked

relevant questions, and design alternatives, are extracted from interface

design guidelines and they are represented in a tree structure. End-users

must choose which alternative is the most suitable according to their

requirements (or constraints). Usability guidelines can help the end-

user select an alternative throughout the tree structure. At the end of the

process, we have a design for our system based on the end-user’s

requirements. This design can be embedded in a conceptual model of

an existing MDD method through transformation rules.

This paper is divided into the following sections: Section 2 presents the

state of art of various approaches made by other authors concerning the

use of usability guidelines; section 3 describes the concepts that are

involved in the usability requirement capture approach; section 4

66

explains the proposed scheme to capture usability requirements viewed

from both the analyst’s and the expert’s side; section 5 presents a proof

of concept based on an example, and finally, Section 6 describes the

conclusions and future work.

2.2 Related Work

The literature presents a lot of usability guidelines to support the design

of user interfaces, but they may confuse the analyst if she/he is not an

expert in usability. In general, the analyst may face the following

problems (among others): it is not easy to understand how to apply the

guideline; sometimes it is difficult to determine when a guideline has

been broken; and, some guidelines are so ambiguous that they are

difficult to apply to specific contexts. All these aspects require a huge

effort on the part of the analyst that leads us to determine if the usability

guidelines are still usable.

Cronholm’s work [11] and Henninger’s work [12] describe possible

solutions to some of these problems. Cronholm’s work proposes meta

guidelines as a solution to obtain more systematic and categorized

guidelines. These meta guidelines consist of a set of principles whose

objective is to improve the usability of the guidelines. Design guidelines

defined by Henninger include two types of guidelines: interface

principles, or typed rules, and usability examples, also known as cases.

These cases are examples of specific interfaces developed for

organizations that contain a lot of knowledge about the needs and

common practices of clients’ work.

Furthermore, Cysneiros’s work [13] proposes a reusable catalogue to

capture usability requirements. The method is based on i* framework

and it uses personal experiences to obtain knowledge to achieve the

objectives of usability. His work shows how usability can be modeled

through different views with different alternatives. Bevan [14] makes a

comparison between three guidelines: HHS for a Web site, JISC for

Web services, and ISO 9241-151, which includes principles and

specific solutions (conceptual models, task structure, and navigational

structures). Bevan highlights differences and similarities between these

67

three guidelines. He states that a perfect set of guidelines does not exist,

since the necessities of different audiences are not homogeneous.

The cited works aim to mellow the ambiguity of the usability

guidelines, but they increase the complexity of use for non-experts in

usability. All these solutions involve a lot of effort to understand all the

guidelines and choose the most suitable one for a specific context. For

example, understanding the notation, or the information arrangement in

a guideline may involve some of the analyst’s effort in order to use the

guideline optimally. Furthermore, the comparison of guidelines shows

great variability, which leads to creating specific usability guidelines

for specific domains.

Usability guidelines for the Web and for WAP mobile phone

applications are widely used. Pei [15] states that web design should be

focused on the user Web site to improve usability. The design of a

usable web is made up of the following three elements: user research,

web design, and usability evaluation. On the other hand, the usability

of mobile phone applications is increasing, although it is lower than

Web Sites accessed by computer [16]. Sabine's work [17] proposes

usability guidelines to design applications based on WAP. This author

compares two versions of a travel management Web Site, one which

includes usability guidelines of design and the other which does not.

The results show that user-experience of the Web site which uses

usability guidelines is higher than mobile phone or Smartphone

applications with standard features.

The literature provides a wide range of usability guidelines for web

sites, web applications, desktop applications, mobile phones and others

[10]. Some examples of usability guidelines are: development tools

(AJAX, RIA), User Interface (Apple Mac OSX, iPad user experience)

platform (Window XP, Vista User Experience Interaction) Interface

Software Mobile (Android, Nokia top 10, WebOS) among others [9].

Moreover, these existing guidelines are continuously in state of change

and development especially for mobile phone Internet services looking

to improve usability.

68

Some examples of methods used to capture usability requirements are:

a method for quantitative usability requirements applied in user

interfaces to depict the true usability [18]; multimedia user interface

designs that design attractive and usable multimedia systems [19]; and,

embedded Functionality Usability Features in model transformation

technologies [20]. We can state that there are many proposals but none

of them clearly and concisely addresses how to perform the extraction

process of usability requirements in the early stages.

This paper proposes a method to organize the information stored in

different usability guidelines. This way, analysts without a background

in usability can work with the guidelines. Based on a review of the

literature, we can say that for the MDD paradigm very few papers have

been written that address how to perform the extraction process of

usability requirements. Generally, this task is done when the usability

requirement capture has been done. Moreover, usability requirement

capture has not been developed focusing on the MDD method. This

paper aims to cover this gap, proposing a process to capture usability

requirements such a way they can be transformed later into part of the

conceptual model of the MDD method.

2.3 Proposal to Capture Usability Requirement

This section describes our approach to capture usability requirements

within the MDD paradigm. Based on the ISO 9241-11 [21] standard,

the usability requirements are the effectiveness, efficiency and

satisfaction of a user achieving his/her goals in a defined context of use.

Our approach is based on existing usability guidelines, and design

guidelines, that are stored in a tree structure. The analyst navigates

through this structure in order to capture the usability requirements by

asking the end-users questions. The tree structure helps the analyst to

identify the different design alternatives, and how these decisions will

affect the system’s usability. Figure 1 shows the elements used in our

approach. Next, we describe each element:

69

Figure 1. Schema of the proposal to capture usability requirements.

A. Usability guidelines and interface design guidelines

Both usability guidelines and interface design guidelines have

been created to guide the analyst to develop systems. Usability

guidelines recommend how to combine users, tasks, and

context to enhance the system usability [21]. Interface design

guidelines provide alternatives and recommendations for

design systems [22]. These guidelines have been built for

different technologies and platforms which are represented by

standards, principles, heuristics, styles, patterns, best practices,

etc. Both types of guidelines are related to each other since

some design guidelines can improve or decrease the usability

(depending on the combination of tasks, users and context).

Working directly with both kinds of guidelines [23], [24], [21],

implies a huge effort as the variability and amplitude of these

guidelines is very high. In order to reduce this effort, we

propose storing all the relevant guideline information in a tree

structure, which is explained in more detail below.

B. Tree Diagram

 In this context, we propose using these guidelines by means of

a tree structure in order to minimize the cognitive effort to work

with both types of guidelines. A tree structure is defined as a

connected graph with no cycles and a root [25],[26]. Figure 2

PLATFORMS

MOBILE
PHONE

TABLET

USABILITY AND DESIGN
GUIDELINES

WEBSITE

A USABILITY REQUIREMENTS
CAPTURE

APPLICATION

USABILITY
EXPERT

ANALYST

Application
Guidelines

Representation

C

METAMODEL

DESIGN
1

DESIGN
2

DESIGN
N

INTERFACE
DESIGNS

...

use

deve
lo

pm
ent

B
TREE DIAGRAM

GUIDELINES

ISOs

HEURISTICS

BEST PRACTICES

DESKTOP

70

shows a general schema of the tree structure used in our

approach, which is composed of four elements: question,

answer, group of questions, and designs. In the next part, we

will present these elements:

1) Question(Qi): The design guidelines present diverse

design alternatives for many UI (User Interface) components

(e.g. menu). In order to ask the end-user which alternative

she/he prefers, we have defined a question when alternatives to

design appear. For example, when we are designing dialog

elements for mobile, design guidelines [27], [24] specify that

dialog elements provide a top-level window for short-term

tasks and a brief interaction with the user. We can define a

question to decide which is the UI component to represent a

selectionable task, Which UI component is used to show

selectable tasks?. This question could enable the user to

complete a specific task. In Figure 2, questions are represented

by Qi.

2) Answer(Ai): These are the exclusive options for each

question according to interface design guidelines. These

options are presented to the analyst in such a way that she/he

can choose which one best fits the user’s requirements. The

analyst’s decision is not only based on end-user criteria, but

also on usability guidelines. This means that we have related

answers with usability guidelines depending on the type of user,

type of task, and type of context. When the answers are shown

to the analyst, we will show which answers are recommended

by usability guidelines. For example, the answers to the

question “Which UI component is used to show selectable

tasks?” can be: radio buttons, text field, checkboxes, slider

[24],[27]. Mobile design guidelines [28] advise using a UI

component dialogue to show tasks as information that require

users to take an action before they can proceed. The usability

recommendations are identified when answers have been

defined. For example a radio button is constructed for a

persistent single-choice list [24], where aspects such as

71

“simplify navigation” and “minimize user input” are usability

requirements [28]. In Figure 2, answers are represented as Ai,

Ai+1, … , An.

3) Group of Question (GQi). Some branches of the tree

structure are not mutually exclusive (the end-user should be

asked all of the questions). This type of branch is represented

by a group of questions, which gathers several questions

grouped by a design characteristic. For example, the question

“Which UI component is used to show selectable tasks?” can

be gathered with other questions that ask about Selection

Dialogues, such as “Where is the action button located?”,

“Where is the dialogue box located?”, and “Where is the

positive action on button located?”. All these questions have

also in common that deal with how the selection dialogs are

displayed, and all of them are gathered in the same Group of

questions. In the tree structure these are represented as GQi, in

Figure 2.

4) Designs (Di): These are the interface designs reached

through the alternatives that the analyst has been choosing. The

analyst navigates through the tree structure asking the questions

to, the end-user, who selects the most suitable answer (usability

guidelines can recommend some answers). When the analyst

reaches a leaf in the tree, a design has been obtained. The final

design of the whole system is the set of leaves in the tree that

the analyst has reached. For example, a design can be a

selection dialog with radio buttons, where each item shows an

enumerated data [27],[24]. At the tree structure these are

represented as Di, in Figure 2.

72

Figure 2. General representation of the tree structure of a figure caption

The navigation starts from the root of the tree while the analyst asks the

questions to the end-users. The analyst asks the questions according to

their sequence in the tree, from the root to the leaves. Questions are

mutually exclusive, in other words, the analyst only navigates through

the branch of the answer selected by the end-user. Questions that are

gathered in the same group of questions are all asked. When the analyst

reaches a branch with a group of questions, the flow continues with the

first question in the group. Only when this flow has finished, can the

analyst continue with the next question in the group. The possible

navigation between two nodes of the tree structure can be: i) From a

group of questions to a question, or to another group of questions (GQi

→ Qi / GQi); ii) From a question to an answer (Qi →Ai); iii) From an

answer to a question to a group of questions or to a design (A i →Qi /

GQi / Di).

Note that if we work with several usability guidelines, they can

contradict each other when they recommend an answer. This

contradiction is not a problem in our approach, since usability

guidelines are only recommendations. The choice of the most suitable

answer only depends on the analyst and on the user’s requirements.

One advantage of our approach is that designs reached throughout the

navigation in the tree can be transformed into a conceptual model of a

MDD method. For this aim, each design of the tree must have a

transformation rule to generate part of the conceptual model of the

target MDD method, as Figure 3 shows. In order to facilitate these

transformations, we recommend using UsiXML (USer Interface

Tree

GQ1

GQ2

GQi

GQn

...

Q1

Q2

...

Qi

Qn

Ai/GQi/Qi/Di

GQI : GROUP OF QUESTION
QI : QUESTION
AI : ANSWER
DI : DESIGN
i = 1,2,…, N

LEGEND

73

eXtensible Markup Language) [29] as the language to specify the

designs. UsiXML is an XML-based markup language for defining user

interfaces which is widely used in the academy. The main advantage of

using UsiXML is that a framework has already been defined to support

interface modeling, and there are also transformations from UsiXML to

some MDD methods, which facilitates the transformation work.

Figure 3. General process to generate a conceptual model from the designs

In order to formalize all the elements that compose the tree structure,

we have defined a meta-model (Figure 4). Below, we describe its

classes.

Class Design Guideline represents the interface design guidelines used

in our tree structure. Questions that the end-user will be asked in order

to discover which design alternative is most suitable are derived from

these guidelines. Every question can be related to a Group of questions,

or to at least two Answers. The class Group of questions represents the

set of questions we can define, and the class Answer specifies the

exclusive alternatives for the question. Some of these answers can be

recommended by one or several usability guidelines, recommendations,

standards and best practices, represented as instances of the class

Usability Guideline.

According to the usability definition described in ISO-9241 [21], some

usability guidelines are specific for a context, task or user [30],[31].

This is represented through the classes Context, Task, and User

respectively. The class Context describes the context where the

guideline is recommended, the class Task describes the type of task for

which the guideline is recommended, and class User describes the type

of user for which the task is recommended. Context, Task and User are

related to class Description, to describe how they enhance the system’s

usability. Finally, class Design represents the designs that the analyst

DESIGN 1

IN USIXML

DESIGN 2

IN USIXML

DESIGN N

IN USIXML

.

.

.

TRANSFORMATION

RULES

ANSWER X

ANSWER Y

ANSWER Z

EXISTING MDD METHOD

.

.

.

74

can get to at the leaves of the tree. Each instance of this class is a

different interface design which we can reach through different

answers.

Figure 4. Meta-model of usability requirements capture

C. Usability requirement capture

The usability requirement capture is the process to capture

usability requirements using our approach. The next section

explains how to build the tree structure, and how to use it in the

requirement capture process.

2.4 Process to Capture Usability Requirement

in MDD

This section describes the process to build an instance of the meta-

model shown in Figure 4. This instance will be used later to capture

usability requirements. Three stakeholders participate in this process:

an expert in usability, an analyst and the end-user. In the next section

we will explain how the stakeholders participate in both activities: the

construction of the tree structure and requirement capture.

DGuidelineName
DDescription

DESIGN GUIDELINE

URequirementName

USABILITY REQUIREMENTS

UGuidelineName
UDescription

USABILITY GUIDELINE

DesignDescription
DesignSpecification

DESIGN

GroupDescription

GROUP OF QUESTIONS

QuestionDetail

QUESTION

AuthorName

AUTHOR

AnswerDescription

ANSWER

ContextDescription

CONTEXT

TaskDescription

TASK

DescriptionApplicability

DESCRIPTION

UserDescription

USER

1..*

1

Define
1..*

1

IsComposedOf

1

0..*

IsDescription

0..*

0..*0..*

0..*

0..*

0..1 0..1
Related

2..*

1

Links
0..1

1

Has

0..*

0..1

0..1
Related

1..*0..*
Define

0..1

0..1
Contain

0..1

1..*

Define

0..*

0..*

Recommended

75

A. Phase of construction

 This phase is performed by the usability expert and the analyst.

First, the usability expert builds the tree structure using

interface design guidelines and usability guidelines.

Second, the analyst specifies the transformation rules to

transform the designs into a conceptual model of a MDD

method. Figure 5 summarizes all the steps that make up this

phase. Below we detail all of them.

SE1) Analysing the usability guidelines and interface design

guidelines: The usability expert looks for existing interface

design guidelines and usability guidelines that can be applied

to build the tree structure.

In the literature there are many guidelines, the expert must

choose on those guidelines focused on the type of systems we

aim to build using the tree structure. Then, an analysis of these

guidelines is required to identify the relevant aspects for

designing usable systems. It is important to point out that this

identification of relevant aspects depends on the experience

level of the “usability expert” to appropriately construct the

tree. The identification of these relevant aspects depends on the

experience of the usability expert.

SE2) Defining the question: Using interface design guidelines,

the usability expert defines the questions. When there is a set

of possible alternatives for a design, the expert must define a

question in order to ask the user which is the most suitable

alternative.

SE3) Defining the answer: Each alternative to a question is

expressed as a possible answer for that question. According to

the tree structure, after specifying an answer the usability

expert has several possibilities: (1) To define another more

specific question (if we need more information to determine the

final design); (2) To define a final design (if we have reached a

leaf in the tree because there are no more alternatives); (3) To

define a group of questions (if the answer leads to more than

one related questions).

76

SE4) Recommending usability guidelines: Usability guidelines

may recommend some answers. In this step, the usability expert

defines which answers are recommended by which usability

guideline. Recommendations can be given with respect to any

of the elements: context, task, or user. The relationship between

answers and usability guidelines is not mandatory, but the more

guides we provide to the end-user to choose the answer the

more possibilities to build a usable system we have.

SE5) Defining the group of question: The usability expert

defines the groups according to the topic of the questions. Note

that the end-user will be asked every question included in a

group.

Figure 5. Process to build the tree structure to capture usability requirements

SE6) Obtaining interface designs: When the usability expert

identifies that there are no more alternatives to specify a design,

she/he can define this design formally. Each design (leaf) of the tree

structure must be completely different to other designs, since the

path used to reach the design will be exclusive. We propose

defining these designs using the UsiXML [29] language. This

definition must be performed by the analyst, since the usability

expert does not work with conceptual models usually, and this topic

is out of the scope of his / her expertise.

SE7) Transformation rules definitions: Once the designs have been

defined, the analyst must specify transformation rules to transform

these designs into primitives of the conceptual model of a MDD

method. The transformations aim to include all the usability

requirements in the software development process. Since we

ANALYSING USABILITY

GUIDELINES AND INTERFACE

DESIGN GUIDELINES

DEFINING

QUESTIONS

GROUPING

QUESTIONS

DEFINING

ANSWERS

RECOMMENDING

USABILITY

GUIDELINES

1

2 43

5

GUIDELINES

EXIST?

USABILITY REQUIREMENTS CAPTURE

TRANSFORMATION DESIGNS

6

7DESIGN 1

IN USIXML

DESIGN 2

IN USIXML

DESIGN N

IN USIXML

.

.

.

TRANSFORMATION

RULES

ANSWER

1

ANSWER

2

ANSWER

N

.

.

.

77

propose specifying the designs with UsiXML some of these

transformations already exist [32].

B. Phase of use.

This phase explains how the analyst uses the tree structure to

capture usability requirements. The process starts from the tree

root to the leaves. When a question arises in the path, the

analyst must ask the end-user the question. Apart from the

question, the analyst must tell the end-user the possible answers

to the question. If the answers are recommended by some

usability guidelines, the analyst must specify which answers are

recommended. Note that more than one answer can be

recommended, and some usability guidelines can contradict

each other.

This is not a problem, since the end-user must choose the

answer that best fits the requirements, independent of the

recommendations. When the end-user chooses an answer, the

flow continues through the branches of that answer, while the

branches of the other rejected answers will not be crossed.

When a group of questions arises in the path, the analyst must

ask the end-user every question in this group to based on the

order they were created. Once the analyst asks the first question

in the group, the flow continues with the branch of that

question. When this branch has been completely gone through,

the flow continues with the second question in the group. This

process is repeated for every question in the group.

When a design arises in the path, the flow continues with the

closest unresolved question. At the end of the process, we have

a set of designs we have reached through the navigation. These

designs are then transformed into primitives of a conceptual

model of a MDD method according to the transformation rules

previously defined. Note that rules are defined once, but they

can be used indefinitely for the same tree structure and the same

MDD method.

78

2.5 A Laboratory Demonstration

In order to illustrate the usability requirements capture process, we

show an example to design a menu for a mobile phone application.

Next, we exemplify our proposal for capturing usability requirements:

A. Phase of construction

SE1) Analizing the usability guidelines and interface design

guidelines: As there are many interface design guidelines

specific for mobile devices, our analysis focus only on

Android[24], iOs [23], and Symbian [27] guidelines, since they

provide specific descriptions to design menus and are widely

used. With respect to usability guidelines, we used Nielsen’s

heuristics [33] since it is widely known and used by user

interface designers to develop usable systems. From the

interface design guidelines [24], we identified the most relevant

aspects that should be considered in order to capture usability

requirements. In our example, we focus on the “display mode”

as a relevant aspect, since there are different ways to display

menu options.

 SE2) Defining the questions: We define the questions to ask

concerning how to display the menu options in a system.

According to interface design guidelines [24], we have

identified the following questions: Q1. How can the menu

options be displayed?; Q2. What is the layout type to display

nest views?; Q3. How is the contextual action item displayed?

Q1 has been extracted from Symbian [27] guidelines, which

state that menu options are “an efficient way to allow users to

perform actions”. Therefore, the definition of the menu display

is essential to allow users to trigger actions. Q2 has been

extracted from the Android guideline [24], which proposes

defining the menu hierarchy as simply as possible using a nest

view. Q3 has been extracted from the Android guideline [24],

which proposes contextual actions, such as actions that affect a

specific item or context frame in the UI. This guideline

describes different alternatives to display contextual action

79

items. With these three questions, we began to define a part of

a branch in our tree structure (Figure 6).

Figure 6. Example of questions

SE3) Defining the answers. For question Q1, we have identified

the alternatives “Button” and “Action Bar”, since both options

are the two possible ways to display the options of a menu. This

classification is also used in the guidelines of Symbian [27],

iOS [23] and Android [24]. Figure 7 shows an example of

button and action bar. The different between them is that the

button is based on option displayed by pressing the Buttons

while the action bar is based on the combination of onscreen

action items overflow options.

For question Q2, we have identified the alternatives “Linear”,

“Relative”, and “Web view”, which appear in the Android

guidelines. These answers gather all the possibilities to display

a nest menu. These alternatives are also used in the design

guidelines of Symbian and iOS. Figure 8 shows an example of

“linear”, “relative” and “Web view”. All of them deal with

the arrangement of view hierarchy. “Linear” arranges the view

in a single column or in a single row. “Relative”, arranges the

view in sections, and “Web” arranges the view as a web view.

For question Q3, we have identified the alternatives “Floating

contextual” and “Contextual action mode”. These answers

have been defined using the design Android guidelines

[24],[23] Figure 9 shows an example of a floating contextual

Mobile Menu

How can the options of
the menu be displayed?

What is the layout type to
display nest views?

How is the contextual
action item displayed?

...

 Q1

Q2

Q3

80

menu and a contextual action mode. The difference between

both types is that the Floating contextual displays actions using

a flying list, while the Contextual action mode displays action

item on the screen.

 a) Button b) Action Bar

Figure 7. Alternatives Design for question Q1

a) Linear b) Relative c) Web view

Figure 8. Alternatives Design for question Q2

a) Floating Contextual Menu b) Contextual Action Mode

Figure 9. Alternatives Design for question Q3

Figure 10 shows how the tree is built using the questions and

answers identified in our example. Next, we must continue

following this procedure in order to define questions and answers

until we do not have any more design alternatives defined by

interface design guidelines.

81

Figure 10. Example of answers

SE4) Recommending usability guidelines: Following this

process, once the answers have been defined, we must define

which answers are recommended by usability guidelines.

As shown in Fig 10, for question Q1, two design alternatives

(answers) are considered: Button and Action bar. Their

respective recommendations are given with respect to the

context of use (type of platform). For example, the alternative

Button is recommended if we are developing an application for

Symbian, Nokia, or Android (lower until version 2.3)

platforms. This design alternative fulfils the usability feature

which is stated in Nielsen heuristic [33], “match between

system and the real world”, because the user activities should

follow real-world conventions without essential changes. The

alternative Action bar is recommended when the application is

planned to be developed for Android (version 3.0 or higher)

[24]. This design alternative fulfills the usability feature

“flexibility and efficiency of use” according to Nielsen’s

heuristics [33]; since it offers flexibility for accessing actions.

For question Q2, three design alternatives are considered:

Linear, Relative and Web view. The recommendations are

given taking into account all platforms [24], [27], [23] and

considering the tasks for which they are used. For example, the

alternative Linear is recommended when the tasks consist of

displaying content that has dynamic layout, or is not

predetermined, or the menu structure is not too deep [24]. This

design alternative fulfills the usability feature which is stated in

Mobile Menu

Buttom

Action Bar

How can the options of
the menu be displayed?

What is the layout type
to display nest views?

How is the contextual
action item displayed?

Linear

Relative

Web view

Floating
contextual menu

Contextual action
mode...

Q1

Q2

 Q3

82

Nielsen heuristic [33], “give people a logical path to follow”,

because the information should appear in a logical order. The

alternative Relative is recommended when the task is to locate

the main actions easily without high hierarchy. This design

alternative fulfills the usability feature, “minimize the user’s

memory load by making the object, action and option visible”

specified by Nielsen’s heuristic [33] since the user does not

need to remember information required for her/his activities.

The Web view alternative is recommended when the task is to

embed a web browser into the action. In this case, the design

alternative fulfills the usability feature “Any such information

should be easy to search, focused on the user’s task”, according

to Nielsen’s heuristic [33], because frequency actions are

tailored by users.

For question Q3, two design alternatives are considered, the

Floating contextual menu and the Contextual action mode.

These have been selected for use with Android and Symbian

platforms, and tasks in which they are used. We recommend

using the Floating contextual menu alternative when the task

consists of displaying the contextual menu on views displayed

by list view or grid view, where the user can perform direct

actions on each item. This design alternative fulfills the

usability feature “The main tasks should be available quickly”

recommended by the Symbian usability guideline [27] since the

actions frequently used should have priority in terms of

visibility. The Contextual action mode alternative is

recommended when the task is to perform an action on multiple

items at once. This alternative fulfills the usability “The help

would assist the user in making full use of the functionalities”

according to Nielsen’s heuristic [33], since the user should be

informed about what is going on.

The recommendation was continued for each alternative, but

the usability guidelines are not always in concordance with the

context, task and/ or user; so situations involving contradiction

exist. For example, when the task consists of defining the

hierarchy of the actions, a recommendation is that the

application “Can suffer from poor usability and

83

discoverability” if a drop down is used. This is a piece of advice

contemplated in the Symbian platform. When the context is the

Android platform, the drop down is called “linear layout”, and

the advice is to use it when the task is to reduce the hierarchy

of views on applications. Therefore, the recommendations have

been made according to context, task or user.

SE5) Defining the group of questions: Questions: Q1, Q2, Q3,

are grouped by “Menu”, since the end-user must be asked all of

them in order to know the requirements with regard to the

menu. We differentiate the group of questions in the tree

structure with the character “*”, as Figure 11 shows.

Figure 11. Example of groups of questions

SE6) Obtaining interface designs: At the end of our navigation

we arrive at a set of designs depending on the user’s

requirements. For example in Figure 18, we arrived at the leaf

Grid following the sequence: Mobile → Menu → How can the

menu options be displayed? →Button → What type of menu is

required? → View menu → What is the item display mode →

Grid → Grid View.

Figure 12 shows the differences between the designs of Button,

View Menu and Grid. Depending on the end-user’s answers, the

navigation process guides the analyst towards one of these

designs.

Tree

* Web

* Mobile

* Desktop

 * Menu

* Dialog

...

Buttom

Action Bar

How can the menu
options be displayed?

What is the layout type
to display nest views?

How is the contextual
action item displayed?

Linear

Relative

Web view

Floating
contextual menu

Contextual action
mode

... ...

* Home
Screen ...

Q1

Q2

Q3

84

Button View Menu Grid

Figure 12. Sequence of alternatives in order to obtain a design

As the same way, we could obtain other alternatives of design.

Such designs are depicted in Figure 13. These are obtained

following the same trajectory but selecting the alternative Six

Button or List as answers for question What is the item display

mode? (See Q8 in Figure 18)

a) Six menu button b) List view

Figure 13. Some possible design alternatives

SE7) Transformation rules definitions: in this stage, we must

define transformation rules to transform the designs into

primitives of a MDD method. In order to facilitate this

transformation, we recommend using UsiXML [29] to specify

the designs, since there are existing rules to generate primitives

for some MDD methods. The definition of these rules is beyond

the scope of this paper, but existing rules can be used with our

85

proposal. For example, there is a set of rules to transform

UsiXML interface designs into conceptual models of a MDD

method called OO-Method [34].

B. Phase of use.

Once we have defined the tree structure, we can use it to capture

requirements. Figure 18 shows tree structure of our example

completed with more questions and answers. The navigation

process in the tree starts from the root to the leaves. Next, we

describe a possible navigation process to capture the

requirements for a mobile phone. Since we are developing for

a mobile platform, we start selecting the alternative Mobile

from the root. Inside Mobile there are other groups of questions

(Menu, Dialogue, among others). The end-user must be asked

the questions in all these groups of questions. We begin our

navigation process with the first group, Menu (GQ1 → GQ2).

Once we begin the flow through the Menu, we follow the next

sequence of branches:

• The Navigation process derived from Q1. A possible

sequence could be: Q1→ GQ3→ Q4→ GQ5→ Q8→ A3→

D1. With this navigation process, we can arrive at the

design D1-Grid View (See Figure 14). Once we arrive at a

leaf, the navigation process continues with the closest

unresolved question. In this example, we must continue

with Q9, since it was in a group (GQ5) together with Q8.

This navigation process brings us to D2 (Drop Down

Menu) through Q9→A5→D2 arriving at design D2. Figure

15 shows an example of this design. The flow continues

with the other questions in GQ3.

86

Figure 14. Design D1 - Grid view.

Figure 15. Design D2 – Drop Down menu

• Navigation process derived from Q2: A possible sequence

could be: Q2→A16→D3. Since A16 was selected, we

arrived at design alternative D3. Figure 16 shows a possible

design for D3.

 Figure 16 Design D3 - Linear Vertical with nest view.

• Navigation process derived from Q3: A possible sequence

could be: Q3→A19→D4. This last selection addresses to

87

the Floating Contextual Menu design, represented by D4 in

Figure 18. A possible design for D4 is represented in Figure

17.

Figure 17. Design D4 - Floating Contextual Menu

At this point we have ended up with a design that is composed of

D1, D2, D3 and D4. These designs will be gathered with the other

designs arrived at through the whole navigation process. Finally,

the designs arrived at can be transformed into conceptual primitives

of an existing MDD method according to previously-defined

transformation rules. Note that we have not exemplified this

process since these transformations are beyond the scope of the

current paper.

88

Figure 18. Usability Requirement Capture

2.6 Conclusion

This paper presents an approach to deal with usability requirements in

MDD environments. The process consists of building a tree structure

using interface design guidelines and usability guidelines that helps the

analyst to capture usability requirements. The approach is based on a

T
re

e

*
 W

e
b

*
 M

o
b

ile

*
 D

e
sk

to
p

*
 M

e
n

u

*
 D

ia
lo

g

..
.

*
A

ct
io

n
 B

a
r

*
 B

u
tt

o
n

Is
 t

h
e

 s
p

lit
ti

n
g

u
p

co

n
te

n
t

re
q

u
ir

e
d

?

 W
h

a
t

is
 t

h
e

 d
is

p
la

y
m

o
d

e
 f

o
r

a
n

 a
ct

io
n

 o
f

it
e

m
 d

a
ta

?

W
h

a
t

is
 t

h
e

 it
e

m
 d

is
p

la
y

m
o

d
e

?

Si
x

B
u

tt
o

n

Li
st

G
ri

d

Sp
lit

 li
st

 it
e

m

D
ro

p
-D

o
w

n

H
o

w
 c

a
n

 t
h

e

o
p

ti
o

n
s

o
f

th
e

m

e
n

u
 b

e

d
is

p
la

ye
d

?

W
h

a
t

is
 t

h
e

 la
yo

u
t

ty
p

e

to
 d

is
p

la
y

n
e

st
 v

ie
w

s?

H
o

w
 is

 t
h

e
 c

o
n

te
xt

u
a

l
a

ct
io

n
 it

e
m

 d
is

p
la

ye
d

?

..
.

..
.

Li
n

e
a

r

R
e

la
ti

ve

W
e

b
 v

ie
w

Fl
o

a
ti

n
g

co
n

te
xt

u
a

l

C
o

n
te

xt
u

a
l A

ct
io

n
 M

o
d

e
..

.

W
h

ic
h

 c
o

n
tr

o
l i

s
u

se
d

 t
o

m

a
n

a
ge

 t
h

e
 it

e
m

 in
 a

 v
ie

w
?

N
a

vi
ga

ti
o

n
 B

a
r

T
o

o
lb

a
r

Si N
o

Is
 m

a
n

d
a

to
ry

 t
o

 f
it

 a
ll

a
ct

io
n

it

e
m

s
a

t
A

ct
io

n
 B

a
r?

Fi
xe

d
 T

a
b

Is
 t

h
e

re
 la

rg
e

n

u
m

b
e

r
o

f
vi

e
w

?

Si N
o

Is
 t

h
e

 v
ie

w
 in

se
rt

e
d

d

yn
a

m
ic

a
lly

?
Si N
o

Is
 t

h
e

 v
ie

w
 d

is
p

la
ye

d

o
f

th
e

 s
a

m
e

 d
a

ta
 s

e
t?

Sc
ro

lla
b

le
 T

a
b

s

T
a

b

Sp
in

n
e

r

D
ra

w
e

r

Is
 n

e
ce

ss
a

ry
 t

o
 f

it

fr
e

q
u

e
n

cy
 a

ct
io

n
 in

 t
h

e

A
ct

io
n

 B
a

r?

Si N
o

W
h

ic
h

 is
 t

h
e

 s
cr

e
e

n

w
id

th
 in

 d
e

n
si

ty
-

in
d

e
p

e
n

d
 p

ix
e

l (
d

p
)

Sm
a

lle
r

th
a

n
 3

6
0

 d
p

3
6

0
-4

9
9

 d
p

5
0

0
-5

9
9

 d
p

6
0

0
 d

p
 a

n
d

 la
rg

e
r

2
 ic

o
n

s

3
 ic

o
n

s

4
 ic

o
n

s 5
 ic

o
n

s
St

a
n

d
a

rd
 m

o
d

e

Si N
o

Si

W
h

a
t

se
gm

e
n

t
co

n
tr

o
l i

s
re

q
u

ir
e

d
?

Sl
id

e
r

St
ip

e
e

r

Sw
it

ch

T
e

xt
 F

ie
ld

SC
_

sl
id

e
r

SC
_

st
ip

e
e

r

SC
_

sw
it

ch

SC
_

te
xt

fi
e

ld

N
o

D
ro

p
D

o
w

n

W
h

a
t

ty
p

e
 o

f
m

e
n

u
 is

re

q
u

ir
e

d
?

*
 O

b
je

ct
 m

e
n

u

D
o

e
s

it
e

m
 in

 a
 v

ie
w

co

n
ta

in
 a

ct
io

n
s?

Si N
o

E
n

a
b

le
 a

ct
io

n

D
is

a
b

le
 a

ct
io

n

*
 V

ie
w

 m
e

n
u

..
.

..
.

D
ro

p
 D

o
w

n
 m

e
n

u

Sp
lit

 li
st

Si
x

m
e

n
u

 b
u

tt
o

m
s

Li
st

 v
ie

w

G
ri

d
 v

ie
w

..
.

Li
n

e
a

r
La

yo
u

t

R
e

la
ti

ve
 L

a
yo

u
t

W
e

b
 V

ie
w Fl

o
a

ti
n

g
C

o
n

te
xt

u
a

l M
e

n
u

C
o

n
te

xt
u

a
l A

ct
io

n
 M

o
d

e

..
.

..
.

D
1

D
3

D
4

.

Q
1

Q
2

Q
3

D
2

G
Q

1

G
Q

2

Q
4

Q
8

G
Q

3

G
Q

5

Q
9

A
3

.

LE
G

E
N

D

D
E

SI
G

N
 T

R
A

JE
C

T

D
E

SI
G

N
S

D
E

SI
G

N
S

SE
LE

C
T

E
D

A
1

6

A
1

9

A
5

89

question-answer format in such a way that requirements are captured

with an interview with the end-user. The output of the interview is a set

of designs that the system must satisfy. If we specify these designs

formally, we can transform them into conceptual primitives of an

existing MDD method.

As a language to specify the designs, we recommend UsiXML, since

there are current works that have defined transformations between this

language and existing MDD methods. However, our proposal is

independent of the language to specify the designs. Note that the

approach is also independent of the MDD method we used as the target

of the transformations. However, if the chosen MDD method does not

have conceptual primitives to express interaction features, we could

hardly define transformations from the designs to the conceptual model,

and few requirements could be included in the software development

process. The tree structure and the transformation between the designs

and the MDD method are defined once only, and they can be reused

indefinitely to develop any system.

Note that the size of the tree structure will increase with the number of

guidelines we consider. Even with few guidelines, the size of the tree is

difficult to manage if we do not have a tool. As future work, we plan to

develop a tool that helps with the definition of the tree structure and

with navigation through the branches. In order to simplify the structure,

we recommend focusing only on the more frequently used interface

design and usability guidelines.

The main contribution of this work is the definition of the process to

capture usability requirements, but there is still a lot of work needed to

make this viable. The next step is to enrich the existing transformation

rules from UsiXML to a MDD method in order to ensure that we can

work with any design. Next, with a tool to support the process and the

transformation rules, we plan to empirically evaluate the proposal. For

this aim, we will compare a software development using our approach

to capture usability requirements with a development which does not

take these requirements into consideration.

90

References

1. S. J. Mellor, A. N. Clark, and T. Futagami, “Guest Editors'

Introduction: Model-Driven Development,” IEEE Software, vol.

20, pp. 14-18, 2003.

2. S. Ceri, Fraternali, P., Bongio, A., "Web Modeling Language

(WebML): a modeling language for designing Web sites." pp. 137

- 157.

3. N. Koch, A. Knapp, G. Zhang et al., “Uml-based web engineering,”

Web Engineering: Modelling and Implementing Web Applications,

pp. 157-191, 2008.

4. L. Bass, and B. John, “Linking usability to software architecture

patterns through general scenarios,” The journal of systems and

software, vol. 66, pp. 187-197, 2003.

5. E. Folmer, and J. Bosch, “Architecting for usability: A Survey,”

Journal of Systems and Software, vol. 70, pp. 61-78, 2004.

6. J. Carroll, M., “Human-computer interaction: psychology as a

science of design,” Int. J. Hum.-Comput. Stud., vol. 46, pp. 501-

522, 1997.

7. B. Shneiderman, Plaisant, C., Diseño de Interfaces de Usuario.

Cuarta Edicion. Estrategias para una Interacción Persona-

Computadora Efectiva, Madrid: Addison Wesley, 2006.

8. J. Nielsen, Usability Engineering: Morgan Kaufmann, 1993.

9. E. Dynamic. "UI Styles Guides, "

http://www.experiencedynamics.com/science-usability/ui-style-

guides

10. G. Nielsen Norman. "Reports," http://www.nngroup.com/reports/.

11. S. Cronholm, "The usability of usability guidelines: a proposal for

metaguidelines."

12. S. Henninger, “A methodology and tools for applying context-

specific usability guidelines to interface design,” Interacting with

Computers, vol. 12, pp. 225-243, 2000.

13. L. M. Cysneiros, V. M. Werneck, and A. Kushniruk, "Reusable

knowledge for satisficing usability requirements." pp. 463-464.

14. N. Bevan, "Guidelines and standards for web usability." pp. 22-27.

15. Y. Pei, and G. Jiao, "The research of Web usability design." pp.

480- 483.

16. J. Nielsen. "Mobile Usability Update ":

http://www.useit.com/alertbox/mobile-usability.html.

17. S. Schneider, F. Ricci, A. Venturini et al., “Usability Guidelines for

WAP-based Travel Planning Tools,” Information and

Communication Technologies in Tourism 2010, pp. 125-136.

91

18. T. Jokela, J. Koivumaa, J. Pirkola et al., “Methods for quantitative

usability requirements: a case study on the development of the user

interface of a mobile phone,” Personal Ubiquitous Comput., vol.

10, pp. 345-355, 2006.

19. A. G. Sutcliffe, S. Kurniawan, and S. Jae-Eun, “A method and

advisor tool for multimedia user interface design,” Int. J. Hum.-

Comput. Stud., vol. 64, pp. 375-392, 2006.

20. J. I. Panach, S. España, A. Moreno et al., "Dealing with Usability

in Model Transformation Technologies." pp. 498-511.

21. ISO-9241_11, “Ergonomic requirements for office work with

visual display terminals (VDTs) - Part 11: Guidance on usability,”

1998.

22. J. Tidwell, Designing Interfaces: O'Reilly Media, 2005.

23. iOS Human interface Guidelines Apple, 2012.

24. D. Android, “User Interface Guidelines,” 2012.

25. N. L. Biggs, "Discrete Mathematics," Oxford University Press.

26. R. Johnsonbaugh, Discrete Mathematics, Fourth Edition ed., New

Jersey: Prentice Hall Intemational, 1997.

27. Nokia. "Symbian Design Guidelines - Dialogs,"

http://www.developer.nokia.com/Resources/Library/Symbian_De

sign_G uidelines/.

28. L. Cerejo, A. "User-Centered Approach To Web Design For

Mobile Devices,"

http://mobile.smashingmagazine.com/2011/05/02/a-usercentered-

approach-to-mobile-design/.

29. J. Vanderdonckt, Q. Limbourg, B. Michotte et al., "USIXML: a

User Interface Description Language for Specifying Multimodal

User Interfaces."

30. M. Maguire, “Context of use within usability activities,”

International Journal of Human-Computer Studies, vol. 55, pp.

453-483, 2001.

31. J. A. T. Hackos, and J. Redish, User and task analysis for interface

design: Wiley New York, 1998.

32. J. I. Panach, Ó. Pastor, and N. Aquino, “A Model for Dealing with

Usability in a Holistic MDD Method.”

33. J. Nielsen. "Ten Usability Heuristics";

http://www.useit.com/papers/heuristic/heuristic_list.html.

34. J. I. Panach, Ó. Pastor, and N. Aquino, "A Model for Dealing with

Usability in a Holistic MDD Method," User Interface Description

Language (UIDL), D. F. Adrien Coyette, Juan González-

Caballeros, Jean Vanderdonckt. (ed.), ed., pp. 68-77, Lisbon

(Portugal), 2011

92

2.3 A Proposal to Elicit Usability Requirements

within a Model-Driven Development

Environment

Nowadays there are sound Model-Driven Development (MDD)

methods that deal with functional requirements, but in general,

usability is not considered from the early stages of the development.

Analysts that work with MDD implement usability features manually

once the code has been generated. This manual implementation

contradicts the MDD paradigm and it may involve much rework. This

paper proposes a method to elicit usability requirements at early stages

of the software development process such a way non-experts at usability

can use it. The approach consists of organizing several interface design

guidelines and usability guidelines in a tree structure. These guidelines

are shown to the analyst through questions that she/he must ask to the

end-user. Answers to these questions mark the path throughout the tree

structure. At the end of the process, we gather all the answers of the

end-user to obtain the set of usability requirements. If we represent

usability requirements according to the conceptual models that

compose the framework of a MDD method, these requirements can be

the input for next steps of the software development process. The

approach is validated with a laboratory demonstration.

93

3.1 Introduction

Model-Driven Development (MDD) paradigm (Embley, Liddle, &

Pastor, 2011) states that the analysts’ entire effort should be focused on

a conceptual model, and the system should be implemented by means

of model to code transformations performed by a model compiler. A

software production process is then seen as a set of conceptual models

that are adequately transformed from requirements to code. A plethora

of MDD methods and tools have been proposed, such as WebML (Ceri,

Fraternali, & Bongio, 2000) or UWE (Koch, Knapp, Zhang, &

Baumeister, 2008) among others. There are two main dimensions to

consider in MDD (Frankel, 2002): a “vertical” dimension and a

“horizontal” dimension. In the vertical dimension there are at least three

main layers that must be present in any MDD process:

1. A Requirements Modeling step, to produce a Requirements Model.

2. A Conceptual Model representation, where requirements are

represented from the computer-oriented perspective.

3. The final Software Product (the Code).

The horizontal dimension focuses on the different expressiveness that

must be present in the different conceptual perspectives of a MDD

software process. Summarizing, these perspectives are:

• The data (static, system structure-oriented) perspective.

• The functional (dynamic, system behavior-oriented) perspective.

• The interaction (user interface-oriented) perspective.

While it can be argued that the two first perspectives (data and

functionality) are largely explored by the different MDD approaches, it

is surprising to realize that the interaction perspective is not at all so

intensively explored. One could conclude that a Software Product is just

the sum of a conceptual model where data and behavior are precisely

specified, what is not exactly true, because the specification of the

Versión del autor del artículo: Ormeño, Y. I., Panach, J. I., Condori-Fernández,

N., & Pastor, Ó. (2014). A proposal to elicit usability requirements within a

model-driven development environment. International Journal of

Information System Modeling and Design (IJISMD), 5(4), 1-21,

http://dx.doi.org/10.4018/ijismd.2014100101

http://dx.doi.org/10.4018/ijismd.2014100101

94

system interaction is an essential component of any software product.

To confirm this situation, it is enough to consider the current modeling

approaches that we find in practice. From the Data perspective, the

question of what data models can be used to represent data has an

immediate answer: ER and UML Class Diagrams are clearly among the

most widely used and known. From the Functional perspective, since

the appearance of the Data Flow Diagrams till the most modern UML

diagrams designed to represent functionality, the offer is large.

However, if the question is what models are specially used to represent

System Interaction, the answer is not at all so immediate. Extending a

previous version presented at (Y. I. Ormeño, Panach, Condori-

Fernandez, & Pastor, 2013), the goal of this paper is to explore the need

of an interaction modeling, focusing on an essential software quality

criteria that is mainly in the interaction scope: usability. Nowadays, in

MDD, usability features are manually implemented once the code has

been generated. According to Bass (Bass & John, 2003) and Folmer

(Folmer & Bosch, 2004), these manual changes may involve changes

in the system architecture, which can result in a lot of extra effort.

Moreover, these manual implementations can produce a source code

that contradicts the system’s characteristics expressed in the conceptual

model. In the previous work (Y. I. Ormeño et al., 2013) we defined how

to elicit usability requirements according to existent usability

guidelines. In this paper, we define how to include the usability

requirements elicitation process in a MDD method. The main final goal

of the paper is to define an approach to facilitate the usability

requirements capture process for analysts who are not experts in

usability engineering, and that want to include also the specification of

usability requirements in a MDD-based approach. The proposal to elicit

usability requirements is based on the idea that first, an expert in

usability defines a tree structure where design alternatives and usability

guidelines are represented textually with questions and answers. Next,

the analyst (non-expert in usability) can use this tree structure

indefinitely to ask end-users which alternative is the most suitable

according to their requirements. Usability guidelines can help the end-

user select an alternative throughout the tree structure. At the end of the

process, we have a design for our system based on the end-user’s

requirements. If we represent the designs according to an existing

95

conceptual model of a MDD method, those designs are the input for

next development steps in the MDD process. The approach is validated

with a laboratory demonstration with the participation of 4 subjects.

This paper is divided into the following sections: Section 2 presents the

state of art of various approaches concerning both the modeling of

interaction and the use of usability guidelines; Section 3 provides a

general view of the approach to elicit usability requirements; Section 4

describes how to build the tree structure to represent all the design

alternatives in an existent MDD method; Section 5 shows how to use

the approach once the tree structure has been built; Section 6 reports an

initial empirical validation of our approach. Finally, Section 7 describes

the conclusions and future work.

3.2 Related Work

The literature presents a lot of usability guidelines to support the design

of user interfaces, but they may confuse the analyst if she/he is not an

expert in usability. In general, the analyst may face the following

problems (among others): it is not easy to understand how to apply the

guideline; sometimes it is difficult to determine when a guideline has

been broken; and some guidelines are so ambiguous that they are

difficult to apply to specific contexts. All these aspects require a huge

effort on the part of the analyst that leads us to determine if the usability

guidelines are still usable. Cronholm’s work (Cronholm, 2009) and

Henninger’s work (Henninger, 2000) describe possible solutions to

some of these problems. Cronholm’s work proposes meta guidelines as

a solution to obtain more systematic and categorized guidelines. Design

guidelines defined by Henninger include two types of guidelines:

interface principles, or typed rules, and usability examples, also known

as cases. These cases are examples of specific interfaces developed for

organizations that contain a lot of knowledge about the needs and

common practices of clients’ work. Cysneiros’s work (Cysneiros,

Werneck, & Kushniruk, 2005) proposes a reusable catalogue to capture

usability requirements. The method is based on i* framework and it

uses personal experiences to obtain knowledge to achieve the objectives

of usability. The cited works aim to mellow the ambiguity of the

96

usability guidelines, but they increase the complexity of use for non-

experts in usability. All these solutions involve a lot of effort to

understand all the guidelines and to choose the most suitable one for a

specific context. For example, understanding the notation or the

information arrangement in a guideline may involve some of the

analyst’s effort in order to use the guideline optimally. Furthermore, the

comparison of guidelines shows great variability, which leads to

creating specific usability guidelines for specific domains. Some

authors aim to reduce developer’s effort, such as Ferre (Ferre, Juristo,

& Moreno, 2005), who defined a framework for usability practices

integration. HCI techniques are characterized according to relevant

criteria from a Software Engineering (SE) perspective and integrated

into a framework organized according to development activities.

Examples of methods to capture usability requirements are: a method

for quantitative usability requirements applied in user interfaces to

depict the true usability (Jokela, Koivumaa, Pirkola, Salminen, &

Kantola, 2006); multimedia user interface designs that design attractive

and usable multimedia systems (Sutcliffe, Kurniawan, & Jae-Eun,

2006); and, embedded Functionality Usability Features in model

transformation technologies (Panach, España, Moreno, & Pastor,

2008). We can state that there are many proposals but none of them

clearly and concisely addresses how to perform the usability

requirements capture in early stages. If we focus on approaches to elicit

usability requirements according to the MDD paradigm, we realize that

there are not previous works; in spite of MDD methods have usually a

model to represent the interaction with the end-user. For example,

WebRatio (Acerbis, Bongio, Brambilla, & Butti, 2007) includes a

Presentation Model to express the layout and graphic appearance of

pages, independently of the output device and of the rendition language.

UWE (Koch et al., 2008) enables the definition of the front-end

interface by means of a Hypertext Model. NDT (Escalona & Arag,

2008) has an abstract interface based on a set of prototypes to represent

the interaction with the user. OO-Method (Pastor, 2007) has two models

to represent the interaction: the Abstract Interaction Model

(independently of platform) and the Concrete Interaction Model

(platform-specific). All these MDD methods have some proposals to

capture functional requirements but all of them lack of a process to

97

capture usability requirements. This might result in unsatisfied end-

users, which involves changes in conceptual models and in the

generated code to solve problems related to interaction. This rework

involves a lot of effort if analysts are not experts in usability. An early

usability requirements elicitation guided by means of usability

guidelines aims to prevent these problems from the first steps of the

software development process. This paper defines a process to organize

the information stored in different usability guidelines based on a user-

centred development (Hassenzahl, 2008). This way, analysts without a

background in usability can work with the guidelines. Based on a

review of the literature (Yeshica Isela Ormeño & Panach, 2013), we can

say that very few papers that address how to perform the extraction

process of usability requirements have been written (Henninger, 2000),

(Cysneiros et al., 2005). Generally, this task is done when the usability

requirement capture has finished. Moreover, usability requirement

capture has not been developed focusing on the MDD method. This

paper aims to cover this gap, proposing a process to capture usability

requirements such a way they can be transformed later into part of the

conceptual model of the MDD method.

3.3 A Proposal to Elicit Usability Requirements

Based on ISO 9241-11 (ISO-9241_11, 1998) standard, usability

requirements are requirements that affect effectiveness, efficiency and

satisfaction of a user achieving his/her goals in a defined context of

use. Our approach is based on existing usability guidelines and design

guidelines, that are stored in a tree structure. The analyst navigates

through this structure in order to capture the usability requirements by

asking questions to end-users. The tree structure helps the analyst to

identify the different design alternatives, and how these decisions will

affect the system’s usability. Figure 1 shows the elements used in our

approach. Next, we describe each element:

98

Figure 1. Schema of the proposal to capture usability requirements.

3.3.1 Usability guidelines and interface design guidelines

Both usability guidelines and interface design guidelines have been

created to guide the analyst to develop systems (Figure 1a). Usability

guidelines recommend how to combine users, tasks and context to

enhance the system usability. Interface design guidelines provide

alternatives for designing systems. These guidelines have been built

for different technologies and platforms that are represented by

standards, principles, heuristics, styles, patterns, best practices, etc.

Design and usability guidelines are related to each other since some

design guidelines can improve or decrease the usability (depending

on the combination of tasks, users and context). Working directly with

both kinds of guidelines implies a huge effort as the variability and

amplitude of these guidelines is very high. In order to reduce this

effort, we propose storing all the relevant guidelines information in a

tree structure, which is explained in more detail below.

3. 3.2 Tree diagram

We propose using design and usability guidelines through a tree

structure in order to minimize the cognitive effort to work with them

(Figure 1b). A tree structure is defined as a connected graph with no

cycles and a root (Johnsonbaugh, 1997). Figure 2 shows a general

schema of the tree structure used in our approach, which is composed

of four elements: question, answer, group of questions, and design.

Next, we present these elements:

99

Figure 2. General representation of the tree structure (adapted from (Y. I. Ormeño et

al., 2013))

1. Question (Qi): The design guidelines present diverse design

alternatives for many UI (User Interface) components (e.g. menu).

In order to ask the end-user which alternative she/he prefers, we

have defined a question when alternatives to design appear. For

example, when we are designing dialog elements for mobile,

design guidelines (Nokia), (Android, 2012) specify that dialog

elements provide a top-level window for short-term tasks and a

brief interaction with the user. We can define a question to decide

which is the UI component to represent a selectable, “Which UI

component is used to show selectable tasks?”. In Figure 2,

questions are represented by Qi.

2. Answer (Ai): These are the exclusive options for each question

according to interface design guidelines. These options are

presented to the analyst in such a way that she/he can choose which

one best fits user’s requirement. The analyst’s decision is not only

based on end-user criteria, but also on usability guidelines. This

means that we must relate answers to usability guidelines

depending on the type of user, task, and context. When answers are

shown to the analyst, we will show which answers are

recommended by usability guidelines. For example, the answers to

the question “Which UI component is used to show selectable

tasks?” can be: RadioButtons, TextBoxes, CheckBoxes or Slider

(Android, 2012), (Nokia). According to usability guidelines, a

RadioButton is constructed for a persistent single-choice list

(Android, 2012), where aspects such as “simplify navigation” and

Root

GQ1

GQ2

GQi

GQn

...

Q1

Q2

...

Qi

Qn

Ai/GQii/Di

GQI : GROUP OF

QUESTION

QI : QUESTION

AI : ANSWER

DI : DESIGN

i = 1,2,…, N

LEGEND

...

Ai/GQii/Di

Ai/GQii/Di

Ai/GQii/Di

100

“minimize user input” are usability requirements (Cerejo, 2011).

In Figure 2, answers are represented as Ai, Ai+1, …, An.

3. Group of Question (GQi): Some branches of the tree structure are

not mutually exclusive (the end-user should be asked all of the

questions). This type of branch is represented by a group of

questions, which gathers several questions grouped by a design

characteristic. For example, the question “Which UI component is

used to show selectable tasks?” can be gathered with other

questions that ask about Selection Dialogues, such as “Where is

the action button located?”, “Where is the dialogue box located?”,

and “Where is the positive action on button located?”. All these

questions have in common that deal with how selection dialogs are

displayed, and all of them are gathered in the same Group of

questions. In the tree structure these are represented as GQi, in

Figure 2.

4. Designs (Di): These are the interface designs reached through the

alternatives that the analyst has been choosing. The analyst

navigates through the tree structure asking the questions to the end-

user, who selects the most suitable answer (usability guidelines can

recommend some answers). When the analyst reaches a leaf in the

tree, a design has been obtained. The final design of the whole

system is the set of leaves in the tree that the analyst has reached.

For example, a design can be a selection dialog with radio buttons,

where each item shows an enumerated data (Nokia), (Android,

2012). At the tree structure these are represented as Di, in Figure

2.

The tree structure must be built by an analyst in collaboration with an

expert in usability, who knows how to interpret and use usability

guidelines. The expert in usability is responsible for defining the

recommendations for each answer. In order to identify all the elements

that compose the tree structure, we have defined a meta-model (Figure

3). The meta-model allows the replication of the tree structure in any

context and the instantiation of as much instances as we need. Each

instance can be used for different design and usability guidelines,

resulting in different combinations of questions and answers.

101

Next, we describe the elements of the metamodel (classes). Class

Design Guideline represents the interface design guidelines used in our

tree structure. Questions that the end-user will be asked in order to

discover which design alternative is most suitable are derived from

these guidelines. Every question can be related to a group of questions,

or to at least two Answers, since there is always more than one choice

for each question. The class Group of Questions represents the set of

questions we can define, and the class Answer specifies the exclusive

alternatives for the question. Some of these answers can be

recommended by one or several usability guidelines, recommendations,

standards and best practices, represented as instances of the class

Usability Guideline. According to the usability definition described in

ISO-9241 (ISO- 9241_11, 1998), some usability guidelines are specific

for a context, task or user. This is represented through the classes

Context, Task, and User respectively. Finally, class Design represents

the designs that the analyst can get to at the leaves of the tree. Each

instance of this class is a different interface design that we can reach

through different answers.

Figure 3. Meta-model of usability requirements capture (adapted from (Y. I. Ormeño

et al., 2013))

3.3.3 Usability requirement elicitation

Once the tree structure has been finished, any analyst without explicit

knowledge of usability can use it (Figure 1c). The usability requirement

elicitation is the process to capture usability requirements using our

102

approach. The navigation starts from the root of the tree while the

analyst asks the questions to the end-users. The analyst asks the

questions according to their sequence in the tree, from the root to the

leaves. Questions are mutually exclusive, in other words, the analyst

only navigates through the branch of the answer selected by the end-

user. Questions that are gathered in the same group of questions are all

asked. When the analyst reaches a branch with a group of questions, the

flow continues with the first question in the group. Only when this flow

has finished, the analyst can continue with the next question in the

group. The possible navigation between two nodes of the tree structure

can be: i) From a group of questions to a question, or to another group

of questions (GQi→Qi / GQi); ii) From a question to an answer

(Qi→Ai); iii) From an answer to a question, to a group of questions or

to a design (Ai→Qi / GQi/ Di). Note that if we work with several

usability guidelines, they can contradict each other when they

recommend an answer. For example, a widget with a ListBox (list of

items) is recommended to improve Information Density (amount of

information in the interface), since items are hidden inside the list.

However, a RadioButton (◎) is recommended to improve Brevity

(users’ cognitive workload), since the items are displayed directly

without the necessity of opening any list. This contradiction is not a

problem in our approach, since usability guidelines are only

recommendations. In case of contradiction, the analyst must tell the

end-user which alternative is proposed by each usability guideline. The

choice of the most suitable answer only depends on the user, who must

choose according to his preferences. The analyst must explain to the

user which usability recommendation satisfies each design alternative.

3.3.4 Including the Approach in a MDD Method

The link between the tree structure and a MDD method is performed

through the leaves of the tree (the designs). Our approach consists in

specifying the possible designs of the tree structure through a

conceptual model of any existing MDD method. Most MDD methods

have a specific model to represent end-user interaction (interaction

model), that together with other models to represent persistency and

behaviour are the input for the code generation process. We propose

103

using those interaction models to represent all the design possibilities

expressed in the tree structure. Note that our proposal does not deal with

how to work with interaction models or how to transform these

interaction models into code. That depends exclusively on the MDD

tool used as instantiation of our proposal. We focus on how to elicit

usability requirements and how to include them in any of the existing

MDD methods without modifying its existing conceptual model.

From all the MDD methods with an interaction model, we focus our

illustrative example on OOMethod (Pastor, 2007). This choice is based

on two characteristics: (1) OO-Method has an industrial tool named

INTEGRANOVA (CARE, 2014) with a model compiler that can

generate fully functional systems from a set of conceptual models

without writing a single line of code. The generation is performed with

ad-hoc transformation rules from models to code. All the models of the

OO-Method framework are stored in a XML file that is the input for the

code generation process. The XML file is read with a parser

implemented in C++ that generates the code in C# or Java. (2) OO-

Method has a model expressive enough to represent several design

alternatives.

Next, we summarize both models of OO-Method to represent

interaction: the Abstract Interaction Model (Molina, Meliá, & Pastor,

2002) and the Concrete Interaction Model (Aquino, 2008). The Abstract

Interaction Model focuses on representing which are the elements that

will be displayed for each interface. From a MDA perspective, this

model is PIM since interfaces represented with this model are valid for

any platform. These are the possible elements (named interaction

patterns):

• Introduction: captures the relevant aspects of data to be entered

by the end-user (including masks).

• Defined selection: enables the definition (by enumeration) of a

set of valid values for an associated model element.

• Argument grouping: defines which input arguments can be

grouped.

104

• Filter: defines a condition to display a list of elements.

• Order criterion: defines how a list can be ordered.

• Display set: determines the elements that compose a list with

several fields.

• Actions: defines the set of available services.

• Navigations: determines the information set that can be

accessed through a navigation between two interfaces.

The Concrete Interaction Model specifies how the elements that

compose the interface will be displayed. From a MDA perspective, this

model is PSM since interfaces represented with this model are for a

specific platform. For example, in this model, the analyst decides the

widget to display a Defined Selection (a list of enumerated values),

which can be a ListBox or with a Radiobutton. The Concrete Interaction

Model is defined through Transformation Templates, which specify the

structure, layout and style of an interface according to preferences and

requirements of end-users, and the different hardware and software

computing platforms. A Transformation Template is composed of

Parameters with associated values which parameterize the different

design alternatives of the interfaces (Aquino, 2008). Apart from

interaction models, OO-Method is composed of an Object Model

(which specifies the system structure in terms of classes of objects and

their relations), a Functional Model (which specifies how events change

object states) and a Dynamic Model (which represents the valid

sequence of events for an object). A detailed description of all these

models can be found in (Pastor, 2007).

Next, we apply the three elements of our approach (Figure 1) to OO-

Method: (1) Usability and Design Guidelines; (2) Tree Diagram and (3)

Usability Requirements Elicitation. This section deals with the two first

elements, relegating the Usability Requirements Elicitation to next

section. For the first element (Figure 1a) we use the design alternatives

of the Abstract Interaction Model and the Concrete Interaction Model

of OO-Method. As usability guidelines, we use ISO 9126-3 (ISO-9126,

2001) and the ergonomic criteria of Bastien and Scapin (Bastien, 1993).

105

Both guidelines have been widely used in the software engineering

community and in the human-computer interaction community.

The second element of our approach (Figure 1b) is the tree structure

definition using design and usability guidelines previously chosen.

From a MDA perspective, the tree structure is CIM, since it is

independent of computation. According to (Y. I. Ormeño et al., 2013),

the steps to build a tree structure are the following:

1. Identify design alternatives and define questions to ask the end-

user which is the best design.

2. Express each design alternative as a possible answer for the

questions defined previously.

3. Gather non-excluding design alternatives in groups of

questions.

4. Define specific designs in the leaves of the tree.

After applying all these steps to OO-Method, we have the tree structure

displayed in Figure 4 and Figure 5. Each design is identified with the

letter “D” and a number. Apart from identifying design alternatives, we

have also identified the recommendations for the answers according to

the metrics of ISO 9126-3 (ISO-9126, 2001) and the ergonomic criteria

(Bastien, 1993). Next, we describe in detail the design alternatives

identified in the Abstract Interaction Model of OOMethod and which

ones are recommended according to usability guidelines. The tree

structure has been performed by an analyst of OO-Method and an expert

in usability. Each design alternative is represented in Figure 4 and

Figure 5 as an answer:

106

Figure 4. Tree structure with alternatives of OO-Method (1)

107

Figure 5. Tree structure with alternatives of OO-Method (2)

• Introduction: the system can show the rule of a mask to prevent

end-user from errors or hide it. Moreover, the error message

displayed when inserted data does not fulfill the mask rule can

be shown in a new emergent window or in the same window of

the form. According to the ergonomic criterion Information

Density, rules should not be shown, since they can overload the

amount of information. However, criterion Error Protection

(prevention of data entry errors) and metric Message Clarity

(proportion of self-explanatory messages) recommend showing

the rules with a textual description to be understandable.

Moreover, criterion Minimal Actions (workload regarding the

number of actions) recommends showing the error message in

the same window; while metric Interface Element Clarity

(proportion of self-explanatory interface elements)

recommends using a new emergent interface to show the error

message.

• Defined Selection: the possible values can be inserted with a

ListBox, a RadioButton or a TextBox (free text). According to

108

criterion Minimal Action, enumerated values with less than 9

items should be displayed with RadioButtons, since all the

possible values are shown directly (Panach, Condori-

Fernández, Vos, Aquino, & Valverde, 2011). However,

according to criterion Information Density, items should be

displayed with a ListBox, such a way, the list of possible values

is hidden until the end-user opens the list. Enumerated values

with more than 9 items should be displayed with a ListBox

according to the criteria Information Density and Legibility

(lexical characteristics of information that facilitate the

reading). In this case, a design with RadioButtons could

increase the amount of information in the interface and a design

with TextBoxes could not guide the user.

• Argument Grouping: arguments of a form can be grouped by a

GroupBox (a group of elements in the same window),

Accordion (a group of elements that can be hidden), Tabs

(division of a form into different windows without relationship

among them) or split into several interfaces through a Wizard

(division of a form into different windows with a relationship

among them). According to metric Functional

Understandability (assessment that new users can understand

the system) and criterion Guidance (availability of advising), a

Wizard should be used when there are many arguments to

perform an action. When there are not so many arguments,

criterion Information Density recommends dividing the

argument using Tabs or Accordion, since the end-users can

show the arguments depending on their needs. When there are

a few arguments, the design with a GroupBox is recommended

by criterion Minimal Actions, since the arguments do not take

up much space and they are shown directly.

• Filter: the first decision is to choose whether or not the system

needs filters. Next, we must decide where displaying them.

According to criterion Information Density, the use of a filter

makes sense when there is a huge amount of information, and

the end-user needs some mechanisms to reduce it. However,

when the amount of information is little, criterion Minimal

Actions recommends not using a filter, such a way, end-users

109

can list all the information directly. With regard to the position

of the filter in the interface, top and left positions will consider

the filter more important than the right and bottom positions.

This recommendation provides from criterion Compatibility

(match between users’ characteristics and dialogues), that

propose developing the system regarding end-users’

perceptions and customs.

• Order Criterion: this pattern shares the same design alternatives

as the filter, adding the possibility to choose how to display the

different order criteria. According to criterion Legibility and

metric Help Facility (proportion of functions described in the

user documentation), order criteria should be used when there

is much information in interfaces. This mechanism will help

end-users identify quickly the required data. However, when

the amount of information is little, criterion Minimal Actions

than the benefit obtained with the order. With regard to the

position of the order criteria, we can apply the same criterion

used for Filter (Compatibility). How to display the order

criteria alternatives will depend on the size of the screen. For

wide screens, criterion Minimal Actions recommends

displaying the order criteria with a RadioButton or a

CheckBox. However, for narrow screens, criterion Information

Density recommends hiding the order criterion until the end-

user needs them. In this case, a design with a ListBox or

Acordion is the most suitable.

• Display Set: the fields of the list can be displayed per rows or

per columns. Moreover, we can colour the fields if we think

that this will help to understand displayed data. According to

criterion Compatibility, the fields of the Display Set should be

compliant with the size of the screen in order to avoid scroll

bars. Therefore, wide screens can show the different fields per

column and narrow screens should show the fields per row.

Moreover, criterion Legibility and metric Help Facility

recommend using different colours per field to help end-users

understand the information.

110

• Actions: there are different locations to display the actions;

different widgets, such as buttons or hyperlinks; and different

representations, such as icons, labels or a combination of icons

and labels. According to criterion Compatibility, the

recommendation for the position is the same as the

recommendation for Filters. With regard to how to display the

action in the screen, criterion Compatibility recommends using

the widget most commonly used. Therefore, an appearance as

Hyperlink is more suitable for Web applications and mobile

systems, while an appearance as button is more suitable for

desktop systems. Moreover, criterion Prompting (guide to

make specific actions) and metric Function Understandability

recommend identifying the actions such a way every user can

recognize the action. Therefore, a textual label or an icon with

a label is more suitable than only an icon. However, systems

with a small screen should use icons according to criterion

Information Density, since an icon will always take up less

space than a textual description.

• Navigations: they share the same alternatives as actions.

According to criterion Compatibility, the recommendation for

the position is the same as the recommendation for Filters.

Moreover, the recommendation for the appearance is the same

as the recommendation for Actions according to criterion

Compatibility.

The fourth step of our process consists in specifying the designs of

the leaves through a conceptual model of the MDD method (Figure

6). This specification is the link between our proposal to elicit

usability requirements and an existing MDD method. Each design

of the tree structure can be represented in a conceptual model of the

MDD method. Note that the process to specify the designs is done

once only, when the tree structure is specified. How each design is

specified depends exclusively on the used MDD method. As

illustrative example, we describe how to specify the design to show

a mask rule (D2 in Figure 4) and the design to display its error

message in an emergent window (D4 in Figure 4). D2 and D4 must

be specified both in Abstract and Concrete Models of OO-Method.

111

This notation is just an example for the instantiation of our proposal

to OO-Method:

• D2 is represented in the Abstract Model through the interaction

pattern Mask, which is specified through the XML code:

<PIntroductionM id=”Mask_XX”>

<MsgError> “XXXX” </MsgError>

<PIntroduccionStringM Mask=” XXXX” />

</PIntroduccionStringM>

</PIntroduccionM>

D2 is represented in the Concrete Model through the template:

.MaskError=Mask_XX.MsgError

• D4 is represented with the same Abstract Model as D2, since

both designs share the samein teraction pattern: Mask.

D4 is represented in the Concrete Model through the next

template:

.DisplayErrorMask= NewWindow

Note that models used to define the designs in the requirements

elicitation step are initial interaction models composed of a first draft

of Abstract and Concrete Models. By initial, we mean a model where

specific details of the interface are not yet represented, just usability

requirements. That is the reason why the previous examples of Abstract

and Concrete Models do not specify an error message. In next

development steps, the analyst must complete the interaction model and

together with other models that represent persistency and behaviour,

they are the input for the model compiler. Finally, the model compiler

interprets the characteristics expressed in the interaction models and

generates the code that implements those characteristics.

A detailed description about how to model interfaces with the Abstract

Interaction Model (Molina et al., 2002), the Concrete Interaction Model

(Aquino, 2008) and model to code transformations are out of scope of

this paper since they do not concern the requirements elicitation step.

Our contribution in this paper is only the process to elicit usability

requirements (in grey background in Figure 6).

112

Figure 6. Overview of the process to include usability requirements in an MDD

method.

3.4 The Tree Structure in Use

This section describes the third element of our approach (Figure 1c):

how to use the tree structure once it has been defined completely. As

example, we use a system for car rental that must save information of

all the cars that the car rental company has around the world; therefore,

the system needs to store much information. The system will follow a

client-server architecture, such a way, the same server can connect with

several clients in different platforms. In our example, we need to

develop for two platforms: Web and mobile. The need of two platforms

results in the development of two types of interfaces, in spite of the

business logic is the same in both of them. In order to elicit the usability

requirements for both systems, we must navigate two times through the

tree structure of our approach.

First, we focus the example on eliciting usability requirements for the

Web application. The process starts from the tree root to the leaves.

When a question arises in the path, the analyst must ask the end-user

that question. Apart from the question, the analyst must tell the end-

user the possible answers to the question. If the answers are

recommended by some usability guidelines, the analyst must specify

which answers are recommended and why. Starting from the root

(Figure 4 and Figure 5), we have a group of questions with two

questions: How would you like to display the mask rule? and How

would you like to display the error message? In this case, since the size

of the screen is not a key issue, we can guess that the end-user chooses

to show a textual description of the mask and to show the error message

in a new window (A in Figure 7a). Once all the questions of a group of

questions have been answered, the flow continues with the next

113

question or group of questions with a pending answer. When a design

(a leaf) arises in the path, the flow continues with the closest unresolved

question.

In our example, the flow continues with the group of questions for

Defined Selection. We guess that the end-user chooses as answers the

recommendations for a Web application: using a RadioButton for items

between 2 and 9 elements (B in Figure 7a) and using a ListBox for more

than 9 items (C in Figure 7a). The next group of questions in the flow

elicits requirements for Argument Grouping. According to the

recommendations, the end-user selects a Wizard for more than 20

arguments, Tabs for a set between 11 and 20 arguments (D in figure 7a)

and a Group Box for less than 10 arguments. Next, the flow continues

with the questions regarding the Filters. Since there is much information

to store in the system, the end-user selects to display the filters at the

top of the interface (E in Figure 7b). This way, the first task end-users

do within the interface is filling filters. Next, the flow continues with

the questions regarding Order Criteria. Again, the amount of

information recommends using order criteria. Since the size of the

screen is not a problem, the end-user selects to display the order

alternatives at the top of the interface using RadioButtons (which

require less clicks than the use of a ListBox) (F in Figure 7b). Next, the

flow continues with the questions regarding Display Sets. Since the

screen for a Web application is wide, the recommendations suggest

displaying the fields per column using different colours per field (G in

Figure 7b). Next, the flow continues with the questions regarding

Actions. According to the recommendations, the end-user selects to

display the actions on the left with a hyperlink and to use a textual

description (the size of the screen is not a problem) (H in Figure 7b).

Finally, the flow continues with the questions regarding Navigations.

The end-user selects to display the navigations at the bottom, since

these actions will not be used very frequently (I in Figure 7b).

Moreover, the visual appearance of navigations should be a hyperlink,

since it is the most common widget for Web applications.

At the end of the process, we have a set of designs we have reached

through the navigation of the tree structure. All these designs compose

the set of usability requirements for the Web application. As example,

114

we show the specification of designs D7, D10 and D13 used to display

a RadioButton for lists between 2 and 9 items in INTEGRANOVA (B

in Figure 7a). Note that all the designs are specified when the tree

structure is defined. D7, D10 and D13 are represented in the Abstract

Model through the interaction pattern Defined Selection, which is

specified through the XML code:

<PDefined_Selection id=”List_2-9”>

<Item1> “XXXX” </Item1>

<ItemN> “XXXX” </ItemN>

 </PDefined_Selection>

This design is represented in the Concrete Model through the template:

 :PDefined_Selection_id=”List_2-9”=RadioButton

This design is generic for every list of items between 2 and 9 elements.

In next steps of the software development process, the analyst must

complete this model for each interface that includes the pattern Defined

Selection. In our example of Figure 7a, the Abstract Model will be

completed with the following XML lines:

<PDefined_Selection id=”List_2-9” name=”Marital_Status”>

<Item1> Single </Item1>

<Item2> Married </Item2>

<Item3> Widowed </Item3>

 </PDefined_Selection>

The Concrete Model does not need more details to specify how to

display the list. The Abstract and Concrete Models are specified

together with the other models of the OO-Method framework and

finally we can obtain the final system. Figure 7 shows two examples of

interfaces compliant with the requirements we have elicited for the Web

application.

115

Figure 7.a, b Two examples of interfaces compliant with the requirements for a Web

application

Figure 8.a, b Two examples of interfaces compliant with the requirements for

a mobile application

Second, we use the tree structure again to elicit the usability

requirements for the mobile system. In this case, the end-user would

accept the recommendations for mobile applications, which claim to

reduce as much information as possible in interfaces. In the group of

questions Introduction, the end-user chooses to hide mask rules and to

show error messages in a new emergent window (A in Figure 8a). Next,

in the group of questions Defined Selection, the end-user selects to use

ListBoxes in order to reduce the amount of information in interface (B

in Figure 8a). Next, in the group of questions Argument Grouping, for

116

a set of arguments between 2 and 20 items, the end-user chooses to use

a design with Accordion (C in Figure 8a). Groups with more arguments

should be displayed with a Wizard. Next, the end-user selects to display

Filters at the top of the interface with an Accordion, since there is much

information to display in little space (D in Figure 8b). Next, the end-

user also selects Order Criteria at the top of the interface displayed with

a ListBox, such a way they do not take up much space (E in Figure 8b).

Display Sets are shown per row with colours, since mobile screens are

very narrow (F in Figure 8b). Next, the end-user selects to show the

Actions on the left of the interface, with a visual appearance of buttons

and with a description based on icons (G in Figure 8b). Finally, for

Navigations, the end-user selects to display them at the bottom of the

interface using buttons, since this is the most frequently used

representation for mobile systems (H in Figure 8b). As example of

designs specification, we show the specification of D6, D9, D12 and

D15, used to display a ListBox for any group of items (B in Figure 8a).

The Abstract Model for these designs is the same as the used for D7,

D10 and D13. The Concrete Model is:

.PDefined_Selection_id=”List2-10”=ListBox

In next steps of the software development process, the analyst must

complete the Abstract Model and the Concrete Model for each

interface. For the example of list “Marital Status”, we can use the same

Abstract Model as we defined for Defined Selection in Figure 7a. The

Concrete Model does not need more changes. Figure 8 shows the same

example of interface represented in Figure 7 but for a mobile system.

Filters and Order Criteria have been hidden according to usability

requirements.

3.5 Initial Validation of Our Approach

 Wieringa (Wieringa, 2010) classifies many different forms of

validation that can be conducted with respect to a research proposal.

This section describes a laboratory demonstration that we have

performed to validate the usability requirements elicitation process. We

117

have used 4 subjects that are members of the PROS research center

(http://www.pros.upv.es): 2 subjects play the role of analysts (persons

that work usually with INTEGRANOVA) and other 2 subjects play the

role of customers (persons without knowledge in INTEGRANOVA).

We use two problems: Problem1 is a Web application to manage a car-

rental system (like Figure 7) and Problem2 is a mobile application to

manage a company of water supply. Table 1 shows the design used in

the evaluation.

Treatments Without Tree With Tree

Problems Problem1 Problem2

Subjects Analyst1, Customer1 Analyst1, Customer1

Analyst2, Customer2 Analyst2, Customer2

Table 1. Evaluation design

The experimental process consists in an interview between the analyst

and the customer to elicit usability requirements of each problem with

the target of developing both problems in INTEGRANOVA. Elicitation

of Problem1 is performed without the tree structure and the elicitation

of Problem2 is performed with the tree structure of Figure 4 and Figure

5 (design alternatives for INTEGRANOVA). Previously to the

elicitation process, we explained how the tree structure works to the

analyst. During the interview, the customer can change his requirements

if the analyst offers him a better solution. Once the interview is over,

we ask the analyst for interface sketches in paper. Next, the customer

compares these sketches with his requirements. This way, we can

confirm whether elicited usability requirements correspond to expected

interfaces by the customer.

The Factor used in the experiment is the elicitation technique used for

usability requirements.

The factor has two levels: without our proposal and with our proposal.

Each level is applied to each problem. Response variables are: time

spent in the elicitation process (measured as minutes); design

alternatives not asked to the customer and design alternatives that the

customer changes after talking with the analyst (measured as number of

118

design alternatives); analyst’s satisfaction and customer’s satisfaction

(measured with a 5 point Likert scale). Table 2 shows the satisfaction

questionnaires used.

Analyst’s Satisfaction

I have no doubts about customer requirements

I would use the method to elicit requirements frequently

The method to elicit requirements is easy to use

The method to elicit requirements is useful

Customer’s Satisfaction

The offered sketches satisfy your expectations

You would change your idea of system for the offered sketches

You think that the analyst has done a good work in the requirements

elicitation process

Table 2. Satisfaction questionnaires

Results regarding spent time show that time spent using our approach

is slightly higher (an average of 5 minutes more). Regarding design

alternatives not asked to the customer without our approach,

Analyst1 forgot asking 68% of design alternatives, and Analyst2 forgot

79%. Both analysts chose the most frequently used design alternatives

without contrasting those decisions with the customer. Using our

approach, both analysts asked 100% of design alternatives. Regarding

changes in interfaces during the interview, Customer1 changed 5

features without our proposal and 6 features with our proposal.

Customer2 changed 11 features without our proposal and 8 features

with our proposal. Regarding analyst’s satisfaction, both analysts are

more self-confident with elicited requirements using our proposal, they

would use our approach frequently and they classify our approach as

useful and easy to use. Regarding customer’s satisfaction, there are

not differences between using our approach or not for the expected

sketch and for the valuation of the analyst’s work. Using our approach,

both customers prefer the sketches of the analyst rather than their own

ideas previous to the interview.

119

As conclusion, we state that even though this evaluation is a pilot

experiment, results show an improvement in the elicitation process of

usability requirements in a MDD method such as INTEGRANOVA:

more matching between elicited requirements by the analyst and real

needs of customers, and more satisfaction for analysts and customers.

A disadvantage of our proposal is that it takes more time, since it

requires asking the customers all the possible design alternatives.

Note that how to model the interaction and transformations have not

been evaluated because they depend on the MDD tool used

(INTEGRANOVA in this case).

3.6 Conclusions and Further Work

This paper is a step forward to obtain holistic MDD methods, where all

the system features, including usability, can be represented from the

early steps till the code (vertical dimension). We propose a process to

elicit usability requirements based on existent design alternatives and

usability guidelines. The end-user must participate in the process,

choosing the design alternative that better fits with her/his

requirements. The approach is based on the construction of a tree

structure that represents all the design alternatives. How to build the

tree structure and how to use it, is explained in detail. Moreover, the

approach has been validated with 4 subjects through a laboratory

demonstration.

Note that the approach is valid for any MDD method but, as illustrative

example, we have used OO-Method. This choice has led the design

alternatives and the construction of the tree structure. The use of our

approach in other MDD method, with models to represent the

interaction different from the Abstract Model and the Concrete Model

of OO-Method, involves building another tree structure. The size of the

tree structure depends on the number of design alternatives; the more

alternatives, the higher is the tree structure. One benefit of our proposal

is that its use does not involve changing the existing MDD method. We

do not propose any extension of existing interaction models or new

transformation rules. We propose using existing interaction models to

represent designs of our tree structure, and those models will be the

120

input for existing transformation rules in next steps of the development

process (if the existing MDD method supports these transformations).

In our example, we have used two usability guidelines: ISO 9126-3 and

the ergonomic criteria. In Human-Computer Interaction and in

Software Engineering communities there are many other guidelines.

Our approach accepts as many guidelines as the analyst would like to

consider. A contradiction between two guidelines does not mean a

problem, since the end-user decides the most suitable design alternative.

However, it is important to mention that too many recommendations for

the possible designs can confuse end-users.

Our approach focuses on eliciting usability requirements. As outcome

of our elicitation process, we get some incomplete conceptual models.

In next development steps, the analyst must enhance these models with

primitives that represent the functionality and the visual appearance of

the system in order to get a fully functional system. How the usability

requirements will be expressed in the next steps of the software process

will depend exclusively on the MDD method.

As future work, we plan to develop a tool to support the construction

and use of any tree structure. Even with a few design alternatives and a

few usability guidelines, the size of the tree structure is considerable.

Moreover, we also plan to apply our proposal to a real case study in

industry with more subjects than the ones used in this paper.

Acknowledgements

This work has been developed with the support of MICINN (PROS-

Req TIN2010-19130-C02- 02), UV (UV-INV-PRECOMP13-115032),

GVA (ORCA PROMETEO/2009/015), and cofinanced with ERDF.

We also acknowledge the support of the Intra European Marie Curie

Fellowship Grant 50911302 PIEF-2010. We also thank Sergio España,

Francisco Valverde, Marcela Ruiz and María Jose Villanueva for their

participation in the experimental validation.

121

References

1. Acerbis, R., Bongio, A., Brambilla, M., & Butti, S. (2007).

WebRatio 5: An Eclipse-Based CASE Tool for Engineering Web

Applications. LNCS, 4607, 501-505.

2. Android, D. (2014). User Interface Guidelines, from

http://developer.android.com/guide/practices/ui_guidelines/index.

html

3. Aquino, N., Vanderdonckt, J., Valverde, F., Pastor, O. (2008).

Using Profiles to Support Model Transformations in the Model-

Driven Development of User Interfaces. Paper presented at the

Proc. of 7th Int. Conf. on Computer-Aided Design of User

Interfaces CADUI’2008, Albacete, Spain.

4. Bass, L., & John, B. (2003). Linking Usability to Software

Architecture Patterns through General Scenarios. Journal of

Systems and Software, 66(3), 187-197.

5. Bastien, J. M., Scapin, D. (1993). Ergonomic Criteria for the

Evaluation of Human-Computer Interfaces. Rapport technique de

l'INRIA, 79.

6. CARE. (2014). CARE Technologies, from https://www.care-t.com.

7. Cerejo, L., A. (2011). User-Centered Approach To Web Design For

Mobile Devices. Retrieved 11 october 2012, from

http://mobile.smashingmagazine.com/2011/05/02/a-user-

centeredapproach-to-mobile-design/

8. Ceri, S., Fraternali, P., & Bongio, A. (2000). Web Modeling

Language (WebML): A Modeling Language for Designing Web

Sites. Computer Networks, 33(1), 137-157.

9. Cronholm, S. (2009). The Usability of Usability Guidelines: A

Proposal for Meta-guidelines. Paper presented at the 2lth

Australasian Conference on Computer-Human Interaction,

Melbourne, Australia.

10. Cysneiros, L. M., Werneck, V. M., & Kushniruk, A. (2005, Aug 29

- Sept 2, 2005). Reusable Knowledge for Satisficing Usability

Requirements. Paper presented at the 13th IEEE International

Conference on Requirement Engineering, Washington, DC, USA.

11. Embley, D. W., Liddle, S. W., & Pastor, O. (2011). Conceptual-

Model Programming: A Manifesto. In D. W. Embley & B.

Thalheim (Eds.), Handbook of Conceptual Modeling (pp. 3-16):

Springer Berlin Heidelberg.

12. Escalona, M. J., & Arag, G. (2008). NDT. A Model-Driven

Approach for Web Requirements. IEEE Trans. Softw. Eng., 34(3),

377-390.

122

13. Ferre, X., Juristo, N., & Moreno, A. M. (2005). Framework for

integrating usability practices into the software process. Paper

presented at the Proceedings of the 6th international conference on

Product Focused Software Process Improvement.

14. Folmer, E., & Bosch, J. (2004). Architecting for Usability: A

Survey. Journal of Systems and Software, 70, 61-78.

15. Frankel, D. (2002). Model Driven Architecture: Applying MDA to

Enterprise Computing: John Wiley & Sons, Inc.

16. Hassenzahl, M. (2008). The interplay of beauty, goodness, and

usability in interactive products. Hum.-Comput. Interact., 19(4),

319-349.

17. Henninger, S. (2000). A Methodology and Tools for Applying

Context-Specific Usability Guidelines to Interface Design.

Interacting with Computers, 12(3), 225-243.

18. ISO-9126. (2001). Software Engineering - Product Quality - Part 1:

Quality Model.

19. ISO-9241_11. (1998). Ergonomic Requirements for Office Work

with Visual Display Terminals (VDTs) - Part 11: Guidance on

Usability.

20. Johnsonbaugh, R. (1997). Discrete Mathematics (Fourth ed.). New

Jersey: Prentice Hall Intemational.

21. Jokela, T., Koivumaa, J., Pirkola, J., Salminen, P., & Kantola, N.

(2006). Methods forQuantitative Usability Requirements: A Case

Study on the Development of the User Interface of a Mobile Phone.

Personal Ubiquitous Comput., 10(6), 345-355.

22. Koch, N., Knapp, A., Zhang, G., & Baumeister, H. (2008). UML-

Based Web Engineering, an Approach Based on Standards In Web

Engineering, Modelling and Implementing Web Applications (pp.

157-191): Springer.

23. Molina, P. J., Meliá, S., & Pastor, Ó. (2002). JUST-UI: A User

Interface Specification Model. Paper presented at the Proceedings

of Computer Aided Design of User Interfaces, CADUI'2002,

Valenciennes, Francia.

24. Nokia. (2014). Symbian Design Guidelines - Dialogs. From

http://www.developer.nokia.com/Resources/Library/Symbian_De

sign_Guidelines/

25. Ormeño, Y. I., & Panach, J. I. (2013). Mapping study about

usability requirements elicitation. Paper presented at the

Proceedings of the 25th international conference on Advanced

Information Systems Engineering.

26. Ormeño, Y. I., Panach, J. I., Condori-Fernandez, N., & Pastor, O.

(2013, 29-31 May 2013). Towards a proposal to capture usability

123

requirements through guidelines. Paper presented at the IEEE

Seventh International Conference on Research Challenges in

Information Science (RCIS'2013).

27. Panach, J. I., Condori-Fernández, N., Vos, T., Aquino, N., &

Valverde, F. (2011). Early Usability Measurement In Model-

Driven Development: Definition and Empirical Evaluation.

International Journal of Software Engineering & Knowledge

Engineering (IJSEKE).

28. Panach, J. I., España, S., Moreno, A., & Pastor, O. (2008). Dealing

with Usability in Model Transformation Technologies. Paper

presented at the ER 2008, Barcelona.

29. Pastor, O., Molina, J. (2007). Model-Driven Architecture in

Practice. Valencia: Springer.

30. Sutcliffe, A. G., Kurniawan, S., & Jae-Eun, S. (2006). A Method

and Advisor Tool for Multimedia User Interface Design. Int. J.

Hum.-Comput. Stud., 64(4), 375-392.

31. Wieringa, R. (2010). Design science methodology: principles and

practice. Paper presented at the Proceedings of the 32nd

ACM/IEEE International Conference on Software Engineering.

124

 2.4 An Empirical Experiment of a Usability

Requirements Elicitation Method based on

Interviews

Context: The usability requirements elicitation process is a difficult

task that lacks methods to guide and help analysts, who are usually not

experts at usability. Objective: This paper conducts an experiment with

two replications to evaluate a method that elicits usability requirements

based on structured interviews named UREM versus an unstructured

method. The method consists of guided interviews by the analyst using

decision trees. The tree is composed of questions and possible answers.

Each question appears when there are different possible design

alternatives, and each answer represents one of these alternatives. The

tree also recommends the alternative that enhances the usability based

on existing usability guidelines. Method: We have conducted an

experiment with two replications with 22 and 26 subjects playing two

different roles in a within-subjects design. The analysts used a tree to

guide the interview and elicit the requirements while the end users had

to explain to the analyst the type of system to develop. During the

interview, the analyst must design a paper prototype to be validated by

the end user. For the analyst, the experiment measures the effectiveness

of usability requirements elicitation, the effectiveness of the use of the

usability guidelines, the efficiency of the elicitation process, and the

satisfaction with the entire elicitation process. For the end user, the

experiment measures the satisfaction with the designed prototype at the

end of the interview. Results: UREM yielded significantly better results

for the effectiveness in the usability requirements elicitation process

and for the effectiveness in the use of usability guidelines when

compared to unstructured interviews. The use of UREM did not reduce

the analysts’ efficiency and both analyst and end user remained the

same satisfaction. Conclusions: Eliciting usability requirements is a

difficult task if it is done with unstructured interviews and without

usability recommendations.

125

1. Introduction

Usability is an important quality characteristic of software and is an

essential element to be considered in the development of different

software systems in order to determine the development’s success or

failure [1-2]. The ISO 9241-11 [3] standard defines usability

requirements as the effectiveness, efficiency, and satisfaction of a user

achieving his/her goals in a defined context of use. Similarly, according

to the ISO/IEC 25010 [4] standard, usability is the degree to which a

product or system can be used by specified users to achieve specified

goals with effectiveness, efficiency, and satisfaction in a specified

context of use. Today we live with new and innovative ways of

interacting with computers, and this era requires application software

that has high usability levels that decrease potential usability difficulties

and risks [5]. However, usability requirements are usually ignored

during the software development process, especially in the early stages

of requirements elicitation. This increases the cost of solving usability

problems and affects the quality of final products.

The software engineering and requirements engineering community

knows that the process of eliciting the usability requirements of a

system is not an easy task and requires a lot of effort. Therefore,

methods that help software engineers or systems analysts in the process

of eliciting usability requirements are needed, reducing time and

resource costs, and complying with standards or regulations for

different domains and platforms. Since usability is a multifaceted

concept, there are many usability techniques for performing usability

studies. Interviews and prototypes are the most common techniques

used to elicit usability requirements, but they must be structured

Versión del autor del artículo., Ormeño, Y. I., Panach, J. I., & Pastor, O. (2023).

An Empirical Experiment of a Usability Requirements Elicitation Method to

Design GUIs based on Interviews. Information and Software Technology,

107324, https://doi.org/10.1016/j.infsof.2023.107324

https://doi.org/10.1016/j.infsof.2023.107324

126

correctly so that they can be defined, measured, and evaluated properly

[6]. An analyst that elicits requirements is not usually an expert at

usability and needs some guidelines to be able to design usable

interfaces.

In order to help analysts design usable systems, in a previous work [7],

we proposed the Usability Requirement Elicitation Method (UREM).

UREM consists of a decision tree where nodes are questions and

answers. The analyst must navigate throughout the tree asking

questions to the end user and providing to the end user different answers

as possible design alternatives. Questions appear when the analyst has

to choose among several design alternatives. Each answer is a design

alternative. In order to help in this choice, the tree must also show which

alternative optimizes the usability. Each answer of the tree has a

description that suggests for which circumstances this design is

recommended. Thus, the analyst can recommend a specific option to

the end user, but the end user is the one who desires what she/he prefers.

The recommendations have been extracted from usability guidelines.

The question-answer format of this interview is a way to guide the

requirements elicitation process in order to elicit usability requirements.

During the interview, the analyst must design a paper prototype with

the GUI. The end user must validate this design, proposing any changes

that she/he considers optimize usability. Usability requirements is a

concept that affects many factors, not only the visible GUI that is the

result of the design, but also functionality, learnability, efficiency, etc.

[8]. UREM can be used for all the usability requirements whose

guidelines can be written in the tree structure as answers or

recommendations.

The main contribution of this article is the design and conduction of an

empirical experiment to validate UREM with two replications of 22 and

26 subjects respectively. The design includes two treatments:

unstructured interviews and UREM. Both treatments are participatory

methods to involve the end users and analysts throughout the design

process [9]. The experiment is a within-subjects design (repeated

measures) where each subject plays the role of analyst or end user in

127

one of both treatments. We defined 24 pairs of subjects from the 48

subjects recruited for both replications. In each of these pairs, roles were

swapped during the application of each treatment. The subject that

played the role of analyst had to guide the interview in order to elicit

the usability requirements and validate these requirements using a paper

prototype. The subject that played the role of end user had to explain to

the analyst the type of system they needed and the usability

requirements that had to be included. We used two different problems

in order to avoid the carryover effect between treatments. For the

analyst, the response variables were: the effectiveness of the usability

requirements successfully elicited; the effectiveness of the usability

guidelines properly applied in the prototype; the efficiency in the

requirements elicitation process; and the satisfaction during the whole

elicitation process. For the end user, the response variable was the

satisfaction with the designed GUI.

The results yielded two significant differences between UREM and the

unstructured interview: 1) UREM was more effective in the usability

requirements elicitation; 2) UREM was more effective in the

application of the usability guidelines to improve usability. The lack of

significant differences in efficiency using the two elicitation methods

means that, even though UREM might be considered more cumbersome

at first glance, its use did not increase the time required to design the

GUI. The improvement in effectiveness using UREM does not lead to

an improvement in the satisfaction of the analyst and the end user. An

analysis of these results is discussed in the article.

This article is organized as follows. Section 2 describes the related

works. Section 3 explains UREM and the unstructured interview in

detail. Section 4 justifies the experimental design. Section 5 presents

the statistical results. Section 6 discusses and interprets the results.

Finally, Section 7 presents the conclusions and future work.

128

2. Related Works

In this section, we describe works that are related to usability

requirements elicitation and their empirical validations. We conducted

a Targeted Literature Review (TLR) [10], which is a non-systematic,

in-depth, and informative literature review aimed at keeping only the

significant references in order to maximize rigorousness while

minimizing selection bias. For this purpose, the semantic question about

usability requirements elicitation is translated into the following

syntactical queries used as a search string: ("usability requirements"

AND ("method" OR "methodology" OR "model") AND ("experiment"

OR "case study")). This search string was applied to the title, keyword,

and abstract of the Scopus digital library, ACM Digital Library, Web

of Science, and IEEExplore in May 2023.

As exclusion criteria, we have: 1) tutorial papers; 2) papers that do not

deal strictly with usability requirement elicitation; 3) papers that do not

report the results of the experiment; 4) papers without methods or

models; and 5) paper without any experimental design carried out. As

inclusion criteria, we have: 1) papers that describe the developing

methodology in usability requirement elicitation; 2) papers that

describe how they evaluated or analyzed developing methodology; and

3) papers that include a case study and/or guidelines for the elicitation

process. The search string returned 22 papers from the Scopus digital

library and 23 papers from the IEEExplore digital library. After

applying the exclusion and inclusion criteria to the title and abstract,

and gathering the papers from both outlets and search string, we finally

analyzed the content of 15 papers, which we describe below. The

references resulting from these searches were classified into four

categories, which are discussed further in the following subsections.

This classification aims to identify the papers that have proposed

requirements elicitation methods for both specific contexts and non-

specific contexts, papers that use usability guidelines in their proposals

of requirements elicitation, and papers that validate empirically a

requirements elicitation method. These four types of papers cover the

target of our contribution: an empirical validation of a requirements

elicitation method of non-functional requirements based on usability

129

guidelines. Table 1 shows a summary of all of these works, comparing

the proposed method, metrics, tools, and techniques.

2.1 Usability Requirements Elicitation for Specific Contexts

This subsection describes the works whose processes have been

developed to be carried out for a specific problem domain, to test the

method in an existing application, or to understand/complement it.

Gunduz and Pathan [11] describe usability problems found in

touchscreen mobile flight-booking applications and suggest solutions

to eliminate such problems. A qualitative research approach is used for

usability analysis. They considered users’ actions and reactions towards

the application for their specific context and collected their opinions

with regard to efficiency, user satisfaction, and adoption of the

application. The case study was carried out on a Turkish Airlines’

commercial mobile flight-booking application where 20 interviewees

from different countries were randomly selected from novice and

advanced users. They use questionnaires and interviews during the

practical investigation.

Troyer and Janssens [12] present a Feature Modeling method which is

a variability modeling technique used in Software Product Lines. It has

a twofold approach: one to unlock available information on

requirements elicitation and the other to provide a mechanism for

guiding the stakeholders (non-computing people) through the

requirements elicitation process. The feature model is supported in a

tablet app that provides explanations for different usability issues,

possible design options and alternatives, and the impact of the choices.

Two case studies based on games and e-shop web applications were

conducted using evaluation sessions that focused on the usability of the

tool, brainstorming sessions, and templates done by requirements

engineering experts.

Fahey et al. [13] describe the value of a design approach to elicit user

requirements by performing business process modelling (BPM) and the

elicitation and modelling of user requirements through the work of the

users. It presents a case study of how an outpatient Electronic Patient

130

Record (EPR) system was successfully implemented in the Epilepsy

Unit of Beaumont Hospital, Dublin. The determination of functional

(FR) and non-functional user requirements (NFR) was realized through

a series of traditional requirements elicitation techniques such as

workshops and multi-stage Delphi interviews. Process maps were

drawn up and confirmed with end users, and new prototypes were

developed on paper and on mock-up screens. They conclude that the

more time spent on usability issues in the early stages of system

development, the more likely a system will undergo a successful

implementation with minimal disruption of the necessary services.

Temper et al. [14] introduce an efficient continuous biometric

authentication technique using touchscreen gestures and related posture

information that is based on a Vaguely Quantified Nearest Neighbor

classifier combined with a scoring model and fuzzy classifier. A bank

app prototype implemented on a Google Nexus 4 mobile phone was

developed to evaluate the security and usability requirements. The

evaluation was conducted with 22 volunteers based on a trust score

which was used as an indicator to verify whether or not the person that

enters information within the app is a legitimate user. The calculation

of the score is based on touchscreen gestures and posture information.

The results depicted how the trust score evolves over time. The initial

results showed the applicability of behavioral biometrics as an

additional security mechanism on mobile phones.

Rocha et al. [15] have defined a method to elicit requirements based on

structured interviews using user stories. These user stories are used in a

behaviour-driven development context with templates for guiding the

writing of such stories. The approach can be helpful to ensure that

consistent information about the requirements is provided. User stories

written using terms of an ontology describing events, behaviours, and

user interface elements can be used to promote consistency of

requirements. Moreover, user stories can be used for testing the

automation of diverse types of artefacts, such as task models, low-

fidelity prototypes or final implementation of the interactive system.

The approach was validated in a case study with potential product

131

owners in a research institute, where subjects had to write their own

user stories to describe a feature they are used to performing.

The above research works were performed for a specific context. the

work of Troyer and Janssens [12] is for Software Product Lines, the

work of Fahey et al. [13] is for BPM, the work of Temper et al. [14] is

for touchscreen gestures, and the work of Rocha et al. [15] is for

behaviour-driven development. Each method seeks to elicit

requirements and to find solutions for usability issues in its own way.

The techniques that are most widely used to support the methods are

unstructured interviews, brainstorming, focus groups, and

questionnaires with Likert scale, but there are also proposals such as the

work of Rocha et al. that propose a structured method.

2.2 Usability Requirements Elicitation for Non-

Specific Contexts

This subsection describes the works to elicit requirements that have

been performed from a non-specific context, i.e., the method can be

applied in different domains. De Carvalho et al. [1, 16] evaluate the

possibility of discovering usability requirements from information in

the Functional Resonance Analysis Method (FRAM) in the health field.

The methodology follows these steps: 1) identification of the context;

2) identification of problems and difficulties in the execution of a task;

3) definition of solutions; and 4) definition of software requirements.

Two experiments were conducted. The first one was a patient selection

process with BPMN notation, and the second one was a patient

selection process through a FRAM model. The results showed that the

FRAM method used for complex systems yields more requirements,

especially usability requirements. There was also superiority in the

average performance related to the number of requirements per

activity/function, the average in functional requirements, and the

quality (availability, understanding, clarity, completeness) of the

elicited requirements.

Nhavoto [17] presents an integrated mobile phone text-messaging

system that is used to follow up on Human Immunodeficiency Virus

(HIV) and Tuberculosis (TB) patients. The study focuses on three key

132

activities: eliciting the requirements, design of the GUIs, and

implementation of a prototype named SMSaúde to facilitate

communication between patients and the healthcare systems. Testing

and evaluation of the SMSaúde system were done using seven quality

criteria (functionality, completeness, consistency, accuracy,

performance, reliability, and usability) and six different requirements

(data collection, telecommunication costs, privacy, data security, the

content of text messages, connectivity, and system scalability). The

artifact was improved interactively and incrementally. During the

design and development process, a broad set of usability requirements

was identified in two brainstorming design sessions. They plan to

perform an evaluation of the system, including a satisfaction survey of

the health professionals and patients.

Elias [18] presents a semi-automatic validation system to improve

usability in Computer Support Collaborative Learning (CSCL)

environments. It uses an ontology to represent usability knowledge and

software agents to automate the process. This system uses usability

methods and techniques to create SPARQL rules to deal with usability

issues. The rules were performed by the interaction among agents,

using questionnaires to know the users’ opinion about usability. A case

study in a real collaborative learning environment based on Moodle at

Federal University of Alagoas - Brazil was described to present the

advantages of using the proposed system. As a result, the system

provides graphical reports and checklists to help the administrator

improve the usability of the CSCL environment.

Yuan, X. and X. Zhang [19] present an ontology model to represent the

knowledge of common and variable software assets for interactive

requirements elicitation. The instances of an abstract model help the

interactive software customization system to communicate with

software clients via dialogue in natural language. In order to

demonstrate how it works and to provide evidence of its usability, they

include a case study of an online book shopping system with

experienced and non-experienced software clients. The system retrieves

product information from the ontology model and presents software

requirements in utterances as slots for users to fill in. Learnability,

efficiency, reliability, and satisfaction, along with several other

measurements, were evaluated. The proposed approach was capable of

133

not only eliciting requirements but also automatically converting client-

picked requirements into service descriptions in Web Ontology

Language for the production of customized software systems.

Abad et al. [20] study the impact of Loud Paper Prototyping (LPP) on

requirements elicitation. They compare this technique with several

variations of Silent Paper Prototyping (SPP) such as traditional Woz,

sketching, and storyboard. Furthermore, they present a comparison

between LPP and elicitation meetings alone as well as paper

prototyping versus No Paper Prototyping (NPP). Two research

questions were defined: 1) How does paper prototyping help in

capturing mobile App requirements?; and 2) Does LPP affect the type

of requirements extracted during requirements elicitation? These

questions were analyzed in a case study with two mobile application

developments teams. The results showed that 1) SPP is more efficient

in capturing NFRs than NPP; and 2) LPP is more useful in adding new

NFRs and moving/modifying existing ones. Among the techniques

reviewed, most teams found LPP to be the most useful approach for

managing mobile application requirements.

All of these research works deal with methods, models, and techniques

that are oriented to information management in order to elicit

requirements during the design and development process. The elicited

usability requirements were generally obtained from brainstorming

sessions, interview sessions, and questionnaires. Some works show a

formal analysis of data to improve the elicitation of usability

requirements by algorithms. The selected case studies were adapted to

methods or models in order to demonstrate their effectiveness. In most

of the previous works, the usability requirements are studied together

with functional requirements and other NFRs in the elicitation process.

In other words, the methods are not exclusive to the elicitation of

usability requirements.

2.3 Using Guidelines

This subsection describes the papers whose elicitation method depend

on usability guidelines. Márquez and Taramasco [21] present a

methodology that uses dissemination and implementation (D&I)

strategies to recommend requirements elicitation guidelines [22] for

134

eliciting requirements in health systems. The D&I framework considers

two phases: The first phase aims to identify the goals of the system. The

second phase is about the implementation strategies and requirements

elicitation guidelines represented in a model and a multidimensional

catalog based on a source of knowledge that generates a set of

guidelines for the elicitation of requirements to be evaluated by IT

professionals. Working sessions were conducted by IT professionals

and clinicians to ensure that each strategy/guideline relationship was

fully explained. To assess the impact of using the D&I framework, the

authors present a real clinical software case study of the main software

component of SIGICAM related to clinical priorities that were

developed using the D&I framework. The analyzed variables were:

impact, perceived usefulness, perceived ease of use, and user control.

The results show an acceptable level of usability with approximately

72% approval.

Abdallah et al. [23] introduced an enhancement of an eXtreme Scenario

Based Design (XSBD) process named Quatified eXtreme Scenario

Based Design (QXSBD) to quantify usability. QXSBD complements

XSBD with a set of usability metrics that need to be assessed in an agile

process based on usability guidelines. This framework uses the

Usability Critical Parameters Workshop (UCPW) to identify usability

scenarios from stakeholders (usability engineers, developers, end users,

and customers) and Quality in Use Integrated Model (QUIM)

procedures to assign required values. The UCPW provides engineering

practices defining the usability requirements and design goals. In order

to demonstrate the feasibility of the QXSBD, an interactive system,

Customer Request Project, was implemented where efficiency,

effectiveness, productivity, and learnability were selected as usability

critical parameters. After applying the QXSBD process, the usability

defect rate was reduced by 30%. The team questionnaire and end user

questionnaire show that UCPW provides practical tactics and

guidelines to implement usability scenarios on the process cycle,

achieving better user satisfaction.

135

Scope Authors Methods Metrics Tools Techniques

Usability
Requirement

Elicitation

from

Specific
Context over

Existing

Systems

Gunduz
and Pathan

[43]

Qualitative research
approach

Easiness, efficiency, user
satisfaction, and adoption of

the application.

 Questionnaire
 Interview sessions

Likert scale questions

Troyer and

Janssens

[44]

Feature Modeling Effectiveness of the Guinea

maps tool.

Completeness of the template.

Relevance of the template.
Learnability of the app.

Easy of use

Good overview

Guidemap tool Usability questionnaire

 Interview

Templates

workshops

Fahey et al.

[45]

Business Process

Modelling (BPM)

Usability testing

Optimize time management of

users
Facilitate work practice change

 Ethnographic analysis

Workshop and multi-stage

Delphi interview
Iterative prototyping

 Process maps

 Screenshots

Temper et

al. [46]

Vaguely Quantified

Nearest Neighbor

 Fuzzy model
 Rough Set Theory

(RST)

Feasibility, trust score, Equal

Error Rate

Fuzzy-Weka Particle Swarm Optimization

 Fuzzy rules

Rocha et al.

[47]

Behaviour-driven

development based on

user stories

Adherence to a template to

include behaviours

 User stories

Usability

Requirement

Elicitation

De

Carvalho et

al. [48]

Functional Resonance

Analysis Method

(FRAM and

Average performance,

completeness

Likert Scale

 Ethnography, Questionnaires,

136

from Others

General

Methods

with
Unexisting

Systems

MacKnight) and

BPMN

Nhavoto

[49]

Design science

research methodology

 Functionality

Completeness

Consistency

Accuracy
Performance

Reliability and Usability

Web client for

the Web-SMS

tool

Brainstorming

Focus group meetings

Algorithm

Elias [50] Ontology, software

agents, SPARQL rules

 usability methods

Standardization of Pedagogical

Usability

 Standardization of Technical
Usability

Moodle graphical report

Questionnaires

 Usability techniques

Checklists

Yuan, X.

and X.

Zhang [51]

Ontology model Learnability

Efficiency

Reliability

Satisfaction

 Rules

Algorithm

Abad et al.
[52]

LPP (Loud Paper
Prototyping)

 Silent Paper

Prototyping (SPP)

 No Paper Prototyping
(NPP)

Learnability
Navigation helpful

Improvements

Understandability

 Latent Dirichlet Allocation-

LDA

NVivo [11] tool

https://euc-word-edit.officeapps.live.com/we/wordeditorframe.aspx?ui=es%2DES&rs=en%2DUS&wopisrc=https%3A%2F%2Fupvedues.sharepoint.com%2Fsites%2FTesis_Yeshica_OA%2F_vti_bin%2Fwopi.ashx%2Ffiles%2F7b8ceb182d3345538466e51be28e890c&wdenableroaming=1&wdfr=1&mscc=1&hid=A09610A0-0084-C000-A54B-147B348AC76A&wdorigin=Other&jsapi=1&jsapiver=v1&newsession=1&corrid=471914d9-dbff-a690-9795-1eef4ea05ff0&usid=471914d9-dbff-a690-9795-1eef4ea05ff0&sftc=1&mtf=1&sfp=1&instantedit=1&wopicomplete=1&wdredirectionreason=Unified_SingleFlush&preseededsessionkey=83ca3e6d-5b9c-00dd-945d-73da308db28a&preseededwacsessionid=471914d9-dbff-a690-9795-1eef4ea05ff0&rct=Medium&ctp=LeastProtected#_ENREF_11

137

Using
Guidelines

Márquez

and

Taramasco

[53]

D&I framework Perceived usefulness

Perceived ease of use and user

control

Health-ITUES questionnaire

 Interviews

 Requirement

elicitation guidelines

 Working sessions

Abdallah et

al. [54]

eXtreme Scenario

Based Design

 Quality in Use

Integrated Model

 Usability Critical
Parameters Workshop

Learnability

Efficiency

Effectiveness

Likert scale

 Scenarios

Workshops

(SUS) questionnaires

Empirical

validations

Vitiello et

al. [55]

The empowerment-

driven (UX)

Requirements

Engineering method

Index of Self Efficacy (ISE),

the Index of Knowledge &

Skills (IKS), the Index of

Personal Control (IPC), and

the Index of Motivation
(IMOT).

Efficacy and efficiency

Sedato

prototype

Interview, Questionnaires

Tanikawa

et al. [56]

Process support

method

Validity of the output

requirements and the

effectiveness

 Entry form

check item

in-house guidelines for usability

improvement [Hiramatsu]

Abad et al.

[57]

Wizard-of-Oz (WOz)

 User Reviews

Efficacy

Effective in capturing NFR

Clarifying existing FR

Statistical

methods

Saturate web-

based coding

tool

Storyboarding

 Low-fidelity prototyping

 Meeting

Github repository

138

Table 1. Overview of state of the related works

Latent Dirichlet Allocation

(LDA) algorithm

topic models package in R

Peruzzini

and

Germani
[58]

User-Centered Design

(UCD)

 Delphi methodology
 Design Structure

Matrix (DSM)

 Quality Functional

Deployment

Satisfaction

Usable solutions

Correlation between users’
needs and system

funcionalities

Positive effect on efficiency

 Workshops

 Focus groups

 Brainstorming
 Questionnaires

139

In the previous frameworks, requirement elicitation guidelines are

based on a source of knowledge obtained from workshops sessions

conducted by usability experts and the IT team. The carrying out of

these workshops increases the need to dedicate more time to the process

of eliciting, redefining, and updating usability parameters. In addition,

the continuous participation of usability specialists is needed to clarify

and explain the reasons and effects of the use of these parameters.

2.4 Empirical validations

This subsection describes the empirical evaluations of requirements

elicitation methods. There are proposals where the evaluation of the

method is unstructured, i.e., formal mechanisms are not used. Vitiello

et al. [24] proposed a methodology to extract UX requirements. It is a

transformative process that starts from a contextual investigation in

order to understand users, their behavior (decision making, self-

management, communication, and engagement), and capacities (self-

efficacy, knowledge & skills, personal control, and motivation), which

are expressed in terms of human needs. The author tested the

methodology on a case study of polypharmacy management

interviews. The questionnaires give an initial measure of user

empowerment perception represented with empowerment perception

ratings such as the Index of Self Efficacy (ISE), the Index of Knowledge

& Skills (IKS), the Index of Personal Control (IPC), and the Index of

Motivation (IMOT). The results showed that an improvement in the

described capacity indicators was achieved.

Tanikawa et al. [25] present a method that focuses on clarifying the

needs related to the customer’s usability (clarification of customer

needs) and the matching of these needs with the system design

(conformity between needs and design). The approach consists of

defining the activities (tasks and procedures) that are needed to support

those needs. An entry form is used to specify target tasks of a system,

identify representative users, and describe the works they are in charge

of in each task. They also developed check items for specifying the

characteristics of the users and tasks of the target system based on in-

house guidelines for usability improvement [28]. As a result, the needs

140

and requirements generated by the support method were almost

equivalent to those extracted with the work of the experts. Positive

effects on efficiency and quality improvement of activities were

reported, including a reduction of man-hours for preparation of

customers interviews and requirements elicitation.

 Abad et al. [26] conducted two studies to compare the role of early

usability requirements specification and app reviews. The evaluation

focuses on how Wizard-of-Oz (Woz) technique can be used to elicit

usability requirements. The first study was about the role of Woz in

requirement elicitation activity with the use of storyboarding, low-

fidelity prototyping, and meetings between the development team and

the client. The second study was related to comparing the role of user

review analysis and Woz in eliciting and defining mobile app

requirements. It was conducted using 40 mobile apps that are available

on Google Play. The results showed that while user reviews are a

powerful tool for capturing FRs, there were reports of bugs in several

app categories. The authors conclude that Woz is effective in capturing

usability requirements and clarifying existing FRs.

Peruzzini and Germani [27] propose a new model to design assistive

ICT-platforms including smart products and services to support active

aging for elderly and frail people by adopting a user-centered approach

to define an interoperable architecture that integrates different types of

smart objects. The approach aims to deal with three limitations of

existing ambient assisted living systems: low system usability, poor

acceptance by users, and lack of personalization. As a result, they

obtained a highly usable and flexible platform that is designed

according to the specific needs of their direct users with high user

satisfaction, usable solutions, user-friendly products, and services with

high-level functions integrating data from completely different

contexts. Techniques such as interviews, questionnaires, focus groups,

and brainstorming were used to conduct the process. Positive effects on

efficiency and quality improvement of activities were reported,

including a reduction of man-hours for preparing customers interviews

and for extracting evidence-based requirements.

141

Most related works are based on interviews and questionnaires, but

none include usability recommendations to guide the end user in the

different GUI designs. Moreover, the proposed techniques based on

interviews are usually unstructured, so, in the end, how the interview is

conducted depends on the interviewer’s skills. UREM was proposed as

an attempt to cover this gap, proposing a structured interview that is

specific for usability requirements. The contribution of this article is the

validation of UREM based on effectiveness, efficiency, and

satisfaction. These three metrics are the most commonly used in the

previous works to validate requirements elicitation methods.

3. Usability requirements elicitation process

This section describes the two methods used to elicit usability

requirements that we analyze in our experiment. The first method uses

unstructured interviews and the second method is UREM [7], which

uses structured interviews based on usability guidelines and interface

design guidelines by means of a tree structure to minimize the cognitive

effort. Note that both methods are participatory methods [9] with the

end user. The difference lies in the fact that UREM utilizes a flow for

requesting input from the end user and provides usability

recommendations. Below, we describe both methods in detail.

3.1 The unstructured requirements elicitation method

The unstructured method [29] consists in eliciting usability

requirements in an unstructured way, without any guideline or tool to

support the process. These are the steps of the method:

- The process begins with an interview between the analyst and the

end user. The analyst must ask to the end user how she/he prefers

the GUI. There is no guide for what questions must be asked, what

design alternatives are possible, and which design alternative

optimizes the usability. The analyst organizes the questions as

she/he prefers.

- During the interview, the analyst draws a paper prototype of the

GUI described by the end user that best fulfils the elicited

requirements.

142

- During this process, the end user can suggest any changes after

seeing the results of the prototype. Thus, the analyst can evolve the

prototype during the interview until the end user is completely

satisfied with the result and considers that the proposed solution

fulfils the GUI requirements.

At the end of the session, we have the paper prototypes of all of the GUI

that fulfil the usability requirements from the point of view of the end

user.

3.2 The usability requirements elicitation method (UREM)

This section presents a summary of eliciting usability requirements

proposed by UREM. UREM is a structured and general purpose method

for designing GUIs compliant with usability guidelines, that supports

the analyst during usability requirements elicitation. To do this, a tree

structure is built by a usability expert based on user interface design

guidelines and usability guidelines to be executed in the process of

eliciting usability requirements. The tree is composed of four elements:

questions, answers, groups of questions, and designs. Figure 1 shows a

general schema of the tree structure used by UREM.

Figure 1. General representation of the tree structure.

We describe each element of the tree as follows.

- Question (Qi) is defined based on UI design guidelines that are

represented in different design alternatives for GUI

components. The design guidelines present diverse design

Tree

GQ1

GQ2

GQi

GQn

...

Q1

Q2

...

Qi

Qn

Ai/GQi/Qi/Di

GQI : GROUP OF QUESTIONS
QI : QUESTION
AI : ANSWER
DI : DESIGN
i = … N

LEGEND

143

alternatives for GUI components (e.g. menu). In order to ask

the end-user which alternative she/he prefers, we have defined

a question when alternatives to design appear. For example,

when we are designing a selectable task, we can ask about how

to show it. A possible question is “Which UI component is used

to show selectable tasks?”

- Answer (Ai) is composed of exclusive alternatives for each

question based on GUI design guidelines, where the analyst

selects which one best fits the user’s requirement. These

options are presented to the analyst in such a way that she/he

can choose which one best fits user’s requirements. For each

question, some answers are recommended based on usability

guidelines. These recommendations aim to help the end user

choose the best answers. They are not mandatory; the end user

can accept the recommendations or reject them. When answers

are shown to the analyst, we will show which answers are

recommended by usability guidelines. Possible answers can be

yes/no or the choice of one item from a list. For example, the

answers to the question “Which UI component is used to show

selectable tasks?” can be: RadioButtons, Textfields,

CheckBoxes or Slider. According to usability guidelines, a

RadioButton is used for a persistent single-choice list.

- Group of Questions (GQi) are created since some branches of

the tree structure are not mutually exclusive (the end user

should be asked all of the questions). This type of branch is

represented by a group of questions that gathers several

questions that are grouped by a design characteristic. For

example, the question “Which UI component is used to show

selectable tasks?” can be gathered with other questions that ask

about Selection Dialogues, such as “Where is the action button

located?”, “Where is the dialogue box located?”, and “Where

is the positive action on a button located?”. All these questions

have in common that deal with how selection dialogues are

displayed, and all of them are gathered in the same Group of

Questions.

- Designs (Di) are the interface designs reached at the end of the

tree structure (they are the leaves of the tree). The tree structure

144

is navigated from the root to the leaves. When the analyst

reaches a leaf in the tree, a design has been obtained. The final

design of the whole system is the set of leaves in the tree that

the analyst has reached. More details can be found in [7]. For

example, a design can be a selection dialogue with radio

buttons, where each item shows an enumerated data.

The tree structure is built by an expert in interface design and usability.

This expert must have enough knowledge to specify design alternatives

as questions and answers, as well as to specify the usability guidelines

as recommended answers. Once the tree is completed, the analysts can

use it an unlimited number of times to elicit usability requirements in

several projects. The analysts that use the tree structure do not need

knowledge of usability or design since all this information is

represented in the tree structure. In order to interview the client to elicit

usability requirements, the analyst starts to navigate from the root of the

tree, and asks the questions to the end user during the interview. The

analyst asks the questions according to their sequence in the tree, from

the root to the leaves. The analyst only navigates through the branch of

the answer selected by the end user. When the analyst reaches a branch

with a group of questions, all of the questions must be answered. Only

the analyst can continue with the next question if the flow has reached

a leaf and, then continues with the next question in the group of

questions. The possible navigation between two nodes of the tree

structure can be: 1) from a group of questions to a single question or to

another group of questions (Gqi→ Qi / GQi); 2) from a question to an

answer (Qi →Ai); 3) from an answer to a question, to a group of

questions, or to a design (Ai → Qi / GQi / Di).

The process of eliciting usability requirements is supported by a tool

(hci.dsic.upv.es/urem) that supports the creation and navigation of

several trees. The analyst uses the tool to perform the elicitation using

interview eliciting. The result after navigating the decision tree with

UREM can be seen as a design rationale [30-31]; following the flow of

the interview we have the report that explains why a system has been

designed the way it is. GUI designs must be manually drawn by the

analyst.

145

3.2.1 An illustrative Example of working with UREM

Figure 2. Illustrative example of usability elicitation

This section presents a short and illustrative example of how to deal

with UREM to develop a GUI design for a medical system starting from

a set of usability requirements and using the usability guidelines

represented in the tree structure. The example focuses on the usability

requirements that are related to data entry forms (Figure 2). All of the

entire process is performed in an interview between the end user and

the analyst. The first question that the analyst asks the end user is

“Should textfields have selectable options”? This question has two

possible answers. “yes” or “no”. The recommended option is “yes”. If

the end user opts for “yes”, the next question that the analyst asks is “In

which component are the options displayed?” There are four possible

answers: Dropdown menu (recommended option); Emergent popup,

Radiobuttons; Checkboxes. Each one of these options is a leaf in the

tree, so it involves a specific design (Table 2). If the end user opts for

the recommendation and chooses the answer “Dropdown menu”, we

have reached design D1. Below, the flow continues with the question

“Should textfields have a label?”. This question has two possible

answers: “yes” or “no”. The answer “yes” is recommended based on

usability guidelines. If the end user opts for the recommendation and

chooses the answer “yes”, we have reached design D5 (Table 2). Note

that D1 refers to the items that compose the textfield, while D5 refers

to the label of the textfield.

146

DESIGNS GUI DESIGNS

D1

D2

D3

D4

D5

Table 2. GUI designs for each leaf of the tree

4. Experiment Definition and Planning

In this section, we describe the experiment design according to Juristo

and Moreno [32].

147

4.1 Goal

The main goal of this experiment is to compare the use of a structured

method (named UREM) for interviewing the end user in order to elicit

usability requirements with the use of unstructured interviews for the

purpose of studying the pros and cons of UREM in the GUI design. The

experiment is conducted from the perspective of researchers and

practitioners who are interested in investigating how useful a structured

interview method is compared to an unstructured interview method in

eliciting usability requirements.

4.2. Research Questions and Hypothesis Formulation

Our empirical study is based on the concept of quality, which is defined

in terms of effectiveness, efficiency, and satisfaction (ISO 25010) [4].

The concept of quality is different depending on the role of the subjects

that participate in the validation (as analyst or end user). From the point

of view of the analyst, we aim to study whether the requirements

elicitation method affects the elicitation process. This means that we

need research questions to analyze the effectiveness, efficiency, and

satisfaction of the process of usability requirements elicitation. From

the point of view of the end user, quality refers to how satisfied the end

user is with the designed GUI. Both perspectives of quality are

represented in the research questions. Note that the experiment uses a

tree structure previously existing. The role of expert in interface design

and usability that builds the tree structure of UREM is played by one

experimenter. The study of how the tree is built is out of scope of the

current analysis. While the construction of the tree structure is done

once, its use is unlimited, which leads to focus the experiment on the

use of the tree structure instead of its construction. In the experiment,

the construction of the tree structure required two hours, including the

time to study the design alternatives to be specified as answers, the

usability guidelines to be identified as recommendations, and the

specification of all this information in the UREM tool. The

experimenter who built the tree is an expert in interface design and

usability that has been evaluating usability in systems for more than ten

years.

148

The research questions used in our validation are described as follows:

RQ1: Effectiveness is defined in ISO/IEC-25010 as “the degree to

which specified users can achieve specified goals with accuracy and

completeness in a specified context of use”. Effectiveness in use is

applied in two contexts: elicited usability requirements (RQ1r) and

guidelines recommendations (RQ1g).

RQ1r:

Is analyst effectiveness to elicit usability requirements affected by the

elicitation method?

We operationalize effectiveness as the percentage of usability

requirements satisfied by the analyst. The null hypothesis tested to

address this research question is: H01r: The analyst effectiveness using

UREM is similar to that of using unstructured interviews.

RQ1g:

Is analyst effectiveness to apply usability guidelines affected by the

elicitation method?

We operationalize effectiveness as the percentage of usability

recommendations that the designed GUI prototype includes. The null

hypothesis tested to address this research question is: H01g: The analyst

effectiveness using usability guidelines in UREM is similar to that of

using unstructured interviews.

RQ2: Efficiency is defined in ISO/IEC-25010 as “the degree to which

specified users expend appropriate amounts of resources in relation to

the effectiveness achieved in a specified context of use”. Efficiency is

studied based on usability requirements (RQ2r).

RQ2r:

Is analyst efficiency affected by the usability requirements elicitation

method?

149

We measure analyst efficiency as the ratio percentage of usability

requirements successfully elicited by the time spent to elicit the

usability requirements. The null hypothesis tested to address this

research question is: H02r: The analyst efficiency using UREM is

similar to that of using unstructured interviews.

RQ3: Satisfaction is defined in ISO/IEC-25010 as “the degree to which

users are satisfied in a specified context of use”. Satisfaction is analyzed

from two perspectives: analyst satisfaction (RQ3a) and end user

satisfaction (RQ3e), since the satisfaction of the analysts who design

interfaces may be different from the satisfaction of the end users that

will use the interfaces.

RQ3a:

Is analyst satisfaction affected by the usability requirements elicitation

method?

We measure analyst satisfaction as the level of contentment of the

analysts during the usability requirements elicitation. The null

hypothesis tested to address this research question is: H03a: The analyst

satisfaction using UREM is similar to that of using unstructured

interviews.

RQ3e:

Is end user satisfaction affected by the usability requirements

elicitation method?

We measure end user satisfaction as the level of contentment of the end-

user with the designed prototype as a result of the process of

requirements elicitation. The null hypothesis tested to address this

research question is: H03e: The end user satisfaction using UREM is

similar to that of using unstructured interviews.

4.3 Factors and Treatments

We now define factors and their levels to operationalize the reason for

our experiment construct. Factors are variables whose effect on the

response variables we want to understand [34]. Treatments are the

150

factor alternatives that help us answer the questions of the research

hypotheses.

The experiment studies one factor: the usability requirements elicitation

method with unstructured interviews (T1) and UREM (T2), where T1

is referred to as the control treatment. Table 3 shows the description of

the factor and its two treatments.

Factor Treatment Description

Usability

Requirements

Elicitation

Method

T1: unstructured

interviews

Experimental subjects elicit

usability requirements through

unstructured interviews.

T2: UREM Experimental subjects elicit

usability requirements through

UREM

Table 3. Description of the factor and treatments

In the first treatment (T1), the analysts conduct the elicitation process

using interviews without any structure. This means that the analysts can

ask any question regarding the GUI design. Moreover, even though the

subjects playing the role of analysts know usability guidelines, there is

no recommendation system to suggest a specific design for enhancing

usability (as described in subsection 3.1).

In the second treatment (T2), the analysts use UREM as a method to

elicit usability requirements. The analysts must follow a question-

answer format based on the different alternatives specified in a decision

tree that is defined in advanced. This decision tree also suggests which

design alternative optimizes the usability based on usability guidelines.

The details of this treatment are described in subsection 3.2.

4.4. Response Variables and Metrics

Response variables are the values that are measured in the experiment

in order to study how the factors influence these variables [32]. Below,

we define a response variable for each research question (summary in

Table 4).

151

Response

Variables

Metrics Definition Research

Questions

Effectiveness

for usability

requirements

elicitation

Percentage of usability

requirements successfully

elicited .

Percentage (between 0% and 100%) of the usability

requirements included in the GUI prototype after the

interview that match the usability requirements of

the experimenters’ solution.

RQ1r

Effectiveness of

usability

guidelines

Percentage of usability

guidelines used correctly on

usability requirement

elicitation

The number of usability guidelines used correctly

divided by the total number of usability guidelines.

RQ1g

Efficiency for

usability

requirements

elicitation

Percentage of usability

requirements successfully

elicited /Time spent to

complete the usability

requirement elicitation process

Time is the amount of minutes that the analyst

requires to elicit usability requirements and design

the GUI prototype.

RQ2r

Analyst’s

Satisfaction

Perceived usefulness (PU), The addition of the questions that ask for PU on a

Likert scale

RQ3a

Perceived ease of use (PEOU) The addition of the questions that ask for PEOU on

a Likert scale

152

Intention to use (ITU) The addition of the questions that ask for ITU on a

Likert scale

End user’s

Satisfaction

 Computer System Usability

Questionnaire (CSUQ)

The addition of the questions of the CSUQ on a

Likert scale

RQ3e

Satisfaction with analyst’s

recommendations

One extra question in the CSUQ to ask about the

usefulness of the recommendations

Table 4. Response variables

153

For RQ1, Effectiveness is the response variable. This response variable

was divided into RQ1r to measure the effectiveness of eliciting

usability requirements and RQ1g to measure the effectiveness of the

usability recommendations provided by the guidelines. The metric for

RQ1r is calculated as the percentage of usability requirements that are

satisfied by the analyst in the GUI prototype built at the end of the

interview. For each experimental problem, there is a list of usability

requirements that the designed GUI in a prototype must include at the

end of the interview. This list is called experimenters’ solution since it

is defined by the experimenters (in this case, the authors of the article).

Possible values for Effectiveness fluctuate from 0% (no usability

requirement of the experimenters’ solution appears in the designed

GUI) to 100% (all of the usability requirements of the experimenters’

solution appear in the designed GUI). The metric for RQ1g is calculated

as the percentage of designs reached following the tree structure that

fits the recommendations provided by the usability guidelines. Possible

values fluctuate from 0% (there is no design that agrees with any

usability guidelines) to 100% (all of the designs agree with the usability

guidelines).

For RQ2r, Efficiency is the response variable. This response variable

is measured as the ratio percentage of usability requirements

successfully elicited by time spent by the analyst eliciting the usability

requirements and drawing the GUI prototype. The time is measured in

minutes. The larger efficiency, the better the efficiency.

For RQ3, Satisfaction is the response variable. This response variable

was divided into RQ3a to measure the analyst´s satisfaction and RQ3e

to measure the end user´s satisfaction. RQ3a was measured using the

MAM questionnaire developed by Moody [36]. Moody defined a

framework (based on the work by Lindland et al..[37]) to measure

satisfaction in terms of Perceived Usefulness (PU), Perceived Ease of

Use (PEOU), and Intention to Use (ITU). This framework has been

previously validated and is widely used [38]. Based on [36], we defined

eight questions to measure PU, five questions to measure PEOU, and

two questions to measure ITU. The questionnaire is based on a 5-point

Likert questionnaire with five possible answers: “Strongly Disagree”,

154

“Disagree”, “Undecided”, “Agree” and “Strongly Agree”. RQ3e is

based on the Computer System Usability Questionnaire (CSUQ) [59],

which is a 5-point Likert questionnaire that asks about the satisfaction

of the end user with the GUI. We have extended this questionnaire with

a specific statement to evaluate whether or not the recommendation

system was useful: “Are analyst’ recommendations useful to improve

the usability of the system?”. Table 5 shows a summary of the research

questions, hypotheses, response variables, and metrics used to test these

hypotheses.

Research

Questions

Hypotheses Response Variables Metrics

RQ1r H01r
Effectiveness of usability

requirements elicitation

M1: Completeness

RQ1g H01g Effectiveness of usability

guidelines

M1: Correctness

RQ2r H02r Efficiency for usability

requirements elicitation

M2:Completeness/Time

RQ3a H03a Analyst Satisfaction M3A: PU, PEOU, ITU

RQ3e H03e End user Satisfaction M3E: CSUQ

Table 5. Summary of research questions, hypotheses, response variables, and metrics

4.5 Experimental Subjects

The subjects participating in the experiment were undergraduate

students in computer science from the Universidad Nacional de San

Antonio Abad del Cusco (UNSAAC, Perú). The computer science

students have previously taken software engineering courses with

enough knowledge about information systems. We selected 48

computer science students. Replication 1 (R1) was conducted with 22

undergraduate students and Replication 2 (R2) was conducted with 26

Master’s students. All of them played the role of analyst and the role of

end user. The subjects had previous knowledge of the unstructured

requirements elicitation method, but none knew anything about UREM.

We spent two hours training the subjects in UREM before conducting

the experiment. Apart from a theoretical description, the training

155

activity consisted of doing a brief exercise to navigate throughout the

decision tree in order to identify the different alternatives. The subjects

filled in demographic questionnaires before running the experiment in

order to characterize the population. Table summarize the main

characteristics of participants and their background.

None 1 month 1-3 months More than 3-12

months

More than 12

months

R1 R2 R1 R2 R1 R2 R1 R2 R1 R2

0 0 0 0 10 4 10 4 2 18

Table 6. Job experience at software development companies

Table 7. Types of jobs performed and the time duration of the job

Table 8. Experience with software development

Number of

students

Junior

Programmer

System

Analyst/Programmer

Lan

Technician

System

Manager

R1 R2 R1 R2 R1 R2 R1 R2

8 4 7 4 5 8 2 6

Duration

(months)

Avg. 6 6 12 24 18 24 18 24

Min 3 3 6 12 8 12 12 12

Max 12 6 36 36 36 36 24 36

Experience

with

I have never

heard of it

I have heard

of it

I have some

knowledge of it

I know it

 R1 R2 R1 R2 R1 R2 R1 R2

Usability 8 8 7 6 4 7 3 5

User Interfaces

design
4 2 11 8 4 11 3 5

Requirements

elicitation and

requirement

analysis

0 0 8 2 7 13 7 11

Requirements

elicitation

techniques

1 4 5 5 9 9 7 8

Requirements

elicitation

methods

2 6 4 10 9 5 7 5

156

Methods Name of method/technique
Number

R1 R2

Unstructured

Interview 20 26

Focus Group 8 12

Questionnaires 23 25

User stories 7 13

Other 5 12

Structured

Eyetracking 0 0

Remo 0 0

Reassure 0 0

Other 2 0

Table 9. Experience with elicitation methods

Table 7 focuses on development experience measured as the number of

months or years that the students have developed software in

companies. Most of the participants had work experience even though

they were students. Table 6 shows the type of job and the (average,

minimum, and maximum) time spent on that job. Table 8 shows their

previous experience with usability and requirements elicitation

methods. Only 8 persons had not heard of user interface design and only

5 persons had not heard of requirements elicitation techniques. Table 9

shows their previous experience with unstructured interviews and

structured methods. Most of the subjects had not worked with any

structured method before the experiment, and a few subjects had

worked with some method. The item “Other” gathers other options with

no agreement among the subjects. Our sample is representative of a

population of novice developers. Even though the use of students in

experiments limits the generalization of results, it is useful, depending

on the target of the experiment, as other works such as Falessi et al. [34]

claim. For this experiment, our objective is to compare subjects that

have knowledge in unstructured interviews with novice subjects who

have experience in structured interviews. At first glance, the structured

interview is at a disadvantage due to the absence of experience.

Therefore if the results are positive for the structured method, we can

conclude that the structured interview is better in spite of this

disadvantage. Other benefits of recruiting students are that they often

come at a lower cost and are more accessible because they are taking

157

courses at a university. Moreover, for the students, the experiment can

be viewed as a learning experience of technology or methods to be

evaluated.

4.6. Experiment Design

This section describes the within-subjects design (or repeated

measures) where the subjects play two different roles, one for each

treatment. We divided the group of subjects into pairs. For each pair,

we randomly assigned two roles: analyst and end user. These roles were

swapped for each treatment. We used two different problems (one for

each treatment) in order to avoid the carryover effect, so this is paired

design blocked by experimental objects [35]. Table shows the summary

of the design that was applied in both replications. In the first session,

all of the pairs worked with the unstructured method. Half of the pairs

were in a group named G1 and worked with Problem 1 (P1), while the

other half were in a group named G2 and worked with Problem 2 (P2).

In the second session, the subjects swapped their roles and all of the

pairs worked with UREM. G1 worked with P2 and G2 worked with P1.

 P1 P2

Session 1 Unstructured interview G1 G2

Session 2 UREM G2 G1

Table 10. Within-subjects design of the experiment

This design has the following advantages: 1) largest sample size

possible to analyze the data; 2) we avoid the learning effect; 3) the

problem is not confused with the treatments. The expected time

required to fulfill the user requirements defined in each treatment was

around 30 minutes. This value was defined taking into account two

factors: a previous pilot test, and the problem complexity.

The design avoids most of the threats:

- The experiment findings do not depend exclusively on one

problem (since we use two problems).

- The pairs cannot share their GUI prototypes with members of

other groups since all of the subjects work at the same time with

the same treatment.

158

- All of the subjects are used in both treatments, avoiding

variability among subjects.

- The context of the experiment in Session 1 is the same as in

Session 2.

 4.7 Experimental Object

In order to observe the effects produced by the two treatments (i.e.,

unstructured interview and UREM), we defined two problems to elicit

usability requirements, one for mobile health center (P1), and one for

mobile banking (P2). Both problems are in the context of mobile

applications. P1 aims to represent a system where users can login, list

the health services, query the schedule for attendance, make a new

appointment, and list the previous appointments. P2 aims to implement

a bank management application. The end user can log in and access the

bank services, such as bank accounts, location of cash dispensers,

access news, and language customization. The end user has a personal

section where she/he makes bank transfers, list credit cards, and update

personal data. Table 5 and Table respectively show the usability

requirements that the subjects that play the role of the client must

demand in the prototypes designed by the analyst. Even though these

lists are not exclusive for each type of problem, using a different list in

each problem allows us to validate different branches of the tree

structure. These requirements are known by the end user, and the

analyst must elicit them with interviews. When clients describe the

problem to analysts, they must consider all these requirements shown

in Table 5 and Table . The description of the problems in the same way

as they were distributed to the clients is shown in Appendix C.

N° Usability Requirements of List_Req1

1 The widgets must be self-descriptive to facilitate the understanding of

the requested data.

2 To avoid errors in data entry, helpful information should be displayed.

3 If the data entry is mandatory, the user should be notified.

4 To facilitate the data entry, the choices must be shown to the user.

Table 5. Mobile Health Center Requirement List

N° Usability Requirements of List_Req2

1 When inserting data, widgets must avoid errors.

159

2 Mandatory information must be clearly identified.

3 The system must help fix errors when they arise.

4 The system must offer actions to activate/deactivate pre-established

options.

Table 12. Mobile Banking Requirement List

4.8. Instrumentation

All the instruments used for running the experiment can be accessed in

a Zenodo repository [36]. Below, we describe all of them:

- Demographic questionnaires: The online questionnaires

gather information about the subjects’, experience using apps

or web applications, as well as their level of experience in

developing information systems. This questionnaire is shown

in Appendix A.

- Experimental object: Two problems make up the

experimental objects. We have an experimenters’ solution with

the usability requirements that the GUI must support. This

experimenters’ solution is shown in Appendix B. The list of

requirements shared with the end users to specify the system

required is shown in Appendix C

- Satisfaction questionnaires: The questionnaires measure the

analysts’ satisfaction and the end users’ satisfaction. Each

questionnaire has 15 questions in a 5-Likert scale format. These

questionnaires are shown in Appendix D.

- Spreadsheets: The spreadsheet is used to evaluate the metrics

of the experiment. These calculations were carried out by two

experts in usability engineering and measurement.

- Tool: This is the tool that supports UREM

(http://hci.dsic.upv.es/urem). This tool can guide the end user

through the design alternatives, recommending those

alternatives that optimize the usability. The tree with of the all

the questions, answers, and recommendations is shown in

Appendix E.

160

4.9 Experiment Procedure

This section describes the procedure used to conduct the experiment.

This procedure was executed twice, for the two replications R1 and R2).

The experimental process consists in interviews within a pair of

subjects. The procedure is strictly based on the experiment design

configuration shown in Figure 3. The procedure has been labelled with

numbers to explain each step. Before the experiment, we explained the

goals of the experiment to the experimental subjects as well as the role

they played in it. We also randomly created the two groups of subjects

(G1, G2). The diagram in Figure 3 summarizes the procedure. Each

number inside the circle represents the number of step that is

represented in the figure.

Figure 3. Summary of the experimental procedure

Below we describe the steps of Session 1, where unstructured

interviews is used.

Step 1. The subjects complete the demographic questionnaire. The

questions were the same for all of the experimental subjects

independently of their group and role.

UNSTRUCTURED – SESSION 1

UREM- SESSION 2

1 2

3

4

5

G1, G2 READ
PROBLEMS P1 AND P2

RESPECTIVELY

G1, G2 READ
PROBLEMS P2 AND
P1 RESPECTIVELY

DEMOGRAPHIC
QUESTIONNAIRES

TO SUBJECTS

G1 SOLVE P1

G2 SOLVE P2

G1 SOLVE P2

G2 SOLVE P1

FILL UNSTRUCTURED
SATISFACTION

QUESTIONNAIRES

DEFINE G1
AND G2

FILL UREM
SATISFACTION

QUESTIONNAIRES

6

7

8

161

Step 2. The experimenter divides all of the subjects into two groups (G1

and G2). The subjects play one role in each of the two sessions.

Step 3. The subjects that play the role of end users read the description

of the system (P1 or P2) and the list of the usability requirements that

the system must support.

Step 4. The subjects that play the role of analysts must use unstructured

interviews to elicit the usability requirements by interviewing the

subjects that play the role of end users. Through question-answers, the

analysts must draw a prototype of GUI that satisfies the usability

requirements for the specific problem.

Step 5. Once the analysts finish the GUI prototype, they complete a

satisfaction questionnaire to report their level of satisfaction during the

unstructured interview to elicit usability requirements. The end users

must complete a satisfaction questionnaire about the result of the

prototype. This questionnaire is used to determine whether or not the

prototype meets the end users expectations.

Below we describe the steps of Session 2, where UREM is used.

Step 6. The subjects that play the role of end users read the description

of the system (a different problem from the one used in Step 3) and the

list of the usability requirements that the system must support. The

experiment continues in the second session with UREM.

Step 7. The subjects that play the role of analysts must use UREM to

elicit the usability requirements by interviewing the subjects that play

the role of end users. Following the tree structure, the analysts ask each

question following the guide of the tree. The analysts must also

recommend the option that best optimizes the usability based on

suggestions of the tree. Afterwards, the analysts must draw a prototype

of a GUI that satisfies the usability requirements for the specific

problem.

Step 8.- Both the analysts and the end users complete the satisfaction

questionnaire in the same way as in Step 5, but specifically for UREM.

162

4.10 Data Analysis

Replications 1 and 2 respectively have 11 and 13 subjects playing the

role of analysts. This sample size is not large enough to apply a

parametric test. Therefore, when we analyze the replications separately,

we opt for a non-parametric test such as Mann-Withney. We consider

differences to be significant when the p-value is less than .05. When we

analyze Replication 1 and Replication 2 together, we have a large

enough sample size (24 subjects playing the role of analysts) to apply

the General Linear Model (GLM). There are two requirements for

applying a GLM test: homogeneity of the covariance matrices and

sphericity. Levene’s test is used to check the condition of homogeneity

of covariance matrices where the null hypothesis is that the observed

covariance matrices of the dependent variables should be equal across

groups [37-38]. All of the Levene’s test p-values were greater than 0.05.

Therefore, we cannot reject the null hypotheses of homogeneity of

covariance, which means that the premises of the statistical tests are met

in this regard. Mauchly’s test is used to check the sphericity condition.

In our case, however, there are only two treatments (unstructured

interviews and UREM). This precludes a sphericity violation [37], and

the test is unnecessary. We regard the differences between

treatments as being significant when the GLM p–value is less than

.05.

For variables with significant differences according to the GLM, we

calculated the degree of these differences using partial eta squared. The

partial eta squared results were interpreted as follows: Values of less

than 0.3 mean a significant, but weak, effect; values between 0.3 and

0.6 mean a moderate effect, and values greater than 0.6 mean a strong

effect. Statistical power is the probability of rejecting a false null

hypothesis. Statistical power is inversely related to beta or the

probability of making a type II error. In short, power = 1 – β. Power in

software engineering experiments tends to be low, e.g., Dyba et al. [39]

reports values of 0.39 for medium effect sizes and 0.63 for large effect

sizes. Low values of statistical power mean that non-significant results

could imply the acceptance of null hypotheses when they are false.

Therefore, we calculated the power to find out whether our results were

163

influenced by this widespread problem in software engineering. Note

that effect size and power cannot be calculated in non-parametric tests.

5. Results

First, we analyzed the data of each experiment separately using Mann-

Whitney as a non-parametric test. Second, we gathered the results using

a moderator variable named “Replication” to look for differences

between the two experiments. Replication 1 refers to the 22

undergraduate students and Replication 2 refers to the 26 Master’s

students (as described in Section 4.5). In the aggregation, apart from

analyzing the difference for Method, we looked for differences in the

Method*Problem and Method*Replication interactions. This test is

based on the GLM. Below, we analyze the results ordered by response

variable.

5.1 Effectiveness of Usability Requirements Elicitation

Table 13 shows the statistical results of Replication 1 and Replication

2 separately and both replications together. Replication 1 yielded

significant results for the method. The average for effectiveness in the

usability requirements elicitation was 78.18 for the unstructured

interview and 93.45 for UREM. Therefore, we conclude that UREM

yields better effectiveness for Replication 1. Even though Replication 2

did not present statistical differences, the p-value is very close to being

less than 0.05 (it is exactly 0.05). When analyzing the averages of

Replication 2, the unstructured interview was 71.01 and UREM was

86.61. Thus, there is a clear trend showing that UREM yields better

effectiveness in the requirements elicitation process.

Figure shows the box-plot analyzing the two replications together. The

first quartile, the median and the third quartile are clearly better for

UREM. When analyzing the data with GLM, we obtained a p-value of

.000 (Table 13), which means that UREM was statistically better than

the unstructured interview. The effect size (.274) yielded a weak effect,

and the power (.978) was enough to avoid rejecting the null hypothesis

for poor sample size. There are no significant differences in the

Method*Problem and Method*Replication interactions, which means

164

that the results do not depend on the problem used or the replication

where the experiment was conducted.

In conclusion, we reject H01r (the analyst effectiveness using UREM is

similar that using unstructured interviews.), since UREM yielded better

results than the unstructured interview.

 Rep. 1 Rep. 2 Both rep.

p-value Method .001 .05 .000

p-value

Method*Problem
- - .195

p-value

Method*Replication
- - .195

Effect size - - .274

Power - - .978

Table 13. Statistical results of effectiveness for usability

requirements elicitation

Figure 4. Box plot of effectiveness for usability requirements

elicitation with both replications

5.2 Effectiveness of Usability Guidelines

Table 6 shows the statistical results after applying the non-parametric

test and GLM to each replication alone and both replications together,

respectively. Both Replication 1 and Replication 2 yielded significant

165

results (p-value of .001 and .0001). In Replication 1, the average for the

effectiveness of the guidelines was 35.36 for the unstructured interview

and 62.72 for UREM. Replication 2 also showed a better average for

UREM (71.76) than the unstructured interview (33.76). Therefore, we

can state that, in both replications, UREM yields a design that better fits

the usability guidelines.

Figure 5 shows the box-plot of both replications together. The first

quartile, the median and the third quartile are better for UREM. When

analyzing the data with the GLM test, we obtained a p-value of .000

(Table 14), which means that UREM is statistically better than the

unstructured interview. The effect size of .571 means a moderate effect

and the power of 1 is very high, which ensures having enough sample

size to avoid rejecting the null hypothesis for a lack of sample. There

were no significant differences in the Method*Problem and

Method*Replication interactions, which means that results do not

depend on the problem used or the replication where the experiment

was conducted.

In conclusion, we reject H01g (the analyst effectiveness using usability

guidelines in UREM is similar to that of using unstructured interviews)

since UREM yields better results than the unstructured interview.

 Rep. 1 Rep. 2 Both rep.

p-value Method .001 .000 .000

p-value Method*Problem - - .05

p-value Method*Replication - - .05

Effect size - - .571

Power - - 1

Table 6. Statistical results of effectiveness for usability guidelines

1 We use only 3 decimals even though the statistical package works with

more.

166

Figure 5. Box plot of effectiveness for usability guidelines with both replications

5.3 Efficiency for Usability Requirements Elicitation

Table 15 shows the statistical results of Replication 1 and Replication

2 separately and both replications together. Replication 1 shows a

significant result with a p-value of .018 while Replication 2 shows no

significant results with a p-value of .489. In Replication 1 the average

was .953 for the unstructured interview and 1.34 for UREM. In

Replication 2, the average was 0.998 and .886 respectively. The results

are contradictory in both replications, but the differences are so slight

that we cannot draw conclusions.

Figure 6 shows the box-plot of efficiency aggregating both replications.

The median, the first quartile, and the third quartile are slightly better

for UREM. Although these differences are not strong, UREM shows a

trend with a better efficiency. The GLM test showed no significant

results (p-value .220), with a power of .230, which is low. A larger

sample size may produce some significant differences between

treatments. Both the Method*Problem and Method*Replication

replications yielded significant differences. This means that there is a

specific problem and a specific replication that affects the result. To

analyze this idea, in Figure 7 we show profile plots of both interactions.

Figure 7 a) shows that the Bank Problem (P2) is better in UREM. Figure

7 b) shows that Replication 1 is better for UREM.

167

In conclusion, we cannot reject H02r (the analyst efficiency using

UREM is similar to that of using unstructured interviews), so there are

no differences between the unstructured interview and UREM.

 Rep. 1 Rep. 2 Both-rep.

p-value Method .018 .489 .220

p-value

Method*Problem
- - .021

p-value

Method*Replication
- - .021

Effect size - - -

Power - - .230

Table 7. Statistical results of efficiency

Figure 6. Box plot of efficiency

168

Figure 7. a) profile plot of Method*Problem. b) profile plot of Method*Replication

5.4 Analyst Satisfaction

Analyst satisfaction was measured using three different metrics:

Perceived Usefulness (PU), Perceived Ease of Use (PEOU), and

Intention to Use (ITU). When analyzing the p-values of each replication

separately (Table 8), only PEOU yielded significant results in

Replication 1 (p-value was .028). The average in this case was 16 for

the unstructured interview and 13.63 for UREM, so the subjects

perceived the unstructured interview being as easier to use. The other

averages were: PU in Replication 1: 30.18 in the unstructured interview

and 25.9 in UREM; ITU in Replication 1: 10.81 in the unstructured

interview and 9.81 in UREM; PU in Replication 2: 29.46 in the

unstructured interview and 28.76 in UREM; PEOU in Replication 2:

15.07 in the unstructured interview and 14.69 in UREM; ITU in

169

Replication 2: 10.15 in the unstructured interview and 10.23 in UREM.

Note that most of the results yielded slightly better satisfaction for the

unstructured interview, but this difference was not significant.

Figure show the box plot of the two replications together for PU,

PEOU, and ITU, respectively. PU and ITU yielded the same median for

both treatments. In the case of PEOU, the median was slightly better for

the unstructured interview. For the three metrics (PU, PEOU, and ITU),

the third quartile was very similar for both treatments, but the first

quartile was better for the unstructured interview. The statistical test of

the GLM did not yield significant differences for any metric (all p-

values were higher than .05) and there were no differences for

Method*Problem and Method*Replication interactions. The statistical

power was low in the three metrics, so significant differences may

appear in a larger sample size.

 Rep. 1 Rep. 2 Both rep.

p-value Method .065 1 .128

p-value

Method*Problem
- - .434

p-value

Method*Replication
- - .434

Effect size - - -

Power - - .330

Table 8. Statistical results of PU

Figure 8. Box plot of PU

170

 Rep. 1 Rep. 2 Both rep.

p-value Method .028 1 .141

p-value

Method*Problem
- - .561

p-value

Method*Replication
- - .561

Effect size - - -

Power - - .311

Table 9. Statistical results of PEOU

Figure 9. Box plot of efficiency

 Rep. 1 Rep. 2 Both rep.

p-value Method .193 .579 .429

p-value

Method*Problem
- - .636

p-value

Method*Replication
- - .636

Effect size - - -

Power - - .122

Table 10. Statistical results of ITU

171

Figure 10. Box plot of efficiency

In conclusion, we can only reject H03a (The analyst satisfaction using

UREM is similar to that of using unstructured interviews) for the

metric PEOU in Replication 1, where the unstructured interview

yields a better satisfaction level. The other metrics did not present

significant differences in each replication separately or together.

5.5 End User Satisfaction

End user satisfaction is measured using two metrics: the CSUQ

questionnaire and the satisfaction of the end user with the

recommendation offered by the analyst to improve usability. The p-

values of each replication individually were higher than .05 (Table 19

and Table 11), so there were no significant differences between

treatments in any replication. The average of CSUQ in Replication 1

was 70.72 for the unstructured interview and 75.81 for UREM. In

Replication 2 the average was 78.23 for the unstructured interview and

66.46 for UREM. The median of satisfaction with the recommendations

to improve the usability in Replication 1 was 4 for both the unstructured

interview and UREM. In Replication 2, it was also 4 for both the

unstructured interview and UREM. All of this descriptive data does not

yield any conclusion in the differences between the two treatments.

Figure 1119 show the box plot of the two replications together for the

CSUQ questionnaire and the end user satisfaction with the

recommendations to improve usability. The medians in both plots were

similar. The first quartile was slightly better for the unstructured

interview in both metrics. The third quartile was better for the

172

unstructured interview in the CSUQ metric, while the third quartile does

not present differences in the metric of satisfaction with the

recommendations. The statistical test did not yield significant

differences for any metric (all p-values were higher than .05), and there

were no differences for Method*Problem and Method*Replication

interactions.

In conclusion, we cannot reject H03e (the end user satisfaction using

UREM is similar to that of using unstructured interviews), so there were

no differences between treatments in terms of satisfaction with the

recommendations to improve usability. Table 21 summarizes the results

of the statistical tests for all of the hypotheses.

 Rep. 1 Rep. 2 Both rep.

p-value Method .151 .153 .426

p-value

Method*Problem
- - .136

p-value

Method*Replication
- - .136

Effect size - - -

Power - - .123

Table 19. Statistical results of CSUQ questionnaire

Figure 1119. Box plot of CSUQ questionnaire

173

 Rep. 1 Rep. 2 Both rep.

p-value Method .562 .287 .504

p-value

Method*Problem
- - .396

p-value

Method*Replication
- - .396

Effect size - - -

Power - - .101

Table 11. Statistical results of end user satisfaction with the

recommendations

Figure 12. Box plot of end user satisfaction with the recommendations

174

Hypotheses Results

H01r
Effectiveness of usability requirements elicitation is

significantly better for UREM

H01g Effectiveness of usability guidelines is significantly better for

UREM

H02r Efficiency for usability requirements elicitation is the same for

UREM and the unstructured interview

H03a Analyst Satisfaction is the same for UREM and the unstructured

interview

H03e End user Satisfaction is the same for UREM and the

unstructured interview

Table 12. Summary of the results.

5.6 Usability Requirements Problems and Usability

Guidelines Compliance

Next, we describe the actual results in terms of usability requirements

problems and level of compliance with usability guidelines found

during the experimentation. Figure 13.a and b show the percentage of

usability requirements used in the experiment that are successfully

elicited in P1 and P2 respectively. These requirements were defined in

Table 5 and Table and used to measure the response variable

Effectiveness for usability requirements elicitation. Both plots show

that UREM obtains a better percentage than the Unstructured method.

If we focus on UREM for P1, the lowest effectiveness is for “Display

different choices” since several prototypes did not show all the menu

options by default. “Helpful information” is around 85% since most

prototypes included helpful information to describe the options and

actions that each interface offers. “Notification of mandatory data” and

"Self-descriptive widgets” are close to 100%. Almost all interfaces

included self-descriptive widgets and identified the mandatory widgets

to fill in. If we focus on UREM for P2, the lowest level is for “Avoid

errors”. A few interfaces did not include a list of enumerated options to

avoid errors. “Flexibility to activate/deactivate” is around 85%, which

means that most interfaces included options to modify the default

options; for example, the date of today, or your current position to look

175

for the closest bank to extract money. “Help to fix errors” and

“Notification of mandatory data” are close to 100%. Most interfaces

included messages to guide the end-user when an error arises, and

mandatory data is clearly identified in the interfaces. Note that, even

though the requirements are the same for both P1 and P2, UREM yields

better effectiveness in the usability requirements elicitation.

Figure 13. a) Percentage of usability requirements correctly elicited in P1.

b) Percentage of usability requirements correctly elicited in P2

Figure 14 shows the percentage of usability guidelines that are satisfied

in P1. These usability guidelines are the ones used to build the tree

structure used in the experiment (Appendix B). The percentage of

agreement with usability guidelines is used in the experiment to

measure the response variable Effectiveness of usability guidelines.

Note that there is a large difference between UREM and Unstructured

method for “Use a dialogbox to show error message”, “Use asterisk for

mandatory fields”, “Use alternative text for textfields”, and “Use

dropdown for a menu with several options”. In the Unstructured

0 20 40 60 80 100

SELF-DESCRIPTIVE WIDGETS

HELPFUL INFORMATION

NOTIFICATION OF MANDATORY
DATA

DISPLAY DIFFERENT CHOICES

UREM Unstructured

0 20 40 60 80 100

AVOID ERRORS

NOTIFICATION OF MANDATORY DATA

HELP TO FIX ERRORS

FLEXIBILITY TO ACTIVATE/DEACTIVATE
DEFAULT OPTIONS

UREM Unstructured

176

method, most prototypes did not specify the mechanisms to notify about

errors. Moreover, they used the red color or a bold font to highlight the

mandatory data (instead of an asterisk). Almost no interface used

alternative text for textfields. Menus with several options were designed

mainly with a list (instead of a dropdown). The level of agreement with

usability guidelines improves when using UREM. All the guidelines are

larger than 65% except for “Use dropdown for the menu with several

options”. Even though the tree structure recommended the use of a

dropdown, several clients preferred a design with all the items in the

interface without a dropdown.

Figure 14. Percentage of usability guidelines satisfied in P1

Figure 15 shows the percentage of usability guidelines satisfied in P2

both with UREM and with the Unstructured method. Note that there are

usability guidelines around 0% with the Unstructured method: “Use text

and icon for help actions”, “Use a dialogbox to show error message”,

and “Use alternative text for textfields”. Even though many subjects

used text to describe actions, a few of them complemented the text with

an icon. Moreover, as in P1, a few prototypes included dialogboxes to

show errors messages and a few prototypes used alternative text for

textfields. The guidelines “Use asterisk for mandatory fields” and “Use

dropdown for a menu with several options” show a value of around

20%. This is because mandatory fields are represented in red color or

bold and menus with several options are displayed with items without

dropdown. On the contrary, some guidelines are very similar between

177

UREM and the Unstructured method: “Use the whole screen to select

the different options”, and “Use a vertical list”. Subjects tend to use all

the size of the screen to design the interface, and lists are always shown

in vertically. If we analyze the results for UREM, all values of

agreement with usability guidelines improve. The only guideline that is

below 65% is “Use dropdown for a menu with several options”. This

shows that even though UREM recommends usability guidelines, the

results of the design are not 100% compliant with usability guidelines.

The client chooses between applying the usability guidelines or any

other alternative she/he prefers.

Figure 15. Percentage of usability guidelines satisfied in P2

6. Discussion

This section discusses the results, looking for justifications for the data

and comparing the outcomes with previous existing empirical works.

We analyze the results for each hypothesis. H01r yields significant

differences, where UREM presents better effectiveness in the

requirements elicitation process. Since effectiveness is defined as the

percentage of usability requirements successfully elicited, this means

that working with UREM helps the analyst identify successfully more

usability requirements than an unstructured interview does. These

differences arise in Replication 1 and when both replications are

aggregated, but it does not appear in Replication 2. This may be due to

the low sample size if we analyze replications individually. The

178

descriptive data in Replication 2 shows a trend of more effectiveness of

UREM than the unstructured interviews. Note that the previous

experience of the subjects was mainly in unstructured interviews (Table

7), and only two subjects had experience in structured interviews. Even

though the experience in the two treatments is so unbalanced, the

effectiveness with UREM (a structured method) is clearly better when

a short training is provided before the experiment. This result aligns

with previous works in the literature, which state that structured

interviews are the most effective elicitation techniques in a wide range

of domains and situations [40-41].

H01g also yields significant differences, where UREM shows better

effectiveness applying usability guidelines. This means that analysts

working with UREM are more compliant with usability guidelines than

analysts working with the unstructured interview. Note that the use of

UREM does not ensure the support of usability guidelines in the GUI

designs. UREM suggests which design alternative is the one that best

fits the usability requirements. However, the choice of the final design

depends on the agreement between the analyst and the end user, and

this choice may be different from the one suggested by UREM. Based

on these results, we can state that most analysts agreed to accept the

suggestions of the UREM method to improve usability. Median for the

effectiveness of usability guidelines (Figure 5) is 70%. This means that

even using UREM, some subjects did not follow the usability

suggestions. Note that the subjects that were recruited in the experiment

had experience in the requirements elicitation process but only half of

them had experience with usability (Table 8). Even though their

experience in usability is not high, the designed GUI are compliant with

the usability guidelines. This means that UREM helps design usable

interfaces even when the analyst is not an expert in usability guidelines.

There are previous works that have classified the different usability

guidelines, reporting advantages and describing how to deal with the

guidelines [42]. To our knowledge, there are no previous works that

structure the information of the guidelines in a tree structure as a

helping guide during the requirements elicitation process. UREM

provides a clear contribution to the field of usability guidelines

assistance.

179

H02r does not yield significant differences between UREM and the

unstructured interview. Differences only appear in Replication 1.

Moreover, if we analyze the descriptive data after aggregating both

replications, we see that the averages are very similar between UREM

and the unstructured interview. This means that, even though the use of

UREM could lead to an increase in the required time, the data shows

that this increase in time is not real. The efficiency needed to navigate

throughout the tree structure is the same as the efficiency needed to

conduct an unstructured interview. This conclusion may be biased by

the size of the tree, but, in our experiment, we are not working with a

small tree. This may reduce the effort required by the analyst for the

navigation. The whole tree is shown in Appendix E. This result

contradicts the conclusions of other previous works, which state that

structured interviews such as JAD require more effort than unstructured

ones such as Brainstorming [43]. The statistical power is low, so to be

completely sure that significant differences in terms of efficiency do not

arise between the two treatments, we need a larger sample size. In this

hypothesis, we identified two interactions as being significant:

Method*Problem and Method*Replication. The differences between

UREM and the unstructured interview are more evident in P2 (bank)

than in P1 (health center). UREM required more time in P1, which

reduced the efficiency. The subjects who were recruited for the

experiment may have had more experience in interaction with banking

systems, so the effort spent for each treatment was low in this problem

because the analysts could have had a possible prototype in mind for

this type of system. A health center application is usually used with less

frequency than a banking application. This may have led to requiring

more effort to elicit the requirements, which may highlight the

difference in efficiency between the treatments. With regard to the

Method*Replication interaction, the difference between treatments is

more evident in Replication 1. This could be due to the profile of the

subjects of that replication; they are undergraduate students with low

experience in software development companies (Table 6). This result

together with the significant result for efficiency in Replication 1 leads

to thinking that UREM shows a better efficiency in a context with low

professional experience.

180

H03a yields significant differences for the PEOU metric in Replication

1. When analyzing the box plot of the two replications together, there

is a trend where the unstructured interview obtains a better satisfaction.

The low power may justify that this significant difference is not present

when the two replications are aggregated together. Since the significant

result focuses only on one replication, general conclusions cannot be

drawn. Note that most of the subjects have experience in the area of

software development (Table 8), and they have a good background with

unstructured interviews (Table 10). Despite this advantage for the

unstructured interview compared with UREM, the subjects do not have

a clear preference for either method. To the authors knowledge, there

are no previous works that have experimentally evaluated how the

structured interviews may affect the analysts’ satisfaction. This lack of

empirical works may be because satisfaction is a broad term with

several perspectives. For example, the work of Elrakaiby et al.[44]

states that satisfaction depends on motivation, relevance of the

realization, and relevance of the statement,. All of these characteristics

are difficult to control in an empirical evaluation.

H03e does not yield significant differences between UREM and the

unstructured interview. This means that from the point of view of the

end user, there is no difference between the two treatments. Even

though the usability requirements are elicited with more effectiveness

using UREM, the end users are no more satisfied with the designed

GUI. Previous works in the literature state that there is a relationship

between usability features supported by the system and end user

satisfaction [45]. Note that the statistical power is very low in both

metrics that analyze the hypothesis; it is possible that some significant

differences may arise with a larger sample size. Moreover, the designed

GUI are only some parts of the system; the analysts did not design the

whole system. An experiment involving more types of interfaces with

more complexity might help to find differences between the treatments.

We plan to replicate the experiment with a larger sample size and with

more complex problems in order to analyze in detail how the use of

UREM affects the end user’s satisfaction.

As conclusions of our analysis, we can state that UREM helps to

improve the effectiveness of the usability requirements elicitation

process. Moreover, UREM helps the inclusion of usability guidelines

181

in designs even though the analysts that make the design are not experts

in usability. These advantages do not involve a loss of efficiency in the

requirements elicitation process and GUI design.

7. Threats to Validity

We have classified the threats to validity of our experiment based on

the classification provided by Wohlin [46]. We described each type of

threat as: avoided, incurred, and mitigated.

Conclusion validity. This threat is concerned with issues that affect the

ability to draw the correct conclusions about relationships between the

treatment and the outcome. Threats of this type are: 1) Low statistical

power: This appears when the sample size is low. After the aggregation

of both replications, we obtain enough statistical power for response

variables that are related to effectiveness. However, efficiency, analyst

satisfaction and end user satisfaction is affected by this threat due to

low power. 2) Violated assumptions of statistical tests: GLM has some

assumptions that must be satisfied in order to conduct the test. We

avoided this threat since the aggregation of both replications satisfies

all of these assumptions. 3) Fishing: This appears when experimenters

are looking for a specific result. Even though one experimenter was the

designer of UREM, the other two experimenters that participated in the

design and interpretation of the results were not the authors of UREM.

Therefore, this threat was mitigated. 4) Reliability of measures: This

appears when measures have errors due to problems with instruments.

We mitigated this threat by conducting a pilot study with two subjects

before conducting the real experiment. This helped to check all of the

experimental artefacts. 5) Reliability of treatment implementation:

There is a risk that the implementation is not similar between different

replications. We mitigated this threat since the experimenter who

described the treatments and conducted the experiment was the same in

both replications. It is also possible that end users describe the usability

requirements wrongly, and this may affect RQ1r and RQ1g. This is

mitigated because both treatments suffer this threat, so it should not

affect positively or negatively a specific treatment. 6) Random

heterogeneity of subjects: This appears when the sample size is too

heterogeneous, and this variation is larger than the variation produced

182

by the treatment. Subjects of R2 (Master’s students) have more job

experience than subjects of R1 (undergraduate students). Since we

analyze each replication individually, we can analyze whether or not

there are differences between both profiles.

Internal validity. This threat is concerned with influences that may

affect the dependent variable with respect to a causality which the

researchers are unaware of. Threats of this type that may appear are: 1)

History: This appears when the treatments are applied at different

moments. Our experiment was affected since unstructured interviews

and UREM are applied in different sessions. Even though we tried to

maintain the same context and conditions, we cannot ensure that the

different moment of each session did not affect the results. 2)

Maturation: This appears when the subjects react differently as time

pass. We mitigated this threat by conducting each session in a

maximum of one hour. This was to avoid boredom and fatigue. 3)

Instrumentation: This appears when the instruments used in the

experiment may affect the results. This threat was mitigated since the

satisfaction questionnaires were validated previously. The analyst

satisfaction questionnaire is based on the TAM by Davis [60] while the

end user satisfaction is based on the CSUQ [59]. 4) Selection: How the

subjects are recruited may affect the results. In our experiment, the

participants participated as part of a course. The participation in the

experiment was not mandatory, but it gave the participants extra credit

in the course. This may lead to subjects being over motivated, which

may result in a threat. 5) Mortality: This appears when the subjects

abandon the experiment before finishing. We avoided this threat since

no subject left the experiment. 6) Compensatory rivalry: This appears

when the subjects receive different treatments. We avoided this threat

since all of the subjects received both treatments and all of the subjects

played both roles (analyst and end user). 7) Differences between roles:

playing the role of the analyst can be easier than playing the role of the

end-user. When subjects play the role of the analyst, they act with the

role that their course is preparing for. This may lead to more motivated

subjects when they play the role of the analyst. We have mitigated this

threat by swapping the roles between both treatments.

Construct validity. This threat is concerned with generalizing the

results of the experiment to the concept or theory behind the

183

experiment. Threats of this type that our family of experiments may be

open to are: 1) Inadequate preoperational explication of constructs:

This appears when the theory behind the treatment has not been

sufficiently defined. We avoided this threat since the UREM method

had a proper definition before conducting the experiment. 2) Mono-

operation bias: This appears when experiments with only one factor

may under-represent the construct. We mitigated this threat by

analyzing the interaction of the method with the problem and the

replication. This was to look for differences due to context or problem

complexity. 3) Mono-method bias: This appears when a simple type of

metrics is used. We mitigated this threat since the analyst satisfaction

and end user satisfaction depend on more than one metric. However,

the effectiveness of usability requirements elicitation, the effectiveness

of usability guidelines, and efficiency were affected by this threat. 4)

Problem homogeneity: This appears when experimental problems are

too homogeneous to generalize the results to other problems. We

mitigated this threat by choosing problems from different domains.

External validity. This threat is concerned with conditions that limit

the ability to generalize the results of experiments to industrial practice.

Threats of this type are: 1) Interaction of selection and treatment: This

appears when the subjects are not representative of the population that

we want to generalize. We mitigated this threat since, even though the

subjects were students, they had previous experience in real software

development projects. 2) Interaction of setting and treatment: This

appears when the experimental setting or the material are not

representative of our target of study. We mitigated this threat since the

usability requirements and the problems were aligned with the context

where UREM is used. 3) Interaction of history and treatment: this

appears when the experiment is conducted at a special time that may

affect the results. Our experiment was affected by this threat since each

replication was conducted on different days. 4) Interaction between

research questions: this appears when there is a correlation between

research questions. The experiment suffers this threat since RQ2r might

be somehow correlated to RQ1r. The fewer usability requirements

satisfied by the analyst, the shorter the time required to define them.

184

8. Conclusions

This article presents an empirical experiment that compares structured

interviews with unstructured interviews in order to elicit usability

requirements. Structured interviews are operationalized as UREM,

which is a method based on a decision tree where the analyst guides the

interview by navigating throughout the tree structure. Each branch of

the tree includes a question for the end user with possible answers.

Moreover, the answer that is more compliant with existing usability

guidelines is recommended. In the unstructured interview method, the

analyst must elicit usability requirements without any guide. In this

work, this control treatment is referred to as unstructured interview. The

evaluation is conducted to analyze four response variables:

effectiveness in the usability requirements elicitation; effectiveness in

the application of usability guidelines; efficiency; the analyst’s

satisfaction; the end user’s satisfaction. As significant results, UREM

is more effective in the usability requirements elicitation and also more

effective in designing interfaces that are compliant with usability

guidelines.

Note that even though the recruited subjects are students, a large

percentage of them have experience in real software development

companies. Therefore, the results could be generalizable to any person

with some type of experience in software development, not just

students. The experiment was conducted with two different problems,

so the results are not associated to a single problem. This also facilitates

the generalization of results.

Some lessons have been learned during the conduction of the

experiment: 1) The effort to build the tree in UREM is high. This is

something that was not analyzed in the experiment, but the required

effort is not null. Note that this effort can be recovered; the same tree

structure is useful for any future development; 2) The recommendations

during the tree structure navigation may be different depending on the

usability guidelines used to build the tree. Even though most usability

guidelines agree on the characteristics that optimize usability, there are

some guidelines that may present some contradictions. In the end, the

expert at usability that builds the tree structure is the one who chooses

the most suitable usability guidelines for the recommendations; 3) Most

185

of the end users accepted the usability recommendations. This value

may have been different if the subjects had had more experience in

usability characteristics. Other experiments can be conducted to

determine how the level of experience may affect the results. 4) Due to

the structure of questions, UREM may leave no room for discovering

designs not included as alternatives in the tree structure.

As future work, we plan to replicate the experiment in order to enhance

the sample size. Some response variables such as the analyst’

satisfaction and the end user’ satisfaction have a low statistical power.

With a larger sample size we may be able to identify more significant

differences for these response variables. Moreover, we aim to analyze

more factors, such as previous experience in usability concepts and the

complexity of the problems. In a future validation of UREM, we plan

to include other metrics such as creativity when the tree structure is built

and when it is used in the interviews; qualitative analysis of how

designers perceive the use of UREM; need of training for the method;

overall appreciation of the guidance provided; reusability in multiple

contexts of use; perception of the time and effort necessary to prepare

the tree structure; and flexibility to run the method. We also plan to

compare UREM with other structured interview methods.

Acknowledgements

This work was developed with the support of the National University

of San Antonio Abad of Cusco under the program Yachayninchis

Wiñarinanpaq CONCYTEC and FONDECYT, the support of

Generalitat Valenciana with CoMoDID (CIPROM/2021/023) and

GENI (CIAICO/2022/229), as well as the support of the Spanish

Ministry of Science and Innovation co-financed by FEDER in the

project SREC (PID2021-123824OB-I00)

186

References

1. M. Rajanen and N. Livari, "Usability cost-benefit analysis: How

usability became a curse word?," pp. 511-524, 2007.

2. D. Quiñones, C. Rusu, and V. Rusu, "A methodology to develop

usability/user experience heuristics," Computer standards &

interfaces, vol. 59, pp. 109-129, 2018.

3. ISO, ISO 9241-11: Ergonomic requirements for office work with

visual display terminals (VDTs): Part 11: Guidance on usability,

1998.

4. ISO/IEC, "ISO / IEC 25010 : 2011 Systems and software

engineering@ Systems and software Quality Requirements and

Evaluation (SQuaRE)@ System and software quality models,"

2013.

5. H. A. Hutahaean, R. Govindaraju, and I. Sudirman, "Identifying

Usability Risks for Mobile Application," in Proceedings of the

International Conference on Engineering and Information

Technology for Sustainable Industry, Tangerang, Indonesia, pp. 1-

6, 2021.

6. E. M. Rey, V. M. Bonillo, and D. A. Ríos, "Session details: Theme:

Software design and development: UE - Usability engineering

track," in Proceedings of the 34th ACM/SIGAPP Symposium on

Applied Computing, Limassol, Cyprus, 2019.

7. Y. I. Ormeño, J. I. Panach, N. Condori-Fernández, and Ó. Pastor,

"Towards a proposal to capture usability requirements through

guidelines," in Proceedings of the IEEE 7th International

Conference on Research Challenges in Information Science

(RCIS), pp. 1-12, 2013.

8. J. Nielsen, Usability Engineering: Morgan Kaufmann, 1993.

9. M. J. Muller, "Participatory design: the third space in HCI," in The

human-computer interaction handbook: fundamentals, evolving

technologies and emerging applications, ed: L. Erlbaum Associates

Inc., pp. 1051–1068, 2002.

10. K. Petersen, R. Feldt, S. Mujtaba, and M. Mattsson, "Systematic

mapping studies in software engineering," in EASE, pp. 68–77,

2008.

11. F. Gunduz and A. S. K. Pathan, "Usability improvements for touch-

screen mobile flight booking application: A case study," in

Proceedings of the International Conference on Advanced

Computer Science Applications and Technologies, ACSAT 2012,

pp. 49-54, 2012.

187

12. O. D. Troyer and E. Janssens, "A feature modeling approach for

domain-specific requirement elicitation," in Proceedings of the

IEEE 4th International Workshop on Requirements Patterns

(RePa), pp. 17-24, 2014.

13. P. Fahey, C. Harney, S. Kesavan, A. McMahon, L. McQuaid, and

B. Kane, "Human computer interaction issues in eliciting user

requirements for an Electronic Patient Record with multiple users,"

in Proceedings of the 24th International Symposium on Computer-

Based Medical Systems (CBMS), pp. 1-6, 2011.

14. M. Temper, S. Tjoa, and M. Kaiser, "Touch to authenticate—

Continuous biometric authentication on mobile devices," in

Proceedings of the 1st International Conference on Software

Security and Assurance (ICSSA), pp. 30-35, 2015.

15. T. Rocha Silva, M. Winckler, and C. Bach, "Evaluating the usage

of predefined interactive behaviors for writing user stories: an

empirical study with potential product owners," Cognition,

Technology & Work, vol. 22, pp. 437-457, 2020.

16. E. A. De Carvalho, A. Jatobá, and P. V. R. De Carvalho, "Usability

for complex systems?: An experimental evaluation with functional

resonance analysis method," in Proceedings of the 18th Brazilian

Symposium on Human Factors in Computing Systems (IHC), pp. 1-

4, 2019.

17. J. A. Nhavoto, Å. Grönlund, and W. P. Chaquilla, "SMSaúde:

Design, development, and implementation of a remote/mobile

patient management system to improve retention in care for

HIV/aids and tuberculosis patients," JMIR mHealth and uHealth,

vol. 3, 2015.

18. E. Elias, D. Miquilino, I. I. Bittencourt, T. Tenório, R. Ferreira, A.

Silva, S. Isotani, and P. Jaques, "Towards an ontology-based

system to improve usability in collaborative learning

environments," in Lecture Notes in Computer Science (including

subseries Lecture Notes in Artificial Intelligence and Lecture Notes

in Bioinformatics) vol. 7315 LNCS, ed, 2012, pp. 298-303.

19. X. Yuan and X. Zhang, "An ontology-based requirement modeling

for interactive software customization," in Proceedings of the IEEE

International Model-Driven Requirements Engineering Workshop

(MoDRE), pp. 1-10, 2015.

20. Z. S. H. Abad, S. Moazzam, C. Lo, T. Lan, E. Frroku, and H. Kim,

"Loud and Interactive Paper Prototyping in Requirements

Elicitation: What is it Good for?," in Proceedings of the IEEE 7th

International Workshop on Empirical Requirements Engineering

(EmpiRE), pp. 16-23, 2018.

188

21. G. Márquez and C. Taramasco, "Using Dissemination and

Implementation Strategies to Evaluate Requirement Elicitation

Guidelines: A Case Study in a Bed Management System," IEEE

Access, vol. 8, pp. 145787-145802, 2020.

22. S. Tiwari, S. S. Rathore, and A. Gupta, "Selecting requirement

elicitation techniques for software projects," pp. 1-10, 2012.

23. A. Abdallah, R. Hassan, and M. A. Azim, "Quantified extreme

scenario based design approach," in Proceedings of the ACM

Symposium on Applied Computing, pp. 1117-1122, 2013.

24. G. Vitiello, R. Francese, M. Sebillo, G. Tortora, and M. Tucci,

"UX-requirements for patient's empowerment - The case of

multiple pharmacological treatments: A case study of it support to

chronic disease management," in Proceedings of the IEEE 25th

International Requirements Engineering Conference Workshops,

REW 2017, pp. 139-145, 2017.

25. Y. Tanikawa, R. Okubo, and S. Fukuzumi, "Process support

method for improved user experience," NEC Technical Journal,

vol. 8, pp. 28-32, 2014.

26. Z. S. H. Abad, S. D. V. Sims, A. Cheema, M. B. Nasir, and P.

Harisinghani, "Learn More, Pay Less! Lessons Learned from

Applying the Wizard-of-Oz Technique for Exploring Mobile App

Requirements," in Proceedings of the IEEE 25th International

Requirements Engineering Conference Workshops (REW), pp.

132-138, 2017.

27. M. Peruzzini and M. Germani, "Designing a user-centred ICT

platform for active aging," in Proceedings of the IEEE/ASME 10th

International Conference on Mechatronic and Embedded Systems

and Applications (MESA), pp. 1-6, 2014.

28. H. Takeshi and F. Shin'ichi, "Applying human-centered design

process to SystemDirector Enterprise development methodology,"

NEC Technical Journal, vol. 3, pp. 12-16, 2008.

29. S. Sharma and S. Pandey, "Revisiting Requirements Elicitation

Techniques," International Journal of Computer Applications, vol.

75, pp. 35-39, 2013.

30. T. R. Gruber, C. Baudin, J. H. Boose, and J. Webber, "Design

Rationale Capture as Knowledge Acquisition," in ML Workshop,

1991.

31. C. Martinie, P. Palanque, M. Winckler, and S. Conversy,

"DREAMER: a design rationale environment for argumentation,

modeling and engineering requirements," in Proceedings of the

28th ACM International Conference on Design of Communication,

São Carlos, São Paulo, Brazil, pp. 73–80, 2010.

189

32. N. Juristo and A. M. Moreno, Basics of software engineering

experimentation: Springer Science & Business Media, 2013.

33. J. R. Lewis, "IBM computer usability satisfaction questionnaires:

psychometric evaluation and instructions for use," International

Journal of Human‐Computer Interaction, vol. 7, pp. 57-78, 1995.

34. D. Falessi, N. Juristo, C. Wohlin, B. Turhan, J. Münch, A.

Jedlitschka, and M. Oivo, "Empirical software engineering experts

on the use of students and professionals in experiments," Empirical

Software Engineering, vol. 23, pp. 452-489, 2018.

35. N. Juristo and A. Moreno, Basics of Software Engineering

Experimentation: Springer, 2001.

36. Y. Ormeño, J. I. Panach, and Ó. Pastor, "Experimental material of

the article "An Empirical Experiment of a Usability Requirements

Elicitation Method based on Interviews"," Z.

https://doi.org/10.5281/zenodo.7646554, 2023.

37. L. S. Meyers, "Applied multivariate research : design and

interpretation," G. Gamst and A. J. Guarino, Eds. Thousand Oaks :

Sage Publications, 2006.

38. L. S. Meyers, G. Gamst, and A. J. Guarino, Applied multivariate

research: Design and interpretation: Sage publications, 2016.

39. T. Dybå, V. B. Kampenes, and D. I. Sjøberg, "A systematic review

of statistical power in software engineering experiments,"

Information and Software Technology, vol. 48, pp. 745-755, 2006.

40. A. M. Davis, Ó. D. Tubío, A. M. Hickey, N. J. Juzgado, and A. M.

Moreno, "Effectiveness of Requirements Elicitation Techniques:

Empirical Results Derived from a Systematic Review," in

Proceedings of the 14th IEEE International Requirements

Engineering Conference (RE'06), pp. 179-188, 2006.

41. N. Bahurmuz, R. Alnajim, R. Al-Mutairi, Z. Al-Shingiti, F. Saleem,

and B. Fakieh, "Requirements Elicitation Techniques in Mobile

Applications: A Systematic Literature Review," International

Journal of Information Technology Project Management (IJITPM),

vol. 12, pp. 1-18, 2021.

42. M. S. Goundar, B. A. Kumar, and A. B. M. S. Ali, "Development

of Usability Guidelines: A Systematic Literature Review,"

International Journal of Human–Computer Interaction, pp. 1-19,

2022

43. .O. Okesola, K. Okokpujie, R. Goddy-Worlu, A. Ogunbanwo, and

O. Iheanetu, "Qualitative comparisons of elicitation techniques in

requirement engineering," Journal of Engineering and Applied

Sciences, vol. 14, pp. 565-570, 2019.

190

44. Y. Elrakaiby, A. Ferrari, P. Spoletini, S. Gnesi, and B. Nuseibeh,

"Using Argumentation to Explain Ambiguity in Requirements

Elicitation Interviews," in Proceedings of the IEEE 25th

International Requirements Engineering Conference (RE), pp. 51-

60, 2017.

45. J. M. Ferreira, S. T. Acuña, O. Dieste, S. Vegas, A. Santos, F.

Rodríguez, and N. Juristo, "Impact of usability mechanisms: An

experiment on efficiency, effectiveness and user satisfaction,"

Information and Software Technology, vol. 117, p. 106195, 2020.

46. C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and

A. Wesslén, Experimentation in software engineering: Springer

Science & Business Media, 2012.

47. F. D. Davis, "User acceptance of information technology: system

characteristics, user perceptions and behavioral impacts,"

International journal of man-machine studies, vol. 38, pp. 475-487,

1993.

191

 PARTE III

DISCUSIONES

DE LOS

RESULTADOS

III

 Los temas que cubre esta parte son:

3.1 Discusiones

III. Discusiones

192

En esta parte de la tesis, se presentan los resultados de este trabajo,

conectando las preguntas de investigación planteadas al inicio del

trabajo con los resultados plasmados en los artículos de investigación

recogidos en las cuatro secciones anteriores de la parte II.

193

Cada uno de estos artículos intenta investigar y responder a las

preguntas y sub preguntas de investigación de la tesis.

En el primer artículo que conforma esta tesis, se ha tratado de responder

a la siguiente pregunta de investigación RQ1: ¿Es posible capturar

requisitos de usabilidad en etapas iniciales de desarrollo software? y la

sub pregunta de investigación SQ1.1: ¿Qué guías de usabilidad,

estándares y normas se requieren en el proceso de captura de requisitos

de usabilidad que apoyen la labor del analista?

En relación a la RQ1, la elicitación de los requisitos de usabilidad

generalmente se realiza en la etapa de análisis [46], [15], después que

se hayan capturado todos los requisitos funcionales. Esta captura tardía

podría ocasionar cambios en la arquitectura del sistema debido a que

algunos requisitos de usabilidad están relacionados con la funcionalidad

[5], [20]. Por lo general, los métodos utilizados para elicitar los

requisitos de usabilidad tratan la usabilidad mediante técnicas

tradicionales (e.g. entrevistas, cuestionarios, grupos focales, casos de

uso) [35], [3]. El análisis de resultados de la revisión sistemática

muestra que existen muy pocas publicaciones que aborden claramente

cómo realizar el proceso de captura de requisitos de usabilidad en etapas

tempranas. Además, los enfoques existentes no proponen una notación

precisa e inequívoca para representar estos requisitos, lo que dificulta

su aplicación en sistemas reales. Hay algunas publicaciones donde la

elicitación de requisitos de usabilidad se realiza en la etapa de diseño

junto con la elicitación de requisitos de interacción [25], [45], [24].

En relación a la SQ1.1, cuando el tema de la usabilidad se trata en la

elicitación de requisitos, las normas ISO se utilizan como directrices

para ser aplicadas en los sistemas de desarrollo de software. Por

ejemplo, la norma ISO 9241-11 se considera una referencia básica para

algunos profesionales, investigadores y diseñadores [25]. Para

cualquier tipo de requisitos se utiliza la norma ISO 9126-1 [32]. La

aplicación de lineamientos es necesaria, pero no suficiente; el principal

problema es la correcta aplicación y completa comprensión por parte

del usuario final. Las guías solo se construyen de manera general, pero

no son un soporte total para el desarrollo de sistemas usables.

194

Hay algunas propuestas que tienen como objetivo ayudar a los

ingenieros de requisitos a abordar los requisitos de usabilidad desde las

primeras etapas por medio de reglas GUIDE [22] y un catálogo basado

en el marco i* [10]. Ambas técnicas son específicas del contexto,

aunque GUIDE utiliza un repositorio basado en casos para tomar

decisiones e i* framework recopila una gran cantidad de conocimiento

para lograr los objetivos de usabilidad. Otro aspecto que se observa en

las publicaciones seleccionadas es el uso de artefactos, tales como:

patrones, escenarios y plantillas, que se utilizan con frecuencia como

soporte de métodos para elicitar requisitos de usabilidad y requisitos de

interacción [6], [48], [16]. Los métodos propuestos en las publicaciones

seleccionadas son rígidos y requieren un esfuerzo considerable para ser

aplicados a contextos diferentes de los contextos en que han sido

definidos [22]. Las guías, notaciones y artefactos utilizados en estos

métodos están más cerca de obtener características de interacción que

características de usabilidad. En general, las guías para la elicitación de

requisitos de usabilidad se definen de manera muy genérica para

diferentes niveles de abstracción [8].

En el segundo artículo que conforma esta tesis se ha tratado de

responder a la siguiente sub pregunta de investigación SQ1.2: ¿Es

posible desarrollar una estructura de árbol que facilite el proceso de

captura de requisitos en un entorno MDD?

En relación a la SQ.1.2, se debe tomar en cuenta que existen guías de

diseño de IU y guías de usabilidad que pueden ser gestionadas mediante

una estructura de árbol en apoyo a la captura de requisitos de usabilidad

durante el desarrollo de software. Se debe tomar en cuenta que el

tamaño de la estructura de árbol aumentará con la cantidad de guías que

consideremos. Incluso con pocas guías, el tamaño del árbol es difícil de

manejar si no es gestionado por una herramienta que ayude con la

definición de la estructura de árbol y con la navegación a través de las

ramas. Para simplificar la estructura, se recomienda centrarse solo en el

diseño de la interfaz y las guías de usabilidad más utilizadas. Como

parte de trabajo de la tesis, se ha desarrollado la herramienta que

implementa UREM, accesible desde http://hci.dsic.upv.es/urem

195

La asistencia al analista y la reducción del esfuerzo en el proceso de

captura de requisitos de usabilidad son aspectos considerados en la

evaluación empírica cuando se compara un desarrollo de software que

utiliza el enfoque UREM para capturar los requisitos de usabilidad con

el desarrollo que no tiene en cuenta estos requisitos (entrevistas no

estructuradas). La validación inicial de UREM se hace en un contexto

MDD, donde los desarrolladores expertos deben valorar la herramienta

UREM dentro de un proceso de desarrollo MDD.

En el tercer artículo que conforma esta tesis, se ha tratado de responder

a la SQ1.3: ¿Es posible representar alternativas de diseño de IU en una

estructura de árbol en base a las guías de usabilidad y diseño para la

captura de requisitos de usabilidad? Los nodos hoja del árbol a los que

llega durante la entrevista con el cliente son los diseños de IU

seleccionados por el usuario final. Esta selección puede incluir o no las

recomendaciones de usabilidad, dependiendo de las preferencias del

usuario. Las alternativas de IU son solo propuestas construidas según

los estándares, guías de usabilidad y de diseño para guiar la entrevista

de elicitación de requisitos y proponer diseños que optimicen la

usabilidad.

En el cuarto artículo que compone esta tesis, se ha tratado de responder

a las preguntas de investigación RQ2: ¿Qué impacto produce UREM en

la captura de requisitos de usabilidad? y las sub preguntas: SQ2.1 ¿Cuál

es el impacto del uso de las guías de usabilidad en el diseño de IU?,

SQ2.2 ¿Cuál es el impacto de la aplicación del UREM en un contexto

académico? y SQ2.3 ¿Cuál es el impacto de las recomendaciones de

usabilidad propuestas por UREM?

En relación a la RQ2, se ha realizado el experimento para validar

UREM, que consiste en realizar la captura de requisitos de usabilidad

comparando UREM con entrevistas no estructuradas. El experimento

se ha realizado en dos réplicas bajo un diseño intra-sujetos Replicación

1 (22 estudiantes de pregrado) y Replicación 2 (26 estudiantes de

máster). Se han utilizado dos problemas diferentes Problema 1 (App

para un Centro de Salud) y Problema 2 (App para una entidad bancaria)

para evitar el efecto “carry over” entre tratamientos. Además de buscar

diferencias significativas entre tratamientos, se han buscado diferencias

196

en las interacciones Método*Problema y Método*Replicación b. Todo

el análisis estadístico se hizo con el Método Lineal General (GML).

En el experimento, se han refutado las hipótesis nulas de las variables

respuesta Efectividad (H01r) referente a la Efectividad en la captura de

requisitos de usabilidad y Efectividad (H01g) referente a la Efectividad

en el uso de las guías, lo que significa que la efectividad lograda en la

obtención de los requisitos y en el uso de las guías con UREM es

superior frente a la entrevista no estructurada. Este resultado no se

muestra en ambas replicaciones, quizá por el bajo tamaño de la muestra.

Por otro lado, no se ha podido refutar la hipótesis nula de la variable

respuesta Eficiencia (H02r), referente a la Eficiencia en la captura de

requisitos de usabilidad, lo que significa que no se aprecia diferencias

significativas. Se aprecia una mejora en la efectividad, pero no en el

tiempo, lo que implica que no haya variaciones significativas en la

eficiencia. De igual forma no se ha podido refutar la hipótesis nula de

la variable respuesta Satisfacción (H03e) referente a la Satisfacción del

usuario final y la Satisfacción del analista (H03a), lo que significa que

no existe diferencias significativas. Esto puede deberse a que los

analistas vienen con una amplia experiencia en entrevista no

estructuradas.

En relación a la SQ.2.1, la Efectividad (H01g) referente a la Efectividad

en el uso de las guías de usabilidad, arroja diferencias significativas,

siendo UREM más efectivo. Es decir, que los analistas que trabajan con

UREM cumplen mas con las guías de usabilidad en relación a los

analistas que trabajan con entrevistas no estructuradas. El uso de UREM

no garantiza la gestión de los requisitos de usabilidad para los diseños

de IU, sino que ofrece alternativas que se ajusten a los requisitos de

usabilidad. La decisión final sobre optar o no por el diseño de la IU

ofrecido, siempre será tomada en acuerdo entre el usuario final y el

analista. Por otro lado, se ha observado que los analistas que usan

UREM siguen de media el 70% de las recomendaciones de usabilidad

que se ofrecen con el método. El otro 30% son otros diseños que ha

elegido el usuario, diferentes a los recomendados por las guías de

usabilidad.

197

En relación a la SQ.2.2, la aplicación de UREM a través del

experimento, se realizó en el contexto académico con sujetos

estudiantes (Replica1, estudiantes de pregrado de último ciclo y la

Réplica 2, estudiantes de maestría) de la Universidad Nacional de San

Antonio Abad del Cusco – Perú. Todos los sujetos tenían suficiente

conocimiento en el campo del desarrollo de software. De los resultados

se observa que las variables respuesta como la satisfacción del analista

y la satisfacción del usuario tienen un bajo poder estadístico. Esto se

debe al tamaño de muestra utilizada en su ejecución. Un aspecto

positivo es que la propuesta al ser evaluada dentro del entorno

académico conlleva a la identificación de las fortalezas y debilidades

del método que serían temas de investigación posterior para la mejora

del método y de la herramienta en la elicitación de requisitos de

usabilidad.

En relación a la SQ.2.3, el método UREM cuenta con la herramienta

que ayuda a garantizar la inclusión de las exigencias de las guías de

usabilidad y diseño de IU sen los proyectos de desarrollo software, que

contribuyen en la mejora de la calidad. La herramienta está accesible en

hci.dsic.upv.es/UREM

198

 PARTE IV

CONCLUSIONES IV

 El tema que se cubre en esta parte son las

conclusiones a las que se arribó en el trabajo de

investigación enmarcados en:

4.1 Contribuciones a partir de los Objetivos

4.2 Fortalezas y Debilidades de la Tesis

4.3 Trabajos Futuros.

IV. Conclusiones

199

Esta parte presenta las conclusiones finales de la tesis, resumiendo los

objetivos, el estudio realizado y los resultados de nuestro trabajo.

También se presentan futuras líneas de investigación que pueden

contribuir a ampliar estos resultados.

200

4.1 Contribuciones a partir de los Objetivos

Las contribuciones de la tesis surgen directamente de los objetivos

principales de la tesis contenidos en las preguntas de investigación:

1) Objetivo OBJ1 (RQ1): ¿Es posible capturar requisitos de usabilidad

en etapas iniciales de desarrollo software? La respuesta a esta

pregunta está inmersa en el desarrollo del primer, segundo y tercer

artículo como sigue:

El primer artículo presenta un estudio sistemático en relación a la

a las propuestas existentes para la captura de requisitos de

usabilidad en entornos MDD, la misma que ha sido subdivida en 6

sub preguntas respecto a métodos, guías, notaciones, herramientas

y validaciones que contiene las propuestas para capturar requisitos

de usabilidad. como resultado de la revisión sistemática. Se

seleccionaron un total de 29 publicaciones de un conjunto inicial de

150 publicaciones devueltas por la cadena de búsqueda. Las

valoraciones de calidad de las publicaciones se desarrollaron con el

fin de contrastar la importancia de las publicaciones seleccionadas,

donde el 97% está compuesto por buenas y muy buenas

publicaciones. A partir de los resultados del mapeo sistemático,

podemos concluir que se evidencia una línea de investigación en el

campo de los requisitos de usabilidad.

 La aplicación de los métodos de captura de requisitos de usabilidad

facilita un apoyo básico que demandan mucho esfuerzo y tiempo

en su gestión y ejecución. Las guías de usabilidad, normas, y

estándares son de difícil interpretación por parte del equipo de

desarrollo. Se requiere un ingeniero de usabilidad para su correcta

interpretación, las notaciones y representaciones utilizadas por las

diferentes soluciones son extensiones y adaptaciones de los

requisitos funcionales. Las herramientas existentes son limitadas y

en general son de soporte para el diseño de las interfaces no

tomando en cuenta aspectos de usabilidad.

201

El segundo artículo plantea una primera versión de la estructura en

árbol. Se define un metamodelo de la propuesta y un ejemplo

ilustrativo.

El tercer artículo aborda cómo incorporar la propuesta de UREM

en un entorno MDD. Se tiene una primera validación inicial con

usuarios expertos en MDD.

2) Objetivo OBJ2 (RQ2): ¿Qué impacto produce UREM en la captura

de requisitos de usabilidad? La respuesta a esta pregunta está

inmersa en el desarrollo del cuarto artículo, como sigue:

El cuarto artículo es el diseño y ejecución de un experimento para

validar UREM comparándolo con entrevistas no estructuradas. El

experimento se hace en base a la efectividad. eficiencia, y

satisfacción desde el rol usuario o analista según corresponda.

El impacto de la aplicación del UREM en un contexto académico

conlleva a que los resultados podrían ser generalizables a cualquier

analista con algún tipo de experiencia en el desarrollo software y

no solo estudiantes. Esto se debe a que en el experimento los sujetos

que eran estudiantes tenían experiencia en empresas reales de

desarrollo de software en un alto porcentaje. Por otro lado, los

resultados no han estado asociados a un solo problema, esto

también facilita la generalización de los mismos y hace que UREM

sea una propuesta que pueda ser utilizada en otros sistemas de igual

complejidad.

4.2 Fortalezas y Debilidades de la Tesis

La usabilidad es una de las características esenciales de la calidad

software y su proceso de captura debe darse conjuntamente con los

requisitos funcionales para garantizar la calidad en proceso y producto

del software. Con la presente investigación se logró construir un método

al que denominamos UREM que realiza la captura de requisitos de

usabilidad.

202

Los puntos fuertes de UREM son los siguientes:

- Puede ser utilizado por no expertos en usabilidad. La ausencia de

expertos en los equipos de desarrollo es muy común debido a la

complejidad que presentan las normas ISOs, guías de usabilidad y

guías de diseño.

- Presenta una estructura de árbol basado en nodos, ramas y hojas

representados en preguntas, respuestas y alternativas. Esta

estructura es de fácil comprensión y aprendizaje tanto para el

analista como para el usuario final en cuanto a su uso durante el

proceso de captura de requisitos de usabilidad.

- La propuesta de UREM está contenida en una herramienta que

contiene la estructura de un árbol. El árbol debe ser diseñado por

un experto en usabilidad, donde las alternativas de los diseños de

IUs contienen aspectos de usabilidad provenientes de las guías de

usabilidad y diseño existentes en la literatura.

Dentro de los puntos débiles de UREM identificamos los siguientes:

- Hay que invertir un esfuerzo inicial en la construcción del árbol. Se

deben seleccionar las guías de usabilidad y diseño de IUs e

introducirlas en la estructura de árbol.

- La aplicación de las recomendaciones de usabilidad propuestas a

raíz de las guías de usabilidad depende de las decisiones del usuario

durante la entrevista. Esto puede resultar en diseños que no sigan

ninguna de las recomendaciones de usabilidad. En estos casos, el

diseño sería de la satisfacción del usuario, pero no estaría acorde a

las guías de usabilidad.

- Puede haber contradicciones entre guías de usabilidad que

impliquen recomendaciones contradictorias en algunos puntos del

árbol que deben ser analizados por el analista. Es el usuario final el

que debe tomar la decisión de qué diseño elige en estos casos.

203

4.3 Trabajos Futuros

Durante el desarrollo de la tesis se han identificado varios temas de

investigación que podrían abordarse en las próximas investigaciones.

El objetivo principal de estos trabajos futuros será superar algunas de

las limitaciones del presente trabajo que se ha desarrollado hasta el

momento.

- A partir de los diseños alcanzados en los nodos hoja, se pueden

utilizar modelos abstractos que representen estos diseños y ser

entrada para modelos MDD.

- Implementar otra herramienta colaborativa con varios analistas que

apoyen en la construcción y el uso de cualquier estructura de árbol.

- Se pueden realizar otros experimentos en el futuro para aumentar el

tamaño de la muestra y poder determinar cómo el nivel de

experiencia del analista y la complejidad de los problemas puede

afectar a los resultados.

- Comparar UREM con otros métodos de entrevista estructurada.

204

Referencias

1. Berendes, S., et al., Evaluating the usability of open source
frameworks in energy system modelling. Renewable and
Sustainable Energy Reviews, 2022. 159: p. 112174.

2. Jeong, J., N. Kim, and H.P. In, Detecting usability problems in
mobile applications on the basis of dissimilarity in user
behavior. International Journal of Human-Computer Studies,
2020. 139: p. 102364.

3. Calvary, G. and J. Coutaz, Introduction to model-based user
interfaces. Group Note, 2014. 7: p. W3C.

4. Silveira, S.A.M., et al., On the evaluation of usability design
guidelines for improving network monitoring tools interfaces.
Journal of Systems and Software, 2022. 187: p. 111223.

5. Bass, L. and B.E. John, Linking usability to software
architecture patterns through general scenarios. Journal of
Systems and Software, 2003. 66(3): p. 187-197.

6. Folmer, E. and J. Bosch, Architecting for usability: a survey.
Journal of systems and software, 2004. 70(1-2): p. 61-78.

7. Svensson, R.B., et al., Quality requirements in industrial
practice—an extended interview study at eleven companies.
IEEE transactions on software engineering, 2011. 38(4): p. 923-
935.

8. Acerbis, R., et al. Webratio 5: An eclipse-based case tool for
engineering web applications. Springer.

9. Koch, N., et al., UML-based web engineering. web engineering:
modelling and implementing web applications. Human-
Computer Interaction Series, 2008: p. 157-191.

10. Selic, B., The pragmatics of model-driven development. IEEE
software, 2003. 20(5): p. 19-25.

11. Wieringa, R. Design science methodology: principles and
practice.

12. Urbieta, M., et al., The impact of using a domain language for
an agile requirements management. Information and
Software Technology, 2020. 127: p. 106375.

13. Laurel, B. and S.J. Mountford, The art of human-computer
interface design. 1990: Addison-Wesley Longman Publishing
Co., Inc.

205

14. Cysneiros, L.M., V.M. Werneck, and A. Kushniruk. Reusable
Knowledge for Satisficing Usability Requirements. in 13th IEEE
International Conference on Requirement Engineering. 2005.
Washington, DC, USA: IEEE Computer Society.

15. Panach, J.I., et al. Dealing with Usability in Model
Transformation Technologies. in ER 2008. 2008. Barcelona:
Springer LNCS 5231.

16. Juristo, N., A.M. Moreno, and M.I. Sánchez, Guidelines for
Eliciting Usability Functionalities. IEEE Transactions on
Software Engineering, 2007. 33(11): p. 744-758.

17. Juristo, N., Impact of Usability on Software Requirements and
Design, in Software Engineering, L. Andrea and F. Filomena,
Editors. 2009, Springer-Verlag. p. 55-77.

18. Campos, J., et al., Systematic Analysis of Control Panel
Interfaces Using Formal Tools Interactive Systems. Design,
Specification, and Verification. 2008, Springer-Verlag: Berlin,
Heidelberg. p. 72-85.

19. Grosse, D., et al., Supporting Tool for Usability Specifications,
in World Congress on Medical Physics and Biomedical
Engineering, R. Magjarevic, Editor. 2009, Springer-Verlag:
Munich, Germany. p. 845-847.

20. Jokela, T., et al., Methods for Quantitative Usability
Requirements: A Case Study on the Development of the User
Interface of a Mobile Phone. Personal Ubiquitous Comput.,
2006. 10(6): p. 345-355.

21. Ameller, D., X. Franch, and J. Cabot. Dealing with Non-
Functional Requirements in Model-Driven Development. in
18th IEEE International Conference on Requirements
Engineering (RE). 2010. Sydney, NSW.

22. Yi, L., M. Zhiyi, and S. Weizhong, Integrating Non-functional
Requirement Modeling into Model Driven Development
Method, in 2010 Asia Pacific Software Engineering Conference.
2010, IEEE Computer Society.

23. Fatwanto, A. and C. Boughton, Analysis, Specification and
Modeling of Non-Functional Requirements for Translative
Model-Driven Development, in International Conference on
Computational Intelligence and Security. 2008, IEEE Computer
Society: Washington, DC, USA. p. 405-410.

24. Nguyen, Q.L. Non-Functional Requirements Analysis Modeling
for Software Product Lines. in ICSE Workshop on Modeling in

206

Software Engineering. 2009. Washington, DC, USA: IEEE
Computer Society.

25. Sindhgatta, R. and T. Srinivas, Functional and Non-functional
Requirements Specification for Enterprise Applications, in
Product Focused Software Process Improvement. 2005,
Springer-Verlag: Berlin Heidelberg. p. 189-201.

26. Doerr, J., et al. Non-functional Requirements in Industry - Three
Case Studies Adopting an Experience-based NFR Method. in
13th IEEE International Conference on Requirements
Engineering. 2005. Washington, DC, USA: IEEE Computer
Society.

27. Martinie, C., et al. DREAMER: A Design Rationale Environment
for Argumentation, Modeling and Engineering Requirements.
in 28th International Conference on Design of Communication.
2010. Säo Paulo, Brazil: ACM.

28. Akoumianakis, D., A. Katsis, and N. Vidakis. Non-Functional
User Interface Requirements Notation (NfRn) for Modeling the
Global Execution Context of Tasks. in 5th International
Conference on Task Models and Diagrams for Users Interface
Design. 2007. Hasselt, Belgium: Springer-Verlag.

29. Röder, H., Using Interaction Requirements to Operationalize
Usability, in ACM Symposium on Applied Computing. 2010,
ACM: Sierre, Switzerland.

30. Shehata, M., A. Eberlein, and A. Fapojuwo, O., A Taxonomy for
Identifying Requirement Interactions in Software Systems.
Comput. Netw., 2007. 51(2): p. 398-425.

31. Cronholm, S. and V. Bruno. Do You Need General Principles or
Concrete Heuristics?: A Model for Categorizing Usability
Criteria. in 20th Australasian Conference on Computer-Human
Interaction: Designing for Habitus and Habitat. 2008. Cairns,
Australia: ACM.

32. Henninger, S., A Methodology and Tools for Applying Context-
specific Usability Guidelines to Interface Design. Journal
Interacting with Computers, 2000. 12(3): p. 225-243.

33. Sajedi, A., et al. Fundamental Usability Guidelines for User
Interface Design. in International Conference on
Computational Sciences and Its Applications ICCSA. 2008.
Washington, DC, USA: IEEE Computer Society.

207

34. Soares, M.S. and J.L.M. Vrancken, Model-driven User
Requirements Specification using SysML. Journal of Software,
2008. 3(6): p. 57-68.

35. Sutcliffe, A.G., S. Kurniawan, and S. Jae-Eun, A Method and
Advisor Tool for Multimedia User Interface Design. Int. J. Hum.-
Comput. Stud., 2006. 64(4): p. 375-392.

36. Escalona, M.J. and G. Arag, NDT. A Model-Driven Approach for
Web Requirements. IEEE Trans. Softw. Eng., 2008. 34(3): p.
377-390.

37. Escalona, M.J., et al., Metamodeling the Requirements of Web
Systems Web Information Systems and Technologies, W. Aalst,
et al., Editors. 2007, Springer Berlin Heidelberg. p. 267-280.

38. Panach, J.I., España, S., Pederiva, I., Pastor, O., Capturing
Interaction Requirements in a Model Transformation
Technology Based on MDA, in Journal of Universal Computer
Science (JUCS). 2007.

39. Lauesen, S. Usability Requirements in a Tender Process. in
Computer Human Interaction Conference, 1998. 1998.
Australia.

40. Sutcliffe, A., G. and M. Ryan, Experience with SCRAM, a
SCenario Requirements Analysis Method, in 3rd International
Conference on Requirements Engineering: Putting
Requirements Engineering to Practice. 1998, IEEE Computer
Society. p. 164-171.

41. Cysneiros, L.M. and J.C.S.P. Leite, Nonfunctional
Requirements: from Elicitation to Conceptual Models. IEEE
Trans. on Softw. Eng., 2004. 30(5): p. 328-350.

42. Jokela, T., et al., 8 Guiding Designers to the World of Usability:
Determining Usability Requirements through Teamwork, in
Human-Centered Software Engineering - Integrating Usability
in the Software Development Lifecycle. 2005, Springer
Netherlands. p. 127-145.

43. Gunduz, F. and A.S.K. Pathan. Usability improvements for
touch-screen mobile flight booking application: A case study.
in Proceedings - 2012 International Conference on Advanced
Computer Science Applications and Technologies, ACSAT 2012.
2012.

44. Troyer, O.D. and E. Janssens. A feature modeling approach for
domain-specific requirement elicitation. in 2014 IEEE 4th

208

International Workshop on Requirements Patterns (RePa).
2014.

45. Fahey, P., et al. Human computer interaction issues in eliciting
user requirements for an Electronic Patient Record with
multiple users. in 2011 24th International Symposium on
Computer-Based Medical Systems (CBMS). 2011.

46. Temper, M., S. Tjoa, and M. Kaiser. Touch to authenticate—
Continuous biometric authentication on mobile devices. in 1st
International Conference on Software Security and Assurance
(ICSSA). 2015. IEEE.

47. Rocha Silva, T., M. Winckler, and C. Bach, Evaluating the usage
of predefined interactive behaviors for writing user stories: an
empirical study with potential product owners. Cognition,
Technology & Work, 2020. 22(3): p. 437-457.

48. De Carvalho, E.A., A. Jatobá, and P.V.R. De Carvalho. Usability
for complex systems?: An experimental evaluation with
functional resonance analysis method. in IHC 2019 -
Proceedings of the 18th Brazilian Symposium on Human
Factors in Computing Systems. 2019.

49. Nhavoto, J.A., Å. Grönlund, and W.P. Chaquilla, SMSaúde:
Design, development, and implementation of a remote/mobile
patient management system to improve retention in care for
HIV/aids and tuberculosis patients. JMIR mHealth and
uHealth, 2015. 3(1).

50. Elias, E., et al., Towards an ontology-based system to improve
usability in collaborative learning environments, in Lecture
Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics).
2012. p. 298-303.

51. Yuan, X. and X. Zhang. An ontology-based requirement
modeling for interactive software customization. in 2015 IEEE
International Model-Driven Requirements Engineering
Workshop (MoDRE). 2015.

52. Abad, Z.S.H., et al. Loud and Interactive Paper Prototyping in
Requirements Elicitation: What is it Good for? in 2018 IEEE 7th
International Workshop on Empirical Requirements
Engineering (EmpiRE). 2018.

53. Márquez, G. and C. Taramasco, Using Dissemination and
Implementation Strategies to Evaluate Requirement Elicitation

209

Guidelines: A Case Study in a Bed Management System. IEEE
Access, 2020. 8: p. 145787-145802.

54. Abdallah, A., R. Hassan, and M.A. Azim. Quantified extreme
scenario based design approach. in Proceedings of the ACM
Symposium on Applied Computing. 2013.

55. Vitiello, G., et al. UX-requirements for patient's empowerment
- The case of multiple pharmacological treatments: A case
study of it support to chronic disease management. in
Proceedings - 2017 IEEE 25th International Requirements
Engineering Conference Workshops, REW 2017. 2017.

56. Tanikawa, Y., R. Okubo, and S. Fukuzumi, Process support
method for improved user experience. NEC Technical Journal,
2014. 8(3): p. 28-32.

57. Abad, Z.S.H., et al. Learn More, Pay Less! Lessons Learned from
Applying the Wizard-of-Oz Technique for Exploring Mobile App
Requirements. in 2017 IEEE 25th International Requirements
Engineering Conference Workshops (REW). 2017.

58. Peruzzini, M. and M. Germani. Designing a user-centred ICT
platform for active aging. in 2014 IEEE/ASME 10th
International Conference on Mechatronic and Embedded
Systems and Applications (MESA). 2014.

59. Lewis, J.R., IBM computer usability satisfaction questionnaires:
psychometric evaluation and instructions for use. International
Journal of Human‐Computer Interaction 995. 7(1): p. 57-78.

60. Davis, F.D., User acceptance of information technology: system
characteristics, user perceptions and behavioral impacts.
International journal of man-machine studies, 1993. 38(3): p.
475-487.

