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Abstract: Impaired wound healing in patients with type 2 diabetes (DM2) is characterized by chronic
inflammation, which delays wound closure. Specialized pro-resolving lipid mediators (SPMs) are
bioactive molecules produced from essential polyunsaturated fatty acids (PUFAs), principally omega-
3 docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA). SPMs are potent regulators of
inflammation and have been used to suppress chronic inflammation in peripheral artery disease, non-
alcoholic fatty liver disease, and central nervous system syndromes. LIPINOVA® is a commercially
available safe-grade nutritional supplement made from a fractionated marine lipid concentrate
derived from anchovy and sardine oil that is rich in SPMs and EPA, as well as DHA precursors.
Here, we assessed the effect of LIPINOVA® in wound dressing applications. LIPINOVA® showed
biocompatibility with keratinocytes and fibroblasts, reduced the abundance of pro-inflammatory
macrophages (M]ϕ1), and promoted in vitro wound closure. Daily application of the marine oil to
open wounds made by punch biopsy in db/db mice promoted wound closure by accelerating the
resolution of inflammation, inducing neoangiogenesis and M]ϕ1/M]ϕ2 macrophage polarization. In
conclusion, LIPINOVA® displays pro-resolutive properties and could be exploited as a therapeutic
agent for the treatment of diabetic ulcers.

Keywords: pro-resolving lipid mediators; wound healing; omega-3; macrophage polarization;
angiogenesis; SPMs; diabetic ulcer

1. Introduction

Wound healing is a complex and dynamic response to mechanical/chemical injury,
and the abnormal wound healing (non-healing) processes can lead to chronic wound ul-
cers [1]. A recent systematic review showed that, among other types of chronic wounds, leg
and foot ulcers are the most prevalent in the general population [2], and they are commonly
associated with type 2 diabetes (DM2) [3]. DM2, a metabolic disorder caractherized by
hyperglycemia due to insuline resistance, is associated with numerous co-morbidities,
including skin ulcers. The incidence and prevalence of this disease has reached very high
values, becoming a major global health epidemic [4,5]. Wound ulcers caused by DM2 affect
aproximately 15% of diabetic patients and are a leading cause of amputations [6]. DM2
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ulcers have an immense social and economic impact on people and health systems due
to their high incidence, especially among the elderly with coexisting risk factors, such
as hypertension or smoking. Mechanistically, wound healing involves the coordinated
response of several cell types of the dermis and epidermis, which is achieved through four
different temporally- and spatially-distinct but overlapping phases: hemostasis, inflam-
mation, proliferation, and remodeling [7]. In the setting of chronic wounds, progression
between the different phases is compromised, and the resolution phase is not reached,
leading to a prolonged inflammatory state [8].

Different strategies have been tested for the treatment of diabetic ulcers, ranging from
simple and low-cost approaches that include cleansing, debridement, and maintenance of
moisture balance with wound dressings, to more sophisticated approaches, such as the
use of mesenchymal stem cells [9], or the application of complete skin grafts [7]. Beyond
cellular-based mechanisms, the potential utility of bioactive omega-3 (ω-3) polyunsaturated
fatty acids (PUFAs), including eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids
for wound healing, is under intense investigation [10–12].

ω-3 PUFAs are essential fatty acids that must be obtained from the diet [13], with the
main sources being plants and cold water fish oil [14]. Interest in ω-3 PUFAs has risen
in recent years because of their beneficial effects in the resolution of inflammation in the
context of different pathological conditions [15]. For example, administration ofω-3 PUFAs
reduces circulating triglyceride levels and body weight in people with obesity [16,17].
They also have demonstrated anti-fibrogenic activity in patients with liver disease [18],
and can modulate pro-inflammatory responses in patients with vascular disease [19] or
chronic degenerative diseases such as Alzheimer’s disease and multiple sclerosis [20].
By contrast, the effects of ω-3 PUFAs in wound healing are less well studied and are
controversial [21,22]. For example, the addition of DHA and EPA to cultures of human
microvascular endothelial cells was shown to suppress proliferation and migration in an
in vitro scratch assay [23]. In another study, ω-3 PUFAs were proven to affect the gene
expression of pro-inflammatory cytokines and modulate wound healing when taken orally;
however, no differences were found in healing in a cohort of subjects receiving a ω-3
fatty acid EPA/DHA (fish oil) supplement for 4 weeks when compared with a placebo
cohort [24]. Nonetheless, other authors have observed benefits of oral supplementation of
ω-3 PUFAs in wound-mediated infections [25,26]. Moreover, oral supplementation of EPA
and DHA was found to be beneficial in the non-surgical management of periodontitis [27],
and a body of evidence indicates a positive role ofω-3 PUFAs in preventing the progression
of periodontal disease [28].

EPA and DHA are known to exert immunoregulatory effects that can promote the
resolution of inflammation [13,29]. Together with arachidonic acid (AA), they serve as
substrates for the biosynthesis of pro-resolving lipid mediators (SPMs), which are orga-
nized into several structurally distinct families termed lipoxins, resolvins, protectins, and
maresins. SPMs are produced by different subtypes of macrophages, neutrophils, and
exudate cells, and they promote wound healing and tissue regeneration [30,31]. Inter-
mediate metabolites between these substrates and the resolvins, protectins and maresins
families are monohydroxylated 18-hydroxyeicosapentaenoic acid (18-HEPE) and the hy-
droxy docosahexaenoic acids 17-HDHA and 14-HDHA [32], which have been identified
in human fluids including serum, plasma, urine, and breast milk [33]. Interestingly, oral
supplementation of fish oil increases the levels of these SPMs in patients with peripheral
arterial disease (PAD) [34]. Beneficial effects of single molecules of these families or their
substrates, for example, LXA4 (derived from AA) or resolvin D1 and D2 (derived from
DHA), have been reported in animal models with different pathologies, including wound
healing [25,35–38]. However, SPMs display non-redundant functions on different target
cells, and thus it is difficult to envision that a single molecule could be sufficient to induce
a complex pro-resolutive healing process in a clinical setting.

Recently, SPM extracts have been standardized in marine oil fractions from anchovy
and sardine skin, and commercially formulated LIPINOVA® is available from Solutex GC
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(https://www.solutex.es/; Parque Empresarial Omega, Edificio Gamma, Avenida de la
Transición Española 24, 3a 28108 Alcobendas, Spain). LIPINOVA® is enriched with ω-3
fatty acids and contains several SPMs, including 18-HEPE, 17-HDHA, and 14-HDHA.
When administered orally to patients with PAD, LIPINOVA® influenced circulating levels
of SPMs and modulated the immune system to pro-resolutive phenotypes, promoting
improvements in inflammation [39,40]. The same nutritional supplement was also used
successfully to reduce chronic pain and improve quality of life in patients with chronic
pain, depression, and anxiety (ClinicalTrials.gov, (accessed on 14 July 2022)); Influence of
an Omega-3 SPM Supplement on Quality of Life (NCT02683850) [41].

In the present study, we evaluated the therapeutic potential of LIPINOVA® as a
topical application for diabetic ulcers, which are often cavernous open wounds that would
benefit from wound dressing formulations. We found that LIPINOVA® promotes fibroblast
and keratinocyte migration; is internalized by fibroblasts, macrophages, and endothelial
cells; and reduces the levels of macrophages with an inflammatory (M]ϕ1) phenotype.
LIPINOVA® also accelerated open wound closure, increased blood vessel density, and
promoted anti-inflammatory M]ϕ2 polarization when applied daily to open wounds in
db/db mice.

2. Results

2.1. Study Design and Biocompatibility of LIPINOVA® In Vitro

LIPINOVA® marine oil supplement contains PUFAs, among other fatty acids (Table 1).
We determined the concentrations of the SPM precursors and substrates in the supplement
batch used in the present study, expressed as µg/15 mL, which is equivalent to a dose
of 1.5 g. The extract contained 17-HDHA (179.6 mg/kg), 18-HEPE (278.1 mg/kg), and
14-HDHA (97.7 mg/kg). We then evaluated the resolutive properties of LIPINOVA® in
the context of DM2-related ulcers. Specifically, we first analyzed the functional activity of
the formulation in vitro using fibroblasts, endothelial cells, and macrophages, and later
verified its properties in diabetic (db/db) mice with open wounds (Figure 1A).

Table 1. Essential fatty acids in the Lipinova-11TG batch. Data are represented as % area.

Fatty Acids % Area

Myristic C14:0 0.44
Myristoleic C14:1 n.d.
Pentadecanoic C15:0 n.d.
Palmitic C16:0 1.31
Palmitoleic C16:1 n7 0.61
Hexadecaenoic C16:4 n1 0.23
Margaric C17:0 0.06
Margaroleic C17:1 0.12
Stearic C18:0 1.00
Oleic C18:1 n9 2.05
Vaccenic C18:1 n7 0.65
Linoleic C18:2 n6 0.25
Gamma-linolenic C18:3 n6 0.08
Linolenic C18:3 n3 0.15
Stearidonic C18:4 n3 0.67
Arachidic C20:0 0.73
Eicosenoic C20:1 n9 2.32
Gondonic C20:1 n7 0.38
Arachidonic C20:4 n6 0.96
Eicosatetraenoic C20:4 n3 1.13
Eicosapentaenoic C20:5 n3 20.08
Behenic C22:0 0.90
Erucic C22:1 n11 2.84
Adrenic C22:4 n6 0.52

https://www.solutex.es/
ClinicalTrials.gov
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Table 1. Cont.

Fatty Acids % Area

Docosapentaenoic C22:5 n6 0.98
Docosapentaenoic C22:5 n3 7.57
Lignoceric C24:0 0.46
Docosahexaenoic C22:6 n3 45.47
Nervonic C24:1 n9 0.23

Totalω3 75.07

Totalω6 0.98

Totalω9 4.60

SFA 4.90

MUFA 9.20

PUFA 78.09
SFA: saturated fatty acids; MUFA: monounsaturated fatty acids; PUFA: polyunsaturated fatty acids.
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Figure 1. Keratinocyte and fibroblast viability as a function of LIPINOVA® concentration. (A) Sche-
matic design of the study. LIPINOVA® was assessed in vitro for cytotoxicity; uptake by dermal fi-
broblasts, endothelial cells, and macrophages; scratch wound healing; and macrophage polariza-
tion. Thereafter, the therapeutic potential of LIPINOVA® was measured in an in vivo wound healing 
assay in db/db mice. Viability of (B) keratinocytes and (C) fibroblasts assessed with the CCK-8 assay 
after incubation with different concentrations of LIPINOVA®. Absorbance was measured at 450 nm, 
and data are represented as mean ± SD of three independent experiments. Two-way ANOVA was 
used for statistical analysis. * p < 0.05, *** p < 0.001, and **** p < 0.0001. (D) Immunofluorescence 
analysis of HUVEC after 6 h incubation with 100 μM LIPINOVA®-OG or saline (Ctrl). Cells were 
fixed and stained with DAPI (blue). Images were acquired with a fluorescence microscope with a 
20× objective. Scale bar = 50 μm. (E) Flow cytometry assay to measure LIPINOVA® internalization 
in human macrophages. 
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dermal fibroblasts, endothelial cells, and macrophages; scratch wound healing; and macrophage
polarization. Thereafter, the therapeutic potential of LIPINOVA® was measured in an in vivo wound
healing assay in db/db mice. Viability of (B) keratinocytes and (C) fibroblasts assessed with the CCK-8
assay after incubation with different concentrations of LIPINOVA®. Absorbance was measured at
450 nm, and data are represented as mean ± SD of three independent experiments. Two-way ANOVA
was used for statistical analysis. * p < 0.05, *** p < 0.001, and **** p < 0.0001. (D) Immunofluorescence
analysis of HUVEC after 6 h incubation with 100 µM LIPINOVA®-OG or saline (Ctrl). Cells were
fixed and stained with DAPI (blue). Images were acquired with a fluorescence microscope with a
20× objective. Scale bar = 50 µm. (E) Flow cytometry assay to measure LIPINOVA® internalization
in human macrophages.

We first evaluated the potential cytotoxicity of LIPINOVA® in primary cultures
of keratinocytes and fibroblasts seeded and incubated with different concentrations of
LIPINOVA®. Cell viability was measured using the CCK-8 assay 48 h after plating. No
changes in viability were observed in keratinocytes treated with LIPINOVA® at concentra-
tions equal to or below 250 µM LIPINOVA® (Figure 1B). By contrast, fibroblasts appeared
to be more sensitive to LIPINOVA®, and concentrations greater than 125 µM significantly
reduced viability (Figure 1C). Uptake of LIPINOVA® by dermal fibroblasts and human
umbilical vein endothelial cells (HUVEC) was assessed by internalization assays with
LIPINOVA® labeled with Oregon green (LIPINOVA®-OG). Cells showed an increase in flu-
orescence when they were incubated with LIPINOVA®-OG, as compared with non-treated
cells (Figure 1D). The addition of LIPINOVA®-OG to human macrophages from peripheral
blood also resulted in cellular uptake, as assessed by flow cytometry (Figure 1E).

2.2. LIPINOVA® Promotes Migration and Spreading of Fibroblast and Keratinocytes

Wound closure is mediated by re-epithelization and migration of fibroblasts to the
wound site. To investigate whether LIPINOVA® can modulate the migration of ker-
atinocytes and fibroblasts, we measured its ability to promote wound closure in an in vitro
scratch-wound assay (Figure 2A,B). Based on previous studies evaluating the effects of
SPMs and PUFAs on different cell types [29,42], we chose 50 µM LIPINOVA® as the highest
concentration. Results showed that LIPINOVA® significantly increased keratinocyte migra-
tion at all the concentrations tested (results not shown), with 250 nM LIPINOVA® identified
as the most effective concentration when migration was measured 24 h after treatment
(Figure 2C). Similar results were observed for fibroblasts (Figure 2D), and the effectiveness
of the treatment was evident after only 6 h following the addition of the supplement.
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Figure 2. LIPINOVA® treatment accelerates the in vitro migration of keratinocytes and fibroblasts.
Representative brightfield images of a scratch assay at different timepoints after scratching a culture
plate of keratinocytes (A) and fibroblasts (B) treated with 250 nM or 50 µM of LIPINOVA®, or with
saline (Ctrl). Dotted lines define the wound area; scale bar = 100 µm. Quantification of wound
closure of keratinocytes (C) and fibroblasts (D) in the presence of LIPINOVA®. Data were normalized
to an initial wound area and are represented as mean ± SD percentage. Images were taken at
20× magnification. Experiments were performed in triplicate. Two-way ANOVA was used for
statistical analysis. * p < 0.05, ** p < 0.01, *** p < 0.001, and **** p < 0.0001.

2.3. Inflammatory Response to LIPINOVA® In Vitro

Pro-resolving mediators, such as resolvin D1, or their precursors have been shown to
promote macrophage polarization towards an M]ϕ2 phenotype [29]. We next performed an
in vitro polarization assay to evaluate the ability of LIPINOVA® to modulate this process.
Monocytes were isolated and differentiated to M]ϕ1 and M]ϕ2 (see methods). During
the course of differentiation to M]ϕ1, some cultures were treated with 250 nM or 50 µM
LIPINOVA®, which was freshly added every 3 days, and surface markers were compared
with non-treated M]ϕ1 and M]ϕ2 differentiated populations (Figure 3A). The expression
of cell surface receptors CD80 and HLA-DR, as classical markers of the M]ϕ1 phenotype,
and CD163, a M]ϕ2 phenotype marker, were evaluated by flow cytometry (Figure 3B).
Results showed that LIPINOVA® treatment decreased the expression of CD80 and HLA-DR
in lipopolysaccharide (LPS)-stimulated M]ϕ1, although no significant differences were
observed between treated and non-treated M]ϕ1 cultures. LIPINOVA® had no effect on the
expression of CD163 in M]ϕ1 cultures, and only M]ϕ2 cultures showed high expression
levels of this marker (Figure 3C). Using the same culture conditions, we utilized qPCR
to evaluate the expression of IL1β, CXCL10, and CXCL11 genes, as markers of the M]ϕ1
phenotype, and CD206, as a marker of the M]ϕ2 phenotype. Treatment of M]ϕ1 cultures
with 50 µM LIPINOVA® significantly decreased the expression of IL1β and CXCL10 genes.
The expression of CXCL11 also decreased, although the differences were not significant.
Notably, CD206 gene expression levels in M]ϕ1 macrophages were significantly elevated
in cultures treated with 50 µM LIPINOVA®, even when compared with M]ϕ2 cultures
(Figure 3D). Next, we used the supernatant of cell cultures to evaluate the production
of proinflammatory cytokines CXCL10 and IL1β by ELISA. M]ϕ1 macrophages treated
with 50 µM LIPINOVA® produced a significantly lower amount of CXCL10. However, we
did not observe changes in the production of IL1β after the addition of LIPINOVA® in
comparison to M]ϕ1 macrophages using this approach (Figure 3E). Overall, these results
indicate that LIPINOVA® treatment seems to suppress the expression of M]ϕ1 markers
and to modulate the repolarization of M]ϕ1 towards an M]ϕ2-like phenotype.
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2.4. LIPINOVA® Improves Wound Healing Closure in Mice

Given the functional effects of LIPINOVA® observed in vitro, we next tested its thera-
peutic potential in an animal model of DM2 [43]. After optimizing the cumulative dose
(not shown), db/db mice were randomized into two groups: control (Ctrl; saline) and
50 ng LIPINOVA®. Mice were treated daily with the corresponding treatment, and the
changes in wound area were measured every 3 days until sacrifice (15 days post-wounding)
(Figure 4A).
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images showing wounds of mice treated with saline (Ctrl) or with 50 ng LIPINOVA® at different
time points (day 3, 9, and 15). (B) Kinetics of wound closure assessed at different time points
as a percentage of the initial area in saline- and LIPINOVA®-treated animals (n = 9 animals per
group, 2 wounds per animal). Data are represented as mean ± SEM. Two-way ANOVA was used
for statistical analysis. (C) Representative images of wound sections stained with H&E, Masson’s
trichrome, and Picrosirius red at day 15. Images were acquired at different magnifications; scale
bar = 100 µm. (D) Histology score represented as mean ± SD of mice treated with 50 ng LIPINOVA®

or saline obtained from H&E- and Masson’s trichrome-stained skin sections 15 days post-wounding.
Dermal white adipose tissue (dWAT). The Mann–Whitney U test was used for statistical analysis;
* p < 0.05, **** p < 0.0001.
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Manual quantification of the wound area in all animals revealed that wounds were
completely closed in the db/db mice treated with 50 ng LIPINOVA® after 15 days, but not in
the control animals (Figure 4B). Given these differences, we performed histological stain-
ing experiments to examine skin integrity using hematoxylin and eosin (H&E), Masson’s
trichrome, and Picrosirius red staining. Representative images of skin sections of db/db
mice sacrificed at day 15 after wounding are shown in Figure 4C. Wound healing was more
advanced in animals treated with LIPINOVA® than in the control (saline-treated) animals,
as shown by thicker parakeratotic stratum corneum, less epidermal hyperplasia or cellular
infiltration, and by the presence of dermal white adipose tissue in the wound area in
sections stained with H&E, Masson´s trichrome, and Picrosirius red. Parameters measured
included the epithelial thickness, granulation tissue, maturation of collagenous tissue, and
scar elevation index (Table 2). A histology score to determine wound healing status was
calculated as described in [44], which is based on different criteria using both quantitative
and semi-quantitative measures, such as re-epithelization, angiogenesis, epithelial thick-
ness, keratinization, granulation tissue formation, scar elevation index, and remodeling.
We obtained a score of 5.8 ± 1.07 in control animals and 8.4 ± 0.92 in LIPINOVA®-treated
animals (* p < 0.05) (Figure 4D).

Table 2. Histological parameters analyzed in mice treated with saline or with 50 ng LIPINOVA®. The
study was performed at 15 days post-wounding.

Factors Evaluated (at 15 Days) Ctrl LIPINOVA®

Epithelial thickness (µm) 72.86 ± 27.80 62.19 ± 19.48
Granulation tissue (µm) 439.44 ± 133.95 310.14 ± 125.58
Scar elevation index 1.35 ± 0.12 1.29 ± 0.20
Re-epithelization (0–2) 0.89 ± 1.05 1.78 ± 0.71
Keratinization (0–2) 1.11 ± 0.93 1.78 ± 0.71
Collagen deposition (0–2) 0.70 ± 0.28 0.66 ± 0.19
Remodeling (0–2) 0.78 ± 0.44 0.89 ± 0.25

Ctrl: control group. Data are represented as mean ± SD.

2.5. LIPINOVA® Promotes Macrophage Polarization towards an Anti-Inflammatory Profile

We next analyzed the profile of infiltrating macrophages in skin sections 15 days after
LIPINOVA® treatment. M]ϕ1, characterized by positive double immunostaining for F4/80+
and CD274+, and M]ϕ2, characterized by F4/80+ and CD206+ staining, were identified by
immunohistochemistry of inflammatory infiltrates at the wound site (Figure 5A). Results
showed that the number of M]ϕ1 at the wound site at 15 days was significantly lower
(p < 0.05) in the group treated with LIPINOVA® than in equivalent saline-treated mice. The
M]ϕ1/M]ϕ2 ratio was 3.41 ± 3.46 in saline-treated mice and 0.53 ± 0.33 in LIPINOVA®-
treated mice (Figure 5B). Moreover, the cell density of M]ϕ1 was higher at the wound site
of saline-treated mice than in LIPINOVA®-treated mice, whereas the opposite was seen for
M]ϕ2 (Figure 5C).

Because angiogenesis is detected in the last phases of the wound healing process [44],
we measured vessel density at the wound sites by immunofluorescence, using an antibody
to caveolin. Results showed that the number of vessels was significantly higher in the
animals treated with LIPINOVA® than in the saline-treated mice (Figure 5D,E), which fitted
well with the results of the histology score (that included this parameter). Overall, our
findings suggest that LIPINOVA® induces constructive remodeling in vivo when topically
administered to db/db mice.
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3. Discussion

LIPINOVA® is a bioactive formulation that is used as an oral supplement to favor
resolution of inflammation and to date, clinical results have demonstrated its safety and
efficacy without evidence of side effects [39,41]. In the present study, we explored the
beneficial effects of topical administration of LIPINOVA® to cutaneous ulcers in the context
of diabetic pathophysiology. We found the biocompatibility and functional activity of
LIPINOVA® on human keratinocytes, fibroblasts, endothelial cells, and macrophages. The
dietary supplement had no effect on cell survival at the doses tested, and uptake of the
supplement was verified using LIPINOVA®-OG in dermal fibroblasts, endothelial cells, and
macrophages. We observed that in vitro wound closure of keratinocytes and fibroblasts was
accelerated with low doses of LIPINOVA® (250 nM), but not with higher doses (50 µM). It
is possible that although higher doses had no effect on cell viability, the migration response
was blunted. Our findings are in accord with a previous study reporting that EPA improves
the healing of fibroblast wounds in vitro [45]. Nevertheless, another study failed to detect
differences in keratinocyte and fibroblast migration in cultures treated with EPA or DHA
used at a concentration of 150 µM, but it is possible that the higher doses used account for
these incongruities [46].
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To study whether LIPINOVA® could modulate macrophage populations, we added it
to cultures of human peripheral blood monocytes differentiating to M]ϕ1 [47]. Notably, the
addition of LIPINOVA® reduced the number of pro-inflammatory M]ϕ1s and increased the
number of M]ϕ2s, as assessed by the expression of CD206. This is particularly important,
as M]ϕ1s release pro-inflammatory cytokines that aggravate pathological processes in
chronic wounds in the absence of resolution of inflammation. We also studied the healing
properties of LIPINOVA® in db/db mice. This model is commonly used in DM2 research, as
the excisional wound assay mimics the physiological processes that occur in diabetic foot
ulcers [43]. We used repeated daily doses of topical LIPINOVA®, rather than a single dose
at the beginning of the treatment, as we wanted to simulate the treatment that patients
with diabetes receive, and because of the oxidative nature of PUFAs/SPMs [48]. When
administered topically to open wounds in db/db mice, LIPINOVA® induced improvements
in most of the histological parameters examined, and re-epithelization was apparent in
treated animals from day 6 after wounding. A role for pro-resolving lipid mediators in ker-
atinocyte proliferation has previously been observed in vivo [49]. Moreover, interventional
studies using LIPINOVA® reported an increase in leukotrienes, including LTB4 and other
SPMs, in the plasma of healthy subjects and patients with PAD after one month of daily
supplementation [40]; thus, we assume that SPM cascades are activated in diabetic ulcers
after LIPINOVA® treatment. In this context, during the proliferative phase of cutaneous
wound healing, the lipid mediator 10 E-trienoic acid (12-HHT), which is metabolized as a
product of AA by the platelets, is an agonist of the leukotriene B4 receptor type 2 (BLT2)
on the surface of keratinocytes. The 12-HHT/BLT2 axis promotes proliferation of the
latter through a cascade of well-described biological processes, accelerating wound closure
in mice [50].

Regarding the dynamics of tissue granulation, a reduction in polymorphonuclear
cell infiltrates was observed 15 days post-wounding in the LIPINOVA®-treated animals
as compared with the saline-treated controls. The concept of anti-inflammation versus
pro-resolution is interesting, since the latter involves clearance of excessive accumulation of
granulation tissue and macrophage efferocytosis, needed for tissue regeneration. Previous
studies have shown that EPA and DHA PUFAs suppress inflammatory processes by modu-
lating anti-inflammatory properties in macrophages [51]. In this context, the pro-resolution
therapy mediated by the D-series resolvins generated from DHA has been demonstrated
in the setting of diabetes, where treatment with this molecule induced efferocytosis and
apoptotic clearance in diabetic wounds [25]. Additionally, in a UV radiation-challenged
skin experiment, oral supplementation ofω3-PUFAs blocked the migration of Langerhans
cells from the epidermis, demonstrating their role in immune processes [52]. In addition,
the immune-modulation properties of resolvin D1 and DHA, at nanomolar and micromolar
concentrations, respectively, were also found on adipose tissue macrophages [29]. During
the process of resolution of inflammation, the main macrophage phenotype switches from
pro-inflammatory M1 to pro-resolving M2. Consistent with the aforementioned studies,
we observed that LIPINOVA® modulated M1/M2 polarization. Although treatment with
this dietary supplement increased the number of M2 macrophages, the main effect was the
reduction in the M1 subtype, both in vitro and in vivo, pointing to an important effect on
macrophage differentiation.

LIPINOVA® treatment in db/db mice promoted the formation of mature dense connec-
tive tissue characterized by the presence of collagen bundles, while preventing excessive
scarring, as assessed by the histology score in the Picrosirius-stained sections. These results
are in line with other reported findings [11], which revealed that oral administration of
ω-3 fatty acids promoted epithelial healing, while reducing collagen deposition in an ear
punch full-thickness wound healing model in mice on a high-fat diet. Similarly, DHA sup-
plementation reduced α-smooth muscle actin-positive matrix-producing cells in a model of
experimental hepatic fibrosis [53], and had an anti-fibrogenic effect in a murine model of
liver injury [18]. Interestingly, the latter study showed that cirrhotic livers are depleted of
DHA, and this depletion correlated with the progression of the disease.
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We found that wounds treated with LIPINOVA® showed improved angiogenesis.
This observation is in line with previous reports demonstrating the angiogenic potential
of DHA and EPA in mesenchymal stem cells for wound healing applications [54], as well
as the increase in the number of blood vessels in the cutaneous tissue of wounds after
fish oil treatments [12,21]. However, precise comparisons among the studies are difficult,
as the composition of fish oils, including the amount of PUFAs (EPA/DHA) and SPMs,
is different.

In summary, we demonstrate the potential of LIPINOVA® to promote healing pro-
cesses by reducing immune inflammatory reactions at the wound site and inducing an-
giogenesis and M1/M2 polarization in wounded diabetic mice. Topical administration
of this marine oil was sufficient to accelerate wound closure, indicating the importance
of SPMs in this process. Of note, while other studies tested PUFAs by oral or systemic
administration to treat cutaneous ulcers, we used topical administration instead. However,
since the dietary supplement was administered to open wounds, we cannot discard the
entrance of different components of LIPINOVA® into open circulation, and this should
be tested in future studies. As LIPINOVA® has been used to reduce chronic pain when
administered orally, our preclinical findings could serve as a basis for developing clinical
trials in diabetic patients with foot ulcers.

4. Materials and Methods
4.1. Ethical Statements

Human primary cultures and blood were obtained from healthy donors who gave their
informed consent. The study was conducted in accordance with the Declaration of Helsinki,
and the protocol was approved by the Ethics Committee of The Hospital La Fe Univer-
sitari i Politècnic, Valencia, Spain (project and protocol identification 2015/0097-CEIM:
2016040405).

All animal procedures were approved by institutional ethical and animal care commit-
tees (reference number 2019/VSC/PEA/0257 for the wound healing experiment).

4.2. LIPINOVA® Manufacturing Process and SPM Analysis

The LIPINOVA®-11TG batch (Solutex GC, Alcobendas, Spain) was used in the present
study. The dietary supplement was generated from semi-refined fish oil (from anchovies
and sardines). The first step in the process was esterification, followed by a concentration
step (distillation). The intermediates generated in the process were processed using CO2 in
a supercritical fluid extraction process, which benefits from the fact that CO2 in supercritical
conditions can operate at moderate temperatures, without undue product stress, preventing
further degradation of the products due to the inert properties of the oxidation. The
process resulted in a fraction with standardized levels of 17-HDHA (80–400 mg/kg),
18-HEPE (50–400 mg/kg), 14-HDHA (40–200 mg/kg), EPA (100–300 mg/g), and DHA
(200–450 mg/g). An enzymatic esterification step was then performed to substitute the
ethyl ester for a glyceryl ester, by combining the three fatty acids with the three binding
positions of the glycerol molecule (tri-alcohol), to re-establish the triglyceride structure.
A deodorization step was then performed to reduce the volatile components of the product
and, consequently, its odor, improving the comfort of its use as an oral supplement. The
last step was a homogenization step, with an added quantity of natural antioxidants (such
as a mixture of tocopherols), which improves the oxidative stability of the final product.

The SPM analysis of LIPINOVA was carried out, as previously described in [55], with
some modifications. Briefly, samples were analyzed by liquid chromatography (Agilent
1260, San Jose, CA, USA) coupled with electrospray ionization on a triple quadrupole mass
spectrometer (Agilent 6410, San Jose, CA, USA). For analysis, 10 µL of the extract was
injected. The auto sampler was cooled at 10 ◦C. Chromatographic separation was achieved
on an zorbax eclipse plus (2.1 × 50 mm, 1.8 µm particles; Agilent) column using a flow rate
of 0.5 mL/min at room temperature during an 11 min gradient (0–4 min, 58% B; 4–10 min,
100% B; 10–10.5 min, 58% B; 10.5–11 min, 58% B), while using the solvents A, 0.01% acetic
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acid in water, and B, 0.01% acetic acid in methanol. Electrospray ionization was performed
in the negative ion mode using N2 at a pressure of 35 psi for the nebulizer with a flow
of 10 L/min and a temperature of 300 ◦C, respectively. The sheath gas temperature was
350 ◦C with a flow rate of 8 L/min. The capillary was set at 4000 V.

4.3. Cell Culture of Adherent Primary Cultures

Primary cultures of human dermal fibroblasts and keratinocytes were obtained from
skin samples of patients undergoing abdominal surgery, as described in [56]; cells were
cultured in low-glucose Dulbecco’s Modified Eagle’s Medium (DMEM) and high-glucose
DMEM (both from Sigma-Aldrich, St Louis, MO, USA), respectively, supplemented with
10% fetal bovine serum (FBS, ThermoFisher Scientific, Waltham, MA, USA), along with
100 U mL−1 penicillin and 100 µg mL−1 streptomycin (P/S, Millipore, Bedford, MA,
USA). Primary cultures of human umbilical cord vein endothelial cells (HUVEC, ATCC
CRL-1730) were obtained from Lonza (Basel, Switzerland) and were grown in Endothelial
Cell Growth Medium-2 (EGM-2) BulletKitTM (Lonza). All cells were maintained in a
humidified atmosphere at 37 ◦C and 5% CO2.

4.4. Isolation and Culture of Peripheral Blood Monocytes

Monocytes (CD14+ cells) were isolated from buffy coats of healthy donors after informed
consent. Blood was diluted in HBSS 1× (Gibco, ThermoFisher Scientific) and centrifuged. The
middle layer was diluted in HBSS 1×, and peripheral blood mononuclear cells (PBMCs) were
isolated using Histopaque®-1077 (Sigma-Aldrich) density gradient centrifugation. Isolated
PBMCs were resuspended in RPMI (ThermoFisher Scientific) supplemented with 10% FBS,
1 mM pyruvate, 2 mM glutamine and 10 µg mL−1 ciprofloxacin (all from Sigma-Aldrich), and
were allowed to adhere on culture plates for 1–2 h. Non-adherent cells were washed, and
adherent monocytes were then cultured in RPMI. Monocytes were differentiated to M]ϕ1 or
M]ϕ2 macrophages by adding 5 ng mL−1 of recombinant human granulocyte macrophage-
colony stimulating factor (rhGM-CSF, Invitrogen, Waltham, MA, USA) or 20 ng mL−1 re-
combinant human macrophage-colony stimulating factor (rhM-CSF, Invitrogen), respectively.
Cytokine stimulation was repeated on day 3. On day 5, 10 ng mL−1 of LPS (Invitrogen)
and 20 ng mL−1 of IFN
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Figure 3. LIPINOVA® modulates the expression of Mφ1 and Mφ2 markers in vitro. (A) Differentia-
tion scheme of monocytes using GM-CSF, LPS, and IFNɣ to obtain Mφ1, and M-CSF, LPS, and IL4 
to obtain Mφ2. LIPINOVA® was added on days 0, 3, and 5. (B) Representative dot plots of HLA-
DR+, CD80+, and CD163+ cells assessed by flow cytometry on day 6 after differentiation.(C) Graphs 
representing flow cytometry quantification of Mφ1 (white), Mφ2 (grey), and Mφ1 incubated with 
LIPINOVA® at 250 nM (cyan) or 50 μM (green). Data are represented as mean ± SD of five inde-
pendent experiments. (D) Gene expression levels of IL1β, CXCL10, CXCL11, and CD206 quantified 
by qPCR in Mφ1 (white), Mφ2 (grey), and Mφ1 incubated with 250 nM (cyan) or 50 μM (green) 
LIPINOVA® during differentiation. (E) ELISA assay to assess CXCL10 and IL1 β production by Mφ1 
(white), Mφ2 (grey), and Mφ1 incubated with 250 nM (cyan) or 50 μM (green) LIPINOVA® at day 
6 of differentiation. Data are represented as mean ± SD of four independent experiments. Each dot 
represent an independent experiment. One-way ANOVA was used for statistical analysis; * p < 0.05, 
** p < 0.01, *** p < 0.001, and **** p < 0.0001. 

(R&D Systems, Minneapolis, MN, USA) were added to the M]ϕ1
macrophages, whereas 10 ng mL−1 of LPS and 40 ng mL−1 of IL4 (PeproTech, London,
UK) were added to the M]ϕ2 macrophages. Under M]ϕ1 conditions, 250 nM or 50 µM of
LIPINOVA® were added on days 0, 3, and 5 of the differentiation protocol.

4.5. Preparation of LIPINOVA® for In Vitro Assays

Due to the instability of LIPINOVA® in an oxygen atmosphere and its low solubility,
it was prepared in DMEM supplemented with 10% fatty acid-free bovine serum albumin
(FAF-BSA, Sigma-Aldrich) to a 10 mM stock concentration. FAF-BSA was mixed with
DMEM and stirred for 3 h at room temperature and then filtered through a 0.22-µm filter.
Finally, 1 mM LIPINOVA® (8.53 mg/mL) was prepared and stirred again for 16 h at 37 ◦C.
LIPINOVA® stocks were freshly prepared for each experiment. For internalization studies,
LIPINOVA® was labeled with Oregon green (LIPINOVA®-OG) by Dr. María Jesús Vicent
(Polymer therapeutics laboratory, Centro de Investigación Príncipe Felipe, Valencia, Spain).

4.6. Cytotoxicity Assays

Fibroblasts and keratinocytes were seeded in 96-well plates at 1200 and 1600 cells cm−2,
respectively. After 24 h, cells were incubated with the following concentrations of LIPINOVA®

(µM): 1000, 500, 250, 125, 62, 31, and 0. Cytotoxicity was evaluated using the water-soluble
tetrazolium-8-[2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-
2H-tetrazolium] monosodium salt (CCK-8) assay (Sigma-Aldrich). Absorbance was mea-
sured at 450 nm on a Perkin-Elmer Victor3 1420 Multilabel Counter microplate reader
(PerkinElmer Inc., Waltham, MA, USA). Three independent experiments were performed
in triplicate.
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4.7. Flow Cytometry

Differentiated macrophages were washed and incubated with a blocking solution (PBS
containing 1% normal mouse serum) for 10 min. Thereafter, cells were incubated with satu-
rating amounts of fluorochrome-conjugated antibodies at 4 ◦C for 1 h and then washed. The
human antibodies used were as follows: anti-CD80 (APC, BD Biosciences, Erebodegem, Bel-
gium), anti-CD163 (PerCP-Cy, BD Biosciences, GHI/61), and anti-HLA-DR (FITC, Miltenyi
Biotech, AC122, Bergisch Gladbach, Germany). Results were analyzed on a BD FACSCanto
II flow cytometer using FlowJo® software (FlowJo LLC, BD, Franklin Lakes, NJ, USA).

4.8. Real Time Quantitative PCR

RNA was obtained with the RNeasy Plus Mini Kit (Qiagen, Dusseldorf, Germany)
and cDNA was obtained by reverse transcription using the PrimeScript RT Reagent Kit
(Takara, Kusatsu, Japan). RT-qPCR was performed with specific sense (F) and anti-sense (R)
primers and the RT-SYBR™ Green PCR Master Mix (Applied Biosystems, Waltham, MA,
USA). Multi-well plates of 384 wells were run on a Viia 7 PCR System (Applied Biosystems).
Primers used were as follows: hGAPDH CCCCTCTGCTGATGCCCCA (F) and TGAC-
CTTGGCCAGGGGTGCT (R); hCXCL10 TGCAAGCCAATTTTGTCCACGTGT (F) and
GCAGCCTCTGTGTGGTCCATCC (R); hCXCL11 TGTCTTTGCATAGGCCCTGGGGT (F)
and AGCCTTGCTTGCTTCGATTTGGGA (R); hIL1β AGGCACAAGGCACAACAGGCT
(F) and AACAACTGACGCGGCCTGCC (R); and hCD206 ACCTGCGACAGTAAACGAGG
(F) and TGTCTCCGCTTCATGCCATT (R).

4.9. Measurement of Cytokines by Enzyme-Linked Immunosorbent Assay (ELISA)

Macrophages were treated and differentiated in vitro. Supernatants were harvested
and used to measure the levels of CXCL10 and IL1-β. The quantification of these pro-
inflammatory cytokines was conducted by commercial ELISA kits (Invitrogen, Waltham,
MA, USA), according to the manufacturer’s instructions.

4.10. In Vitro Wound Healing Assay

Fibroblasts and keratinocytes were seeded in 12-well culture plates, as previously
described in [57]. When confluence was reached, cells were scraped, washed, and treated
with 250 nM or 50 µM of LIPINOVA®. Images of the scraped zone were captured every
6 h for 48 h using a Leica DMi8 Platform live cell microscope with controlled CO2 and
temperature (Leica Microsystems, Wetzlar, Germany). Cell migration was evaluated us-
ing ImageJ software (NIH, Bethesda, MD, USA). Three independent experiments were
performed in triplicate.

4.11. Animals

Adult type 2 diabetes (db/db) mice (R/BKS.CG-M+/+LEPR DB/J, age 8 weeks) were
purchased from Charles River Laboratories Inc. (Wilmington, MA, USA), and were housed
in a barrier facility with a controlled ambient temperature and under a 14:10 light-dark cycle.

4.12. In Vivo Wound Healing

The day before the dorsal wound generation, mice were anesthetized by isoflurane
inhalation and the dorsal area was shaved with a depilatory cream. Two wounds were
made on the dorsal skin of each animal using a 6 mm punch biopsy tool, and a silicone
splint was attached to prevent skin contraction [25]. Mice were topically treated daily
with saline (control) or 50 ng of LIPINOVA® (n = 10 animals in each group). Wound areas
were measured daily. Mice were sacrificed on day 15 and wound tissues were excised and
processed for histology.

4.13. Histology and Morphometric Analysis

Skin biopsies were fixed in 70% ethanol, embedded in paraffin, and sectioned in
transverse sections of 5 µm, as described in [56]. Sections were stained with H&E, Masson’s



Int. J. Mol. Sci. 2022, 23, 9918 15 of 18

trichrome, and Picrosirius red (all from Sigma-Aldrich) or were incubated with specific
antibodies for immunohistochemistry. Sections were observed and images were acquired
using a light microscope for stained sections (Leica DMD 108) and a confocal microscope
for immunohistochemistry experiments (Leica TCS-SP5-AOBS).

Inflammatory infiltrates of H&E-stained sections from the different treated groups
and a histology score of wound healing was assessed by researchers blinded to the group
categorization of the animals, as described in [44]. The scar elevation index was calculated
measuring the dermal thickness at the site of the wound (DTW) or in healthy non-wounded
(DTH) areas, as follows: (DTH-DTW)/DTW. Collagen deposition was measured in Picrosir-
ius red-stained sections using ImageJ software. The red area of each section was measured
and normalized against the total area of the image. For each animal, wound measures were
normalized against healthy skin. Based on these results, a score between 0 and 2 was given
to each animal.

4.14. Analysis of Macrophage M]ϕ1/M]ϕ2

To analyze M]ϕ1 and M]ϕ2 macrophages, skin sections were stained for F4/80,
CD274, and CD206 to quantify the macrophage phenotype surrounding the implant site.
Immunolabeling was performed with antibodies against F4/80 (1:50 dilution; Abcam,
Cambridge, UK), combined either with CD274 (M]ϕ1) (1:100 dilution; Novus Biologicals,
Littleton, CO, USA) or CD206 (M]ϕ2) (1:200 dilution; Abcam), followed by detection with
Alexa-488-conjugated secondary antibodies (1:200 dilution; Invitrogen). Quantification was
performed in mice sacrificed 15 days post-treatment. A total of four serial skin sections were
prepared, and four images of the zone of the implant were taken per section with a 20× ob-
jective. Immunofluorescent images were acquired with a Leica TCS-SP5-AOBS microscope
(Leica Microsystems, Wetzlar, Germany), the immunopositive cells were quantified, and
the ratio of M]ϕ1/M]ϕ2 macrophages was calculated in each field.

4.15. Analysis of Blood Vessel Density

Angiogenesis was evaluated by staining with an antibody against caveolin (1:200
dilution; Cell Signaling, Danvers, MA, USA), followed by detection with an Alexa 488
(1:200 dilution; Invitrogen). Images were acquired with a Leica DM2500 fluorescence
microscope (Leica Microsystems); four images of the zone of the implant were taken per
section with a 20× objective and then analyzed with ImageJ software.

4.16. Statistical Analysis

Data are represented as mean ± SD. Groups were compared by one-way and two-way
ANOVA and post hoc analysis, when necessary. Analyses were conducted with Graph-
Pad Prism 5® software (San Diego, CA, USA). Differences were considered statistically
significant at p-value < 0.05, with a 95% confidence interval.
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