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Abstract: One of the most powerful techniques to diagnose cardiovascular diseases is to analyze
the electrocardiogram (ECG). To increase diagnostic sensitivity, the ECG might need to be acquired
using an ambulatory system, as symptoms may occur during a patient’s daily life. In this paper, we
propose using an ambulatory ECG (aECG) recording device with a low number of leads and then
estimating the views that would have been obtained with a standard ECG location, reconstructing the
complete Standard 12-Lead System, the most widely used system for diagnosis by cardiologists. Four
approaches have been explored, including Linear Regression with ECG segmentation and Artificial
Neural Networks (ANN). The best reconstruction algorithm is based on ANN, which reconstructs
the actual ECG signal with high precision, as the results bring a high accuracy (RMS Error < 13 µV
and CC > 99.7%) for the set of patients analyzed in this paper. This study supports the hypothesis
that it is possible to reconstruct the Standard 12-Lead System using an aECG recording device with
less leads.

Keywords: cardiovascular diseases; electrocardiogram; ambulatory monitoring; lead reconstruction;
artificial neural network; standard 12-lead system

1. Introduction

An electrocardiogram (ECG) is the registration of the electrical activity of the heart
by recording the potential on the surface of the patient’s body. The most common way to
record this information is the well-known Standard 12-Lead System [1], which requires
ten defined electrode locations. This number of electrodes allows the system to have
some redundancy and provides better projections to identify certain pathologies [2–4].
Nevertheless, the greater the number of electrodes, the greater the risk of problems related
to the adhesion of an electrode or the deterioration of a wire and its connection to the
recording device. This is also true for motion artifacts, which will be greater if there are
more cables that may facilitate the appearance of this noise [5]. In addition, a larger number
of electrodes increases the risk that the placement of electrodes may vary along the different
records taken, which in turn increases the risk of ECG signal deviations [6].

To avoid all these complications, the reconstruction of missing ECG leads from a
reduced set of leads is of increasing importance [7,8]. Most reconstruction techniques are
used to reconstruct any unavailable leads from the redundant information inherent in the
12-Lead system [9]. Computerized algorithms have been developed to reconstruct the ECG
of missing leads [10]. In the beginning, a set of reduced leads of the 12-Lead system were
used, such as the II, V2 and V6 leads [11]. Dower later used a sub-system of Frank’s leads,
the EASI Lead System, from which to extract the 12-lead standard system [12].

Reconstruction can be done by using either general or patient specific coefficients or
models [13]. General methods are based on a unique transform matrix from which to extract
the general coefficients, preventing the specific reconstruction for each patient, which is
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known to be inaccurate. A higher level of accuracy in the reconstruction is possible using
specific reconstruction coefficients for each patient, reducing the deviation in the results for
each patient. In practice, most current reconstruction techniques are used to reconstruct
temporarily unavailable leads, for example, accidentally detached electrodes using the
redundancy inherent to the Standard 12-Lead System. Based on the initial assumption
that the electrical activity of the heart can be represented by a dipole model, or a cardiac
vector, only three orthogonal leads should be necessary for the complete reconstruction
of the electrical activity of the heart [9]. According to Willem Einthoven and Augustus
Waller in 1903, this model was the accepted one. It is true that at this moment this is
not the most accurate method to describe the model of the heart, as referred to so many
times by the forward problem in cardiology [14], but the approximation is good enough to
model the most basic reconstruction algorithms such as, for instance, the linear regression
method [15].

To support the use of these methods, it has been shown that a reduced lead system
may reproduce the information contained in the Standard 12-Lead System in controlled
conditions [8]. This has been demonstrated by assessing the accurate reconstruction of the
original 12-Lead ECG waveforms as well as comparing the diagnosis capabilities of both
reconstructed and acquired ECG records. In conclusion, systems with a reduced number
of leads may play an important role in ECG monitoring with a broader adoption in the
out-of-hospital environment [16].

The aim of this study is to assess the feasibility to reconstruct the Standard 12-Lead Sys-
tem of a clinical ECG from a reduced number of leads acquired with an aECG device. Due
to that reason, we were looking for a low cost, fast, low power consumption and relatively
easy to retrofit system. These characteristics made us choose simpler machine learning
techniques over more powerful techniques, but also more computationally expensive.
To reconstruct the standard leads, different methods will be tested, from the commonly
used Linear Regression method to the use of ANN. In all cases, the procedure involves
personalizing the parameters for each patient. The remainder of the paper is organized as
follows. Section 2 will describe the analyzed records and techniques applied. Section 3 will
cover the results. Section 4 contains the discussion. Conclusions and suggestions for future
work will follow.

ECG Reconstruction Methods

To carry out the reconstruction of the ECG signal, many studies have been published
that use a wide range of methods, as described below. Linear Regression reconstruction
models are based on the cardiac vector reconstruction by using its projections in the
captured leads [12]. This is carried out using Linear Regression adjustment, the oldest and
most widely used method to perform the reconstruction. The goal is to minimize the sum
of the squared errors to fit the data set. Thus, the voltage measured at an arbitrary point
of the body, V, can be defined by Equation (1) as the projection of the cardiac vector, ~H,
with the corresponding vector generated by pointing to that point from the midpoint of
the cardiac vector,~L [17]:

V = ~H~L = aX + bY + cZ (1)

where ~H = X~i + Y~j + Z~k and~L = a~i + b~j + c~k. Furthermore, X, Y, and Z coefficients can
be replaced by any set of leads due to the linear condition of the cardiac model. In addition,
a, b, and c are the transformation coefficients that can be modeled by a Least Squares Linear
Regression model, providing the following solution for, as instance, three independent
leads, L1,2,3: ai

bi
ci

 =

 ∑ L2
1 ∑ L1 · L2 ∑ L1 · L3

∑ L1 · L2 ∑ L2
2 ∑ L2 · L3

∑ L1 · L3 ∑ L2 · L3 ∑ L2
3

−1

·

∑ V · L1
∑ V · L2
∑ V · L3

 (2)
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Which can be written as:

NewLead = Coe f 1 · ~Lead1 + Coe f 2 · ~Lead2 + Coe f 3 · ~Lead3 (3)

These coefficients can be applied to the entire signal, although the different waves
that constitute the ECG can also be taken into account to select different coefficients,
as suggested in past studies [18]. A common approach is to use two sets of coefficients,
one for the reconstruction of most of the ECG and the other for the reconstruction of the
much lower energy and highly clinically relevant P wave [9], as it is the reference for some
pathology diagnostics, such as left ventricular interstitial fibrosis [19].

The EASI Lead System plays an important role in this field. Several works have pro-
posed this system to carry out the reconstruction by means of general coefficients that can
be tuned for each patient or application [20]. In this aspect, it has been demonstrated that a
satisfactory reconstruction of the Standard 12-Leads using EASI ones can be performed,
allowing its use in pathologies diagnosis [7,8,20–23].

Around the 1950s, new data processing systems based on a simplistic version of brain
functioning emerged. These systems are called ANN and are one of the most widely used
systems in the field of Machine Learning algorithms to date. A conventional ANN is based
on a set of connected nodes called neurons that roughly mimic the functioning of a neuron
in a real brain. These neurons gather information collected from other cells, process it,
and then transmit another signal through synapses towards other neurons, thus allowing
the processing and transfer of information [24]. In an ANN, these signals are actually
numbers, which enter each neuron and are adjusted by a weight that is what learning
regulates. In the neuron, they are computed by a non-linear function and a comparison
with a threshold determines if the signal is propagated or not to the rest of the neurons
connected to it [25].

Neurons that form the network are usually aggregated in layers. The first layer is
known as the input layer, where data or signals are fed in. This information is processed by
the hidden layer(s), and the final result comes from the output layer.

There are some cases where ECG reconstruction does not optimally perform with
linear approximations. Non-linear methods, such as ANNs, may provide more accurate
reconstructions in situations where linear methods fail [26]. In the field of ECG lead
reconstruction, one of the procedures is to take some lead signals from the Standard
12-Lead System as input parameters and then use them to reconstruct other leads at
the output of the ANN. They may improve the ECG leads reconstruction obtained with
Linear Regression [16,18,25,26]. As the method proposed by [26], where their method
based on ANN reconstruction is so robust that the differences between original ECG and
the reconstructed ECG were due to electrode misplacement, and not provoked by the
method itself.

There are several ways to increase the performance of these systems, for example,
by incorporating them into ANN committees to improve the robustness and accuracy [16]
or by applying genetic algorithms for the extraction of features from learning data [18,27].

Currently, several teams are addressing this challenge using the Deep Learning ap-
proach, which has gained popularity in recent years. To do so, they use complex models
with a high number of parameters to carry out this task. From reconstruction using Long-
Short Term Memory (LSTM) cells [28] to Convolutional Neural Networks (CNN) [29], pass-
ing through regression trees [30], these models are computationally demanding, and we
decided to take a different approach by using simpler models that are able to perform the
same task with the same level of accuracy.

2. Materials and Methods
2.1. ECG Recordings

The ECG records required for the study have been acquired using a proprietary system
shown in Figure 1 based on the ADAS1000 analog front end, from Analog Devices Inc. [31].
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This system is a 19-channel synchronous acquisition system, sampling at 1kHz with a 16-bit
resolution using four ADAS1000.

Figure 1. ADAS1000 based board for high quality ECG signal recording.

Electrocardiogram records lasting between 60 s and 120 s were recorded from five men
and two women, aged from 23 to 54 years, with different morphologies. They have been
obtained accomplishing GDPR regulation by ensuring full patient anonymization. One of
them presented a right bundle branch block and another one had premature ventricular
contractions. As previously mentioned, data from 19 channels were captured. Subsequently
different subsets of those 19 channels were analyzed, e.g., the Standard 12-Lead System,
the 3 EASI Leads, as well as different 3-leads combinations.

The ECG records were preprocessed to mitigate noise. Two 4th order Butterworth IIR
bi-directional filters were applied. A low-pass filter with 150 Hz cut off frequency mitigates
myoelectric noise and high-frequency interference, and a high-pass filter with a 0.67 Hz
cut-off frequency reduces baseline wandering and offset.

2.2. Reconstruction Algorithms

As previously mentioned, to obtain the Standard 12-Lead System ECG, theoretically,
at least three ECG leads are required [11]. This minimum use case of three leads is used
in this work. Reconstruction was carried out as described in Figure 2. The reconstruction
algorithm model was trained for a time that was empirically determined, and the rest of
the record was processed with the obtained model. The goodness of the reconstruction was
evaluated comparing the estimated signal with the actual one recorded at the standard
leads position using the five Figures of Merit (FoM) that will be defined in Section 2.3.
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Figure 2. Reconstruction methodology.

Four strategies for reconstruction were implemented. Two are based on linear regres-
sors and two are based on ANNs. Linear Regression by minimum squares reconstruction
models are based on the cardiac vector reconstruction by using its projections in the cap-
tured leads. The goal is to model the cardiac vector representation on each lead from
the Standard 12-Lead system by the Least Squares Linear Regression, as described in
(2) and (3). This is a well-known approach, and it will be the control case from which to
compare the rest of the algorithms and assess their efficacy.

The least squares method tends to focus on the areas with higher energies, which is the
QRS complex in the case of the ECG, and may ignore other waves with lower energies in the
ECG signal such as the P-wave, which decrease its reconstruction performance. A variation
is proposed that consists in dividing the ECG signal in two segments, separating the P
wave from the rest of the beat. To generate the ECG segmentation, it is necessary to identify
some fiducial points. In this case, since only the identification of the P wave was necessary,
the delimitation of it was carried out from the detection of R peaks and the measurement of
RR intervals. From this, the beginning and the end of the P wave, P1 and P2, respectively,
are defined in terms of relative percentage of duration of the RR interval. The values
empirically obtained were 57.5% of the RR interval for the beginning of the P wave and
92% of the duration of the RR interval for the end of the P wave, as shown in Figure 3. We
generate two sets of buffers with the 3 original signals. In this case, derivations of the EASI:
ES, AS and AI, and the signal to reconstruct, X The first buffer is labeled 0, and contains the
P-wave fragment. The second buffer, marked as 1, contains the rest of the signal. Then, we
obtain two different sets of coefficients from the three original signals from the EASI, β0
and β1, from both set of buffers, respectively. Finally, the two linear regressors with the
coefficients are applied: one for the P wave segment, and a second one for the rest of the
ECG signal, as indicated in Figure 4. These results will then be concatenated and compared
with the original signal.
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Figure 3. Methodology of P wave segmentation.

Figure 4. Block diagram of the P wave segmentation algorithm to reconstruct the ECG signal.

The other two approaches are based on ANN using a Multilayer Perceptron. To syn-
thesize each of the 12 leads from the three acquired leads, a one hidden layer feed-forward
ANN system is trained with the Levenberg–Marquardt algorithm [32]. The non-linear
transfer function applied in the hidden layer is the hyperbolic tangent sigmoid function.

Two different strategies are explored. One of them uses 12 ANNs (ANN/Lead), one
per reconstructed lead (Figure 5a). Therefore, each ANN has a single neuron in the output
layer. On the other one, a single ANN has 12 output neurons (All-Lead ANN), one per
lead (Figure 5b). The same number of neurons in the single hidden layer was used for both
architectures, which was decided empirically based on a sweep of different layer sizes,
choosing a trade-off between the optimal result and a convenient computational expense.
This was obtained empirically based on the results of the stability and accuracy for the
most demanding of the two models, which is the reconstruction of the ANN with twelve



Sensors 2021, 21, 5542 7 of 16

outputs. In this way, we may fairly compare both architectures, as the single output ANNs
are simpler and might require fewer neurons in the hidden layer.

Figure 5. ANN to reconstruct ECG: (a) single lead of the Standard 12-Lead system and (b) all leads
of the Standard 12-Lead System simultaneously.

2.3. Reconstruction Assessment

The choice of the FoMs to evaluate the accuracy of the reconstruction is not trivial.
Choosing certain FoMs and not others will lead us to evaluate some characteristics and
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not others. In [33], they conduct a study on what should be a robust set of parameters to
evaluate the fidelity of the ECG signals. Although this work was done for ECG compression,
its principles are applicable to our field, as we also elaborate a kind of ECG decompression.
According to the results and conclusions from [33], and our own analysis, five FoMs were
selected to assess the reconstruction quality of the ECG signal:

Root Mean Square Error, RMS or VRMS, is mathematically described by Equation (4),
where xn is the original signal, x̃n is the reconstructed signal, and n is the index of each
sample of the signal of length N. VRMS has the advantage that it keeps the original units
of measure, millivolts (mV), although here it has been converted to microvolts (µV) to
facilitate its understanding in future graphic representations [34].

VRMS(µV) =

√√√√ 1
N

N

∑
n=1
|x̃n − xn|2 (4)

Cross Correlation, CC, expressed as a percentage % is defined by Equation (5), where
µxn and µx̃n are the global averages of the original and reconstructed signals, respectively,
and σxn and σx̃n are the standard deviations of the original and reconstructed signals,
respectively, in addition to the variables defined above. As mentioned before, many
authors use this method, so the new results can be easily compared with theirs [34,35].
Nevertheless, the CC is not an accurate estimator of the reconstruction goodness, because it
rests most of its value in the fitting of the isoelectric line and, in any case, to the high energy
QRS complex. The rest of the ECG wave morphology does not substantially affect this
parameter, which may be critical to the diagnosis of certain pathologies.

CC(%) = 100 · 1
N − 1

N

∑
n=1

(
x̃n − µx̃n

σx̃n

)(
xn − µxn

σxn

)
(5)

Maximum Amplitude Distance, or Maximum Amplitude Error, MAD or MAX, is
mathematically described by Equation (6). It brings information about local distortion of
the signal and is usually calculated separately for each cycle, while here it was measured
for the complete recording. MAD also maintains the original units of measure, millivolts
(mV), although here, as with RMS, it has been converted to microvolts (µV) to facilitate
graphic representations. It is one of the most used similarity metrics [33,35].

MAD(µV) = max
n
|x̃n − xn|, 1 6 n 6 N (6)

Sum of the Square of the Distances, SSD, is defined by Equation (7). It allows us to
measure the accumulated error and gives an approximation about how the signals differ in
their full length [35]. As it is the square of the differences, its measurement units are, in this
case, square millivolts (mV2), to simplify its interpretation with the rest of the parameters.

SSD(mV2) =
N

∑
n=1

(x̃n − xn)
2 (7)

Signal to Noise Ratio, SNR, takes noise as the difference between the original signal and
the reconstructed signal, as described in Equation (8), where x̃ is the reconstructed signal
and x̄ the mean of the original signal. As SNR expresses signal levels, its measurement
units are decibels (dB).

SNR(dB) = 10 · log10

(
∑N

n=1 [xn − x̃n]
2

∑N
n=1 [xn − x̄n]

2

)
(8)
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The five FoMs are obtained for each reconstruction method and electrode location.
The evaluation of significance between the control method and the rest of the reconstruction
methods will be done by means of the Wilcoxon rank sum test [36] for each FoM.

2.4. Leads Placement

To validate the technique, in addition to the ten 12-Lead electrode locations, we
consider the Dower location as it is supported by prior publications [12], and we also
propose additional locations that might result on electrodes positions that adapt better
to both physiological and anatomical constrains, such as a voluminous breast, a scar in
standard positions, etc. It involves four electrodes, three of them located on the chest. V2
is the same as in the Standard 12-Lead System, P7 is located in the fifth intercostal space
just to the right of the sternum, P8 is located In the fifth intercostal space just to the left of
the sternum, and B8, horizontally following the line that V5 and V6 form, opposite to V5.
Thus, forming three leads: P8-P7, V2-B8 and P8-B8. See layout in Figure 6. These leads
were selected for several reasons. They are closer together than those forming the EASI,
which makes placement and wearability more comfortable. The formed leads form a set of
quasi-orthogonal leads, in the same direction as the EASI does. Furthermore, those leads
returned the best reconstruction results.

Figure 6. Additional electrodes location. In blue dots, the Dower location, and in red and purple, our
proposed location. Red dots (V2, P7 and P8) are located in the patient’s chest, and the purple one
(B8) is placed in the back. In black, the standard precordial leads are shown for reference.

3. Results

The two linear regressors and both ANN methods are trained for every patient in
order to achieve the best results. The size of the training set was empirically established,
and is set to 16 s (16,000 samples). The remaining of the record, 104 s (104,000 samples),
is used for the test. All results shown have been obtained from the test part of the rest of
the records.

The results have been expressed in terms of median and interquartile ranges repre-
sented in the form of boxplots in Figure 7. The results for both Linear Regression methods
are represented in blue and red for the simple Linear Regression method and the P-wave
segmentation method, respectively. The ANN strategies are represented in green and
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purple for the ANN/lead and the unique ANN methods, respectively. Independence of
each group of results has been studied for each FoM between the control method (simple
Linear Regression) and the other three proposed reconstruction methods, as shown in
Table 1. The differences of all the FoMs in both methods involving ANN with respect to the
control are highly significant. On the contrary, the P wave segmentation method does not
show significant differences for any of the five FoMs. No significant difference was found
between the two ANN-based algorithms by means of the Wilcoxon test. Figure 7 shows
the FoMs for each method to reconstruct the Standard 12-Lead System from the three leads
of the Dower location.

Figure 7. Boxplot graphical representation of the five FoMs for each of the four ECG reconstruction
methods studied. The results for both Linear Regression methods are represented in blue and red for
the simple Linear Regression method and the P-wave segmentation method, respectively. The ANN
strategies are represented in green and purple for the ANN/lead and the unique ANN methods,
respectively. The parameters have been divided into three graphs to facilitate their visualization
and interpretation.
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Table 1. p-values of the independence test between the control reconstruction algorithm, the Linear
Regression, and the rest of the ECG reconstruction algorithms.

P-Wave Seg. ANN/Lead All-Lead ANN

RMS 0.2144 <0.001 <0.001
CC 0.2626 <0.001 <0.001

MAD 0.7928 <0.001 <0.001
SSD 0.2220 <0.001 <0.001
SNR 0.2821 <0.001 <0.001

The results for both ANN strategies are significantly better than the Linear Regression
methods for the five FoM analyzed. There are no meaningful differences between the
original signals and the reconstructed ones by both strategies based on ANNs. As for the
execution time, a single network with 12 outputs is slower to converge than the 12 single
output networks. For that reason, this is the preferred implementation, and it is very likely
that these networks would require less neurons in the hidden layer, although this requires
a more thorough validation and it is beyond the purpose of this paper.

An example of the reconstruction of an ECG fragment of lead II from a random patient
has been shown in Figure 8. This choice was randomly determined to ensure no bias in the
quality of the reconstruction, either by a healthy or pathologic patient or by other biases
such as signal quality due to skin type. It can be seen that the reconstruction is acceptable in
all cases, being, as the general results in Figure 7 show, better in the case of reconstruction
by ANN than by both linear approaches. An underestimation of the amplitude can be
appreciated in Figure 8, where these second type of regressors in the reconstruction of the
P wave, as well as the peaks of the QRS complex, especially in the Q and S waves.

Figure 8. Reconstruction by the described methods of an ECG fragment of lead II of one of the patients. To perform the
reconstruction, EASI leads were chosen. Two of the five FoMs, RMS error and CC, are indicated. In blue, the original signal
and, superimposed in orange, the reconstructed signal.
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Table 2 shows the results obtained in Figure 9, which is the reconstruction using
the alternative position proposed by the authors, which is leads P8-P7, V2-B8 and P8-B8,
as indicated in Figure 6.

Table 2. Results obtained in the reconstruction showed in Figure 8 for the proposed location.
The average values of each FoM for the 12 leads are shown.

RMS(µV) CC(%) MAD(µV) SSD (mV2) SNR (dB)

12.99 99.73 70.19 18.46 22.61

4. Discussion

The reconstructions carried out by the algorithms based on both ANN approaches are
visually perfect, there are no differences between the original signals and the reconstructed
ones, as shown in Figure 9.

Figure 9. Reconstruction of the Standard 12-Lead System applying the 12-output ANN-based algorithm for the set of
electrodes and leads chosen as the best option. First position was obtained by electrodes V2, P7, P8 and B8; arranged in leads
P8-P7, V2-B8 and P8-B8. The original 12 leads are represented in blue, and the 12 reconstructed leads are superimposed
in red.

Table 1 shows the comparison in terms of the significance between the sets of results
obtained in reconstruction using the methods cited. We did not obtain significant values
of independence between the FoMs obtained from the simple Linear Regression and the
Linear Regression with two sets of coefficients, one of them for the P-wave. In contrast,
both groups corresponding to the ANN reconstruction showed a very high significance in
their independence from the control group, the Linear Regression. For these sets, the evalu-
ation values of the RMS, MAD and SSD reconstruction adjustment fell sharply, and the
CC and SNR increased. Our results are supported by the results of other publications
on the topic [16,26,37], which confirm that the best algorithm for reconstructing the elec-
trocardiographic leads of the Standard 12-Lead System is the artificial neural networks
reconstruction algorithm.
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Compared with other works, our proposed location for the reconstruction improves
the reconstruction of the Standard 12-Lead System when compared to others that use
electrodes arranged in a pseudo-arbitrary way on the patient’s chest. Ref. [37] obtains, with
their best configuration, a mean value of 97.9% for the CC and a mean value of 27.4 µV for
the RMS Error. Ref. [30] obtains a mean value of 98.7% for the CC. Our proposed location
obtains a mean value of 99.73% for the CC and a mean value of 12.99 µV for the RMS Error.

The robustness of the reconstruction algorithm was validated by acquiring records
from the same individual at different times and days and the reconstruction was carried
out without retraining. No significant degradation in performance was noticed as shown
in Figure 10.

Figure 10. Results for one of the FoMs (the RMS error) where the reconstruction is evaluated
over several days at different time instants. To carry out this reconstruction, the algorithm (ANN
for each lead) was only trained with the first 16 s of the first record, and the model performed
the reconstruction of the rest of the records, without any feedback. The x-axis shows the records,
identified with the day D and the time xxHxx at which they were taken, and the y-axis shows the
standard leads, as well as their mean RMS Error value for each record.

We also verified the quality of the reconstruction for different positions, mostly fowler
and supine, of the patient while at rest. No errors were observed even if the patients
modified their position from training to test. In addition, records obtained in the presence
of moderate physical activity showed no worsening in their reconstruction.

One of the problems with the choice of these FoMs is that if the original signal with
which to compare the reconstruction presents noisy artifacts, the FoMs will worsen, since
the reconstructed signal tends to be cleaner and not matches the original, as seen in Figure 8.
In this example, the reconstructed signal, in orange, is smoother than the original, the blue
one. This smoothing is due to the absence of noise that the reconstructed signal has, which
is caused by, among other reasons, the use of several leads to reconstruct, which reduces
the noise of the resulting signal. This may be misleading as the actual ECG signal does
not contain those disturbances, as it is noise added to the signal, so FoM should always be
critically analyzed. Furthermore, when we reconstructed a certain lead under moderate
exercise we might observe that the actual signal had poorer quality than the reconstructed
one as was affected by electromyographic noise.

The main limitation of this study is the lack of records in databases with sufficient
time to carry out the training and testing process. We need databases that contain many
channels, not only those of the Standard 12-Lead System, but others with which to train
these additional configurations. That is why the records must be taken by ourselves, which
means a delay in the ability to get new patients.
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5. Conclusions

This work has demonstrated the feasibility of an aECG system that might continuously
and non-intrusively acquire ECG records from a small set of electrodes and reconstruct the
signals of the Standard 12-Lead System, the most extended method in clinical procedures,
after a short training, specific for each patient. We have explored different strategies
to reconstruct the ECG, the best being reconstruction by ANN. In addition, an optimal
position has been proposed.

This work makes a more exhaustive analysis of the quality of the reconstruction
than the vast majority of studies, which only focus on the RMS error and the CC. These
two FoMs tend to undervalue the quality of the areas of the ECG with less energy. We
emphasized the reconstruction of less energetic areas of the ECG such as the P wave due to
their clinical relevance.

Alternative algorithms to increase robustness such as the use of committees or the
implementation of genetic algorithms to define the initial weights in the ANN will be
explored. We will also consider approaches to overcome the lack of explainability of the
ANN approach.

As mentioned before, and supported by [9], using general coefficients to perform
the reconstruction would lead to less accurate results. We suggest that, once the specific
coefficients are obtained, they can be analyzed to infer some possible relationship between
patients with similar conditions or physiognomies that would allow to speed up the
training of the models, which would not necessarily start from scratch, applying some kind
of transfer learning to these models [38].

These assumptions must be re-evaluated with the existence of new data, if possible
pathological, to confirm, on the one hand, their diagnostic effectiveness and, on the other
hand, whether the hypotheses of this work are correct. In addition, certain relationships
between pathologies or patient physiognomies may appear to be of interest.
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