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Abstract: Tablas de Daimiel National Park (TDNP) is a unique inland wetland located in the Mancha
plain (Spain). It is recognized at the international level, and it is protected by different figures, such
as Biosphere Reserve. However, this ecosystem is endangered due to aquifer overexploitation, and it
is at risk of losing its protection figures. The objective of our study is to analyze the evolution of the
flooded area between the year 2000 and 2021 by Landsat (5, 7 and 8) and Sentinel-2 images, and to assess
the TDNP state through an anomaly analysis of the total water body surface. Several water indices
were tested, but the NDWI index for Sentinel-2 (threshold −0.20), the MNDWI for Landsat-5 (threshold
−0.15), and the MNDWI for Landsat-8 (threshold −0.25) showed the highest accuracy to calculate
the flooded surface inside the protected area’s limits. During the period 2015–2021, we compared
the performance of Landsat-8 and Sentinel-2 and an R2 value of 0.87 was obtained for this analysis,
indicating a high correspondence between both sensors. Our results indicate a high variability of the
flooded areas during the analyzed period with significant peaks, the most notorious in the second
quarter of 2010. Minimum flooded areas were observed with negative precipitation index anomalies
since fourth quarter of 2004 to fourth quarter of 2009. This period corresponds to a severe drought
that affected this region and caused important deterioration. No significant correlation was observed
between water surface anomalies and precipitation anomalies, and the significant correlation with flow
and piezometric anomalies was moderate. This can be explained because of the complexity of water
uses in this wetland, which includes illegal wells and the geological heterogeneity.

Keywords: Sentinel-2; Landsat series; Tablas de Daimiel National Park; inland wetland; water remote
sensing index

1. Introduction

It is a fact that wetlands play a key role in the hydrological cycle, and the hydrological
conditions have a vital role on the ecological status of wetlands [1]. However, human
activity causes changes in this cycle, and is one of the main causes of wetland degradation.
Activities such as land reclamation for agriculture, dams, drainage, or surface water di-
versions cause the lowering of groundwater tables, the disappearance of springs, and the
decrease in flooded areas in wetlands, that can even end in the full desiccation triggering
spontaneous combustion of peatlands [2–5].

The role of flooding extent and duration is crucial for biodiversity (wildlife habi-
tat) and other wetland ecosystem services (e.g., carbon storage, water quality, storing,
floodwater, and maintaining the water levels in the dry season) [6]. In ecology, historical
trends and observation of long-term change is central to understanding [7]. So, to select
the most adequate conservation and restoration measures of wetlands, and to monitor
their effectiveness, we require information about their hydrological conditions. Typically,
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hydrological monitoring of wetlands is conducted by in situ measures (piezometers and
gauging stations) that may provide good temporal resolution but over a limited number of
observation points [1,8]. However, gauge measurements offer little information to detect
spatial patterns, such as flooding status, because usually distance between gauges is several
kilometers or even more [1,8–10]. So, only with in situ measures, we cannot analyze the
surface changes in these highly dynamic ecosystems.

A common approach to assess the spatial and temporal variability of water bodies
is to use long-term (>25–30 years) remote sensing datasets. Satellite imagery notoriously
improved water bodies monitoring in terms of detecting changes over time and space [11].
The advances in remote sensing technology allowed diverse hydrological applications, such
as monitoring fluctuations of lake or dam surface or mapping small water bodies [12–16].
Remote sensing data from Landsat satellites (Landsat 5 (TM), Landsat 7 (ETM+), and
Landsat 8 (OLI)) were widely used since the launch of the Landsat thematic mapper (TM)
on 1 March 1984). However, Landsat has significant drawbacks to monitor wetlands. The
Landsat spatial resolution of 30 m is unsuitable to monitor water bodies with surface area
0.1–5 ha (surface area monitoring error >20% or higher) [15,17]. Water surface classification
accuracy varies according to the water body size and shape complexity [15]. This is espe-
cially relevant in arid and semiarid regions [11]. These regions are frequently affected by
droughts, and this causes a more intensive use of groundwater that worsens the problems
caused by the absence of precipitation. This turns into smaller unconnected water bodies
than in other climates, and spatial resolution is a key parameter [15]. Additionally, the
16-day temporal resolution of these sensors can be a limiting factor to interpret wetland
dynamics [13,15].

The Sentinel-2 satellite launched by the European Space Agency (ESA) in 2015 in-
cludes a constellation of two polar-orbiting satellites with 5-day temporal resolution and
a maximum of 10 m spatial resolution [13,15,18]. The higher resolution of Sentinel-2, both
spatial and temporal, can significantly improve the monitoring range, especially for small
sites that cannot be covered by the Landsat satellite [8,11,13,15,18]. Some studies assessed
a multi-sensor approach that takes advantage of Landsat and Sentinel-2 [12,15,16]. The
combined Sentinel-2 and Landsat dataset theoretically allows for reduction in the temporal
resolution to about three days [16]. The use of both satellites allows for reconstruction of
a longer study period to detect trends and analyze the effect of restoration measures or
climatic variability. To correctly interpret long data, it is necessary first to compare both
sensors for the same period and area.

From these remote sensing images, we can extract water pixels through different
methodologies. Among these, water indices are one of the most widely used because they
are more reproducible and then more generalizable [13]. Commonly applied indices include
the normalized difference water index (NDWI), modified normalized difference water index
(MNDWI), normalized difference moisture index (NDMI), normalized difference vegetation
index (NDVI), and automated water extraction index (AWEI) [8,14,18]. By selecting the
appropriate threshold for these indices, the image pixels can be categorized into water or
non-water, and wetland inundation conditions can be mapped.

The main objectives of this research are to reconstruct the flooded area in the Tablas
de Daimiel National Park (TDNP) wetland for the 2000–2021 period using Landsat and
Sentinel-2 sensors, and to assess the TDNP state through an anomaly analysis of the
total water body surface. The anomaly of the total water body surface will be related
to precipitation, river flow, and piezometric level anomalies to discern the variable that
explains most of this semi-arid region wetland. The flooded area will be calculated by first
choosing the optimal water remote sensing index and threshold for each sensor.

2. Materials and Methods
2.1. Study Area

Tablas de Daimiel is a floodplain wetland in central Spain, in the confluence of the
Cigüela and Guadiana Rivers, in the municipalities of Daimiel and Villarrubia de los Ojos,
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within the province of Ciudad Real (439,400 m, 4,333,500 m, zone 30, UTM, European Ter-
restrial Reference System 1989, Figure 1). It is located at an altitude of 617 m. Climate in the
region is typically continental and semiarid, characterized by a low average annual rainfall
and recurrent droughts. Data from the meteorological station of Las Tablas de Daimiel
show that the average annual rainfall is 376 mm for the historic register from 2001/02 to
2021/22, with a wide range of variation: a minimum of 182 mm, in the hydrologic year
2004/05, and a maximum of 589.8 mm, in 2009/10.
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Figure 1. Study area including the perimeter of the Tablas de Daimiel National Park (blue polygon),
gauging stations (red points), piezometers (black points), rivers (cyan lines), and municipalities in
which the studied wetland is located (black polygons).

Tablas de Daimiel was declared a natural park (TDNP) by Decree 1874/1973 of 28 June;
also, it is a biosphere reserve since 1981, and it is included in the Ramsar Convention on
Wetlands since 1982. It was declared a special protection area (SPA) by Decree 82/2005 of
12 July and a special area of conservation (SAC) by Decree 187/2015 of 7 August. (SiteCode:
ES0000013 of the Natura 2000 Network).

The surface of the TDNP is 3030 ha, of which approximately 1800 ha are subjected
to flooding, with an average water depth of 0.90 m [7]. Under natural conditions, the
wetland received inflows from the overflow from the rivers Guadiana and Cigüela and
by contributions from groundwater [2,19]. Cigüela River provided brackish water on
a seasonal basis. Since 1988, water from the Tagus River basin is diverted into the National
Park through the Cigüela River [2,19]. Guadiana River and the Mancha Occidental aquifer
discharged freshwater. The thickness of this groundwater system exceeds 400 m in some
sectors [4].

Groundwater extraction for irrigation in the upper Guadiana River basin affected
this system since the early seventies of the last century [7,19]. By the end of that decade,
extractions exceeded TDNP inflows for the first time [2,20]. Between 1974 and 1987 the
irrigated area increased from 30,000 to 125,000 ha, so in 1987, groundwater extraction
nearly doubled the aquifer’s replenishment rate on a consistent basis (580 mm3/year vs.
320 mm3/year) [21,22]. The intensive groundwater use together with drought periods
caused groundwater levels to drop drastically, and the decrease in the flooded surface of
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TDNP. In 1986, the TDNP was completely dry and burned a third of the surface [21,22].
The degradation process of this ecosystem caused again the drying up of the wetland from
2004 to 2009, and a smoldering peat fire started inside the TDNP in August 2009 [21,23].

2.2. Image Processing

Sentinel-2A/B images processed at level 1C were obtained from Copernicus (https:
//scihub.copernicus.eu/dhus/#/home, accessed on 1 June 2022) and they were atmospher-
ically corrected with Sen2Cor tool (version 02.05.05). Landsat images TM Collection 2 Level-
2 were obtained from USGS servers: Landsat-8 OLI (https://espa.cr.usgs.gov/index/, ac-
cessed on 1 June 2022) and Landsat-7 ETM+ and Landsat-5 (https://earthexplorer.usgs.gov/
accessed on 1 June 2022).

Images of high spatial resolution were used for validation. These images were obtained
from the Spanish National Cartography Institute (IGN) Orthophoto 2017 and 2018 CC BY
4.0 © (spatial resolution 0.25 m, https://www.ign.es/web/ign/portal, accessed on 11 April
2023) and Google Earth ©. The dates of these images were the closest to Sentinel-2A/B,
Landsat-8 OLI, and Landsat-5 TM image acquisitions. The full list of images used in this
study by date is provided in Appendix A, Table A1.

The official cartography of this protected area (Natural Parks Net, Ministry for the
Ecological Transition and the Demographic Challenge) was used to delimitate the wetland
(Figure 1). We delimited the water and non-water polygons for each validation image.
These polygons were delineated through visual examination using high-resolution images
(orthophotos) as a base map, and it was conducted with the software ArcGIS 10.5 (ESRI
2016. ArcGIS Desktop: Release 10.5 Redlands, CA: Environmental Systems Research
Institute). The visual delimitation was possible considering the high spatial resolution of
the orthophotos (0.25 m). Water polygons smaller than 100 m2 were excluded for Sentinel-
2A/B analysis considering the maximum spatial resolution of Sentinel-2A/B bands used
in this study. For Landsat-8 OLI and Landsat-5 TM analysis, water polygons smaller than
900 m2 were excluded considering the spatial resolution of these sensors.

Six water indices, based on spectral information, were calculated using Sentinel-2A/B,
Landsat-8 OLI, Landsat-7 ETM+, and 5 TM images according to their availability to cover
the studied period (2000–2021). To this end, the equations shown in Table 1 were applied to
this wetland (Figure 1). The choice of indices was based on literature review [8]. Once all
these indices are calculated, their pixel values are classified into water/non-water classes
using a threshold value that requires it to be evaluated since different authors propose
different values for the same indices. We aimed to define a unique threshold for each
sensor with the optimum results for the analyzed period. So, for each date and sensor
with available images, we tested the thresholds from −0.50 to 0.50 with a 0.05 step, except
for the automated water extraction index, no shadow (AWEI(NSH)) and the automated
water extraction index, shadow (AWEI(SH)) indices, whose thresholds ranged from −50 to
−5000, and the step is detailed in the results section.

To validate the results obtained from the Sentinel-2A/B, Landsat-8 OLI, and Landsat-5 TM
images, we designed a random sampling of 60 points (30 water/30 non-water) for each sensor
and date of the high spatial resolution images used in this study (see Appendix A, Table A1).
Landsat-5 results were validated using three orthophotos (03/01/2005, 24 and 28/07/2006,
13 and 14/07/2009–31/08/2009). For Landat-8 and Sentinel-2A/B, other three orthophotos
(27 and 28/06/2015, 13/11/2015, 28/09/2018) were used. A total of 540 points were considered
for validation (180 points for each sensor imagery).

The ground control points were distributed randomly in the entire wetland surface.
We selected the number of points according to the general guideline provided by Congalton
and Green [24], who recommended a minimum of 50 samples for each map class for maps
of less than 1 million acres in size and fewer than 12 classes. For the points sampled for each
sensor (180), we compared the classification of each index (six indices in Table 1) and each
threshold, with the ground truth images, to assess correct classifications. Overall accuracy

https://scihub.copernicus.eu/dhus/#/home
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https://espa.cr.usgs.gov/index/
https://earthexplorer.usgs.gov/
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index was calculated for each random sampling. [24]. The best index and threshold were
selected according to overall accuracy results [8,25].

Table 1. Calculated spectral indices.

Index Equation Source Sentinel-2 Bands
NDWI [(GREEN − NIR)/(GREEN + NIR)] [26] [(B03 − B08)/(B03 + B08)]

MNDWI [(GREEN − SWIR2)/(GREEN + SWIR2)] [27] [(B03 − B11)/(B03 + B11)]
CEDEX (NIR/RED) − (NIR/SWIR) [28] (B05/B04)–(B05/B11)

RE-NDWI [(GREEN − MIR)/(GREEN + MIR)] [29] [(B03 − B05)/(B03 + B05)]
AWEI(SH) BLUE + 2.5 × GREEN − 1.5 × (NIR + SWIR) − 0.25 × SWIR [30] [B02 + 2.5 × B03 − 1.5 × (B08 + B011) − 0.25 × B12]

AWEI (NSH) 4 × (GREEN-MIR) − (0.25 × NIR + 2.75 × SWIR) [30] [4 × (B03-B11) − (0.25 × B08 + 2.75 × B12)]
Index Equation Source Landsat-8 OLI
NDWI [(GREEN − NIR)/(GREEN + NIR)] [26] [(B03 − B05)/(B03 + B05)]

MNDWI [(GREEN − SWIR1)/(GREEN + SWIR1)] [27] [(B03 − B06)/(B03 + B06)]
CEDEX (NIR/RED) − (NIR/SWIR) [28] (B05/B04) − (B05/B06)

RE-NDWI [(GREEN–RED)/(GREEN + RED)] [29] [(B03 − B04)/(B03 + B04)]
AWEI(SH) BLUE + 2.5 × GREEN − 1.5 × (NIR + SWIR1) − 0.25 × SWIR2 [30] [B02 + 2.5 × B03 − 1.5 × (B05 + B06) − 0.25 × B07]

AWEI (NSH) 4 × (GREEN − SWIR1) − (0.25 × NIR + 2.75 × SWIR2) [30] [4 × (B03 − B06) − (0.25 × B05 + 2.75 × B07)]
Index Equation Source Landsat-5 TM
NDWI [(GREEN − NIR)/(GREEN + NIR)] [26] [(B02 − B04)/(B02 + B04]

MNDWI [(GREEN − SWIR1)/(GREEN + SWIR1)] [27] [(B02 − B05)/(B02 + B05]
CEDEX (NIR/RED) − (NIR/SWIR) [28] [(B04/B03) − (B04/B05]

RE-NDWI [(GREEN − RED)/(GREEN + RED)] [29] [(B02 − B03)/(B02 + B03]
AWEI(SH) BLUE + 2.5 × GREEN − 1.5 × (NIR + SWIR1) − 0.25 × SWIR2 [30] [B01 + 2.5 × B02 − 1.5 × (B04 + B05) − 0.25 × B07]

AWEI (NSH) 4 × (GREEN − SWIR1) − (0.25 × NIR + 2.75 × SWIR2) [30] [4 × (B02 − B05) − (0.25 × B04 + 2.75 × B07)]

We made a temporal reconstruction of water body surfaces in TDNP since January
2000 to October 2021, with the best index using Landsat-8 OLI, Landsat-7 ETM+, and
Landsat-5 TM (Table A1). Sentinel-2 A/B was also used for the period June 2015 to October
2021. We compared the results of water surfaces derived from Landsat-8 and Sentinel-2 for
the period June 2015 to October 2021. This analysis is important to evaluate the performance
of both sensors and to see if we can effectively increase temporal resolution by completing
time series with images from both sensors.

To better assess the TDNP state, we made an anomaly analysis of the total water body
surface along the study period using the data obtained from Landsat-8 OLI, Landsat-7
ETM+, and Landsat-5 TM series.

Surface data were averaged by quarter calculating the water surface anomaly index
IAWi (Equation (1)).

IAWi =
AWAi−AWAaverage

AWAsd
(1)

IAWi being the index of the water surface anomaly for a quarter i, AWAi is the average
water surface in the quarter i, AWAaverage is the average water surface in the quarter of the
period analyzed (January 2000 to October 2021), and AWAsd is the standard deviation of the
water surface in the quarter of the period analyzed. Based on these values, the quarters
with positive and negative anomalies were analyzed.

Precipitation data from the meteorological station of Las Tablas de Daimiel were
obtained (https://eportal.mapa.gob.es/websiar/SeleccionParametrosMap.aspx?dst=1, ac-
cessed on 11 April 2023). With these values, the precipitation anomaly index was calculated,
IAPi (Equation (2)) [8,31].

IAPi =
Pi−Paverage

Psd
(2)

IAPi being the index of the precipitation anomaly for a quarter i, Pi is the average
precipitation in the quarter i, Paverage is the quarter average precipitation in the period

https://eportal.mapa.gob.es/websiar/SeleccionParametrosMap.aspx?dst=1
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analyzed (hydrologic year 2001 to 2021), and Psd is the standard deviation of precipitation
in the quarter of the period analyzed.

Flow data were obtained from the Guadiana River gauge in the Ruidera municipality,
15 km upstream of TDNP (https://sig.mapama.gob.es/redes-seguimiento/?herramienta=
aforos, accessed on 11 April 2023) (Figure 1). The flow anomaly index was calculated, IAFi
(Equation (3)).

IAFi =
Fi−Faverage

Fsd
(3)

IAFi being the index of the flow anomaly for a quarter i, Fi is the average flow in the
quarter i, Faverage is the quarter average flow in the period analyzed (hydrologic year 2000 to
2021), and Fsd is the standard deviation of flow in the quarter of the period analyzed.

Finally, the piezometric data were obtained from 4 piezometers surrounding TDNP
(Figure 1). The data used for the analysis was water depth. Piezometers European codes were:
ES040ESBT000404042, ES040ESBT000404046, ES040ESBT000404145, and ES040ESBT000404294,
and were all located in the Mancha Occidental I aquifer (https://sig.mapama.gob.es/redes-
seguimiento/?herramienta=Piezometros, accessed on 11 April 2023). With these values, the
piezometric anomaly index was calculated, IAPZi (Equation (4)).

IAPZi =
PZi−PZaverage

PZsd
(4)

IAPZi being the index of the piezometric anomaly for a quarter i, PZi is the average
piezometric level in the quarter i, PZaverage is the quarter average piezometric level in the
period analyzed (hydrologic year 2009 to 2021), and PZsd is the standard deviation of
piezometric level in the quarter of the period analyzed.

Spearman correlation coefficient was calculated between the anomalies of the follow-
ing variables, water surface, precipitation, flow, and piezometric level by quarters.

3. Results

Extraction of water bodies was obtained from Sentinel-2 A/B, Landsat-5, Landsat-7
ETM+, and Landsat-8 images (Table A1). To do this, six water indices (Table 1) and a set of
thresholds were analyzed. For Landsat-5 images, the most accurate results were obtained
when the MNDWI (0.88) and AWEI (nsh) (0.88) water indices were selected applying
the thresholds values of −0.15 and −900, respectively (Figure 2a). For Landsat-8 images,
the maximum overall accuracy was obtained for MNDWI (0.99) using a threshold value
of −0.25 and −0.30 (Figure 2b). For these images, accurate results were also obtained
for AWEI(nsh) (0.98), AWEI(sh) (0.97), and NDWI (0.96) water indices (Figure 2b). For
AWEI (nsh) the highest values of overall accuracy were obtained for the thresholds −4000,
−4500, and −5000 (Figure 2b). For the AWEI(sh) water remote sensing index, the selected
threshold was −2000 and for NDWI −0.25 and −0.30 (Figure 2b). For Sentinel-2 images,
high performances in terms of overall accuracy was found for NDWI (0.99, threshold −0.20),
MNDWI (0.98, thresholds −0.05 and −0.1), AWEI (sh) (0.98, thresholds −800, −900, −1000,
and −1500), and AWEI(nsh) (0.98, thresholds −1000 to −4500) (Figure 2c). From these
results, the MNDWI index with a threshold of −0.15 was selected for Landsat-5 images to
extract water bodies. Although the same global accuracy was obtained for AWEI(nsh) index
and threshold −900, the former index was selected since a lower performance was observed
in areas close to the border of the water polygons. For Lansat-8 images, the MNDWI index
was selected and a threshold of −0.25. The threshold value of −0.30, which generated
the same accuracy, was disregarded since the same lower performance was observed in
areas close to the border of water surfaces. For Sentinel-2 images, the NDWI index and
a threshold of −0.20 were selected for extracting water bodies. Water areas were computed
for each analyzed image in the period 2000–2021 using these indices and thresholds. Then,
the water surface anomaly index was calculated for the analysis period (Equation (1)).

https://sig.mapama.gob.es/redes-seguimiento/?herramienta=aforos
https://sig.mapama.gob.es/redes-seguimiento/?herramienta=aforos
https://sig.mapama.gob.es/redes-seguimiento/?herramienta=Piezometros
https://sig.mapama.gob.es/redes-seguimiento/?herramienta=Piezometros
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The water surface anomaly index showed several patterns in the analyzed period
(Figure 3a,b). From 2001 to 2003 positive and negative anomalies were detected without
a clear trend. Between the second quarter of 2004 and the first quarter of 2005, positive
anomalies were obtained. From this quarter to the first quarter of 2006, anomalies close
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to 0 were observed. Then, a longer period (3t-2006 to 1t-2010) with relevant negative
anomalies is shown. After this phase, significant positive anomalies were observed until
the third quarter of 2013, when a period with anomalies close to 0 was observed. This trend
continued until the second quarter of 2019, when a set of significant negative anomalies
was detected until 2021. In Figure 3, the precipitation anomaly index (Equation (2)) is also
represented. Although some quarters showed positive and negative anomalies concurrent
with water surface anomaly, other quarters showed opposite behavior for the anomaly
indices (47% of the quarters) and absolute values of anomaly were significantly different
in almost all quarters. In this sense, Spearman correlation analysis between these two
parameters was calculated obtaining a value of −0.049 and p-value 0.677, indicating a lack
of a significant statistical relationship between them.
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Figure 3. Water surface anomaly index (IAW) and precipitation anomaly index (IAP) in the period
2001–2010 (a) and 2011–2021 (b).

In Figure 4a comparison among the water surface anomaly index (Equation (1)) and the
flow anomaly index (Equation (3)) is shown. In this case, concurrent positive and negative
anomalies of these two indices were observed for more than 50% of the analyzed quarters.
In this context, negative values of IAWi and IAFi were observed for the period 3t-2006 to
1t-2009 and positive values from 2t-2010 to 1t-2012. In this case the Spearman correlation
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analysis generated a value of 0.369 and a significative p-value (Table 2), indicating, although
in a moderate way, the existence in some periods of a statistical relationship between the
water surface and river flow anomalies.
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(a) and 2011–2021 (b).

Table 2. Spearman coefficient values among anomaly indices.

IAW IAF IAF
Spearman
Coefficient p-Value Spearman

Coefficient p-Value Spearman
Coefficient p-Value

IAP −0.049 0.677
IAF 0.369 0.003

IAPZ −0.406 0.009 0.109 0.544
IAP 0.087 0.488

In Figure 5 a comparison among the water surface anomaly index (Equation (1))
and piezometric anomaly index (Equation (4)) is shown. In this case, equal distribution
patterns were detected in some quarters for the analyzed period (2009–2020). The highest
positive anomalies derived from the piezometric anomaly index indicate low availability of
groundwater (highest groundwater depth). This occurred from the third quarter of 2009 to
the first quarter of 2010. For this period, significant negative anomalies for water surfaces
were observed. This same pattern was detected for the period of the second quarter to
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the fourth quarter of 2020. In contrast, the highest positive anomalies for water surfaces
(third quarter of 2010–third quarter 2013) occurred during the lowest negative anomalies of
piezometric index. The low piezometric anomaly index means that groundwater level is
close to ground level. Similar patterns were observed from the second quarter of 2015 to
the second quarter of 2016. For the rest of the quarters in the analyzed period, water surface
anomalies close to 0 matched with negative anomalies for piezometric anomalies values,
indicating that groundwater outcrops into the surface. The Spearman coefficient for these
two anomalies was −0.406 and the obtained p-value indicates a moderate inverse statistical
relationship between the piezometric level and water surface anomalies.

Sensors 2023, 23, x FOR PEER REVIEW 11 of 18 
 

 

 
Figure 5. Water surface anomaly index (IAW) and the piezometric anomaly index (IAPZ) in the 
period 2009–2021. 

To compare the results of water surfaces derived from Landsat-8 and Sentinel-2, a 
linear regression model was calculated (Figure 6). An R2 value of 0.87 was obtained for 
this analysis, indicating a high correspondence between the water surfaces derived from 
both sensors. 

 
Figure 6. Comparison between water areas derived from Landsat-8 and Sentinel-2A/B images in the 
period 2015–2021. 

4. Discussion 
The selected indices were the MNDWI index with a threshold of −0.15 for Landsat-5 

images, the MNDWI index and a threshold of −0.25 for Lansat-8 images, and the NDWI 
index and a threshold of −0.20 for Sentinel-2 images. These indices are among the most 
used for detecting water surfaces with both sensors, as they have a high ability to separate 
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period 2009–2021.

To compare the results of water surfaces derived from Landsat-8 and Sentinel-2, a linear
regression model was calculated (Figure 6). An R2 value of 0.87 was obtained for this analysis,
indicating a high correspondence between the water surfaces derived from both sensors.
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4. Discussion

The selected indices were the MNDWI index with a threshold of −0.15 for Landsat-5
images, the MNDWI index and a threshold of −0.25 for Lansat-8 images, and the NDWI
index and a threshold of −0.20 for Sentinel-2 images. These indices are among the most
used for detecting water surfaces with both sensors, as they have a high ability to separate
water zones from other coverages [6,14,18]. The NDWI index often identifies built-up
areas as water. For solving this problem, the modified NDWI (MNDWI) is obtained using
the MIR band instead of the NIR band [14,27]. Pena et al. (2020) [8] also found that the
best performing index was the NDWI for Sentinel-2 images in Mediterranean wetlands
characterized by the presence of small water bodies, although their results are optimal for
the −0.30 threshold. The delimited natural area obtained from official cartography was
used in both this research and Pena et al. (2020) [8], which allows for overcoming this
NDWI limitation. Adequate thresholds are required for accurate water extraction, but there
is no specific rule for setting the threshold, as it depends more on the region [14].

Climatic variability has a direct effect on surface water distribution, and the impacts of
drought on surface water were well documented [6]. Droughts are becoming more common
around the world [6], and to monitor their impact on the wetland flooded surface, it is
necessary to compile information on water surfaces, and on meteorological, hydrological,
and hydrogeological variables. In this research, we studied the evolution of water surface
on a quarter basis thanks to remote sensing data, and we selected precipitation, river
flow, and piezometric levels as representative variables of the hydrological cycle. The
water surfaces estimated in this study provide evidence to understand the surface water
changes of the TDNP wetland. Assessing the state of groundwater-dependent wetlands is
complicated and more in arid and semiarid regions where recharge through precipitation
may be concentrated in time [2]. The anomaly indices studied enable identification of
the hydrological variables that have a major impact on water surface. Our results show
a lack of a statistically significant relationship between water surface anomaly index and
precipitation anomaly index. In contrast, a significant positive relation (0.369) between
water surface anomaly index and flow anomaly index, and a significant negative relation
(−0.406) between water surface anomaly index and piezometric anomaly index were found.

The absence of significant correlation between surface water cover and precipitation
in wetlands was pointed out by other authors [18]. Tough as it may seem that there is no
correlation between water surface and precipitation, we can observe some key moments in
the historical evolution of TDNP in Figure 3. The most notorious is in the second quarter of
2010, when after the high positive precipitation anomaly registered in the first and second
quarter of 2010 the water surface anomaly changed from negative to positive values. This
positive water surface anomaly remained until the fourth quarter of 2016 when it showed
an oscillating behaviour between negative and positives values for about a year and a half.
This matches one of the periods when the TDNP was almost completely flooded from
2010 to 2013 [2,7], and the positive water surface anomalies were the highest. In this period,
groundwater naturally began to discharge into the wetland and springs reappeared [2].
Prior to this wet period, we can observe in Figure 3 negative precipitation index anomalies
since the fourth quarter of 2004 to the fourth quarter of 2009. This period corresponds to
a severe drought that affected this region and caused important deterioration to the TDNP
that ended in spontaneous peatland fires [2,23]. These fires were extinguished only after
the 2010 flooding [2,23]. In Figure 7, we represent the evolution of water surface in TDNP
during the driest period (September 2008 to November 2009), where we can observe the
disappearance of surface waters in November 2009. Additionally in Figure 7, we show
the recovery in 2010 and how water surface extension remained during 2011. Since 2014,
another drought period started with almost all quarters showing negative precipitation
index anomalies. However, water surface index anomalies started the negative trend in
the second quarter of 2018. This lag between negative precipitation and water surface
anomalies could be attributed to the resilience of the groundwater system, and the temporal
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sequence of droughts where the first drought that manifests itself is meteorological, then in
surface water, and then in groundwater.
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Figure 7. Water bodies in the Tablas de Daimiel National Park delimited according to the MNDWI
spectral index. Landsat-5 TM images (threshold −0.15): (A) September 2008, (B) April 2009, (C) July
2009, (D) November 2009, (E) January 2010, (F) May 2010, (G) July 2010, (H) December 2010, (I) Febru-
ary 2011, (J) April 2011, (K) July 2011, and (L) October 2011.

The correlation of the water surface anomaly index with flow anomaly index and
piezometric anomaly index is similar but of an opposite sign. Flow data were obtained
from the Guadiana River gauging station, which is the main contributor to TDNP and
the historical data series is more complete than the Cigüela River. No significant correla-
tion was observed between the precipitation anomaly index and the flow anomaly index
(Table 2). Guadiana River flow highly relies also on groundwater discharges from the
Mancha Occidental aquifer. Several factors can influence this absence of significant correla-
tions. First, TDNP oscillations in water depth were attributed to preferential infiltration
in some sectors due to the heterogeneity of geological formation in this region, which
includes rapid circulation in karstified sectors and slow flow in areas with low-permeability
sediments [2,3,32]. Additionally, the intensive groundwater pumping for irrigation was
reported as the cause of a notorious dissociation between the surface and groundwater
networks for much of the 1970–2014 period [2,4]. It is during unusually wet periods that
significant reduction in groundwater extractions and increased groundwater recharge are
observed [2]. In these periods, such as the period of 2010 to 2014 (Figure 5), water depth is
very shallow and the springs outcrop maintaining a positive water surface anomaly.

With regards to spatial resolution of both sensors, we found an acceptable agreement
between the estimated water surface between Landsat-8 and Sentinel-2 (R2 = 0.87) (Figure 6).
In Figure 8, we represent the evolution of water surface during 2021 estimated with both
sensors. We can observe the high similarity between both sensors’ estimation and the
reduced water surface of this period showing the effects of the last dry years. The differences
could be attributed to several factors. One important factor is changes in water surface due
to different image acquisition data. These ecosystems are highly variable and water surface
can change in a short time period, but other factors could be associated to the different
spatial resolution. After a dry period, when groundwater starts to outcrop, unconnected
puddles are formed that will connect to form bigger water bodies if favorable conditions
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remain [7]. Then, the higher spatial resolution of Sentinel-2 (10 m) can detect smaller water
bodies than the Landsat-8 (30 m) [18] in the period analyzed.
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Figure 8. Water bodies in the Tablas de Daimiel National Park delimited according to the MNDWI
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Landsat-8 OLI images; (A) March 2021, (B) April 2021, (C) August 2021, and (D) October 2021.
Sentinel-2 A/B images: (E) March 2021, (F) April 2021, (G) August 2021, and (H) October 2021.

5. Conclusions

The results of this study indicate the applicability of Landsat and Sentinel-2 images to
evaluate the temporal variation of water bodies in the Tablas de Daimiel wetland. This study
enabled detecting periods above-average water surfaces, and dry periods with flooded
surfaces under average conditions. To this end, a preliminary study of water indices was
applied to extract water bodies reporting different indices and thresholds for each sensor
satellite. Precipitation, flow, and piezometric anomaly indices were compared to the water
surface anomaly index, revealing a poor relationship between precipitation and water
surface anomalies. In contrast, remarkable results were found for flow and piezometric
anomalies observing significant relationships among them. The extraction of water surfaces
using Sentinel-2 and Landsat-8 images was also compared. The results indicate a good
correlation between these two sensors. Although the higher resolutions of Sentinel-2 images
recommend their suitability compared to Landsat images, these results reveal the potential
of Landsat images for analyzing historical periods of water surface. The information
withdraw of this research contributes to monitoring the state of endangered wetlands,
helping to adapt management plans that leads to a well-preserved state of conservation.
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Appendix A

Table A1. List of images used in the study by date. * images validated with ortophotos.

Ortophotos Sentinel-2 A/B Landsat-8 OLI LANDST 7 ETM+ Landsat-5 TM

19/01/2000

11/06/2000

29/07/2000

04/12/2000

29/01/2001

30/05/2001

08/07/2001

13/11/2001

01/02/2002

02/06/2002

11/07/2002

29/09/2002

08/03/2003

11/05/2003

06/07/2003

10/10/2003

11/03/2004

06/06/2004

25/08/2004

13/11/2004

03/01/2005 31/12/2004 *

06/04/2005

27/07/2005

29/09/2005

24/04/2006

14/07/2006

24 and
28/07/2006 30/07 2006 *

16/02/2007

07/05/2007

02/08/2007

05/10/2007

13/03/2008

23/04/2008

20/08/2008

30/09/2008

01/04/2009

06/07/2009
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Table A1. Cont.

Ortophotos Sentinel-2 A/B Landsat-8 OLI LANDST 7 ETM+ Landsat-5 TM

13 and
14/07/2009
31/08/2009

23/08/2009 *

11/11/2009

30/01/2010

06/05/2010

25/07/2010

16/12/2010

02/02/2011

07/04/2011

28/07/2011

16/10/2011

12/04/2013

01/07/2013

08/12/2013

19/02/2014

01/05/2014

05/08/2014

11/12/2014

12/01/2015

20/05/2015

27 and
28/06/2015 29/07/2015 * 23/07/2015 *

13/11/2015 26/11/2015 * 28/11/2015 *

04/02/2016 16/02/2016

13/06/2016 07/06/2016

02/08/2016 10/08/2016

11/10/2016 29/10/2016

08/02/2017 17/01/2017

09/04/2017 07/04/2017

07/08/2017 13/08/2017

06/10/2017 16/10/2017

08/02/2018 21/02/2018

04/05/2018 05/05/2018

17/08/2018 16/08/2018

28/09/2018 01/10/2018 * 03/10/2018 *

04/01/2019 07/01/2019

29/05/2019 15/05/2019

02/08/2019 03/08/2019

06/10/2019 06/10/2019

14/01/2020 10/01/2020
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Table A1. Cont.

Ortophotos Sentinel-2 A/B Landsat-8 OLI LANDST 7 ETM+ Landsat-5 TM

17/06/2020 18/06/2020

21/08/2020 21/08/2020

10/10/2020 08/10/2020

14/03/2021 17/03/2021

18/04/2021 18/04/2021

06/08/2021 08/08/2021

20/10/2021 27/10/2021

18/01/2022
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