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Abstract: Most recent edge and fog computing architectures aim at pushing cloud-native traits at
the edge of the network, reducing latency, power consumption, and network overhead, allowing
operations to be performed close to data sources. To manage these architectures in an autonomous
way, systems that materialize in specific computing nodes must deploy self-* capabilities minimizing
human intervention across the continuum of computing equipment. Nowadays, a systematic classifi-
cation of such capabilities is missing, as well as an analysis on how those can be implemented. For a
system owner in a continuum deployment, there is not a main reference publication to consult to
determine what capabilities do exist and which are the sources to rely on. In this article, a literature
review is conducted to analyze the self-* capabilities needed to achieve a self-* equipped nature in
truly autonomous systems. The article aims to shed light on a potential uniting taxonomy in this
heterogeneous field. In addition, the results provided include conclusions on why those aspects are
too heterogeneously tackled, depend hugely on specific cases, and shed light on why there is not a
clear reference architecture to guide on the matter of which traits to equip the nodes with.

Keywords: self-* capabilities; heterogeneous nodes; computing continuum; computational nodes;
edge-cloud nodes; Internet of Things; review

1. Introduction

The concept of the “cloud” appeared in the telecommunications world about thirty
years ago, in the 1990s, when the first Virtual Private Networks (VPN) began to be used.
Cloud computing (CC) appeared sometime later as a new way of computing, seeking to
offer scalable virtual environments to meet the new needs of users [1].

Today, CC is one of the most widespread and used methods for performing com-
plex calculations that require a large number of computing cycles or for the analysis and
processing of large amounts of data that require the highest possible speed of execution.
Additionally, it is considered one of the most important changes in the field of Information
Technology (IT) for society [2]. In 2011, the National Institute of Standards and Technology
(NIST) of the United States Department of Commerce defined CC as a model for enabling
anywhere, convenient, on-demand network access to a set of shared and configurable
computing resources (servers, storage, services, etc.) that can be provided and released
quickly and with very little effort. This model is mainly composed of three service models:
Software as a Service (SaaS), Platform as a Service (PaaS), and Infrastructure as a Service
(IaaS) [3].

CC architecture consists of a large network of servers from different providers, dis-
tributed worldwide and connected to the internet, capable of running large workloads
or making services available to users for free or for a fee. There are three types of cloud
models: public, private, and hybrid [4]. These servers began by organizing themselves in
small cores that grew and are interconnected exponentially over time to form a complex
network. The purpose of CC is the efficient combination of distributed resources to perform
tasks that require large computing power or offer services [4]. The scalability, the large
amount of data that it is capable of processing, and the practically unlimited processing
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and execution capacity of calculations are some of the characteristics that make CC a valid
solution for most cases [5].

However, despite the great computing and data storage capacity of this paradigm,
CC presents several shortcomings that are difficult to solve for certain situations. The
aforementioned great work capacity requires big computing centers that are generally
far away from the source of data generation. Among many others, this produces some
disadvantages such as high latency and low response times, as the information has to travel
through many points across the network [5]. These drawbacks prevent calculations and
data processing in real time, with low response times, far from the source of information.
Moreover, these data centers consume a lot of energy, generating a huge carbon footprint.
This high and inefficient energy consumption has become a big problem today, partially
rooted in the lack of exploitation of renewable energies to feed such big centers [6]. In
fact, depending on the geographical area, the energy mix may vary. In countries where
emissions regulations are tougher, renewable energies predominate. This means that part of
the energy consumed by these data centers comes from renewable energy sources, reducing
the carbon footprint generated. However, in countries with laxer or non-existent emissions
regulations, fossil energy is usually the predominant one in the energy mix, which implies
a greater environmental impact in its use.

In order to carry out these operations in real time, with very low latency and greater
security in the transfer of information, the edge computing paradigm was created. This
new way of working with information was empowered by the traits of the expansion of
the Internet of Things (IoT), allowing calculations and data processing to be performed
on nodes at the edge of the network, rather than on the cloud [7]. The idea was to reduce
the energy impact and response times without noticing too much of a decrease in global
capacity based on less powerful computing equipment at the edge of the network (closer
to the data sources). In this way, all the information that was produced in the edge nodes
was also processed within them. This should make it possible to reduce the workload
of the data centers, avoiding network congestion and reducing the execution time of the
time-sensitive applications [8].

However, this paradigm shift is not without challenges, starting from its definition as a
concept. There are currently several ways to define edge computing. The Edge Computing
Consortium defines it as an open, distributed platform at the edge of the network, close
to data sources and integrating computing and data storage capabilities [9]. For Zhang
et al. [10], edge computing is a novel form of computing that allows the storage and
processing of resources near the source of the data, providing intelligent services that
collaborate with CC. Shi et al. [8] define edge computing as enabling technologies that
allow computations to be performed at the edge of the network, in the proximity of data
sources. Not only do these nodes consume data, but they also produce and process data.

All in all, the advent of edge computing, in addition to fog computing, enabled the
expansion of the so-called computing continuum to the edge of the network [11]. In order
to control the small sets of IoT devices, alongside other equipment that globally comprise
the edge computing system, autonomous systems -that do not require human intervention
to function or to resolve errors that can occur- are needed. Thanks to the great evolution of
the learning systems, such as reinforcement learning or deep learning [12], these intelligent
systems are increasingly autonomous and require less human intervention.

To devise such autonomy, the elements that form the continuum (or computing
fabric)—from now on, “nodes”—must embed certain self-* capabilities that allow for their
independence of use as intelligent components in the network [13]. Self-* naming is adopted
(and used across this work) due to its own capacity to realize certain characteristics that
actually make them intelligent and independent. Over time, the number of self-* capabil-
ities has been noticeable. Whereas many of them are essential in making a whole edge
computing environment autonomous, others might be deemed dispensable, depending on
the specific field of application.
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This work mainly focuses on the exploration of the different self-* capabilities of
existing autonomous intelligent systems and on the selection of those that are considered
essential to declare an edge computing intelligent system “autonomous”. An analysis of the
most relevant practical use cases currently available is carried out for each self-* capability.
This detailed study of the self-* capabilities allows for the depiction of an up-to-date global
vision of this research field. From a research perspective, this paper can be devised as a
comprehensive review of the self-* capabilities of heterogeneous nodes of the continuum.
However, especially most recently in the edge-cloud field, sources such as open-source
development projects, public code repositories, blogs, or websites are being increasingly
used for innovation reporting rather than delivering formalized scientific publications. This
article covers a very wide spectrum (self-* capabilities); therefore, it has dug deep into the
literature, adjusting the efforts to deliver usable information that could be later leveraged
in further works.

This paper is organized as follows. In Section 2, the analysis of the context and
the compelling need for such a review is carried out. In Section 3, a description of the
methodology used and a discussion of the obtained results are provided. In Section 4, the
classification of nodes in the computing continuum is described, and the definition of basic
concepts is presented. In Section 5, the literature review and a comparative analysis of self-*
capabilities are developed. Finally, in Section 6, the conclusions of the work carried out
are drawn.

2. Background

While many reports and works [14] have concluded that CC is essential to digital
transformation and digitalization for companies’ competitiveness, it is an undeniable
truth that trends in the computing field of distributed systems pass through moving
computation and intelligence to the edge of the network. Apart from some technical
disadvantages associated with CC that have been outlined in Section 1, CC seems to
go against the democratization of the computing industry [15], which should pursue a
model of geographically dispersed “local grids” of lower-cost small-cloud capacity nodes
(grasping the true potential of edge-cloud computing [16]). In addition, recent market
studies estimate that the global edge computing market size will reach EUR 1.352 M by
2025 and EUR 7.013 M by 2028, responding to an average Compound Annual Growth Rate
(CAGR) of 36.2% in that period.

According to the strategic agenda of relevant entities, such as the European Commis-
sion (EC), more data processing and decision making must be shifted to the edge to obtain
competitive, smarter systems worldwide [17]). Here, reports such as H-CLOUD’s whitepa-
per [14], EAIDCE [18], FCC [19], and EAA&BI [20] coincide in pointing to the edge-to-cloud
hybrid paradigm as a strategic technology towards leadership in the digital space [21].
Advances in this field might help the industry at large to maintain and establish the full
control of data flows, and how they are processed and stored, from the edge to high-density
clouds, providing on-demand, secure data conduits supporting full user autonomy and
fostering the applicability of data sovereignty initiatives. This impact could be affected by
the high centralization of cloud infrastructures and by the move of the so-called exa-scalers
to occupy the edge space. Many sectors will benefit from a proper implementation of
the continuum, leveraging more intelligence delegated into heterogeneous nodes, such as
energy infrastructure (smart grid, renewable energies, electric vehicle charging stations,
etc.), national security (maritime ports, cybersecurity, logistics, traceability of goods, etc.),
or healthcare (personalized dynamic treatment per patient, monitoring, pharmaceutical
supply chain, etc.), among others [22].

As a matter of fact, the EC has launched an ambitious initiative: EUCloudEdgeIoT [23],
which aims at bringing together all European research actions seeking to devise the com-
puting continuum with a common stack of open-source technologies. This is aligned with
the increasing presence of the continuum and its computing elements in official texts such
as those for funding tenders, including the quest for meta-operating systems to be installed
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in heterogeneous nodes [24] or the smart orchestration of the computing fabric leveraging
Artificial Intelligence (AI) [25].

This is very relevant for understanding the background of this article. The authors
heavily rely on their experience in research actions funded by the EC. Realizing the previous
facts, this work aims at paving the way for a reference architecture of the self-* capabilities
of nodes in the computing continuum, building upon the European principles of openness
and governance.

In particular, the context of this work has roots in the research guided by relevant
European-funded actions. On the one hand, the project ASSIST-IoT is an ongoing initiative
that intends to devise the reference architecture for the next-generation IoT deployments.
Building on top of cloud-native principles and the usage of orchestrated Kubernetes(K8s)-
like distributions, diverse computing elements (clusters) are controlled to deliver advanced
IoT characteristics and services. Here, leveraging K8s-assimilable nodes that can be het-
erogeneous equipment in the continuum opened the door for implementing certain self-*
capabilities. Concretely, that project has advanced the comprehension of a system as an
intelligent entity, including the self-awareness and semi-autonomous behavior of services
(containers) deployed across the network. In addition, it has served the authors in under-
standing the field of action (self-* capabilities in a distributed environment), leading to the
devising of the content of this article. On the other hand, the project aerOS aims at deliv-
ering a meta-operating system for governing the computing continuum. Here, a special
focus is put on the Infrastructure Elements (IEs) that compose such a continuum. The IEs
are actually heterogeneous computing nodes that include IoT devices, smart components,
network elements with execution capacity, personal computers, micro servers, data centers,
etc. One of the key aspects of achieving the governance of the continuum is allowing
these nodes to be more aware (in a distributed, decentralized way) of their surrounding
environment such that more capacities in the edge open up. It is in the context of this action
that the authors of this work considered it necessary to conduct comprehensive research on
the specific field.

Some works have been found addressing similar topics from a survey/review perspec-
tive; however, none of them adjusted to the above-mentioned scope. In [26], a taxonomy
describing the continuum as an evolution of IoT and dynamic resources is proposed, as well
as the different components related to cloud-native principles and edge paradigm fitting
technologies. In that very work, the need for future viability studies on particular aspects
of the continuum is called for. On another note, [27] digs deep into a survey of optimal
application placement over the cloud-to-thing continuum, which can be considered a self-*
quality of automated systems including heterogeneous nodes. It helps to categorize the
issues in application placement in micro-services deployment through an inspiring review
methodology but does not examine other self-characteristics. Additionally, the review [28]
goes over diverse concepts that are very useful for achieving self-capabilities in the target
scope of this work. First, autonomic computing lays the foundations for the self, and in
that review, a deep analysis of closed and open-loop systems is performed. Second, AI
promises to be a key element in (almost) any self-characteristic, as monitoring and inference
will allow for introducing intelligence to the various nodes. However, that review only
provides a global overview of those concepts, without explicitly tackling the wide spectrum
of autonomous features, and it also covers topics further away from the work in this article,
such as quantum computing. All in all, it is feasible to conduct a review, as proposed
in this article, going beyond the current coverage to fill the gap in the self-capabilities of
heterogeneous nodes of the computing continuum.

3. Research Methodology

A review of the literature on the different self-* capabilities was conducted to obtain an
up-to-date vision of research and practical examples to understand the status of the field.

In order to carry out a precise search and to be able to discover and analyze the
largest number of research works across the available literature, a method consisting of
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three steps has been followed. First, different sources of information have been selected to
obtain the necessary works for the review. IEEE Xplore has been the main database used,
complemented by other sources, such as the ResearchGate and ScienceDirect databases.
Second, in-depth iterative searches have been carried out, combining the different keywords
for each selected self-* capability in order to obtain more precise results that are close to
the established search criteria. For each self-* capability, results have been obtained that
made it possible to obtain definitions and practical use cases. In addition, from the searches
carried out, those works of the greatest interest with the following characteristics have
been selected:

• Written in English.
• Preference was given to those works published between 2015 and 2023. Although,

due to their relevance, some works published previously have also been selected.

Mainly containing the keywords “cloud computing”, “edge computing”, “hetero-
geneous nodes”, “computing continuum”, “IoT”, “self-awareness”, “self-orchestration”,
“self-diagnose”, “self-healing”, “self-scaling”, “self-configuration”, “self-optimization”,
“self-adaptation”, and “self-learning”.

In addition, the review also included those articles of interest referenced in the works
selected in the main search, looping into an iterative, cross-referenced approach. The last
step consisted of analyzing all the selected articles and synthesizing the most important
information from each one.

As a by-product of the conducted review, the authors also propose a taxonomy and
terminology for the research in the field, which is depicted in Section 4. This was carried
out after observing the inconsistency in the terms used across different papers. According
to the authors, this is a consequence of the lack of reference articles tackling the narrow
field of the self-* capabilities of heterogeneous computing nodes from a comprehensive
perspective. Many works focus on one aspect or another, but an exercise of holistically
analyzing the characteristics that make a wide edge computing system “autonomous” had
not been carried out yet. More details on this reflection are provided in Sections 4 and 6.

Results

As a result of the search, a total of 77 papers have been selected. A total of 24% of them
(18 papers) were published before 2015. The remaining 76% (59 papers) were published
between 2015 and 2023, as it can be seen in Figure 1. This is a relevant milestone to be
highlighted, as it is considered that edge computing, as a used concept in the field of IoT
and the continuum, was born in late 2015.
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The fact that, approximately, three-quarters of the research articles referenced in
the review date from after 2015 is a clear indication of the interest in intelligent and
autonomous edge computing systems and nodes and the need for their use in certain fields
(especially since the advent of practical edge and fog computing systems). As will be
seen later, almost all implementations found in the literature are developments adapted
to specific use cases, lacking any sort of “reference architecture” in the field. By analyzing
the selected publications based on the keywords that appear in the titles or in the abstract
or understanding the main themes that they develop (as depicted in Figure 2), several
conclusions are obtained. There are 10 articles covering cloud, fog, or edge-related topics
that include any self-related capability. A total of 16 papers thoroughly describe aspects
related to automation. A total of 21 articles are directly related to the IoT world. A total of
75 papers contain in their title or abstract one of the self-* capabilities selected for the study.
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A total of seventy-five (75) articles were analyzed that referred directly to one (or more)
self-* capability out of those described above, as drilled down in Figure 3. It was observed
that self-adaptation is the most investigated trait, with 12 devoted papers in total. This
is followed by self-awareness, with 11; self-configuration, with 10; self-healing and self-
learning, with 9; self-diagnose and self-orchestration, with 8 items; and self-optimization
and self-scaling, with 7 items. The average number of articles per self-* capability is nine.
It is worth mentioning that those papers focus almost exclusively on the indicated single
feature (leaving aside or keeping marginal the others).
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This detailed analysis of the research articles found in the search related to self-*
capabilities provides an overview of which capabilities are the most referenced (and there-
fore necessary) when developing an intelligent and autonomous edge computing sys-
tem composed of heterogeneous nodes. Self-adaptation, self-awareness, self-learning,
self-configuration, and self-healing could be considered part of the most basic pillars of
these systems.

4. Terminology and Taxonomy

The computing continuum (also called the digital continuum, IoT-edge-cloud con-
tinuum [29], computing fabric, or transcontinuum) is the combination of resources and
services at the center of the network (cloud), at its border (edge), and in transit (fog). Data
are generated and pre-processed at the edge, partially processed by intermediate nodes,
and, if necessary, transferred to the cloud [30]. A node is a physical (or virtualized) de-
vice that is part of a network and has the capability to execute certain computations and
communicate with other nodes. Today, there is a wide variety of nodes that can connect
to the continuum. All these nodes have different characteristics and architectures that
make them unique. For this reason, it is appropriate to refer to them as “heterogeneous
nodes”. There are several ways to classify them, depending on their architecture, type,
location in the network, etc. Drawing from the nature of this work, a primary classification
option for these heterogeneous nodes has been carried out according to their spot on the
continuum (an illustrative diagram is provided in Figure 4). Within each category, a variety
of capacities, features, powers, sizes, and specific characteristics also exist:

• Cloud nodes: high-performance servers and high-capacity storage systems that pro-
vide services to their users. They allow complex calculations to be executed and are
capable of permanently storing a large amount of data [31]. Topologically, these are
normally placed on a central location (data center).

• MEC (Mobile or Multi-Access Edge Computing) nodes: smart nodes, normally IT
servers tied to radiocommunications infrastructure (e.g., in base stations [32]), that en-
able the capabilities of cloud services closer to the users’ devices (namely, smartphones
or end terminals).

• Edge nodes: any device with computing, storage, and network-attached capabilities,
which are capable of dividing and distributing large amounts of work. Examples
of these devices are access points, routers, small servers, computers, base stations,
etc. [33].

• Far-edge nodes: hardware devices capable of running algorithms that collect and
pre-process information received from IoT devices or versatile computing nodes [34].

• Versatile computing nodes: geographically distributed physical devices closer to the
end user such as commercial devices, such as Raspberry Pis, SIEMENS SIMATIC edge
elements, personal computers, laptops, smartphones, tablets, wearables, smart cards,
smart vehicles, etc., with enough computing power to execute tasks [31]. Versatile
computing nodes can sometimes also be considered far-edge nodes; they are very
close terms that vary mainly in their topological and geographical position, as well as
in their role in an edge computing distributed system.

• IoT nodes: physical devices such as sensors, readers, surveillance cameras, actuators,
embedded devices, etc. They are able to detect events or characteristics of real objects
and transmit them to the upper layer for processing [5,31]. In most recent deployments,
IoT nodes are increasingly improving their embedded computing capabilities, starting
to act as versatile computing nodes. These are known as smart devices and are a
genuine part of the Next-Generation IoT [35].

To reduce the response time, the security risks associated with the cloud, and the
computing limitations of end nodes, MEC and Edge nodes have been proposed to address
these and other related issues. However, MEC nodes have a much higher computing
capacity than edge nodes [36]. For this reason, MEC nodes are commonly used to replace
cloud nodes in the heaviest tasks.
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As mentioned, a computing continuum is a combination of heterogeneous nodes that
can connect with each other and cooperate, forming a network (or fabric). This involves a
myriad of challenges in terms of virtualization and orchestration (see Section 2). Several
works discussing this heterogeneity have been analyzed.

On the one hand, Razzaque et al. [37] comment that one of the main characteristics of
these nodes is the heterogeneity, as mentioned above. On the other hand, Xiao et al. [38]
state that this heterogeneity of the nodes makes their configuration more varied and their
physical conditions more complex and changing, making their orchestration difficult.
Although every node might be, potentially, running its own architecture, it is necessary to
ensure that services are always executed regardless of the underlying configuration. This
system not only has to be able to connect these nodes with the edge computing continuum,
but it also must be able to manage them automatically so that each and every one of them
has an autonomy of use. There is a current quest for searching for such a tool; several
works and research projects are pursuing this goal [39].

Cluster computing and grid computing are other forms of computing that exist to-
day. According to [40], cluster computing is a form of computing in which two or more
computing nodes are connected in a local network to offer certain computing capacities
or services to users. On the other hand, ref. [40] defines grid computing as a form of
computing in which two or more hyper-distributed computing nodes are interconnected in
the same network aiming to combine their resources to execute calculations that require
many computing cycles. On another note, ref. [41] refers to the capability of self-deciding to
offload tasks within a cooperative network of nodes in a vehicular computing continuum.
Concepts such as fog colonies have appeared to describe the self-controlled, context-aware
grouping of heterogeneous nodes by sharing contextual information and policy rulebooks
in a decentralized approach [42].

The goal of this work is not to review the characteristics and self-* capabilities of the
nodes of these forms of computing but rather to explore the different self-* capabilities
needed in autonomous intelligent systems that are part of the computing continuum and
to select those that are considered essential to declare a computing node ”autonomous”.

While holistic governance and orchestration are under investigation, this paper focuses
on the relevance of looking at the capacity of the nodes to apply certain features to help
this automation materialize. To obtain a true global intelligent continuum system, there
is the claim that more intelligent and independent computing nodes must be achieved.
This is what the authors depend on to devise the so-called self-* capabilities that must be
intrinsically offered by such nodes. A self-* capability is a property of a heterogeneous node
that, together with other basic self-* capabilities, allows it to operate independently, without
the intervention of the upper layers of the continuum. According to the literature, there is a
wide variety of self-* capabilities, organized and named in different ways depending on
the chosen criteria. For instance, in [43], IBM explains that the essence of an autonomous
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system is self-management. Drawing from this statement, the four main aspects of self-
management would be:

• Self-configuration: autonomous systems are capable of configuring themselves and
their components, following high-level policies.

• Self-optimization: the capacity to continually improve their performance by monitor-
ing and identifying their resources to become more efficient.

• Self-healing: automatic diagnosis and resolution of hardware and software faults.
• Self-protection: the ability to anticipate and avoid problems and autonomously defend

against external attacks or internal failures with self-healing measures.

Berns et al. [44] define a more complete list of self-* capabilities, which are: self-
management, self-stabilization, self-healing, self-organization, self-protection, self-optimization,
self-configuration, and self-scaling. They also include two self-* capabilities from their own
understanding:

• Self-immunity: the system is capable of restoring security predicates after an attack,
eventually preventing them from being compromised again.

• Self-containment: the ability to keep functional parts of the system uncompromised
by a malicious attack.

Sterritt et al. [45] expose a list of self-* capabilities by completing the one in [44] with
the following: self-anticipating, self-assembling, self-awareness, self-chop, self-critical,
self-defining, self-governing, self-installing, self-reflecting, self-similar, self-simulation,
and selfware.

For this review, based on the previous references and the authors’ experiences in
several research projects in the IoT, edge, and CC fields, it was decided to select the
following self-* capabilities, reflected as well in the Venn diagram of Figure 5:

• Self-awareness.
• Self-orchestration.
• Self-diagnose.
• Self-healing.
• Self-scaling.
• Self-configuration.
• Self-optimization.
• Self-adaptation.
• Self-learning.
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The practical application of these self-* capabilities should allow for autonomy of
use and the awareness of the environment. If this is achieved, the global management
of heterogeneous nodes towards an orchestration of the whole continuum would be
hugely facilitated.

5. Literature Review and Analysis

This section provides the main review corpus of the paper. First, it describes what
every self-* capability means according to the authors, based on the literature and their own
research. Second, it delves into the investigation of each self-* capability in the available
sources. The main goal has been to identify the constructive elements and concepts of the
self-* features as well as to recognize any tools or methods used to materialize them. Finally,
a comparison considering the depth and abundance of work per trait is provided.

5.1. Sensors and Systems of Sensors Overview

IoT sensors are devices that collect data from the surrounding environment (temper-
ature, humidity, movement, etc.) to send it to the upper layers of the systems in which
they are integrated and that can be processed for further analysis and interpretation. In
sensor networks or systems, self-* capabilities are also used to control and automate the
IoT devices (sensors) that comprise them.

In [46], Yeh et al. propose a fault self-diagnosis technique for sensor networks based
on FBG (Fiber Bragg Grating). With this technique, when a network or sensor failure
occurs, the exact location can be detected. Zhu et al. [47] developed a self-diagnosis and
self-detection system for integrated sensor networks capable of receiving and processing
information from the environment. This system predicts the data captured by the sensors
in real time and compares them with the real data to determine the accuracy of the data
acquisition, that is, the correct operation of the sensors. Furthermore, if a sensor failure
is detected, the system can diagnose the cause. Richardson and Cheneler [48] present a
set of ideas for the self-diagnosis, self-adaptation, and self-healing of autonomous sensors
integrated into electronic systems through software algorithms. The objective is to increase
the reliability of the data generated by the sensors and allow them to repair themselves,
emulating the resilience of living beings. Bicocchi et al. [49] present a framework for
carrying out unsupervised training between sensors in the same network. The objective
is to exchange information between the sensors so that they learn a model using the data
obtained by other sensors. To do this, they use, as a use case, the combination of a camera
and an accelerometer to identify the movements of the users.

5.2. Analysis of Self-* Capabilities Research Status
5.2.1. Self-Awareness

Götzinger et al. [50] define self-awareness as an ability of computer systems to observe
and analyze the environment surrounding them and themselves, with the aim of making
changes in their behavior, according to the observations made. They also comment that
self-awareness is the base in an autonomous system for all other self-* capabilities. In [51],
the authors explain that self-aware computing systems need to gain knowledge about the
controlled resources and their environment. This knowledge can be extracted from the
analysis of the execution time of tasks, employing machine learning (ML) algorithms over
internal and external data or from other sources. In systems with hierarchical architectures,
knowledge can be affected due to the loss of a part between higher and lower levels. This
is the case of the computing continuum as understood in this work. Although the goal is
to conceive all available resources as a single entity to be managed, geographically and
topologically, each node is constrained to its direct visibility, living in an inner hierarchical
layout. Esterle and Brown [52] state that the nodes of a network must be aware of other
systems and devices further away from their immediate environment.

Articles [52,53] propose five levels of self-awareness of connected systems that have
access to network resources and network monitoring parameters (such as the performance
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of different model-building algorithms, the objectives of other systems, trade-offs between
targets, etc.):

• Networked stimulus-awareness: allows the system to know how to respond to events
in its environment with the stimuli received.

• Networked interaction-awareness: determines that the stimuli received and the actions
performed form relationships with the surrounding environment.

• Networked time-awareness: obtains information about historical stimuli in order to
predict future stimuli and their effect on other nodes.

• Networked goal-awareness: having knowledge of the objectives, goals, constraints,
and preferences of the rest of the nodes allows them to know how it affects them,
based on specific tables dependent on network information.

• Networked meta-self-awareness: the system is capable of determining its own level of
network self-awareness and how it is exercised.

In [54], Anzanpour et al. propose a monitoring and control system for the health
of hospital patients with a self-aware design. This system is based on wearable devices
(with limitations such as power consumption or performance) that obtain data through
sensors such as heart rate, blood oxygen, blood pressure, or body temperature. This
information is sent to cloud servers for their storage and processing. This system provides
personalized care, self-organization, and autonomy of use for remote monitoring and
intelligent decision making based on the situation for patients. Here, the principles of self-
awareness are delegated to the cloud, pulling away from the edge computing nodes (sensors
and smartphones); however, the mechanisms still apply for a potential self-awareness
system design. Andrade and Torres [55] propose a conceptual model of cognitive security,
with self-awareness as the main element. Here, a computer system (potentially assimilable
to a heterogeneous node) is capable of generating learning models (based on self-aware
knowledge) and reasoning models (created from the defined learning models).

Approaching self-awareness and control formalization, IBM [56] proposed a feedback
loop for autonomic control called “MAPE-K”. This model has five phases:

• Monitor: obtain data and information from the environment for the node self-awareness.
• Analyze: the most important information obtained in the monitoring phase is selected

and studied.
• Plan: the necessary actions for achieving goals and objectives are defined and built.
• Execute: the procedures for the execution of the plans are defined.
• Knowledge: the information used in the four previous phases is stored as shared

knowledge.

Any self-awareness methodology or tool to be embedded in a heterogeneous node in
the continuum should consider this methodological approach in its design.

In [57], Elhabbash et al. proposed a generic system that uses symbiotic simulation to
address the difficulty of analyzing the quality of knowledge and achieving the capacity
of meta-self-awareness of the system, which allows it to know its levels of consciousness.
Ref. [58] introduced a framework, based on the analysis and extension of three bio-inspired
theories, for descriptive and generative dynamic models that strengthen the capacity of
self-awareness of autonomous systems. The three bio-inspired theories are the models of
Damasio, Haykin and Friston et al., and Zhang et al. [59], who discuss cognitive digital
twins, examine the concepts of digital twins and self-awareness together, and explore the
possibility of harnessing different levels of self-awareness for cognitive digital twin design.

In summary, self-awareness has been tackled in the literature from three main per-
spectives: (1) the formal methodology -MAPE-K-, defining the steps to be performed to
feed a system back towards such awareness; (2) based on the network to understand its
own needs and act upon the context and a series of objectives; and (3) from a list of specific
cases, mostly related to health applications, without going further and placing awareness
on heterogeneous nodes of the continuum.
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5.2.2. Self-Orchestration

The synchronous and sequential execution of services is called orchestration. Orches-
tration systems include the application logic needed to manage services [60]. This is one
of the most important capabilities in distributed systems because it allows applications
to meet the requirements of end users in a specific order, and associated complexity is
managed by proper internal components. Moreover, it improves the scalability of appli-
cations and minimizes failures between inner modules [61]. Based on the definition of
orchestration in [62], the authors adopt the definition of self-orchestration as the self-*
capability of nodes to configure themselves, manage themselves, and coordinate with each
other to achieve common goals and objectives. That is, it focuses on the architecture of the
system, the applications that compose it, and the data they manage with the requirements
of the business.

In [60], Delamer and Lastra describe the difficulties in providing rapid reconfigura-
bility in current and future manufacturing systems in the industrial sector. Based on this,
the authors analyze the concepts and definitions of self-orchestration and choreography
oriented to web services at the node level and propose the use of self-orchestrated semantic
web services to solve the problem. Khebbeb et al. [62] present a rewriting-based specifica-
tion developed in Maude to design and verify the self-adaptive and orchestration behaviors
of the cloud and fog layers in order to manage the reconfiguration of the architecture
and manage the self-adaptation and orchestration of the cloud and fog layers based on a
centralized control pattern to achieve low latency and resources quantity trade-offs.

The authors of the paper [63] propose a new reference for Building Automation
Systems (BAS). This paradigm is heavily inspired by social network interrelationship
models for improving the self-configuration and self-orchestration of nodes in the home
and smart building automation. The developed framework is based on social objects
and semantic descriptions of resources and services. This increases the autonomy of
the use of the devices, their capabilities to configure themselves, and the relationship
between them and the environment that surrounds them. These devices take on the role
of intelligent agents, which can self-configure, self-coordinate, and self-orchestrate. The
proposed model was implemented on Arduino boards and on Intel Edison and Zolertia
single-board computers with more resources.

In [64], Schulz focuses on the development of a model whose objective is to define
the self-management and self-organization of a network as if it were a subsystem within
automation systems. In this way, all components of the communication architecture are
defined, implemented, and maintained in an automated manner. The model is applied to
Intranets within companies at an industrial level, orchestrating the transport of information
through IP and legacy protocols as well as wired and wireless connections interchangeably.
The author intends that the developed model serve as a reference for other research and as
a standard in IoT networks at an industrial level.

Regarding self-orchestration, it can be concluded that there is not a common under-
standing of which kind of self-orchestration can be achieved. However, there are several
documented attempts to orchestrate inner networks and the use of their own resources in
the form of intelligent agents.

5.2.3. Self-Diagnose

Self-diagnosis is the self-* capability of a smart node or device to continuously monitor
its health status [65]. The node has the ability to detect the error and its origin, which allows
for the development of highly reliable and energy-efficient applications [66]. However,
the term self-diagnosis is also applied to networks made up of intelligent nodes that are
capable of self-diagnosis or of sending their health status to central nodes for further
analysis. Examples of these networks can be found in [67–70].

Discenzo et al. [65] evaluated the need for IoT devices for the self-diagnosis of com-
ponents in the industry. Thanks to a small engine together with a microprocessor, they
developed a model for self-diagnosing its status and preventing possible future failures.
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In [67], the author addresses the development of “Promising”, a model capable of self-
diagnosing the state of a network and its nodes. The method is based on the use of a highly
reliable checking component to evaluate the state of the nodes of a network. In addition,
the author recommends monitoring in a decentralized manner to minimize network traffic.

Rahem et al. [68] describe possible failures that can occur in data aggregation. This
technique is commonly used to analyze and diagnose the status of Wireless Sensor Net-
works (WSN) due to their low power and bandwidth consumption, reduced execution
time, etc. In this work, in addition, an analysis is carried out on the data added by the
central node in the cluster to evaluate the energy consumption, using self-diagnosis. This
node manages all the operations and devices that compose the controlled group. In [69],
Harte et al. also develop a model to monitor the health status of nodes within a WSN
using self-diagnosis. The authors focus primarily on detecting physical problems in devices
caused by impacts or them not being properly oriented.

In order to identify failures and errors in ad hoc mobile networks and wireless mesh
networks, the authors of [70] proposed a novel self-diagnosis model called “Adaptive-
DSDP”. This protocol is based on comparison, where tasks are assigned to pairs of nodes,
and the results obtained are analyzed and compared.

As it can be realized, self-diagnosis is tackled in the literature not as a characteristic of
the nodes themselves but as part of a group or a network. Whether this is due to a lack of
usage of the term self-diagnosis or to the dismission of its own health diagnostic, the reality
is that, for modern edge computing environments, this aspect will need to be thoroughly
tackled in the near future.

In the ASSIST-IoT project, a modular software was developed (see Figure 6) that
allows for the self-monitoring of edge device functionalities, logs, etc. and the genera-
tion of notifications if a failure occurs. This module is part of the self-* vertical plane
enablers [71,72].
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5.2.4. Self-Healing

Self-healing is the part of autonomous systems that is responsible for independently
managing the recovery of the parties affected by a failure or attack without human inter-
vention. This mechanism provides the ability to maintain and resume the system in an
automatically set condition [74]. Khalil et al. [75] also include failure detection as part of
self-healing. In [43], IBM explains that self-healing is the self-* capability to automatically
diagnose and resolve both hardware and software failures.

Yang et al. [76] developed and implemented a self-healing system for the electrical
network made up of several Easergy T300 controllers installed in medium-voltage feeders
(20.000 V) that monitor the state of the electrical network through an analysis and self-
healing algorithm in real-time to detect failures and avoid prolonged power outages. The
controllers analyze the load of the feeders, obtaining data on the temperature of the devices,
energy, etc. in order to manage the network. Thanks to the self-healing algorithm, the
system is capable of identifying the type of fault and its location, isolating the sector of the
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network with problems and reconfiguring the network to re-energize the areas affected
by the fault. In this way, the duration of power outages can be reduced from hours to
just seconds autonomously. The methodological principles of this work are very relevant
for a potential shift of the self-reparation to heterogeneous computing nodes instead of
high-voltage network controllers.

In [77], the authors also develop an autonomous control system for the monitoring
and self-healing of the smart distribution network based on distribution automation and
advanced distribution automation. The self-healing of the system includes preventive
self-healing, fault self-healing, and economical self-healing. This intelligent system is able
to adapt to the complex environment formed by these networks, continuously monitoring
and managing resources. Thanks to this, the system is able to ensure and improve the
electrical supply of the network in the event of a problem thanks to the use of resources such
as power generators widely distributed throughout the network, energy storage devices,
and even electric vehicles connected to the network (V2G).

The control of autonomic systems, through monitoring their health status, is one of the
essential parts of self-healing algorithms, which is connected to the self-diagnose capability
treated above. Other works [74] propose a monitor model that can improve the self-healing
performance by decreasing the number of resources spent on the self-healing-affected parts
of the system.

There are works that propose using Neural Networks (NN) to avoid failures in dis-
tributed computing systems. In particular, there are self-healing algorithms that are based
on replacing defective hardware nodes, which cause system overloads [75], with new ones.
NNs are complex algorithms used in a wide variety of applications [75], especially in the
field of AI. From another viewpoint, Khalil et al. [75] propose a novel method to be applied
to self-healing NNs; using a single node per layer, it is possible to replace any defective
node. If a node fails, its neighbor will also perform its tasks (apart from those already
assigned to it) sequentially. If the neighboring node fails, only the spare node will take over,
reducing the load on the system.

Liu et al. [78] show the design and implementation of a zero-time self-healing com-
munication network for real-time ship monitoring. This network is capable of connecting
sensors, control devices, and computers to interact with the ship’s maintenance team.
Through various control and surveillance mechanisms, it is capable of automating many of
the tasks carried out on ships. The objective of this novel design is to solve the transmission,
reliability, and real-time problems of network communications. To do this, it transmits
the information through several routes to have a seamless and instantaneous self-healing
network. Thanks to this network, the maintenance of the ship becomes easier and faster.

In [79], as in [76,77], the author exposes a model for the automatic reconstruction of the
electrical network with self-healing capacity to avoid power outages to users and reduce
the cost of repairing the electricity network.

In the case of the self-healing capability, the majority of the found literature focuses
on the electrical power of devices (either computing or not) or the electrical distribution
network. Some works also explore the self-healing of computing nodes that can be part
of a continuum. However, there are only a few mentions of the self-recovery of the
communications or the functioning of single nodes—for instance, when the connection is
down or faulty.

In ASSIST-IoT, a self-healing modular software (as per the diagram in Figure 7) was
developed in order to recover from failures to the IoT devices that incorporate it. This
recovery is based on an already existing schedule of routines. This enabler is divided into
three components:

• Self-detector: its purpose is to obtain information from the device on which it works.
• Self-monitor: check the health status of the IoT device, analyzing the information

obtained by the self-detector component. From these data, health score metrics are
extracted, which are compared with thresholds to determine if the device is OK or not.
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• Self-remediator: if the self-monitor component detects a bad state of health of the
device, it sends a notification to this component to try to recover (through a series of
operations) the good state of health. If this is not possible, other operations are applied
to try to recover the state of health again.

This module is part of the self-* horizontal plane enablers [72,80].
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5.2.5. Self-Scaling

Based on the definition offered by Herbst et al. [81] on scalability, the authors define
self-scaling as the self-* capability of an intelligent node to increase or decrease the use of
its resources depending on the volume of work to be carried out. If the workload increases,
the node is able to increase its resource usage automatically. Otherwise, it will remove part
of its resources to accommodate the volume of incoming work.

Herrera and Moltó [82] introduce two novel biology-inspired algorithms that en-
able self-scaling in architectures based on the execution of self-managed containers. The
algorithms described are:

• Self-scaling self-sufficient cell model (SCM): this model is characterized by the lack of
direct interactions between containers. This design, in turn, is subdivided into three
variants (SCM-A, SCM-B, and SCM-C).

• Self-scaling interactive cell model (ICM): this model is characterized by containers
that have information about the containers that are in their environment. The ex-
change of information can be carried out directly (between containers) or through
intermediate services.

In [83], the authors describe a model for self-scaling the resources of a network based
on the task execution times of each instance of virtual network functions (VNF). The
resources used by each instance (both physical and virtual) are assigned per cycle unit
using a weighting factor. The system is made up of two components: a self-scaling
application (which includes several control and management modules) and a monitoring
module based on micro-services.

Nikravesh et al. [84] propose an architecture for a self-scaling prediction ensemble
based on empirical studies, which is capable of selecting the best prediction algorithm
based on the amount of real-time workload.

Casalicchio and Perciballi [85] present a self-scaling algorithm called “KHPA-A” that
connects to the Kubernetes controller and is based on absolute metrics rather than relative
metrics. The use of this type of metric allows the system to reduce the response time
of the applications compared to the current K8s self-scaling algorithm. In addition, this
algorithm can make use of the input parameters used by the original “KHPA” algorithms
to obtain the number of containers to be instantiated. Similar to this approach, in the
research project ASSIST-IoT, an improved alternative to the Horizontal Pod Autoscaler
(HPA) of Kubernetes based on time series inference (rooting on Facebook Prophet NN)
and custom logic is proposed and developed: the “resource provisioning enabler” [72,86].
This software is able to horizontally scale (up or down) the resources devoted to a specific
enabler (custom software packaged as a Helm chart and following a set of predefined
encapsulation principles) within a K8s node in a dynamic fashion [87].
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Chattopadhyay et al. [88] propose a self-scaling orchestration model for IoT applica-
tions called “Aloe”. This framework dynamically deploys lightweight controller instances
close to IoT devices (which are resource-constrained) to ensure a high availability and low
set-up time. It is fault-tolerant, can migrate instances from one site to another in cases of
problems with part of the network, and uses Docker as a base to support migration.

As a reflection, self-scaling is the capability that has been brought to practice more
frequently and successfully, mostly due to its capacity of making use of already existent
tools provided by container management frameworks, as well as other applications.

5.2.6. Self-Configuration

According to [89], the self-configuration of an application or autonomous system is
the self-* capability to configure and reconfigure itself automatically and independently
in any type of possible condition. In [43], IBM explains that self-configuration is the self-*
capability of autonomous systems to configure themselves and their components, following
high-level policies.

Yang et al. [90] developed a model to self-configure connected terminals in 4G net-
works and heterogeneous communication and service environments. When a terminal
connects to the network, the framework puts it in pre-operational mode until the node
self-configures, at which point the node becomes operational within the network. When a
terminal leaves the network, the TMS (Terminal Management System) notifies the rest of
the nodes so that they are aware of the new state and reconfigure themselves appropriately.
Wang and Vanninen [91] describe and compare different protocols for individual peers to
self-configure the P2P network. To determine which is the best protocol, they simulate
small-scale P2P networks and compare the quality of self-configured networks.

Mombello et al. [92] presented a self-configuring system for a photodetector sensor.
Its goal is to use a control unit that can be programmed to find the center of the light
beam hitting the sensor and then set the detection pattern. This model allows for the
automation of the alignment of the light beam with the detection pattern. For this, the
model is capable of obtaining data from the light sensor to reprogram the behavior of
the photodetector sensor in real-time. In [93], the authors describe a self-configuration
algorithm for a modular robotic system (MRS). This system is made up of robots which
move through a virtual grid until they reach their optimal position in the configuration
space. Through local communications, the robots can analyze and plan routes within the
grid to change position.

One of the advantages of self-configuration for heterogeneous nodes would be to facil-
itate better CI/D of services in computing elements at the edge of the network. Currently,
as occurs with millions of serve-providing applications, updates on firmware and software
versions must be carried out offline, requiring disconnection or rebooting of the compo-
nents, including hardware. Achieving self-configuration in real time would smooth these
processes that usually underserve the requesting users, which can be highly inconvenient
in specific applications. Abdellaoui et al. [94] propose a real-time self-configuration system
that is capable of automatically connecting and disconnecting the modules (components)
that make up the applications to reduce service outages and cause the least possible inter-
ruptions. Each connected object in the application is considered as a software module that
is added or removed to be updated separately. This could be a nice approach towards the
self-configuration of heterogeneous nodes in the continuum.

Yao et al. [95] designed a system that automates the self-configuration of the use of
virtualized shared resources in graphics cards of cloud servers intended for cloud-gaming.
This framework is made up of four modules:

• Sensor module: gathers preliminary system and application data.
• Modeling module: automatically analyzes raw data from the sensor module.
• Controller module: for each virtual machine running on the graphics card, an agent

monitors its performance and sends the information to a scheduler. This analyzes
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the information of all the virtual machines and sends an instruction to activate the
control system.

• Self-control-configuration module: manages the self-configuration of the controller
parameters.

In [96], the authors present a novel self-configuration model, based on software-
defined networks (SDN) for time-sensitive networks. In existing configuration meth-
ods, end nodes send their data to a central management node. These methods require
the manual configuration of the hosts. The proposed algorithm allows resources to
be obtained in a transparent and automated manner, facilitating self-configuration in
heterogeneous environments.

In the ASSIST-IoT project, a self-configuration modular software (see Figure 8) was
developed that allows heterogeneous services and devices to remain synchronized with
their configurations. In addition, it allows to detect changes in the surrounding environment
and update the configuration automatically, if necessary. On the other hand, the user can
change the configuration manually and define configurations to be applied in cases of
detecting a failure in a node [72,97].

Self-configuration is a characteristic that might bring multiple benefits to systems
implementing the computing continuum. Nonetheless, research has focused on specific
distributed systems (cloud-gaming, radiocommunications, etc., even within sensors that
require calibration to properly function). Methodological approaches that drill down the
process in various functional blocks also exist, opening the door to developments that could
be applied to the heterogeneous node of the computing continuum.
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5.2.7. Self-Optimization

In 2003, IBM listed self-optimization as one of the four basic pillars of an autonomous
system. IBM defined the concept of self-optimization in autonomous computing as the
continuous improvement of the performance and efficiency of an autonomous system [43].
For Nami and Bertels [98], self-optimization is the ability of an autonomous system to allo-
cate resources and use them in the most efficient way possible, meeting user requirements.
In addition, they also state that autonomous system workload management and resource
usage are two important points in self-optimization. Unlike self-scaling, self-optimization
constantly monitors scaled resources to optimize their operation and performance. For the
authors, the definition provided by IBM is more accurate when considering the field of
the distributed computing continuum, as the horizontal resource allocation to maintain
the quality of service (including acting in advance) is a competence of the self-scalability
of nodes.

Zheng et al. [99] defined a model based on autonomous computing to automatically
optimize services offered to users. When the system changes internally, that is, the param-
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eters that influence the performance of the services provided to users change during its
execution, dynamic self-optimization is executed. This improves the performance of the
service to make it more efficient. When there are no big changes internally in the system, the
static self-optimization prediction is executed. Both methods are combined to automatically
improve the performance and efficiency of the services that the system provides to users.
These are good principles that could be applied to the functioning of heterogeneous nodes
of the continuum.

Moving away from the performance optimization of single elements, the authors
of [100], propose a method to automatically optimize handover parameters for 5G networks.
In these networks, the configuration of handover control parameter (HCP) settings is carried
out manually or through self-optimization functions. Due to the large number of devices
connected to the network, offering a stable connection over time has become one of the
priorities in this type of network. Device handover occurs when a node moves between two
cells of a network. The authors also classify the current algorithms as central optimization
models, that is, the optimization is performed based on the performance of the network
as a whole and not individually for each connected device. In [101], Sánchez-González
et al. propose a rule-based self-optimization model for mobile networks that improves and
speeds up convergence in the search for solutions. These rules are really information on
how to solve specific problems. In addition, the authors state that this system has been
fine-tuned to improve coverage and cell overlap within the same network.

Also rooted in network parameters optimization, in [102], the authors implement a
self-optimization model for the nodes of cognitive wireless home networks, called the
“Home Cognitive Resource Manager” (HCRM). The system uses several self-optimization
algorithms and information captured from the execution environment in order to perform
efficient radio resource management. To achieve its goal, the framework uses utility-based
reasoning and compliance with policy regulations.

Trumler et al. [103] presented a model for creating self-organizing autonomous sys-
tems that are based on nodes located in the network. This system employs a mode of
operation based on the hormonal system of humans. Each node sends information for
self-organization through messages without using any extra communication system to
avoid overloading the network. The objective of these messages is to know the consump-
tion of the resources of the nodes to be able to optimize them in the most efficient way.
The algorithm works in conjunction with a middleware also developed by the authors of
the paper.

Looking at specific verticals of application, Wang et al. describe in the paper [104]
an autonomous system for the self-optimization of the course of a ship. To do this, the
objective to be achieved by the system is established, and, through various algorithms, it
determines the most optimal and efficient control parameters of the ship’s course.

5.2.8. Self-Adaptation

Self-adaptation is the self-* capability of the autonomous systems to adjust their
behavior during execution in real-time. This adaptation is made to respond to changes in
the perception of its environment and of the system itself [105,106].

Amiri et al. [107] propose an autonomous system that uses a dynamic router architec-
ture capable of adapting at runtime. Several studies by the authors of the paper indicate
that centralized routings offer greater reliability, while decentralized ones offer more per-
formance. This system performs multi-criteria analysis to optimize and self-adapt the
architecture between more centralized or more distributed routing to deliver the highest
reliability and maximize performance.

The work described in [108] deals with the variation in the Particle Swarm Optimiza-
tion (PSO) algorithm with dual self-adaptation and dual variation to improve the premature
convergence problems of the standard version. The goal is to widen the search range for
the optimal solution and improve the search accuracy, the algorithm’s rate of convergence,
and its response speed. The authors affirm that, applied to the optimization of objective
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functions, their version of the PSO improves performance and results compared to the
standard version.

Ardito [109] developed a system to self-adapt the operation of smartphone applica-
tions in real-time depending on the current battery consumption of the device. The goal
is to reduce the energy consumption of smartphones and extend the life of their batteries.
The method has several phases of operation. First, the power management module of
the operating system obtains the consumption values through the hardware. Second, the
module analyzes and divides the energy expenditure between each running application
based on the current use of each one. Finally, it sends the information with a maximum
threshold that must not be exceeded. If the application exceeds the threshold, the oper-
ating system sends it a warning to modify its operation, adapting itself according to its
energy consumption.

In [110], Yuan et al. present a self-adaptive model called “CASC”, based on “MAPE” [56],
to adapt the composition of services in real time. Self-adaptive composite services can
automatically adjust in real time to changes in their surrounding environments. This system
is capable of self-adapting by selecting new services or generating new schemes for the
composition of the service.

While self-adaptation is a term used in wider communication environments (see
above), applied to heterogeneous nodes in the continuum, self-adaptation would be the
capacity to adapt the applications (containers, services, etc.) being run by such a node
depending on the current execution of those (taking too long, consuming more resources
than expected, requiring extra bandwidth, etc.) in runtime. Specifically related to this
definition, the authors of [111] describe a multi-tier self-adaptation model for microservice
systems that aims to improve the self-adaptation capabilities of microservice frameworks.
In addition, they also present a self-adaptive description language with which to determine
the adaptation logic at the different levels of microservice systems and a platform called
“AdaptiveK8s” to provide support as a Kubernetes extension. The goal of all these efforts is
to specify self-adaptation requirements at the different levels and to provide the necessary
components to improve self-adaptation in microservice systems. Besides, Nallur and
Bahsoon [112] propose a decentralized model in the cloud that uses heuristics so that service-
based applications can self-adapt at runtime to the quality of service (QoS) requirements
they offer to users.

Likewise, Boyapati and Szabo [113] developed a self-adaptive system for large-scale
microservice architectures, based on “MAPE-K” [56]. The system is composed of two inde-
pendent networks. In a network, the “MAPE-K” loop monitors the environment, analyzes
the information received, and schedules tasks. On the other network, the scheduled tasks
are executed in the managed system. All components are deployed on Docker and are
related to each other by exposing REST APIs. The authors emphasize the use of open-source
tools for the development and implementation of the proposed system.

In [114], the authors present a self-adaptive fog monitoring software that uses a
hierarchical P2P architecture that is capable of modifying its operation based on an “MAPE-
K” feedback loop. This variation in its behavior is possible thanks to the data that the
system collects from its environment.

Self-adaptation in the literature implies the existence of various components (namely,
services or microservices in modern distributed environments) whose execution can be
modified in runtime to meet user requirements. The methodology “MAPE-K” seems to be
widely employed in most practical implementations proposed in the found references.

5.2.9. Self-Learning

Based on [115], self-learning is defined as the self-* capability of an autonomous
system to improve its performance using unsupervised AI and ML over time. Although the
usage of AI is applied to achieve other self-* capabilities (e.g., self-scaling), the exercise of
valuing unlabeled historic data for self-improvement purposes can be considered a relevant
capability by itself.



Sensors 2023, 23, 2931 20 of 27

With the fast expansion of the IoT, a new concept called Internet of Vehicles (IoV)
appeared. The calculations that these vehicles execute (with limited resources) are in-
creasingly computationally expensive. To solve this, Vehicular Edge Computing (VEC)
appeared, which allows vehicles to send these more expensive tasks to them. However, it
is a problem that many vehicles compete for these computing resources at the same time.
For this reason, Luo et al. [116] proposed a distributed computational offloading algorithm
called “DISCO”, based on self-learning, where each vehicle gets its best offloading decision
based on its information and the offloading decision of other vehicles. In [117], Srinivasan
proposes a low-cost system for monitoring and predicting the status of the mechanical
components of a car. To do this, through sensors installed in the vehicle, the necessary
data are collected in real time. These data are sent to the cloud for processing using a
self-learning algorithm, which predicts the future status of the monitored components.
Finally, the analyzed information is sent to a mobile application so that it can be viewed
by users.

In recent years, the use of drones has grown exponentially. They are used for military
applications, agriculture, the analysis of aerial photographs, and even for civil use. In
some of these more specific applications, drones need to perform operations that they
cannot execute due to their limited resources. As a solution, the use of MEC nodes has
been proposed to perform these calculations. Sacco et al. [118] developed a self-learning
algorithm that allows the drone to decide whether to send the task to the MEC nodes using
two different methodologies: time series and ML regressors. This decision is taken based
on the predicted behavior of the drone.

In [119], Sudharsan et al. present an algorithm called “Train++” that allows for the
training of ML models on IoT devices (such as sensors) with very limited resources. In
this way, these types of components do not need to increase their performance and can
dispense with ML model training services in the cloud to become intelligent self-learning
devices at the edge of the network. Tam et al. [120], proposed a resource-optimized
communication scheme for federated learning at the edge of the network. The objective is
to perform classifications of images detected by remote IoT devices (sensors) in real time,
using convolutional neural network algorithms. For this, a self-learning agent is used that
communicates with the network orchestrator and the architecture to optimize the control
of the resources of the IoT devices.

Shen et al. [121] present a self-learning algorithm for building energy management
systems. This software uses the network formed by the IoT sensors (which should allow
for calculations in the fog) to analyze, in a distributed way, the data obtained by the IoT
sensors. The purpose of this system is to reduce the energy used, process the data from the
sensors in the fog (instead of in the cloud), improve the comfort of the users, and increase
the accuracy of the data predictions.

Some works have proposed the usage of self-learning to obtain ratings (positive,
neutral, and negative) of status (e.g., comments of hotel reviews) [122], which could be
very interesting in rating the capacity of a node to react to specific circumstances.

Considering that AI is one of the most researched fields in the current literature, the
term self-learning presents difficulties in its association with heterogeneous nodes in the
continuum. Only a few references express the need to use such capacities in computing
elements in a network.

5.3. Literature Comparison

In this subsection, Table 1 is presented, comparing the works evaluated throughout
the section. For each self-* capability, those articles related to each type of node capable of
connecting to the computing continuum are reflected.
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Table 1. Evaluated works for each self-* capability and their spot in the continuum.

Cloud Nodes MEC Nodes Edge Nodes Far-Edge Nodes Versatile Comp.
Nodes IoT Nodes

Self-awareness [54–57,59] [54–57,59] [55,56,59] [56,59] [54,56–59] [54,56–59]

Self-orchestration [62] [62] [60,62,64] [60,62,64] [52,53] [60,62–64]

Self-diagnose [71–73] [71–73] [47,70–73] [47,48,67–73] [67,70–73] [46–48,65,67–73]

Self-healing [72,73,80] [72,73,80] [72,73,78,80] [48,72–74,76–80] [72–75,78,80] [48,72–74,76–80]

Self-scaling [72,82–87] [72,82–87] [72,86,87] [72,86,87] [72,86] [72,86–88]

Self-
configuration [72,73,94,95,97] [72,73,94,95,97] [72,73,97] [72,73,93,97] [72,73,90,91,93,96,97] [72,73,91,92,97]

Self-optimization [99,102] [99,102] [100–102] [100–102,104] [100–104] [100–102,104]

Self-adaptation [107,110–113] [107,110–114] [48,114] [109,114] [48,114]

Self-learning [117,119,122] [116,118,121] [49,116,120] [49,116–121] [117] [49,116–121]

As can be seen in the table above, there are certain trends in the use of self-* capabilities
depending on the spot on the continuum where they are applied. Self-configuration and
self-scaling are the self-* capabilities that are most applied in all types of nodes described
equally. Self-scaling and self-adaptation are the two self-* capabilities that are mostly
applied in cloud servers and MEC nodes due to the importance of adapting and scaling the
resources used to optimize them and reduce the energy consumption that these nodes need.
Self-awareness and self-configuration are applied to servers and terminal nodes mainly
due to the importance of knowing the environment that surrounds them and being able
to reconfigure themselves appropriately based on changes in the environment. Finally,
self-orchestration, self-diagnose, self-healing, and self-learning apply primarily to terminal
nodes. This is because many of these nodes work together to achieve common goals. On
the one hand, coordination is an important part in the organization of these nodes, as
well as learning and predicting data through algorithms that collect information from
the environment around them through sensors. On the other hand, the diagnosis and
resolution of problems (or their prevention) is another important factor in this type of node
for avoiding performance reductions in the networks they form due to their limited work
capacity compared to large servers located in the cloud.

6. Future Research Directions

In the future, there will still be the need to deepen the coverage and deployment
approaches of the selected self-* capabilities, identify and analyze new ones, and advance
in the definition of standards that may allow for the creation of related open-source tools.
The search for up-to-date use cases of monitoring tools should be enhanced, and surveys
of experts in the field to find out their vision of the implementation and expansion of
self-* capabilities today might be realized. Finally, following the reflection on this article’s
limitation, the scope of the review should be expanded to include alternative sources such
as open-source repositories or blogs. The authors of this paper look forward to performing
such evolvements in future articles.

7. Conclusions

Over time, CC has led to new, more efficient, and more effective forms of comput-
ing: fog and edge computing. These offer advantages that the “cloud” is not capable of
providing, such as lower energy consumption and better response times. This requires
management by autonomous intelligent systems, which, apart from a holistic orchestration,
might benefit from the implementation of self-* capabilities brought by heterogeneous
computing nodes. Out of all the identified self-* capabilities, only a small group are really
considered essential for those systems, and, as has been observed, there are hardly any
references in the literature or systems that can be used as a basis for multiple solutions. The
vast majority of the proposed solutions are customized systems that focus on very specific
use cases (mostly distributed networks), which increases fragmentation and reduces the
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possibility of creating open standards and solid foundations that are valid for any field
of application.
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