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Abstract: The various chemicals in industrial wastewater can be beneficial for improving its circularity.
If extraction methods are used to capture valuable components from the wastewater and then
recirculate them throughout the process, the potential of the wastewater can be fully exploited. In
this study, wastewater produced after the polypropylene deodorization process was evaluated. These
waters remove the remains of the additives used to create the resin. With this recovery, contamination
of the water bodies is avoided, and the polymer production process becomes more circular. The
phenolic component was recovered by solid-phase extraction and HPLC, with a recovery rate of over
95%. FTIR and DSC were used to evaluate the purity of the extracted compound. After the phenolic
compound was applied to the resin and its thermal stability was analyzed via TGA, the compound’s
efficacy was finally determined. The results showed that the recovered additive improves the thermal
qualities of the material.

Keywords: phenolic antioxidant; extraction; Cyanox 1790; circularity; recovery

1. Introduction

Pollution generated by petrochemical plants is of paramount concern today due to its
adverse effects on the environment and human health [1–4]. The petrochemical industry
is responsible for the emission of a wide variety of pollutants, including sulfur dioxide,
polycyclic aromatic hydrocarbons (PAHs), and volatile organic compounds (VOCs), which
contribute to climate change, to air pollution, and especially to the detriment of human
health via the presence of carcinogens already determined, such as 1,3-butadiene and
benzene, among others [1–3,5,6]. Water pollution is another problem commonly associated
with petrochemical plants due to the accidental or intentional release of toxic chemicals
into the water during production. Soil contamination can also be a problem in areas near
petrochemical plants due to toxic residues and the possible infiltration of chemicals into
the soil [7–11]. Pollution generated by petrochemical plants is a serious problem that
requires effective measures to minimize its adverse effects on the environment and human
health. Treating wastewater from petrochemical plants is of great importance due to the
various chemical and toxic contaminants in this type of water [7,9–12]. Wastewater from
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petrochemical plants can contain hydrocarbons, heavy metals, acids, and other hazardous
chemicals that can adversely affect the environment and human health if not treated
properly [6,13–17]. Therefore, it is essential to implement effective treatments to remove
these contaminants and ensure that wastewater meets the set quality standards before its
discharge into the environment. COD (Chemical Oxygen Demand) and BOD (Biochemical
Oxygen Demand) are critical parameters used to assess wastewater quality, especially in the
context of petrochemical plants. Both parameters are important because they can provide
valuable information on water’s organic load and biodegradation capacity, which can help
determine the efficiency of treatment processes and assess the impact of wastewater on the
environment [15,18–20].

Wastewater from petrochemical plants can contain various chemical and toxic con-
taminants, including volatile organic compounds (VOCs), polyhydroxyalkanoates (PHAs),
phenols, and minerals. VOCs are a group of volatile organic compounds that can occur in
wastewater from petrochemical plants due to the presence of refining and petrochemical
processes. VOCs can adversely affect human health and the environment if not treated
properly. On the other hand, PHAs are a group of biodegradable polymers produced
from the biotransformation of organic matter in water and can be difficult to remove via
conventional treatment processes [5,6,16,21–24]. Phenols can also be present in wastewater
from petrochemical plants due to the presence of chemical processes and can have toxic
effects on the environment and human health. Phenols are chemical compounds that are
widely used in the petrochemical industry due to their unique properties and added value
in producing various products [25–28]. Synthetic phenolic antioxidants (SPAs) are artifi-
cially manufactured chemical compounds with antioxidant properties similar to natural
phenolic antioxidants (NPAs). SPAs can be used as additives in polymer manufacturing
because they protect (inhibit) polymers from oxidative degradation [26–31]. SPAs can delay
or prevent the oxidative degradation of polymers by neutralizing free radicals and other
oxidizing agents [26–28,31]. SPAs are one of the families of emerging organic pollutants
classified as anthropogenic, given their origin. Given the variety of uses and the breadth
of their production, SPAs have been found in various environmental matrices such as
marine sediments, river waters, and dust, among others. It has been shown that there is
a migration of SPAs into the water from polymers. SPAs are also detected in urine and
human (donated) sera at significant levels.

SPAs have been shown to generate toxic effects related to liver failure and damage
to the endocrine system, and some could cause cancer. It is known that some of the SPAs,
under certain conditions, can cause DNA strand breakage. SPAs are also of concern due
to their bioaccumulation and high toxicity in aquatic environments [26,32–41]. 2,6-Di-tert-
Butylphenol has been shown to pose a cancer risk [41]. Cyanox 1790 presents variants of
2,6-Di-tert-Butylphenol (the same variant three times) within its structure, as shown in
Figure 1. Thus, given that this is a macromolecule, it could also represent a health risk with
an increased multiplicity factor, so it is reasonable and indisputably necessary research
that generates a knowledge base to establish the impact that this molecule can generate
in the different aspects that concern us human beings (health, environment, economy),
as is the present research. SPA removal from wastewater is essential due to its toxicity
and resistance to biodegradation. Several techniques are available to remove SPAs from
wastewater, including physical, chemical, and biological processes. Physical processes
include adsorption and coagulation, which use materials such as activated carbon and
polymers to remove phenols from water. Chemical processes include techniques such as
chemical oxidation and neutralization, which rely on the use of chemical agents to oxidize
or neutralize SPAs. Finally, biological processes include techniques such as biodegradation
and biotransformation, which rely on the use of microorganisms to degrade SPAs into less
toxic compounds [25,42,43]. Although several techniques are available to remove SPAs
from wastewater, some may have deficiencies or limitations in their effectiveness [25,42,43].
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SPA degradation is essential for removing these toxic compounds from wastewater,
but some degradation techniques may need to be improved or improved in their effective-
ness [44]. Biodegradation is a technique commonly used to degrade SPAs into less toxic
compounds but can be limited by factors such as the availability of microorganisms and
the presence of other contaminants that can inhibit microbial activity [42]. SPA recovery
is a critical practice to leverage resources and minimize the environmental impact of the
petrochemical industry. The recovery of phenols can contribute to conserving natural
resources and reducing dependence on fossil fuels. SPA recovery can also reduce waste
generation and decrease the pollutant load in wastewater. SPA recovery can also positively
impact the economy, as it can provide an additional source of raw materials and reduce pro-
duction costs [45–47]. Prior to the analysis of AOs in environmental samples in recent years,
procedures such as liquid phase microextraction (LPME), solid phase extraction (SPE), and
solid phase microextraction (SPME) were used in sample treatments [48–50]. According
to the most recent quantitative and qualitative investigations of these AOs, which were
performed with HPLC, the LOD is less than 1 ug L−1, and the relative standard deviation
(RSD) is less than 10% [51–54] in matrices of low chemical complexity. The situation that
we are in for this project is quite different from the aforementioned situation. Wei and
colleagues (2011) quantified AOs in simulant C (10% ethanol) and simulant D (oil) using a
C18 sorbent preconditioned with 5 mL of ACN and 5 mL of distilled water and obtained
an LOD and an LOQ between 0.09 and 1.72 ug mL−1 and between 0.20 and 5.64 ug mL−1,
respectively. With an RSD between 2.8 and 9.8%, their recovery ranged from 67.5 to 108.6%.

The selection of the instrumental technique to quantify these OA and its precision
and analytical errors are of great importance for carrying out reliable measurements of
these OA, given the protective function they have in the PP matrix to guarantee its thermal
stability. Oxidative degradation is a process that occurs when polymers come into contact
with oxygen and other oxidizing agents, such as light and heat, and degrade due to the
formation of free radicals. Oxidative degradation can affect the service life of polymers
and reduce their performance and properties [25,44]. Oxidative degradation can manifest
itself in various ways, such as color change, strength deterioration, and the modification
of mechanical and thermal properties. Oxidation is a process that can occur during the
manufacture of polyolefins and can affect the quality and properties of polyolefins. Poly-
mers can be sensitive to oxidation due to the presence of double bonds or carbonyl groups,
which are vulnerable points to oxidation [29,30,55,56]. Due to its extremely low density,
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polypropylene (PP) is a polymer of petrochemical origin that is widely used in many sectors
because it can be heated, cooled, and reheated without losing its composition. PP is char-
acterized by its high mechanical strength, chemical resistance, thermal stability, and low
production cost [26,27,57–59]. In addition, it is in high demand and is a product of great
commercial interest, which drives production growth and can raise questions about poten-
tial environmental issues related to its manufacture and disposal. Phenolic antioxidants
play an essential role in polypropylene’s increased resistance to oxidation [60]. Cyanox
1970, a phenolic antioxidant and non-bleaching stabilizer that works well on materials such
as polyolefins and is recommended for polymer processing, is easily accessible [61–64].
Figure 1 shows the molecule in question from this research.

Unfortunately, many pollutants are produced in the PP production process with
possible adverse effects on human health and the environment. These contaminants include
synthetic phenols and volatile organic chemicals, which are added to PP as additives to
enhance their qualities [27,55,65,66]. The existence of these materials in industrial waste
supports the need to evaluate their processing efficiency and drives the creation of a more
efficient and environmentally friendly PP production method. Deodorization is a step in
manufacturing PP which consists of removing the substances that were not absorbed and
that cause odor from the polymer. If these substances are recovered, they can be used in
the PP extrusion process to give PP a new value, increase its manufacturing productivity,
and reduce losses during its synthesis. This article proposes recovering the Cyanox 1970
additive and introducing it in the process to check if the recovered additive can improve
the thermal qualities of PP.

In the present research, we intend to recover a high percentage (≥90%) of a high value
additive (Cyanox 1790) for polymers and characterize its efficiency via competitive and
reliable techniques to determine the feasibility of its reuse in the industry.

2. Analysis and Discussion
2.1. Identification, Quantification, Repeatability, Reproducibility, and Linearity Analysis of
Multiple Cyanox 1790 Standards

This analysis is performed in a very detailed and rigorous way in some respects
because, from the results obtained, it will be possible to determine if recovering this
additive is workable.

2.1.1. Multistandard Repeatability Analysis of Cyanox 1790 in CH2Cl2 and Multistandard
per SPE in CH2CN

For the repeatability (precision) of the process, five tests were carried out using the
HPLC-MS technique, with the same standard, on the same day, with the same analyst,
depending on the relative standard deviation (RSD) and seven concentrations between
0 (white) and 5000 ppm. Accuracy within the day was validated if the average global values
were less than 20%. A divergence of less than 15% from the expected value is suggested
as an acceptable condition [66–69]. Table 1 shows the values and precision parameters
calculated from the data obtained. These data were analyzed in an ANOVA and using
Tukey’s method; it was found that all means were grouped in the same literal (A), which
indicates that there are no significant differences in the means of the data, which allows us
to infer with 95% certainty that the standard analysis is repeatable. Figure 2a shows a box
plot to graphically observe the distribution of the repeatability data of the standard and the
location of its means.

Table 2 shows the data obtained. We obtained RSDs much lower than 15%, where the
highest was 3.6% (1500 ppm), errors less than 5.3%, and recoveries equal to or greater than
95% on all occasions, all of which were obtained by the same analyst on the same day. The
highest yield obtained for these conditions was 98%. The ANOVA analysis performed for
the SPE of Cyanox (standard), which is shown in Table 3, showed that the means did not
have significant differences, and similarly to all the ANOVA performed so far, the grouping
of the means occurred under the same bunk (A), which implies the significance of the
difference between means. Figure 2c graphically complements the ANOVA set.
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Table 1. Tabulation of data for repeatability and reproducibility of standards in HPLC-MS.

Cyanox Calibration Curve with Dichloromethane on the HPLC-MS

Intraday Test (Same Day)

Theoretical STDA Analyst 1 Analyst 1 Analyst 1 Analyst 1 Analyst 1 Average Deviation RSD Error

0 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0
500 2 495.0 490.0 492.0 501.0 510.0 497.6 8.1 1.6 0.5

1000 3 942.0 972.0 981.0 1010.0 967.0 974.4 24.6 2.5 2.6
1500 4 1450.0 1514.0 1487.0 1491.0 1511.0 1490.6 25.6 1.7 0.6
2000 5 2012.0 1963.0 1976.0 1988.0 2013.0 1990.4 22.0 1.1 0.5
3000 6 2975.0 2989.0 3016.0 2991.0 2985.0 2991.2 15.2 0.5 0.3
5000 7 5021.0 4997.0 4987.0 5011.0 4991.0 5001.4 14.2 0.3 0.0

Interday Test (Different Days)

Theoretical STDA Analyst 1 Analyst 2 Analyst 3 Analyst 4 Analyst 5 Average Deviation RSD Error

0 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0
500 2 475.0 501.0 476.0 501.0 453.0 481.2 20.3 4.2 3.8

1000 3 1015.0 947.0 958.0 1024.0 974.0 983.6 34.3 3.5 1.6
1500 4 1435.0 1542.0 1485.0 1476.0 1511.0 1489.8 40.0 2.7 0.7
2000 5 2024.0 1945.0 1975.0 2015.0 1986.0 1989.0 31.8 1.6 0.6
3000 6 3021.0 2946.0 2978.0 2976.0 2976.0 2979.4 26.8 0.9 0.7
5000 7 5032.0 4978.0 4967.0 4987.0 4969.0 4986.6 26.6 0.5 0.3

Table 2. Tabulation of data for repeatability and reproducibility of standards in the SPE.

SPE with Acetonitrile (HPLC-MS Results)

Intraday Test (Same Day)

Theoretical STDA Analyst 1 Analyst 1 Analyst 1 Analyst 1 Analyst 1 Average Deviation RSD Error %Recovery

0 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0
500 2 478.0 462.0 486.0 498.0 490.0 482.8 13.7 2.8 3.4 97

1000 3 942.0 946.0 976.0 948.0 927.0 947.8 17.8 1.9 5.2 95
1500 4 1465.0 1375.0 1389.0 1486.0 1475.0 1438.0 51.9 3.6 4.1 96
2000 5 1929.0 1988.0 1976.0 1946.0 1900.0 1947.8 35.5 1.8 2.6 97
3000 6 2941.0 2937.0 2955.0 2913.0 2900.0 2929.2 22.3 0.8 2.4 98
5000 7 4876.0 4642.0 4863.0 4772.0 4912.0 4813.0 108.6 2.3 3.7 96

Interday Test (Different Days)

Theoretical STDA Analyst 1 Analyst 2 Analyst 3 Analyst 4 Analyst 5 Average Deviation RSD Error %Recovery

0 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0
500 2 468.0 452.0 472.0 488.0 451.0 466.2 15.4 3.3 6.8 93

1000 3 951.0 934.0 956.0 937.0 918.0 939.2 15.0 1.6 6.1 94
1500 4 1455.0 1356.0 1345.0 1425.0 1436.0 1403.4 49.6 3.5 6.4 94
2000 5 1941.0 1942.0 1900.0 1922.0 1942.0 1929.4 18.5 1.0 3.5 96
3000 6 2945.0 2901.0 2586.0 2712.0 2815.0 2791.8 145.5 5.2 6.9 93
5000 7 4786.0 4875.0 4825.0 4772.0 4821.0 4815.8 40.1 0.8 3.7 96

2.1.2. Multistandard Reproducibility Analysis of Cyanox 1790 in CH2Cl2 and
Multistandard by SPE in CH2CN

For the reproducibility of the process, five tests were performed using the same
analytical technique with the same standard on different and consecutive days, with
different analysts. For reproducibility, the same validation criteria apply for repeatability.
As for repeatability and reproducibility, an ANOVA analysis was also performed (Table 3),
with the same degree of confidence and under the same method (Tukey) shown in Table 1,
and the same result was obtained as repeatability, that is, the grouping of all means in the
same literal (A), which indicates that for the means of reproducibility, there is no significant
difference either, that is, the process is reproducible. As for repeatability and reproducibility,
Figure 2b shows the box plot for these data, which corroborate the ANOVA analysis.

For the reproducibility of the SPE, the same conditions are used. For reproducibility
under the above conditions, we obtained a maximum RSD value of 5.2% (3000 ppm), errors
less than 6.9%, and recoveries equal to or greater than 93%. In the case of errors, despite
being higher than in the case of repeatability of the SPE, they are still below 15%, so it
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meets the established criteria. The ANOVA analysis (Table 3) performed for SPE of Cyanox
(standard) under reproducibility conditions showed that the means did not have significant
differences for the reasons explained by the previous ANOVA. Figure 2d shows the box
plot for the reproducibility of the SPE in order to complete the information provided by the
ANOVA visually.
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Table 3. ANOVA analysis for standards and samples using the Tukey method with 95% confidence.

Repeatability of Standards with CH2Cl2

Factor N Average Grouping

Analyst 1–3 7 1806 A
Analyst 1–1 7 1804 A
Analyst 1–5 7 1801 A
Analyst 1–4 7 1795 A
Analyst 1–2 7 1764 A

Reproducibility of standards with CH2Cl2

Analyst 1 7 1857 A
Analyst 4 7 1854 A
Analyst 5 7 1838 A
Analyst 2 7 1837 A
Analyst 3 7 1834 A

Repeatability of standards with CH2CN in SPE

Analyst 1–3 7 1806 A
Analyst 1–1 7 1804 A
Analyst 1–5 7 1801 A
Analyst 1–4 7 1795 A
Analyst 1–2 7 1764 A

Reproducibility of standards with CH2CN in SPE

Analyst 1 7 1792 A
Analyst 4 7 1780 A
Analyst 5 7 1769 A
Analyst 2 7 1751 A
Analyst 3 7 1726 A

Reproducibility of samples with CH2CN in SPE

Analyst 1 40 1718 A
Analyst 4 40 1710 A
Analyst 5 40 1699 A
Analyst 2 40 1696 A
Analyst 3 40 1695 A

2.1.3. Repeatability Linearity and Reproducibility of Cyanox 1790 Multistandards

Figure 3a shows in the graph the theoretical concentrations established for SPE versus
the concentrations obtained by the analyst. Each test has an independent linear regression
that shows the same linear trend, in which a high degree of precision can be graphically
demonstrated between the data. To obtain more specific information about (theory vs.
reality), Figure 3b shows the theoretical values of the concentration of the SPE against the
average of the data obtained per test, and here we find an (R2) of 0.99985, and a correlation
coefficient of 0.99981, which allows us to establish first: that the model can satisfactorily
predict the concentrations obtained experimentally, and second: that there is a relationship
directly proportional between the theoretical and experimental values, representing the
relevant fact that recovery values can be established with certainty, which is considered
high, and this has significant economic and environmental implications.

As for repeatability, for the reproducibility of the SPE, the figure shows in Figure 3c
the theoretical concentrations versus the experimental concentrations with their respec-
tive linear settings; here, it should be noted that there is a lower precision in the points
corresponding to the concentration of 3000 ppm concerning the same concentration for the
repeatability of the PSE. The graph in Figure 3d shows the theoretical values of concentra-
tion against the reproducibility averages, for which an (R2) of 0.99953 and a correlation
coefficient of 0.99977 is obtained so that exactly the same conclusions can be reached as for
the repeatability of the PES. All of the above was performed with the sole and exclusive
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purpose of guaranteeing the effectiveness and efficiency of the methodology to measure
the concentration of Cyanox 1790 in actual samples.
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2.2. Identification, Quantification, Repeatability, Reproducibility, and Linearity Analysis of Cyanox
1790 in Industrial Wastewater Samples
2.2.1. Reproducibility Analysis Industrial Wastewater Samples

The actual samples were 40 in total, which were taken for 40 consecutive days and
analyzed by five different analysts on the same day. For this sample, we obtained RSDs and
the standard values below 15%, where the highest was 4.8%, and the recoveries were equal
to or greater than 95.07%. The highest concentration value found in the samples occurred
on day 26 and had a mean value of 4896 ppm, and the lowest value was found on day 38
with a mean value of 311.8 ppm, as shown in Table 4.
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Table 4. Data tabulation for sample reproducibility.

Analysis of Final Samples with SPE with Acetonitrile (HPLC-MS Results)

Day Sample Analyst 1 Analyst 2 Analyst 3 Analyst 4 Analyst 5 Average Deviation RSD Error %Recovery

1 1 550 557 596 550 549 560.4 20.2 3.6 555 99.04
2 2 1552 1485 1561 1600 1548 1549.2 41.4 2.7 1500 96.82
3 3 2110 2078 2059 2115 2085 2089.4 23.2 1.1 2012 96.3
4 4 1465 1375 1389 1486 1475 1438 51.9 3.6 1413 98.26
5 5 978 948 956 967 975 964.8 12.7 1.3 924 95.77
6 6 748 733 715 791 765 750.4 29.3 3.9 718 95.68
7 7 1000 1012 1014 986 1021 1006.6 13.8 1.4 975 96.86
8 8 3474 3514 3520 3483 3465 3491.2 24.5 0.7 3319 95.07
9 9 4142 4085 4123 4065 4086 4100.2 31.4 0.8 3945 96.21
10 10 3945 3845 3865 3921 3811 3877.4 55 1.4 3800 98
11 11 375 348 396 373 382 374.8 17.5 4.7 361 96.32
12 12 768 777 745 800 715 761 32.4 4.3 755 99.21
13 13 575 596 542 585 536 566.8 26.5 4.7 561 98.98
14 14 300 312 324 317 313 313.2 8.8 2.8 310 98.98
15 15 245 263 260 246 235 249.8 11.6 4.6 241 96.48
16 16 645 615 635 650 631 635.2 13.6 2.1 630 99.18
17 17 842 865 849 812 876 848.8 24.5 2.9 834 98.26
18 18 1012 1015 1073 1062 1046 1041.6 27.4 2.6 1024 98.31
19 19 1522 1463 1400 1572 1429 1477.2 69.8 4.7 1415 95.79
20 20 1642 1725 1534 1629 1549 1615.8 77.4 4.8 1583 97.97
21 21 1842 1736 1742 1832 1700 1770.4 63 3.6 1691 95.52
22 22 2000 2015 2053 2075 2100 2048.6 41.4 2 2008 98.02
23 23 2541 2542 2530 2500 2510 2524.6 18.8 0.7 2500 99.03
24 24 3041 3145 3024 3108 3190 3101.6 69.7 2.2 3059 98.63
25 25 4174 4125 4108 4180 4110 4139.4 35 0.8 4013 96.95
26 26 5004 4900 4829 5010 4976 4943.8 77.7 1.6 4896 99.03
27 27 4005 4120 4200 4215 4119 4131.8 83.6 2 4032 97.58
28 28 2010 2042 2075 2090 2014 2046.2 35.8 1.7 1989 97.2
29 29 1512 1500 1498 1482 1475 1493.4 14.8 1 1470 98.43
30 30 1012 1042 1058 1043 1095 1050 30.2 2.9 1000 95.24
31 31 3421 3542 3541 3674 3465 3528.6 96.3 2.7 3486 98.79
32 32 2631 2345 2541 2384 2446 2469.4 116.8 4.7 2379 96.34
33 33 1674 1600 1631 1583 1543 1606.2 49.5 3.1 1576 98.12
34 34 1342 1263 1245 1234 1345 1285.8 53.7 4.2 1234 95.97
35 35 1042 1075 1093 1000 975 1037 49.5 4.8 1003 96.72
36 36 875 800 843 912 849 855.8 41.4 4.8 843 98.5
37 37 742 715 675 668 700 700 30.2 4.3 687 98.14
38 38 312 326 300 321 300 311.8 11.9 3.8 301 96.54
39 39 501 512 536 542 555 529.2 22.2 4.2 512 96.75
40 40 846 894 900 875 836 870.2 28.4 3.3 846 97.22

2.2.2. Linearity and Distribution of Industrial Wastewater Sample Data

The first thing that should be appropriately noted of the sample is that during the
forty days, totally different concentrations were found from one day to another, evidenced
in the randomness of the values obtained, as shown in Figure 4a, in which the days are
plotted against the average concentration of the sample obtained for each day. This high
variability of concentrations is verified by the (R2) values and the correlation coefficient
for the samples, which were 1.22 × 10−4 and 1.10 × 10−2, respectively. In Figure 4b, the
samples are plotted against the values obtained for each analyst in each of the samples,
and it is possible to observe that for each sample, the values of the analysts are not too far
from each other, so graphically, the precision that they retain is evident. The values furthest
from each other concerning the other samples correspond to samples 20, 21, 22, and 23.
However, they remain within the acceptable range. In Figure 4c, we can see the average
values recorded by analysts against the net recovery, all in ppm and with the values ordered
from highest to lower. Here, we can appreciate the linear correspondence of the average
values and the net recovery, which highlights that the methodology used for the recovery
of our additive has a high recovery performance because the linear regression conducted
for this dataset shows an (R2) of 0.99955 and a correlation coefficient of 0.99977. If the
values obtained for the standards are taken as a reference, it is obtained that the square
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of the sample had an error of 0.002%, and the correlation coefficient had an error of 0%,
because the same value was obtained.
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If it is assumed that each sample contains 100% analyte, Figure 4d plots the samples
against the percentage of recovery ordered from lowest to highest, such that a linear trend
is seen. Once the difference in scales is more noticeable, separating the points concerning
the linear regression—the trend and the minimum recovery value, which was 95.07%—is
still essential. The ANOVA analysis (Table 3) performed for the concentration values of the
samples obtained by the five analysts shows no significant differences between the means
of the 40 samples under the same analysis conditions for the previous ANOVA. Figure 4e
shows the box graph corresponding to the ANOVA analysis; here, you can see that there
are outliers for four of the five analysts; apart from that, there is nothing.

2.3. Characterization of Recovered Dust and Comparison with a Pattern
2.3.1. Thermogravimetry Analysis (TGA) of Pure Standard and Recovered Dust

In the thermal degradation of pure Cyanox 1790, the percentage by weight remained
relatively stable at 100% until it reached 344 ◦C; from this point, the weight loss of the
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sample begins. The most significant percentage weight loss of this substance occurs between
344 and 445 ◦C from this temperature point. The degradation continues tenuously until the
maximum temperature compared to the previous range. It is evident that the recovered
Cyanox 1970 had exactly the same behavior as pure Cyanox in thermal degradation, so
the analysis is the same for the recovered Cyanox, including the degradation range. The
degradation starts temperature and attenuated degradation from 445 ◦C. All of the above
is shown graphically in the TGAs in Figure 5. To corroborate the high degree of similarity
between pure and recovered Cyanox, the pure and recovered DTGAs, respectively, were
plotted in Figure 5 immediately below the TGAs, and here, the same maximum value is
evidenced, precisely at the same temperature (396.59 ◦C, 0.138), for both derivatives. It
indicates the tipping point for pure and recovered Cyanox.
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Figure 5. (a) TGA graphics of pure and (b) recovered Cyanox 1790 and (c) DTGA Cyanox 1790 pure
and (d) recovered.

This suggests that this additive is a fairly stable species in the surrounding environ-
ment (minimally reactive or reactive very specifically), because otherwise, changes would
be expected to be at least perceptible in tests.

2.3.2. Pure Standard DSC Analysis and Recovered Dust

Differential scanning calorimetry, similarly, to TGA and more similarly to DTGA,
specifically in the graph aspect, shows the same peaks for pure and recovered Cyanox. The
calorimetric curve shows that for both samples of Cyanox between 155 and 176 ◦C, there
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is heat release (peak up) from the sample, which is related to the decomposition of the
sample, that is, the breaking of the bonds of the molecule, which release energy in the form
of heat. For both Cyanox samples, the maximum heat flux released was 8.69 J/s, as shown
in Figure 6.
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between 1300 and 1050 cm−1, which correspond to the symmetrical and asymmetrical 
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Figure 6. DSC charts for pure (a) and recovered (b) Cyanox 1790.

2.3.3. Pure Standard FTIR Analysis and Recovered Dust

Before and after reintegration of Cyanox into the PP to distinguish the spectra of
the recovered substance, and after its addition to the PP to study the compatibility of the
components in the composite matrix, both the recovered Cyanox 1790 and the pure Cyanox
1790 were subjected to Fourier transform infrared spectroscopy (FTIR). The spectrum
obtained from the recovered Cyanox 1790 (Figure 7) [70] is remarkably comparable to the
spectrum of the pure additive obtained from the literature, according to the first results
of the FTIR before it joined the PP. Both spectra show the most intense peaks and the
fingerprint of the spectrum in a comparable way. Given the noise of the signals acquired
for this test and the low concentrations of the analyte, which are represented by lower
absorbance values in the range of 2250–1900 cm−1, slight discrepancies in the spectra can
be observed [71].
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Figure 7. FTIR charts for pure (a) and recovered (b) Cyanox 1790.

The resulting spectrum (Figure 7) shows a peak at approximately 1735 cm−1, which is
indicative of the ester group (O=C) present in the structure of the Cyanox, and two bands
between 1300 and 1050 cm−1, which correspond to the symmetrical and asymmetrical
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stretches of the Cyanox ester group. The intensity of one stretch is greater than that of
the other. However, the signal at 3670 cm−1 shows that the group formed from phenols
is present in Cyanox 1790. The usual band of the CH3 group is observed in the range
of 2950 to 2970 cm−1. The chemical composition of Cyanox also reveals these categories.
Another indicator of the presence of aromatic groups in the spectrum is a moderately strong
absorption in the range of 1450–1500 cm−1, which is typical of the spectra of aromatic
compounds. Because spectrophotometry is less desirable for this study because it is more
desirable to measure the coupling and the difference between the peaks when the Cyanox
enters a couple in the PP matrix, the analysis of the peak in the Cyanox spectrum allows us
to confirm the presence of the recovered analyte, as well as its effectiveness. The molecular
composition of Cyanox 1790 is shown in Figure 1 [71,72].

2.3.4. Use of Recovered Dust and Application to Polypropylene Resins to Evaluate
Their Efficiency

The integration of recovered Cyanox 1790 and pure Cyanox 1790 into virgin PP
resin was evaluated by FTIR (Figure 8a). Figure 8b,c shows that the distinctive peak of
the carbonyl functional group at 1735 cm−1 is absent from the IR spectra of virgin PP.
According to Figure 7a,b, this functional group represents Cyanox 1790 on a regular basis.
In the IR spectrum of virgin PP + pure Cyanox 1790 and virgin PP + Cyanox 1790 recovered,
this carbonyl peak can be clearly recognized. Figure 7 shows more clearly the characteristic
bands of the functional groups typical of the molecular structure (Figure 1) of Cyanox. The
distinct phenol peaks, aromatic rings, and methyl groups are masked by the PP saturations
in the infrared spectrum [3,27,28,72–76].
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2.3.5. OIT PP, (PP + Cyanox Pure), and (PP + Cyanox Recovered)

To determine the oxidation time, changes in the slope of the curve generated by the
DSC with respect to the expected time and heat flow are taken into account. As shown
in Figure 9, an endothermic peak was initially observed, but over time and with changes
in the atmosphere, the slope of the curves changed, revealing a new exothermic behavior
that is consistent with oxidation. It can be observed that, for unstabilized PP (Figure 9a), a
significantly lower value of the induced oxidation time (OIT) is provided than when PP
has a certain amount of additive. The oxidation time refers to the moment in which the
displacement of this slope occurs. The value of OIT for the non-stabilized PP is 0.7 min,
taking as reference the change in slope at 17.3 min, and the OIT for the PP with the added
additive is 8 min, demonstrating how the presence of the additive slows down the oxidation
processes of PP and improves its thermal stability due to its coupling in the polymer matrix.
That mechanism reduces thermo-oxidation due to the presence of OH in its rings, which
helps eliminate free radicals (Figure 9b,c).
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3. Materials and Methods
3.1. Sampling

The samples were collected in a polypropylene manufacturing plant (Figure 10).
Figure 10 shows three stages of the production process. Stage 1 corresponds to the receipt,
purification, and storage of propylene. Tank 1 stores the untreated propylene. Column 2 is
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used for the elimination of traces of contaminants, and tank 3 stores the purified propylene.
In stage 2, polymerization occurs, and propylene is transformed into polypropylene. This
process happens at point 4, which corresponds to the polymerization reactor. Stage 3
corresponds to activation and pelletizing. Point 5 is a silo in which the virgin PP resin is
received; at point 6, the virgin resin is mixed with the additives; at point 7, extrusion and
pelletizing are carried out. Sampling is carried out at point 7. At this point, a flow of water
comes out of the extruder. Water is used in the polymer extrusion process to lower the
temperature and create a more uniform grain, as it is carried out at a high temperature [62].
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Due to the large processing volume and fast processing speed, samples were obtained
every 12 min, with a throughput of 5 samples. Approximately 30 tons of PP can be
processed in 50 min. Given that the desorption process lasts four hours, samples of the
desorption unit were obtained in duplicate every hour. This method investigates both the
way phenols are present in the condensates of these two units and the impact of sampling
time on phenol migration in condensates.

3.2. Extraction Solid Phases (SPE)

The sample was filtered via a polytetrafluoroethylene filter prior to the extraction
(PTFE). Strata X-33 tubes (500 mg, 6 mL) were filled with 15 mL of the sample for the SPE
at a flow rate of 1 mL/min. In total, 5 mL of methanol and 5 mL of distilled water were
used to condition the filtrate earlier. MeOH: H67O 80:20 was used to wash the filtrate. The
retentate was stripped with nitrogen at 5 psi after being eluted with 10 mL of acetonitrile
(ACN). The extracted solution was dissolved in 1 mL of ACN [7] and then subjected to
HPLC analysis. Until a concentrate volume of 500 mL was produced, the preconcentration
procedure was repeated. By using a stream of N2, this 500 mL sample was preconcentrated
and dried. The resulting solid was examined by FTIR, DSC, TGA, and HPLC-MS. For
subsequent mixing of the recovered solid (Cyanox 1790) with virgin PP resin, it is kept in a
humidity- and temperature-controlled cabinet.
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3.3. HPLC-DAD/MS/MS (High-Performance Liquid Chromatography with Diode Array Detector
and Mass Spectrometry)

For this analysis, an Agilent 1100 HPCL and a Micromass Quattro II triple quadrupole
mass spectrometer were used. It is possible to acquire spectra using MS and MS/MS.
As part of the system, a degasser (G1322A), a quaternary pump (G1311A), an automatic
sampling system (G1313A), a column carrier (G1316A), a DAD detector (G1315B) with a
chemical station, a Lichrosorb RP-18 column (4.6x200mmx5microns), 5 and 10 syringes,
and a precision balance were used. A separate double pump system and self-sampler
were also used for automatic injection into the MS with the Cyanox 1790 solution at ACN,
which was used to establish chromatographic conditions. With the mixture of ACN and
H2O solvents, which were mixed in various proportions, the following separation was
carried out: 84 and 16 percent (1 min, 15 mL/min); 92 and 8 percent (2 min, 2 mL/min);
96 and 4 percent (3.5 min, 3.5 mL/min); and 100 and 0 percent (8 min, 3.5 mL/min). The
temperature, irrigation volume, and wavelength of the column were adjusted to 50 ◦C.
For the identification of the additive, the mass data of MS fragment and MS/MS ions are
used [26,62,63].

3.4. The Recovered Additive Is Added to the PP Matrix
3.4.1. Preparation of PP Sampling

The PP resin in question was produced from virgin resin devoid of additives. The
recovered PP and Cyanox 1790 mixture samples were premixed by adding 0.1 wt% recov-
ered Cyanox 1790 additive to PP powder using a standard Prodex Henschel 115JSS mixer
at 800 rpm for 7 min at room temperature. The resin was then combined with the recovered
Cyanox 1790. The samples were combined using a Welex-200 24.1 extruder, and melted
extrusion was carried out at operating temperatures of 190, 195, 200, 210, and 220 ◦C on the
extruder tracks. The mixtures underwent an additional transformation into films (300 mm
diameter films with a thickness of about 100 mm) by compression molding in a hot press,
the CARVER 3895. After the PP solid was granulated, 1000 mg/kg of recovered granules
containing Cyanox 1790 were produced. Cyanox 1790 was diluted in ACN to solve with a
concentration of 500 mg/L to manufacture the standard, and 2.5 mL of this solution was
dissolved to a volume of 50 mL to obtain 25 mg/L.

3.4.2. Fourier Transform Infrared Spectroscopy (FTIR)

A Nicolet 6700 infrared spectrometer was used for the FTIR study, with readings
between 4000 and 600 cm−1 and a resolution of 2 cm−1 (reflection). The sample was pre-
heated to 400 ◦C in preparation for this study to cause thermal deterioration and allow
examination of changes in the polymer matrix [63,64].

3.4.3. Differential Scanning Calorimeter (DSC)

The oxidation induction time (OIT) was calculated using DSC Q2000 V24.11 Build
124 equipment for calorimetric analysis. A 6.1 mg sample was used to obtain the results
under atmospheric conditions of nitrogen and oxygen. The environment of the experiment
was changed to examine how oxidation affects the volatility of the material. On the other
hand, nitrogen provides a controlled and inert environment that allows us to examine how
decomposition affects the sample. This procedure was carried out in various conditions,
such as isothermal at 60 ◦C for 5 min, an atmosphere of 50 mL/min of nitrogen, and a
temperature increase of 60 ◦C at 200 ◦C for 20 min. The ambient conditions of the analysis
were then adjusted, and the sample was subjected for 30 min to an airflow of 50 mL/min
under oxidation conditions at a temperature of 200 ◦C. A displacement of the slope of
exothermic heat with oxidation flow was observed. The value of OIT corresponding to the
time when the slope changes can be calculated using this transformation [63].



Molecules 2023, 28, 2003 17 of 20

3.4.4. Analysis by Thermogravimetry (TGA)

This analysis was performed using a Perkin Elmer TGA7 thermobalance at temper-
atures between 30 and 700 ◦C with a nitrogen flux of 50 mL/min. The temperature in
the TGA at which 5% of the mass is lost was used to calculate the initial degradation
temperature, and the DTG curve was used to determine the maximum degradation tem-
perature [48,64,65].

4. Conclusions

There is evidence that industrial wastewater can be a source of numerous substances
that can harm the environment and people’s health, but there is also evidence that it can
be a source of substances that, once recovered, are very helpful in the industrial sector.
Recovering these components, therefore, reduces the environmental effect and improves the
circular economy. This study demonstrates how recovering phenolic compounds (Cyanox
1790), which are used as additives in polypropylene manufacturing, can yield high purity
recoveries of over 98%. The thermal and thermo-oxidative stability of PP was significantly
increased by the recovery and integration of Cyanox 1790 in the PP matrix. Without thermal
stabilizers, PP would disintegrate throughout the extrusion process, preventing it from
having any significant ultimate applications. Therefore, the recovery of this Cyanox 1790
at these high purity levels exemplifies a critical technology to be applied in the industrial
sector and encourages sustainable raw material sources.
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