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Abstract: Energy management in electrified vehicles is critical and directly impacts the global
operating efficiency, durability, driveability, and safety of the vehicle powertrain. Given the multitude
of components of these powertrains, the complexity of the proper control is significantly higher
than the conventional internal combustion engine vehicle (ICEV). Hence, several control algorithms
and numerical methods have been developed and implemented in order to optimize the operation
of the hybrid powertrain while complying with the required boundary conditions. In this work, a
model-based method is used for predicting the impacts of a set of possible control actions, choosing
the one minimizing the associated costs. In particular, the energy management technique used in
the present study is the equivalent consumption minimization strategy (ECMS). The novelty of this
work consists of taking into account the thermal state of the ICE for optimization. This feature was
implemented by means of an extensive experimental campaign at different coolant temperatures
of the ICE to calibrate the additional fuel consumption due to operating the engine outside of its
optimum temperature. The results showed significant gains in both WLTC and RDE cycles.

Keywords: 1D modeling; ICE thermal state; optimization; hybrid vehicles; ECMS

1. Introduction

In view of the current sociopolitical restrictions and market demands, the automotive
industry has invested a great amount of effort into electrified vehicles [1]. Furthermore,
the worldwide electric vehicle (EV) market share is expected to grow 26.8% each year
until 2030 while the production and selling of conventional internal combustion engine
vehicles (ICEVs) will be strongly reduced [2]. Although the costs of battery electric vehicles
(BEVs) have decreased, they are still higher than their competitors (i.e., hybrid electric
vehicles (HEVs) and ICE vehicles. . . ). Additionally, the absence of sufficient recharging
infrastructure, limited travel ranges, and charge times are still critical drawbacks for full
electric vehicles [3].

Hybrid vehicles benefit from the advantages of ICEs (i.e., range, energy, and power
density. . . ) and electrification (i.e., lower tailpipe emissions and a reduction of noise. . . ).
Hence, they provide optimum solutions for the transition from ICEVs to BEVs [4]. The
propulsive system of the hybrid vehicle presents high complexity and requires advanced
control of the different subsystems. In fact, the energy management system (EMS) of the
HEV is fundamental for efficiently operating the propulsive system while complying with
the required power and safety requirements [5]. To achieve this goal, several research
studies have been published using different methodologies and requirements [6,7].

On the one hand, dynamic programming (DP) and Pontryagin’s minimum principle
(PMP) are numerical methods widely used in vehicle optimization [8,9]. The control
strategies are not casual and require pre-known velocity profiles of the vehicles. On the
other hand, model predictive control (MPC) and an equivalent consumption minimization
strategy (ECMS) have been implemented for online optimization [10,11]. In [12], Hwang
applied the ECMS to optimize the performance of fuel consumption in an advanced
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hybrid system. The results showed benefits of around 8% when compared to a rule-based
control strategy. Zhang et al. proposed a short-term optimal control based on MPC that
considers the transient motion of the powertrain, significantly improving the engine fuel’s
consumption [13].

However, few research studies have been published that consider the thermal state
of the engine, especially with experimental validation [14]. Chu et al. implemented
an energy management strategy, considering the warming up of the engine using the DP
algorithm to optimize fuel consumption. Results showed gains of up to 2% [15]. Lescot et al.
combined both a thermal management system and an energy management strategy based
on ECMS by implementing the engine’s thermal state in the cost function [16]. Gains on
fuel consumption varied between 2.8% and 0.64%, depending on the transient cycle.

Therefore, model-based methods that can predict the impacts of possible control
actions and choose the one minimizing the associated costs, have shown potential in
exploiting the advantages of xEVs. The method proposed in this work follows this second
path because of two main reasons: (1) it has better potential to optimize energy consumption
compared to heuristic methods and (2) it provides the best possible powertrain performance
in each scenario. It is a very powerful tool used to compare different design decisions in a
fair way since the control strategy will be optimized for each particular design.

In this work, an EMS based on the ECMS was implemented in an integrated virtual
power plant for a series-parallel hybrid vehicle architecture. The developed control took
into consideration the thermal state of the engine and its impact on the overall efficiency.
In order to assess the engine fuel consumption variation with the temperature, an extensive
experimental campaign was carried out at different engine coolant temperatures. The val-
idation of the control strategy was carried out in the test bench and further simulations
were performed to evaluate fuel gain in real driving emission cycles (RDEs).

2. Materials and Methods
2.1. Experimental Testing

In this section, a description of the experimental campaign performed with the ICE is
presented. This is a 3-cylinder 999 cm3 spark ignition engine.

The engine features are summarized in Table 1.

Table 1. Engine specifications used for validation of the ICE models.

Parameter Value

Displacement 999 cm3

Diameter 81.3 mm
Stroke 72.2 mm

Number of cylinders 3 in line
Number of valves 4 per cylinder

Max torque @ speed 182.3 Nm @ 2250 rpm
Max power @ speed 83.0 kW @ 5250 rpm

The measurements were performed on a highly instrumented test bench. The test
bench was equipped with state-of-the-art components that allow the operation of the
engine in RDE transient conditions [17]. Several driving cycles, including RDE and the
WLTC, were tested in order to assess the impacts of the thermal management on the fuel
consumption of a HEV, particularly, to evaluate the improvements achieved with the
proposed control strategy. The RDE cycle was carried out in the laboratory with constant
temperature and atmospheric pressure. All of the tests and simulations were conducted
under those conditions. All of the tests and simulations were conducted at those conditions.
Additionally, the experimental campaign performed for this work considered several
steady-state running conditions within the engine performance map. The tested conditions
were the following:
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• Sixty-three points from the low load (3 BMEP) to high load (around 22 BMEP) covering
a wide range of the engine map at different engine speeds.

• The measurements were repeated at different coolant temperatures: 35 ◦C, 50 ◦C,
63 ◦C, 76 ◦C, and 88 ◦C.

The test bench was equipped with different measurement tools that were thoroughly
calibrated before the measurement campaign. Several temperature-, mass flow-, and
pressure sensors were installed in the gas circuit and hydraulic circuits of the engine. All
were calibrated and connected to a data acquisition system. Table 2 summarizes the main
instrumentation equipment.

Table 2. Laboratory instrumentation.

Variable Instrument Range Accuracy

Engine speed Dynamometer 0–7500 rpm ±1 rpm
Torque Dynamometer 0–400 Nm ±0.5%

Fluid temperature k-type thermocouple 70–1520 K ±2 K
Air mass flow Flowmeter 0–1700 kg/h ±2%

In-cylinder pressure AVL GH13P 0–200 bar ±0.3%
Coolant flow OPTIFLUX 4000 4.5–90 lpm ±0.5%
Oil pressure Piezoresistive transducer 0–10 bar ±25 mbar
Emissions Horiba MEXA @ AVL Smoke meter

Coolant temperatures were measured at different places of the engine cooling circuit
(i.e., before and after the engine, turbocharger, and oil cooler). Coolant flows were measured
in three different paths as can be seen in Figure 1. The oil temperature and pressure were
also measured in the oil sump and after the oil cooler, respectively.

Figure 1. ICE coolant circuit layout.

2.2. Numerical Model

In order to carry out the study, an integrated virtual model in MATLAB–Simulink was
developed, including all subsystems of the hybrid propulsive system (i.e., battery, electric
drive, ICE, transmission, vehicle, driver. . . ). Figure 2 shows a schematic view of the hybrid
vehicle submodels.
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Figure 2. Virtual components of the hybrid vehicle.

2.2.1. Internal Combustion Engine

Two modeling approaches can be used in the model depending on the purpose. The
model implemented in the control strategy, i.e., the one used to make decisions on the
power split to minimize fuel consumption, is a simple model based on a quasi-steady
approach with an engine map and corrections to consider the engine dynamics and impacts
of the factors, such as the thermal state. Note that model simplicity is required in the
model-based control since several control decisions must be evaluated at every time-step
to choose the optimal one. The model in the plant, which is used to check the impact of the
control strategy, may be based on the previous steady-state approach or a detailed model
(the 1D-model), which can be embedded by means of an S-function or FMU (functional
mock-up unit). The present section is focused on the control-oriented model.

The ICE model follows the classic approach for energy management, consisting of
reducing the engine model to a map of any interesting variable, depending on the en-
gine speed and throttle. Among the most interesting variables to map, one can find the
torque, fuel consumption, efficiency, or emissions. Regarding the accuracy of this method—
modeling complex and dynamic variables, such as emissions, is limited; however, this
approach can provide fair enough results in terms of fuel consumption, at least to make
control decisions. Figure 3 shows an example of this map for BSFC in warm conditions
in the engine. The data are obtained by sweeping the range of operating conditions in
the test bench.

Since maps such as that of Figure 3 are obtained in steady-state conditions, they
cannot capture transient phenomena. One can think of two main transient phenomena
affecting ICE. The first one may be a variation of the operating conditions (engine speed
and throttle) that will lead to a delayed and filtered response of the torque. The second
transient phenomenon strongly affecting the engine performance is the warm-up, since
variations in the thermal state of the engine will lead to changes in the heat transfer and
friction phenomena, which will finally affect the performance. In this sense, the model
employed for control purposes is based on Equations (1) and (2):

M0
e = f (ne, α) (1)
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m0
e = g(ne, α) (2)

where f and g map the engine speed ne and throttle to α the corresponding variable
(reference effective torque M0

e , reference fuel consumption m0
e ) by means of interpolation

in a database. In the case at hand, f and g are 2D-lookup tables. The term references in
previous variables highlight that those variables have been obtained in a steady state (and
warm conditions).

Figure 3. ICE fuel consumption 2D map depending on the engine speed and torque.

Regarding the impacts of variations in the engine operations, a filter on the reference
torque was applied. The filter has the following Equation (3):

Mk
e = aMk−1

e + bM0, k
e (3)

where superscript k stands for the time-step, parameter a represents the influence of the
torque value in the previous time-step in the current one (state matrix), and b is the weight
of the current reference torque in the actual torque (input matrix). Choosing 0 ≤ a ≤ 1 and
b = 1− a leads to a filter with the gain equal to one whose time constant increases with
a and the steady state Mk

e = M0, k
e . The values of a and b can be obtained by calibration

using the engine transient test and minimizing the error between the measured and model
torque. Note that the values of a and b will depend on the time step of the simulation.
Regarding the impact of the engine’s thermal state on fuel consumption, a lumped heat
transfer model was used. In this sense, the thermal state of the engine was approximated
by a global temperature (assumed to be that of the coolant θc) as Equation (4) shows:

θ̇k
c =

1
Cc

(
hA(θk

c − θenv) + k(1− ηe

)
ṁ f

k Hc) = k0c + k1c(θ
k
c − θenv) + k2c(Pk

f − Pk
e ) (4)

where k0c and k1c model the heat transfer between the engine and the environment (so their
values depend on the cooling circuit conditions) and k2c represents the contribution of the
energy released in the fuel combustion, which is not transformed in the mechanical power.
Constants k0c, k1c, and k2c will, in general, depend on the operating conditions. In the case at
hand, they have different values if the engine is on or off, and the temperature is saturated to
100 ◦C, assuming that the coolant circuit is able to avoid any coolant temperature excursion
above that value (θk

c ≤ 100 ◦C).
Once the thermal state is determined by Equation (4), the reference fuel consumption

can be corrected with Equation (5):

m f = m0
f h(n, α, θc) (5)
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where h(n, α, θc) is the experimentally calculated ratio (rearranging Equation (5)) between
experimental measurements at different coolant temperatures for each engine operating
point. Several steady-state operating conditions were measured at different coolant tem-
peratures (35 ◦C, 50 ◦C, 63 ◦C, 76 ◦C, and 88 ◦C). Using these data, the ∂h(n,α,θc)

∂θc
3D map

was generated and implemented in the control model. As can be observed in Figure 4, the
measurements show that operating the engine at a higher temperature has a great impact
on fuel savings. For example, operating the ICE at 35 ◦C could mean a 20% increase in the
fuel consumption. Two main reasons explain this fuel consumption increase. On the one
hand, lower coolant temperatures of the engine directly mean lower oil temperatures (both
the coolant and oil hydraulic circuits are connected by the oil cooler), which increases the
friction losses due to higher oil viscosity. On the other hand, lower temperatures in the
cylinder block and head increase the temperature drop between the material and the gas,
hence, increasing heat transfer and decreasing the combustion efficiency (engine minus
the adiabatic).

Figure 4. h(n, α, θc) 3D Map of fuel consumption ratio with the engine coolant temperature.

Figure 5 shows the evolution of the coolant temperature in a RDE with the ICE. Results
show how despite a simple model, it is able to capture (to some extent) the evolution of the
coolant temperature in a dynamic cycle, such as a RDE.

Figure 5. Evolution of the coolant temperature in a RDE with the ICE. Comparison between experi-
mental results and control-oriented model.
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2.2.2. Electric Machine and Power Electronics

The control-oriented model employed in this work considers quasi-steady behavior,
i.e., the dynamics of the processes inside the electric motor are much faster than the
characteristic times of the driving cycles and the consequent evolution of the main vehicle
variables. This hypothesis becomes valid since, in general, the motor response is much faster
than the ICE dynamics and strongly simplifies the model since the typical motor map—as
supplied by a manufacturer representing the efficiency as a function of the motor speed and
torque—can be directly applied. The model assumes that the motor can instantaneously
supply the demanded torque if it does not exceed the maximum allowed value that may
depend on the motor speed. In this sense, the torque in the motor shaft is calculated
according to Equation (6):

Tm = min (Tmax
m (ωm), max(−Tmax

m (ωm), Tdem
m )) (6)

where Tdem
m is the torque demand and Tmax

m (ωm) is the maximum torque that the motor is
able to produce or absorb at a certain speed ωm. Taking into account the efficiency map
of the electric machine (ηm), Equations (7)–(9) were used to calculate the electric power
consumption of the motor Pelec

m :

ηm = f (ωm, uTm) (7)

uTm =
Tm

Tmax
m (ωm)

(8)

Pelec
m =

 Tmωmηm if ωmTm ≤ 0
Tmωm

ηm
if ωmTm > 0 (9)

where cases with the motor braking or propelling are distinguished. Note the non-causality
of the model since in the actual system, the torque at the motor shaft is a consequence of the
supplied electrical power at a particular rotational speed, and the model follows the inverse
path (computes the electrical power consumption from the torque and speed). In this
sense, the model assumes that all of the torque demanded by the motor is instantaneously
supplied (except when the maximum or minimum torques are exceeded). All of the electric
machines (motors and generators) are modeled in the same way and the power electronics
are modeled as efficiencies, which are included in the map of Equation (7).

2.2.3. Battery

The control-oriented model of the battery used in this work is a Thevenin equivalent
circuit consisting of an ideal voltage source and a resistor in the series, as displayed in
Figure 6.

Figure 6. Scheme of the battery model using its Thevenin equivalent circuit.

According to the previous circuit, the battery voltages at the terminals follow Equa-
tion (10):

Vb = Voc − Rib (10)
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where ib represents the current drawn from the battery and the open-circuit voltage (Voc),
and the internal resistance (R) is the model parameter used to experimentally identify,
which may depend on the state of charge of the battery (SOC). Despite the parameter’s
identification being outside the scope of the work, the interested reader is referred to [18]
for a detailed explanation of the methods used for parameter identification. The rate of
change in the battery charge (Qb) is the current (Equation (11)).

Q̇b = −ηbib (11)

where the term ηb represents a coulombic efficiency, lessening the variation of the battery
charge during recharging. From the previous expression, one can compute the battery
charge in each time (t), which can be computed by the current integration according to
Equation (12):

Qb(t) = Qb(t0)−
∫ t

t0

ηbib(τ)dτ (12)

The state of charge of the battery is the variable governing the Thevenin equivalent
circuit parameter, and represents the ratio between the battery charge and its maximum
value, as seen in Equation (13).

SOC(t) =
Qb(t)

Qb
(13)

Provided that the model input is the power demanded by the motor and the output is
the SOC, the circuit in Figure 6 is solved for the current variable following Equation (14):

ib =
Voc −

√
V2

oc − 4RPelec
motor

2R
(14)

where the power demand of the motor should be replaced by the total power demand of
the electric machines if more than one is used (e.g., series HEV).

2.2.4. Transmission

The energy transmission from the engine and motor output to the wheel is done by
several clutches and gearing systems whose type and arrangement strongly depend on the
powertrain type. In this sense, providing a general model is challenging. The powertrain
has some degree of generality since it can operate in series and parallel, so the control-
oriented model developed in this activity contains both operation modes. Figure 7 shows
the architecture where the vehicle can operate in a pure electric mode by selecting gears 1
or 2 in the motor (M) side and neutral on the engine (ICE) side. It can operate in parallel
mode by independently choosing the gears of the motor and engine branches. The system
can also operate as an ICE-propelled powertrain by selecting ‘neutral’ for the motor and
any of the four available gears for the engine. Finally, the system can operate as a series
powertrain where the motor is connected to the wheels through gears 1 or 2 and the engine
is connected to the generator (G) through gear S to produce electricity.

Figure 7. Powertrain architecture of the vehicle, including the parallel and series operation.
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The transmission is modeled as a discrete set of gear ratios with fixed efficiency, so the
kinematics and energy balance allow computing the speed of the element upstream the
transmission, the torque transferred to the transmission output axis from the speed down-
stream the transmission, and the torque applied to the input axis according to Equations (15)
and (16):

ωus = ωdsRg (15)

Mds = MusRgηg (16)

where Rg and ηg are the transmission ratio and efficiency, which depend on the se-
lected gear.

2.2.5. Vehicle Dynamics

The model is based on longitudinal vehicle dynamics and solves the Newton equation
at every time step to obtain the vehicle acceleration from the balance between the traction
and resistive forces (or torques). In this sense, the main terms participating in the energy
balance are:

• A source term representing the net torque coming from the powertrain, including the
power split, efficiency, and gear transmission ratio. Additionally, the braking torque
may be applied if the driver acts on the brake pedal to reduce the vehicle speed and
the motor is not able to absorb the braking power.

• An inertial term, including the vehicle mass and powertrain inertia.
• A set of sink terms considering non-conservative forces, mainly friction losses due to

aerodynamic drag and rolling resistance.
• An additional term may be included to consider the potential energy, allowing the

assessment of the road slope effects (despite tests carried out in the present project
have been conducted, considering a horizontal road).

The previous terms can be combined in Newton’s law (in the torque formulation)
according to Equation (17):

Mwheel = mVehv̇rwheel + Jpwtω̇wheel + mVehgsin(β)rwheel + µ mVehgcos(β)rwheel +
1
2

ρ SCxv2rwheel (17)

where the variables are defined in Table 3.

Table 3. Variable definitions of Equation (17) .

Variable Definition

Mwheel Net torque applied at the wheels
mVeh Vehicle mass
Jpwt Global powertrain inertia

rwheel Wheel effective radius
v Vehicle linear speed
v̇ Vehicle linear acceleration

ω̇wheel Wheel angular acceleration
g Gravity acceleration
β Track slope
µ Dynamic coefficient of rolling friction
ρ Environment air density
S Vehicle frontal area

Cx Longitudinal aero drag coefficient

Hence, if the total torque applied to the wheel is known (from the application of the
engine, motor, and transmission models), Equation (17) can be solved for the acceleration
and the vehicle speed can be calculated by the integration. Therefore, the presented vehicle
model can work as a closed-loop system, where the torque is progressively transmitted
from the engine and motor to the wheels and then is used to obtain the vehicle speed.
Moreover, this vehicle speed is necessary to know the engine and motor operating points in
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the next step. There is a bidirectional information flow: the torque (M) goes from the engine
and motor blocks to the vehicle dynamic block, while speed (n) goes from the vehicle
dynamic block to the engine and motor blocks.

Despite the simplicity of Equation (17), some of the coefficients (e.g., the Jpwt in the case
of a complex powertrain, such as a HEV) are difficult to find; for this reason, the following
expression (Equation (18)) is used instead:

v̇ =
Mwheelrwheel −

(
A + Bv + Cv2)

meq
(18)

where parameters A, B, C, and meq are experimentally characterized in a coastdown test.

2.2.6. Driver

The objective of the driver model is to follow a given vehicle speed profile as accurately
as possible. In this sense, the driver model takes a predefined sequence of vehicle speeds
and modifies vehicle actuators (throttle and brake, the gear is automatically selected
according to the efficiency criteria by the control strategy) to follow the desired set points.
In this sense, the driver model implemented is a proportional–integral (PI) controller acting
on a torque demand to cancel the error between the current vehicle speed and a reference.

2.3. Control Strategy

The energy management technique used in the present work was the equivalent
consumption minimization strategy (ECMS), which consists of a greedy algorithm based
on Pontryagin’s minimum principle (PMP). Provided there is a power demand, a set of
candidates are defined (combinations between the different energy sources) to provide
this target, and then the option that minimizes a defined cost function in this time-step is
chosen. The cost function is a weighted average of the power delivered by the different
energy sources (e.g., fuel from a tank and electricity from a battery), while other criteria
or constraints can be added to the cost function with the corresponding weighting factor.
In this sense, the weighting factors played key roles in the optimization and were properly
calibrated. The next sections provide descriptions of the basics of the ECMS and its
application in the present work.

Pontryagin’s minimum principle states the necessary conditions for the minimization
of a dynamic problem; Equation (19) shows:

arg min
u

J(x, u, w, t) (19)

subject to: ẋ = f (x, u, w, t) and J =
∫ t f

t0
L(x, u, w, t)dt + ψ

(
x
(

t f

))
.

Where J is a cost function and f is a generic state function describing the evolution of
the system states (x) with respect to the time (t) when a series of control actions (u) and
disturbances (w) are applied. The cost function consists of an integral term defined in L
and a terminal cost (ψ(x(t f ))), which may penalize deviations from a final desired state.
One can see that the energy management problem perfectly fits in the framework described
by Equation (19), a transcription can be found in Table 4.

Considering the Hamiltonian function (H), whose definition is presented in Equa-
tion (20):

H(x, u, w, t) = L(x, u, w, t) + λT(t) f (x, u, w, t) (20)

where the co-state vector λ (with as many elements as states in the problem) is a time
varying Lagrangian multiplier aimed to adjoin the system dynamics f to the cost function.
As previously stated, PMP provides the conditions that an optimal solution (u∗) to the
problem in Equation (18) should fulfill:
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1. The optimal solution to the problem described in Equation (19) should minimize the
Hamiltonian (Equation 20) in every time step according to Equation (21):

u∗(t) = arg min
u

H(x, u, λ, w, t) (21)

2. The optimal solution to the problem described in Equation (19) should lead to Equa-
tion (22):

H
(

t f

)
= − ψ(x(t f )) (22)

3. The evolution of the co-state for the optimal solution should fulfill Equation (23):

λ̇(t) = − ∂H
∂x

= − ∂L
∂x
− λ

∂ f
∂x

(23)

4. The terminal co-state should be Equation (24):

λ(t f ) =
∂ψ(t f )

∂x
(24)

Table 4. Transcription of the energy management problem to the mathematical framework of the
optimal control.

Symbol Description Variable in the Energy Management Strategy

u Control action vector Power split

x State vector State of Charge of the Battery (SOC), engine thermal state
(coolant temperature)

w Disturbance vector Vehicle speed profile, route height profile, wind velocity
and direction

L Lagrangian cost Fuel consumption, energy consumption, weighted average
between energy consumption and pollutants

ψ Terminal cost Deviation of a target SOC, emissions exceeding certain limit

For the case of energy management, Equations (21) and (23) allow calculating the
solution to the problem if a solution exists and is unique. In particular, the algorithm used
in this project is based on a shooting method with the following steps:

1. Assign the initial values of the states to the optimal state trajectory (x∗ (t0) = x0).
2. Estimate an initial value for the co-state vector (λ∗ (t0) = λ0).
3. Compute the optimal control action (u∗) at the current time-step by applying Equa-

tion (21) by trying a set of candidates.
4. Compute the state derivative f (x, u∗, λ, w, t) and integrate to obtain state x in the

next time-step.
5. Compute the co-state derivative by Equation (23) and integrate to obtain the co-state

vector λ in the next time-step.
6. Repeat steps 3–5 until the end of the problem.
7. If the target state at the end of the problem is achieved (x(t f ) = xt f ), λ0 is a good

guess, otherwise modify λ0 and repeat steps 3–6.

Figure 8 shows a scheme of the solution algorithm explained in points 1–7.
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Figure 8. PMP solution algorithm.

An important issue for numerically solving the PMP is that the ordinary differential
equations for the co-state integration are generally ill-conditioned and lead λ to blows, even
with tight tolerances. In the HEV cases, the following simplification is usually considered
to avoid co-state integration. Consider that the Lagrangian cost is the fuel consumption
(L = m f ) and the state of the problem is the battery state of charge (x = SOC). Then,
from Equation (23), Equation (25) is obtained:

λ̇(t) = − ∂H
∂x

= −
∂m f

∂SOC
− λ

∂ f
∂SOC

(25)

where the first term on the right side is clearly 0, since the fuel consumption depends on
the engine speed and throttle (that also depend on the power split) but does not depend
explicitly on the SOC. The second term represents how the battery behavior depends
on the SOC, so if the battery parameters (R, Voc) do not depend on the SOC, the second
term will also be 0, λ will be constant, and the co-state integration can be avoided. This
simplification is usually considered since it strongly simplifies the online implementation.
Note that, provided a constant λ, the Hamiltonian can be interpreted as an equivalent
fuel consumption that includes both the fuel and the weighted battery power. This is the
basis of ECMS, which, provided an equivalence factor (s), chooses the control candidate
that minimizes at every time step a weighted average of the fuel consumption and battery
power (m f + sPb) according to Equation (26):

u∗(t) = arg min
u

m f + sPb (26)

Note the similarity between Equations (21) and (26). In the same way with PMP,
a shooting method is required to find the proper value of s. As s approaches 0, the use of
the battery becomes cheaper, which leads to lower fuel consumption and battery depletion;
on the contrary, an excessively high value of s will lead to battery overloading and high
fuel consumption. A target SOC at the end of the cycle (usually equal to the initial values in
HEVs and the minimum allowed SOC in the case of PHEVS) provides the closing condition
for the shooting method. As the proper value of s depends on the driving cycle, the shooting
method requires several runs of the driving cycle to find the proper value, which is only
possible for offline optimization. For online implementation, since the optimal value of s is
unknown a priori, its value would be online-adapted according to the differences between
the measured and the target SOC, usually with a PID.

2.3.1. Modifications to Deal with Oscillating Behavior

In order to make the proposed control strategy more robust, general, and able to deal
with xEVs having different possible modes (e.g., series, parallel), considering other system
states (i.e., the engine coolant temperature), some modifications were introduced.
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Under certain circumstances, the direct application of Equation (26) can produce
policies resulting in poor drivability or even undesired behaviors due to the potentially
abrupt transitions between the torque requests. As the ECMS is a greedy algorithm,
i.e., minimizes the cost function at each stage without considering future consequences of
the current choice, two consecutive ECMS functions can have completely different local
minima, leading to completely different control actions, e.g., engine torque demands. Note
that abrupt changes in the control actions will lead to transient processes in the actual plant
that are not considered by the model, so the real behavior can deviate from the expected one.
This situation usually happens when Equation (26) is non-convex and two local minima
can be near in terms of engine speed but far in terms of torque. A conceptual example is
provided in Figure 9 where Equation (26) is plotted for different engine torque demands
(i.e., control decisions) and engine speed (problem disturbance). It may be observed that the
surface has two local minima, and that for close values of engine speeds around 2000 rpm,
the minimum jumps abruptly from 40 to 80 Nm. So, eventually, if the vehicle speed varies
in a way that the engine speed is around 2000 rpm, the demanded torque will continuously
oscillate between 40 and 80 Nm, which, despite being optimal for the model, is probably far
from the minimum fuel consumption and acceptable drivability in the actual powertrain.

Figure 9. Example of non-convexity in Equation (26) leading to strongly different torques minimizing
the cost functions at two similar engine speeds.

To cope with this undesired behavior, the following modification of Equation (26) was
implemented as observed in Equation (27):

u∗k=arg minu

{
Pf (uk)+sPb(uk)+CONuon,k+Cdu(uk−uk−1)+C∞((uk−uk−1)>du)+C∞((ne

kng−ne
k−1ng)>dneng)

}
(27)

where the optimal control at time-step k (u∗k ) is calculated by adjoining the costs for different
terms:

• Pf (uk) + sPb(uk) is the direct application of the ECMS, with the particularity that fuel
power (Pf = ṁ f Hc, where Hc is the fuel heating power) instead of the fuel mass flow
is used to allow the s parameter to be non-dimensional.

• CON represents the marginal cost of switching on the engine.
• Cdu is the marginal cost associated with the engine throttle variation.
• C∞ is an arbitrarily large cost to avoid throttle variations above a certain threshold

(du) or, in the case of the series mode where the engine is decoupled from the wheels,
with the engine speed variations above a given limit (dneng).

Note that CON , Cdu, C∞, du, and dneng are calibration parameters that will depend on
the problem addressed.
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2.3.2. ECMS Modifications to Deal with the Engine’s Thermal State

It has been proven in the literature that the engine’s thermal state plays a major role
in its performance [19]. In this sense, provided that the engine efficiency (and potentially
emissions) are strongly affected by the engine’s thermal state, the impact of including this
variable in the energy management strategy was evaluated.

Considering that the actual engine behaves as the complete model presented in
Section 2.2.1, including the lumped-heat transfer model of Equation (4) and its impact
on fuel consumption represented by Figure 4. The coolant temperature becomes an addi-
tional state of the problem since the past decisions of the maps (engine torque demand, so
fuel injection) on future revenues and costs (fuel savings because the engine is warmed up
or fuel penalties if the engine is cold due to the lack of operation in previous time-steps).
In this sense, the Hamiltonian presented in Equation (20) (or the ECMS cost function in
Equation (26)) should be upgraded with an additional state. Accordingly, for this case,
Equation (20) was modified into Equation (28):

H′ = ṁ f + λ′bĖb + λ′c θ̇c (28)

where Ėb is the variation of the Energy stored in the battery, θ̇c is the variation of the coolant
temperature, ṁ f is the fuel consumption, and λ′b and λ′c are the co-states associated with the
battery and coolant. Note that multiplying the fuel consumption by the fuel heating power
and the engine temperature by an equivalent thermal capacity of the cooling circuit allows
using non-dimensional co-states and power units for H as presented in Equation (29):

H = Ė f + λbĖb + λcĖc (29)

where Ė f is the rate of reduction in the energy in the fuel tank, Ėb is the rate of reduction in
the energy stored in the battery, and Ėc is the reduction in the energy stored in the engine’s
thermal state (Ėc = −Cc θ̇c). It can be observed that there is some intuition beyond the
application of PMP in Equation (29) since H represents the rate of reduction in the energy
stored (in any form) in the powertrain, and the co-states λ represent the marginal costs
of the battery and thermal state. In this sense, minimizing Equation (29) implies that the
energy stored in the powertrain is maximized.

Recalling Equation (23) for the co-state associated with the engine’s thermal state, the
Equation (30) is obtained:

λ̇c(t) = −
∂H
∂Ec

= − ∂H
∂(−Ccθc)

=
Hp∂m f

Cc∂θc
+ λc

Cc∂θ̇c

Cc∂θc
(30)

where the fuel heating power and the coolant circuit thermal capacity are assumed constants
and the battery efficiency is considered independent of the engine coolant temperature.
A simple look at Equation (30) shows that λc will evolve during the driving cycle since the
first term is different from 0 (at least during the warm-up) due to the coolant temperature’s
effect on engine efficiency and fuel consumption, and the second term will also be different
from 0 since the heat transfer in the cooling circuit depends on the coolant temperature (see
Equation (4)). In this sense, the ECMS approach considered for the battery (constant λb)
cannot be considered for the coolant temperature and λc is not constant. Further analysis

of Equation (30) shows that the first term on the right side will be non-negative (
Hp∂m f
Cc∂θc

≥ 0)
since reducing the coolant temperature involves an increase in the fuel consumption
(reduction in efficiency), and the term multiplying the co-state is non-positive ( ∂θ̇c

∂θc
) since

increasing the coolant temperature will lead to lower heat coming from the combustion,
the process (higher efficiency) and higher heat transfer with the environment. Provided
that, in principle, there is no constraint on the terminal state of the coolant temperature,
the application of Equation (24) leads to λc

(
t f

)
= 0. Hence, λc(t0) should be a value

leading to λc

(
t f

)
= 0 after integration of Equation (30) during the driving cycle. For the
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control-oriented model considered in the present project, combining Equation (30) with
Equations (2) and (4) with the 3D map presented in Figure 4 leads to Equation (31):

λ̇c(t) =
(
−λck1c − Hp

∂h(n, α, θc)

∂θc

(
1

Cc
− k2cλc

))
(31)

which can be integrated to compute the evolution of λc. Therefore, considering the engine’s
thermal state leads to the initial value problem, with two initial values to determine: s
(provided constant λb) and λc. Both values can be obtained by a shooting method until the
desired final SOC and λc

(
t f

)
= 0 are reached. In practical cases, due to the complexity

of numerically integrating Equation (30), it is difficult to reach λc

(
t f

)
= 0 and the value

of λc(t0) is chosen in a way that minimizes fuel consumption. A similar approach to that
followed in this model can be found in [16].

2.3.3. ECMS Modifications to Account for Different Powertrain Modes

The ECMS is prepared to work with series and parallel architectures with different
gear ratios. To this aim, several optimizations are running at the same time that provide
the optimal control outputs (demanded torques for the ICE and electric machines) and
the associated cost of every mode. Then in a second optimization stage, the best option
amongst the available modes is selected. Figure 10 shows the general scheme as follows:

Figure 10. Scheme of the extension of the ECMS to integrate several (N) modes and the corresponding
torque and speed demands of the j engines and electric machines.

(a) The ECMS is applied independently for the N modes available in the powertrain.
In this sense, for every powertrain mode i, the optimal speed and torque for any of
the j engines and motors (nj

i , Mj
i ) with its corresponding minimum cost (Costi) is

calculated.
(b) The previous information arrives at the mode selector, where the option with mini-

mum cost is chosen. Directly comparing the cost of the different modes might result
in a highly oscillating control policy, especially since the model barely addresses
the system dynamics, which will not produce desirable results when applying the
control to the actual powertrain. Every time a switch between modes is carried out,
the powertrain experiences a transient that the model is not able to consider. To cope
with this issue, the following optimization is proposed (Equation (32)):

u∗mode,k = arg min
iε[1,N]

k

∑
k−∆k

{
Costi,k + Cdmode(i− u∗mode,k−1) + Cmode,i

}
(32)
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where u∗mode,k is the optimal mode to be applied at time-step k, Costi,k represents
the cost of mode i at time-step k, Cdmode is the cost of modifying the mode (so is 0
if the same mode in the previous time-step is employed) and Cmode,i is an artificial
cost to avoid the use of a particular mode (e.g., to ban the use of the series mode
in a vehicle that has parallel architecture exclusively). Finally, ∆k is a parameter to
consider the mode minimizing the cost during a given time window instead of the
instantaneous one. Note that Cdmode, Cmode,i, and ∆k are parameters to calibrate.

3. Results

In order to assess the impact of taking into account the engine’s thermal state (TS) in
the control strategy, the worldwide harmonized light vehicle test cycle (WLTC) and RDE
cycles were selected for the simulation and experiment. The velocity profiles of both cycles
were used as inputs (i.e., vehicle speed demand) for the integrated model. Simulation
results showed the optimum power split computed by the EMS of the integrated model.
Afterward, the speed and torque profiles of the internal combustion engine were launched
on the test bench. For all of the cases, the energy management strategy consisted of the
battery charge sustain (i.e., both initial and end battery capacity at 50%). Hence, the lower
the engine fuel consumption at the end of the cycle, the higher the operation efficiency of
the system. It is important to state that additional requirements were added to the control
strategy in the model due to the test bench requirements. The ICE switching period was set
to 16 s since a higher ICE switching frequency was not possible to follow in the test bench.
Furthermore, the tuning of the parameter representing the cost of turning on the engine
was necessary to equal the brake energy of both control strategies since only the ICE was
experimentally tested.

3.1. WLTC Cycle

In Figure 11, it can be seen that in both control strategies, taking into account the
engine’s thermal state (TS on) and without it (TS off), the vehicle speed demand is fulfilled.
Although the selections of the power split distributions in both control strategies were very
different, the final battery SOC was practically the same, complying with the simulation
requirements. On the one hand, when the engine’s thermal state control strategy is activated,
almost half of the WLTC cycle is run in an electric mode and the battery is discharged until
45% at 800 s. At this moment, the engine is turned on for the rest of the cycle. The EMS
decides that using the engine in the most power-demanding part of the cycle will reduce
the energy consumption. On the other hand, in the case of ’TS off’, the engine is used from
the beginning and is turned off when using it costs more than using the energy stored in
the battery. It can be seen that the battery starts discharging during the last half of the cycle
when more overall power is demanded.

In Figure 12, the comparison between the experimental and simulation results is
presented for the WLTC cycle. The evolution of the engine torque, accumulated fuel con-
sumption, and coolant temperature are shown for both control strategies. It can be seen that
there is good agreement between both experimental and simulation torques. Some braking
discrepancies were observed for the ‘TS off’ the case; however, the experiment’s accurately
replicated the torque profile provided by the simulation. The trend of the accumulated fuel
consumption was completely captured in the experimental measurements. Additionally,
in both the simulation and experiments, ‘TS on’ presents a lower fuel consumption, as
can be appreciated in the (c) and (d) plots of Figure 12. The fuel savings with the ‘TS on’
strategy were around 3.6% and 4.1% for the simulation and experiment, respectively. This
difference could be explained by the fact that the model underestimates the fuel consump-
tion during the turning on of the engine, given the fact that for both control strategies, the
model slightly underestimates the experimental fuel consumption since the model does
not capture the surplus fuel injected during the engine start. The discrepancy in the torque
profile could also contribute to the discrepancy. Overall, taking into account the engine’s
thermal state (TS on) has shown great fuel-saving gains since operating the ICE at higher
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temperatures significantly reduces power friction and increases the combustion efficiency.
Plots (e) and (f) of Figure 12 show that with ‘TS off’, the engine runs to the time out of its
optimum temperature range (between 0 and 1000 s). Furthermore, the warm-up (engine
coolant temperature higher than 85 ◦C) time is higher. However, ‘TS on’ only turns on the
engine when it really needs it and the warming-up process is much faster since it runs at
higher demanding conditions. Note that the slope of the coolant temperature evolution is
higher than the two ICE warming phases present in the ’TS off’ case.

Figure 11. Simulation results for both control strategies during the WLTC cycle. (a) Vehicle velocity.
(b) State of Charge of the Battery (SOC). (c) ICE switch.

3.2. RDE Cycle

In Figure 13, the results of both control strategies for the simulation of the RDE cycle
are presented. Similarly to the previous cycle, the vehicle velocity demand was fulfilled by
the energy management system in both control strategies. The SOC evolution shows that
until almost 1000 s, both power split distributions were the same. Then, the control strategy
‘TS off’ turns on the engine and starts charging the battery while ‘TS on’ still delays the
ICE starting for more demanding conditions. Furthermore, the ICE switching number is
higher in the ‘TS off’ than in the ‘TS on’ case, as it happens in the previous cycle. It seems
that taking into account the thermal state of the engine reduces the switching frequency
of the engine. It is reasonable that the control strategy searches for the optimum time for
turning the engine while reducing the number of stops and, hence, avoiding ICE cooling
and further operations at low temperatures.
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Figure 12. Comparison between both strategies for ICE simulation results (left plots) and experimental
measurements (right plots) during the WLTC cycle. (a) Model torque. (b) Experimental torque.
(c) Model fuel consumption. (d) Experimental fuel consumption. (e) Model coolant temperature.
(f) Experimental coolant temperature.

A significant agreement between the simulation results and experimental measure-
ments can be observed in Figure 14. The coolant temperature error after the thermostat
opens (warming up of the engine) is higher than during the rest of the cycle because the
lumped thermal model of the engine does not include the real behavior of the thermostat.
However, this is not relevant to the study since most of the impact of the strategy is obtained
during the engine warming up. Additionally, the trends are captured. The evolution of
the accumulated fuel consumption shows that the ‘TS on’ control strategy is more efficient.
Fuel savings were around 4% and 3% for the simulation and experiments, respectively.
These gains are very similar to the ones obtained for the WLTC cycle.
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Figure 13. Simulation results for both control strategies during the RDE cycle. (a) Vehicle velocity. (b)
State of charge of the battery (SOC). (c) ICE switch.

Figure 14. Comparison between both strategies for ICE simulation results (left plots) and experimental
measurements (right plots) during the RDE cycle. (a) Model torque. (b) Experimental torque.
(c) Model fuel consumption. (d) Experimental fuel consumption. (e) Model coolant temperature.
(f) Experimental coolant temperature.
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4. Conclusions

The main conclusions of this work can be summarized as follows:

• An integrated virtual model for the energy management of xEVs was developed and
the study of a hybrid electric vehicle was carried out with this tool. The programmed
control strategy is based on the ECMS, while additional terms to compensate for
dynamic issues, to consider other potential powertrain architectures and states, such
as the engine’s thermal state, have been added. The energy management strategy is
able to consider the engine’s thermal state in the control algorithm, which is a novelty
with respect to the state-of-the-art ECMS. In order to implement this, an extensive
experimental campaign was performed at different engine coolant temperatures in
order to implement a temperature-dependent 3D map.

• Simulation results show that, taking into account the thermal state (TS on) of the
engine reduces the fuel consumption when compared to the base case. Experimental
measurements confirmed those gains in both cycles. The 4.1% and 3% accumulated
fuel reductions were obtained for the WLTC and RDE cycles, respectively. This
is because when the control strategy considered the thermal state of the engine,
the engine was turned on only when its warming-up time was going to be the fastest
and the engine operated at maximum times at higher temperatures. This contributes
to decreasing power losses and increasing ICE fuel consumption.

Author Contributions: Conceptualization, A.D.; Methodology, A.B., P.O. and B.P.; Software, B.P.;
Writing—original draft, A.D.; Writing—review & editing, P.O. and B.P.; Supervision, A.B. All authors
have read and agreed to the published version of the manuscript.

Funding: The authors sincerely acknowledge the founding support provided by Conselleria de
Innovación, Universidades, Ciencia y Sociedad Digital in the framework of the Ayuda Predoctoral
GVA. (ACIF/2020/234).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors sincerely acknowledge the support provided by Renault S.A.S.
(RSA).

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

EV electric vehicles
EMS energy management system
DP dynamic programming
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PHEVS plug-in hybrid electric vehicles
SOC state of charge
PID proportional–integral–derivative controller
FMU functional mock-up unit
RDE real driving emission
WLTC worldwide harmonized light vehicle test cycle
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