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Abstract: A novel manufacturing process is presented for producing nanopowders and thin films of
CuCoO2 (CCO) material. This process utilizes three cost-effective synthesis methods: hydrothermal,
sol-gel, and solid-state reactions. The resulting delafossite CuCoO2 samples were deposited onto
transparent substrates through spray pyrolysis, forming innovative thin films with a nanocrystal
powder structure. Prior to the transformation into thin films, CuCoO2 powder was first produced
using a low-cost approach. The precursors for both powders and thin films were deposited onto
glass surfaces using a spray pyrolysis process, and their characteristics were examined through X-ray
diffraction, scanning electron microscopy, HR-TEM, UV-visible spectrophotometry, and electrochem-
ical impedance spectroscopy (EIS) analyses were conducted to determine the conductivity in the
transversal direction of this groundbreaking material for solar cell applications. On the other hand,
the sheet resistance of the samples was investigated using the four-probe method to obtain the sheet
resistivity and then calculate the in-plane conductivity of the samples. We also investigated the
aging characteristics of different precursors with varying durations. The functional properties of
CuCoO2 samples were explored by studying chelating agent and precursor solution aging periods
using Density Functional Theory calculations (DFT). A complementary Density Functional Theory
study was also performed in order to evaluate the electronic structure of this compound. Resuming,
this study thoroughly discusses the synthesis of delafossite powders and their conversion into thin
films, which hold potential as hole transport layers in transparent optoelectronic devices.

Keywords: delafossite; powder; films; spray pyrolysis; EIS; conductivity; relaxation time

1. Introduction

In recent decades, there has been a significant demand for advancements in the in-
tegration of high-efficiency p-type transparent conductive oxides (TCOs) into industrial
applications, particularly in the past few decades [1–5]. However, the research community
is keen on exploring alternative TCOs and enhancing their electrical and optical proper-
ties to improve device efficiency [6–8]. Among various delafossite oxides, copper-based
delafossite oxides stand out as promising candidates due to their desirable electrical and
optical characteristics. The copper-based delafossite oxide, specifically CuMO2 (where M
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represents Al, Ga, Fe, Co, Mg, Fe, Cr. . .), has attracted considerable attention for diverse
applications such as batteries [9–15], luminescent materials [16–21], thermoelectrics [22–28],
solar energy conversion and photocatalysis [29–35], hydrogen production through water
splitting using photocathodes [36–41], and gas sensors [42–49]. In this study, we focus on
the CuCoO2 compound, in view of intriguing structural, optical, and electrical properties;
it has only been studied in a limited number of publications, and in most of them, the
CuCoO2 compound has shown interesting properties to be treated as a possible material in
photovoltaic solar cells [50–58]. Extensive studies on delafossite powders and thin films
reveal that CuCoO2 is a p-type semiconductor that crystallizes in two distinct structures:
rhombohedral (3R) [59–61] and hexagonal (2H) [60,62,63]. The successful synthesis of the
CuCoO2 phase has been reported in only a few papers to date. Moreover, various efforts
have been made to manipulate the properties of CuCoO2, such as characterizing it using
different printing techniques or exploring its physical and chemical properties through dop-
ing processes involving a wide range of elements [64–67]. Considerable attention has been
devoted to the integration of this delafossite material into various domains using different
methodologies. Beekman et al. published a study on the synthesis of undoped delafossite
through ion exchange [59], while Z. Du et al. synthesized it as an electrocatalyst for the
oxygen reaction [54,57] and also investigated the solvothermal synthesis of CuCoO2 [57,65].
Isacfranklin et al. focused on CuCoO2 electrodes for supercapacitor applications [65],
whereas D. Xiong et al. conducted a study on the polyvinylpyrrolidone-assisted hydrother-
mal synthesis of CuCoO2 [67]. Other researchers explored hydrogen-related aspects, such
as J. Ding et al., who investigated Co3O4-CuCoO2 composites [68].

Several studies have reported on the effects of Ca+2 doping in CuCoO2. Z. Du et al.
studied the optical and electrical properties of the material [57,64,67], while M. Yang et al.
examined the impact of nickel doping on the structure and morphology of delafossite [58].
Limited research has been conducted on the transformation of delafossite powder into thin
films [52,56,58]. Specifically, there is currently a lack of research projects focusing on the
structural and electrochemical properties of CuCoO2 crystalline nanopowders and thin
films when they are deposited on glass substrates.

Several physical and chemical processes, such as spray pyrolysis [53,69–72] and spin-
coating [73–76], have been employed to fabricate thin films of CuCoO2. However, previous
attempts to produce CuCoO2 thin films have predominantly utilized complex and expen-
sive techniques, posing significant practical limitations. Currently, only a few endeavors
have focused on generating CuCoO2 thin films in the hexagonal phase, particularly through
chemical deposition methods. Therefore, the objective of this study is to develop a simpler
and more efficient chemical synthesis using three different methods based on the utilization
of CuCoO2 powder, which yields an excellent, ordered crystalline mixture between two
structures: rhombohedral and hexagonal with and good band gap values aiming to achieve
thin films of this material. Comprehensive investigations were conducted to thoroughly
analyze the optical and electrical characteristics of these thin films. In particular, studies
of electrochemical impedance spectroscopy (EIS) analysis and simulation of delafossites-
based solar cells where CuCoO2 acting as low temperature hydrothermal (HTL) material is
reported for the first time. The conductivity of samples, prepared using the three different
techniques, was measured in direct current (named in-plane conductivity) using the four-
point probe and alternating current (named transversal conductivity) by electrochemical
impedance spectroscopy.

Additionally, Density Functional Theory was employed to provide a theoretical un-
derstanding of the role played by each element in the electronic structure, as well as to
accurately determine the bandgap of the material.

2. Experimental Part
2.1. Synthesis of CuCoO2 Powders

CuCoO2 was produced using three different methods. The grains of copper(II) nitrate
trihydrate (Cu(NO3)2, 3H2O; 99%) were used as the Cu+2 source; cobalt(II) nitrate hexahy-
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drate (Co(NO3)2, 6H2O; 98%) was used as the Co2+ source; and sodium hydroxide (NaOH)
was obtained from Sigma–Aldrich. As a solvent, deionized water (DW) was utilized. At
room temperature, all chemicals were added. The amount of each precursor was 2 mM of
each of the copper and cobalt sources, 4.40 g of sodium hydroxide, and 70 mL of deionized
water (DW), respectively. All of the precursors were measured and mixed in a reasonable
amount of solvent for three hours. For hydrothermal synthesis: method 1 (sample named
CuCoO2_H), the liquid was placed in a 100 mL Teflon autoclave and autoclaved at 100 ◦C
for 24 h; we washed the obtained solution several times with distilled water. Method 2:
solid-state reaction (sample named CuCoO2_SSR); stoichiometric amounts of the above-
mentioned powders were ground with ethanol solution (95%) for 24 h. The ground powder
was calcined at 800 ◦C for 5 h. Method 3: sol-gel (sample named CuCoO2_SG); copper(II)
nitrate and cobalt(II) nitrate were mixed in ethylene glycol. The solution was agitated at
room temperature for 1 h in a beaker before being dried at 150 ◦C for 5 h. On a heated plate
with a magnetic stirrer, gelation took place until a purple color emerged. The amorphous
powder was heated incrementally from 50 ◦C to 800 ◦C.

2.2. Synthesis of the CuCoO2 Thin Films

The glass substrate cleaning process was performed by ultrasonically cleaning and
drying the substrate. The dissolved nanocrystal precursor solution was then converted into
a thin film. CuCoO2/glass films were produced using spray pyrolysis technology. First,
we dispersed 1 mg of CuCoO2 powder in 10 mL of ethanol/water mixture and sonicated
for 30 min to form homogeneous slurry. The CuCoO2 slurry was then deposited on the
glass film (Figure 1). The resulting film was annealed in air at 350 ◦C for 40 min to form a
CuCoO2-coupled glass film.
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Figure 1. Schematic description of the synthesis process of the CuCoO2/Glass film.

2.3. The Four-Probe Method

The measurement of conductivity in powders and polymeric thin membranes is a
complex task that is influenced by various factors, including sample casting preparations,
thermal/hydrothermal treatments, relative humidity, and the cell configuration used for
film resistance measurements, as well as the pressure applied between the probe elec-
trodes [77]. The four-probe method is commonly used to measure sample sheet resistance
and estimate in-plane conductivity, but it may result in inaccuracies, particularly for ma-
terials with morphological anisotropy [78,79]. According to this method in which four
probes are arranged equidistantly in a straight line and pushed against the film as shown
in Figure 2, the resistivity may be calculated through determining the potential difference
between the RE and S electrodes, due to current passing via an easily identifiable con-
nection between the WE and CE electrodes (Figure 2). Knowing the resistivity, the sheet
conductivity can be calculated from the inverse of the sheet resistivity as

σ =
1
ρ
=

1
Rs·t

(1)
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where ρ is the sheet resistivity, Rs the in-plane resistance, and t is the sheet sample thickness.
In our samples, the thickness values are 140 nm, 136 nm, and 142 nm for CuCoO2_H,
CuCoO2_SG, and CuCoO2_SSR, respectively.
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2.4. Electrochemical Impedance Spectroscopy (EIS) Measurements

The conductivity was measured through the samples with a Novocontrol broadband
dielectric spectrometer (BDS) equipped with an SR 830 lock-in amplifier and an Alpha
dielectric interface in the frequency interval from 10−1 to 107 Hz with 0.1 V amplitude
of the signal at temperatures ranging from 20 to 120 ◦C in increments of 20 ◦C. The
samples were airbrushed before being tested, and their thicknesses were determined via
a micrometer, averaging 10 readings from various sections of the surface. The samples
were dried in a vacuum cell and placed between two gold round electrodes that served as
blocking electrodes before being heated in the Novocontrol system in a neutral nitrogen-free
environment. A temperature cycle from 20 to 120 ◦C in 20 ◦C increments was performed
before collecting the dielectric spectra at every step to ensure uniformity and reduce
interference from remaining water. During the testing, the electrodes were kept completely
wet below 100 ◦C and replicated a 100% relative humidity environment above 100 ◦C in
a BDS 1308 liquid device that was attached to the spectrometer and contained deionized
water. To accurately control the temperature conditions, the temperature was kept constant
throughout the conductivity measures (isothermal investigations) or shifted stepwise from
20 to 120 ◦C using a nitrogen jet (QUATRO from Novocontrol), alongside a temperature
error of 0.1 K throughout each frequency sweep.

The frequency dependence of complex impedance Z*(ω) = Z′(ω) + j·Z′′(ω) yields the
real component of conductivity as

σ′(ω) =
Z′(ω)·L[

(Z′(ω))2 + (Z′′(ω))2
]
·S

=
L

R0·S
(2)

where L and S represent the thickness and area of the sample in contact with the electrodes,
and R0 represents its resistance.

3. Results and Discussion
3.1. Structural Analysis

Figure 3 presents the XRD diffractograms of the as-prepared samples (a) CuCoO2_H,
(b) CuCoO2_SG, and (c) CuCoO2_SSR with a mixture of two structures: rhombohedral and
hexagonal. This was confirmed by checking the databases: JCPDS Map No. 074-1855 and
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JCPDS Map No. 021-0256. The three patterns observed in Figure 3 were identified as pure
phases of CuCoO2 without secondary phases. The main peak of delafossite CuCoO2 in the
rhombohedral structure (110) is at 2θ = 37.92◦, and the hexagonal structure is at 2θ = 38.27◦.
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After characterization of CuCoO2 nanoparticles prepared by three methods: the
hydrothermal method, sol-gel method, and solid-state reaction method, we examined
their structure following deposition onto glass substrates and thin film synthesis using
spray pyrolysis. Figure 4 shows the XRD graphs of the thin films of CuCoO2 on the glass
substrates. We observed some of the peaks shown in the XRD pattern, which now appear
in the diffractograms of the deposited film. However, the structure did not change, and the
material showed two structures containing delafossite: 3R-CuCoO2 (JCPDS#21-0256) and
2H-CuCoO2 (JCPDS#74-1855). Furthermore, it is clear that each XRD pattern begins with a
tablet. It belongs to the glass substrate.

3.2. FE-SEM Analysis

We are interested in the morphology and particle size distribution of our compound
CuCoO2. Observations by scanning electron microscopy (SEM) were carried out on a
submicron scale on the three prepared CuCoO2 nanocrystal powders as shown in Figure 5.
A 1 µm magnification is given.

FE-SEM images of the powders show that the submicron CuCoO2_H, CuCoO2_SG,
and CuCoO2_SSR are in the form of a powder made up of crystals of different sizes, and
they contain agglomerates of hexagonal particles and crystals like rhombohedral shapes.
There have been no additional morphologies detected, which confirms the XRD results.
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Figure 6 shows FE-SEM images of produced thin films comprising CuCoO2_H,
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nique, all films had a uniform distribution of nanocrystalline particles.
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3.3. HR-TEM
Analysis

Figure 7 shows the characterization of the three samples with transmission electron mi-
croscope (TEM) characterization, and the high-resolution transmission electron microscopy
(HR-TEM) images of CuCoO2 are illustrated in Figure 7. As a result, we could assume that
the crystallinity of CuCoO2 retains a structure mostly constituted of nanocrystals smaller
than 15 nm in diameter. HR-TEM d-spacings are likewise consistent with a mixture of
rhombohedral and hexagonal CuCoO2 chalcopyrite phases. The results from the FE-SEM
agree with the HR-TEM images, which show clearly established small grains of some tens
of nanometers.
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Figure 8 depicts the transmission electron microscopy (HR-TEM) mapping. The
photos of the three CuCoO2 powders reveal a good distribution of copper–cobalt oxide
components, with the hydrothermal CuCoO2 powder having a higher crystallinity.
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4. EDX Analysis

We further investigate the chemical composition of our sample using the EDS tech-
nique. In Figure 9 and tables below we show the results of the EDS analysis for the cracked
surfaces of the CuCoO2_H, CuCoO2_SG, and CuCoO2_SSR samples. From the table above,
the percentages of each Cu and Co in a position are approximately the same, but the percent
of oxygen is a bit high. This difference may be due to the oxidation of copper or cobalt.
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5. Optical Properties

The transmittance spectra have been used to examine optical qualities. In the visi-
ble area, all of the CuCoO2 thin films displayed extensive absorption. The absorbance
coefficients for thin film samples generated utilizing a spray pyrolysis method containing
nanocrystals were determined. In the transmittance spectrum of materials, the absorption
coefficient is connected with the optical energy gap or it is in the strong absorption zone,
which may be estimated using Tauc’s equation [74]

α =
A
(
hν− Eg

)n

hν
(3)

A is a constant, h is the Planck constant, ν is the frequency, and n is an indicator of the
optical absorption process. It equals 2 for directly permitted transitions and 0.5 for indirectly
permitted transitions. Figure 10 shows (a) the transmission values and (b) the Tauc plot for
CuCoO2 thin films. The arrangement of Tauc’s figure suggests that the CuCoO2 thin film
under deposit has a straight band gap. Eg may be estimated by extrapolating by projecting
a horizontal line to the point of zero absorption coefficient (α = 0). The band gaps were
calculated by graphing (αhν)2 vs. energy in eV and extrapolating the linear portion of the
spectrum (hν). According to the transmission graph (Figure 10a), the powder CuCoO2_SG
has the highest transmission value compared to the two other powders CuCoO2_H and
CuCoO2_SSR. The order of the delafossite powders transmission is obviously confirmed
with the band gap graphs (Figure 10b).

In the Tauc’s plot, the “linear part” is selected by examining the absorption data
at higher photon energies, where the absorption is predominantly governed by indirect
transitions, with its absorption coefficient being practically constant. In our study, the
calculation of band gap values has an error of ±0.10 eV and was obtained by taking the
linear part of the curve (between 4 and 4.5 eV), fitting these points to a straight line, and
extrapolating this line until it intersects the base line (OX axis). The intersection value
(in eV) is the direct band gap according to Tauc’s model [74]. In our study, the values
obtained for our delafossite material are 3.51 ± 0.10 eV, 3.77 ± 0.12 eV, and 3.87 ± 0.10 eV
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for CuCoO2-H, CuCoO2-SSR and CuCoO2-SG, respectively. Depending on the number
of points chosen in the range considered, it works as if it were a transparent layer with
a certain uncertainty. This suggests that delafossite is likely to be a good transmitter of
charge carriers, leading to a higher band gap value of around 3.5 eV.
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6. In-Plane Conductivity Measurements

In powders used for solar cells, the four-point probe method is the most often used
method for assessing the electrical characteristics of conducting films [78,79]. This approach
has been utilized to evaluate the in-plane conductivity of CuCoO2 films on top of non-
conductive substrates (in our instance, glass), which are typically created by spray pyrolysis
technology of the dispersions employed in this work. The experimental procedure used is the
following. The four-point probe is attached to a source meter that supplies a certain current. A
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source meter’s current (I) flows through the two outer probes, and a voltammeter can measure
the voltage (V) across the two inner probes. By plotting the voltage measured for each current
intensity, the sheet resistance, Rs, can be determined, as is shown in Figure 11.
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Figure 11. Variation of the potential between RE and S electrodes when a current intensity is given
between WE and CE electrodes for the samples CuCoO2 thin films. (•), CuCoO2_H, (•) CuCoO2_SG,
and (•) CuCoO2_SSR, at ambient temperature.
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A close inspection of these figures reveals that sample resistance (Rs) of the CuCoO2
films is constant, and its values can be obtained from the slope of the experimental fit
determined from the plot of the voltage versus intensity, where a clear linearity is observed
for all the samples. According to the KIT used to measure the resistance of the film by
means of the four-points method, the value of Rs is given by

Rs = 4.532× V
I

(4)

The value for said KIT as a consequence of the geometry used in the measurement is
the constant 4.532. Therefore, the in-plane conductivity, given in Equation (3), is determined
from the sheet resistance from Equation (4). The results of the three produced CuCoO2
samples using the four-point probe technique and measured at ambient temperature are
presented in Table 1. The conductivity values change with the chelating agent and the
aging duration. These findings imply that aging period and thickness change have an effect
on electrical conductivities.

Table 1. The electrical properties of the CuCoO2 thin films determined at ambient temperature.

Samples Thickness
(nm)

Sheet
Resistivity (ρs)
×10−3 (Ω·cm)

Sheet
Resistance (Rs)

(Ω)

Sheet
Conductivity
×103 (S·cm−1)

CuCoO2_H 140 ± 5 0.114 ±0.002 8.16 ± 0.05 8.8 ± 0.2

CuCoO2_SG 136 ± 5 0.105 ± 0.002 7.70 ± 0.04 9.5 ± 0.2

CuCoO2_SSR 142 ± 5 0.116 ± 0.002 8.16 ± 0.04 8.6 ± 0.2

7. Dielectric Spectra Analysis

The electrical impedance spectroscopy (EIS) measurements were performed on all
samples to determine the conductivity measured in the transversal direction, named direct
current conductivity (σdc). Such measurements were carried out over a temperature interval
of 20 ◦C to 120 ◦C in two steps to ensure reproducibility within the temperature interval.
The experimental data obtained for the samples from the Novocontrol were examined to
obtain the complex dielectric permittivity function, denoted as ε*(ω,T); and the complex
conductivity function, denoted as σ*(ω,T), where j is the imaginary unit (j2 = −1), ε0 is the
vacuum permittivity, andω is the angular frequency of the electric field that was applied
(ω = 2πf). Different methods have been used to determine the dc-conductivity of a sample
from dielectric spectroscopy data analysis [80–90]. In this work, we have used the Bode
diagram obtained from the complex dielectric spectra, where the complex conductivity
is given by σ*(ω,T) = j ε0 ω ε*(ω,T), which can be expressed in terms of the real and
imaginary part, σ′(ω,T) and σ′′(ω,T), respectively, and the direct current conductivity σdc
was calculated [91–94]. This technique was used in this study to examine data for the
real component of conductivity in dry conditions by graphing conductivity (in S cm−1) vs.
frequency (in Hz) using the appropriate Bode diagrams for all temperature ranges.

The Bode diagrams for CuCoO2_H, CuCoO2_SG, and CuCoO2_SSR delafossite mate-
rials were investigated at temperatures ranging from −20 ◦C to 120 ◦C, with increments of
20 ◦C, as shown in Figure 12. Additional graphs demonstrating the variation of phase angle
(φ) vs. frequency at identical temperatures are included in the Supplementary Materials.
Upon closer examination of the figures, it can be observed that the conductivity tends to a
constant value (plateau) when the phase angle (φ) approaches zero or reaches a maximum,
indicating the direct-current conductivity (σdc) of the sample. Furthermore, a decrease
in conductivity with decreasing frequency was observed in the high-frequency region,
along with a transition zone where the cut-off frequency ranges from 105 to 106 Hz for
CuCoO2_SG and CuCoO2_SSR samples and starts increasing with frequency. In the case of
the hydrothermal sample CuCoO2_H, the real part of conductivity remains constant at low
frequencies until a cut-off frequency between 103 Hz and 106 Hz, after which it starts in-
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creasing with frequency. The initial process is connected to the sample’s resistance/stability,
but this second process is connected to the dispersion (charge transfer) caused by the
charge’s mobility, as the sample behaves like a capacitor. The conductivity values presented
were derived using the peak frequency when the phase angle approaches 0.
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Figure 12. Bode diagrams of the conductivity for (a) CuCoO2_SG, (b) CuCoO2_SSR, and (c) CuCoO2_H
at different temperatures.
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Upon careful examination of Figure 12, it can be observed that samples CuCoO2_SG
and CuCoO2_SSR exhibit a nearly constant conductivity across a wide range of frequencies
and temperatures; that is standard behavior for a conductive material. Identical behav-
ior has been reported in previous studies on nanocomposites of multilayer graphene in
polypropylene [95]. This phenomenon is due to Debye relaxation, which occurs as a result
of the mobility and redirection of dipoles and localized charges at high frequencies in
response to an applied electric field and dominates direct-current conductivity [91,92,96].
The change in dc-conductivity of the samples at various temperatures may be determined
from the plateau where the phase angle is zero or tends to zero. For frequencies where the
phase is near zero, we have a pure resistive impedance that can be attributed to the ionic
conductivity alone. This value is the active phase with high-efficiency electrochemical pro-
cesses and respects the charge transport into the powders. These phenomena are observed
for all the samples at frequencies below 104 Hz. Moreover, with rising temperature, the
frequency at which the point of equilibrium occurs moves to high frequencies, where a
plateau in the Bode diagram from low to high frequencies can be observed, suggesting
thermal activation of ionic transport. The constant value of conductivity suggests that the
sample solely shows resistive contribution, and the quantity measured represents the sam-
ple’s electrical conductivity. For example, Figure 12 shows that at 20 ◦C, the trough plane
conductivity values followed the trend: σCuCoO2_SG (5.2 × 10−5 S cm−1) > σCuCoO2_SSR
(2.9 × 10−5 S cm−1) > σCuCoO2_H (4.53 × 10−8 S cm−1). Similar trends can be observed for
the other temperatures studied (for example, 40 ◦C, 60 ◦C, 80 ◦C, 100 ◦C and 120 ◦C). For
120 ◦C the conductivity values obtained, follow the trend, σCuCoO2_SG (1.4× 10−3 S cm−1) >
σCuCoO2_SSR (5.7× 10−4 S cm−1) > σCuCoO2_H (1.0× 10−5 S cm−1), respectively. Among the
three samples, the greatest proton conductivity of about 10−3 S cm−1 at 120 ◦C was found
for the CuCoO2_SG sample and was one order of magnitude higher than CuCoO2_SSR,
where excellent ionic conductivities of about 10−4 S cm−1 were also shown. These results
showed that the preparation method used is very relevant to obtaining excellent results in
the measured transversal conductivity; in our case, around of one order of magnitude better
than sample CuCoO2_H was reached. All these values have better conductivities than
CIGS:Cr crystalline nanopowders and CuInGaSe2 (CIGS) chalcopyrite thin films doped
with Cr in varying concentrations [93].

From the plot shown in Figure 13, we observe that dc-conductivity increases with the
increase of temperature of all mixtures, following an Arrhenius behavior for the thermal
activation energy. The measurements of the activation energy calculated from the slopes
follow the trend Eact (CuCoO2_SSR) = 27.4 kJ/mol < Eact (CuCoO2_SG) = 30.8 kJ/mol <
Eact (CuCoO2_H) = 52.3 kJ/mol, respectively.

These results indicate that the thin films prepared from hydrothermal synthesis have
higher activation energy and lower conductivities than the samples prepared from (a) a
solid-state reaction where stoichiometric amounts of the above-mentioned powders have
been ground with ethanol solution and, after, calcined at a temperature of 800 ◦C for 5 h.
(b) sol-gel; copper(II) nitrate and cobalt(II) nitrate were mixed in ethylene glycol, and after
the gelation occurred, it was placed on a magnetic stirring hot plate until a purple color
appeared and the substance become darker. The amorphous powder was heated until
800 ◦C by steps of 50 ◦C.

Figure 14 shows the relationship between the relaxation time obtained from the cut-off
frequency where the conductivity changes from a constant value in the Bode diagram
(plateau) to increasing with frequency increase for all temperatures. In such circumstances,
such as is observed here in the case of CuCoO2_H (see Figure 12c) for all temperatures,
according to the power low model, the real part of the conductivity σ′(ω,T) can be expressed
in terms of dc-conductivity σdc and the hopping diffusion rate of protons ωH ≈ 1/τ (in
this case) as [94]

σ′(ω, T) = σdc

[
1 +

(
ω

ωH

)n]
(5)
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where n is an exponent with a value between 0 and 1 and is related to interactions between
mobile ions (H+ in our case) and the dimensionally of the conduction pathway [97]; for
instance, this occurs in polymer electrolytes of P[VBTC][Cl]80-ran-PMMA20 at different
temperatures (303 K to 363 K) and P[VBTC][TFSIl]80-ran-PMMA20 at (308 K to 378 K),
respectively [98]. From the fit of the real part of the conductivity shown in the Bode
diagrams in Figure 12, we have obtained the values of sample relaxation time; these values
are plotted in Figure 14 for each temperature.
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From Figure 14, we can see that the relaxation time follows an Arrhenius behavior in
all the powders studied, but it is interesting to observe that samples prepared using method
2 (CuCoO2_SSR) and method 3 (CuCoO2_SG) have a relaxation time around one order of
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magnitude smaller than the sample prepared using he method 1 (CuCoO2_H). This means
that the method to produce powders to build thin films is very important to determine
their optical and electrical properties. In these results, we observe that delafossites are
extremely sensitive to a wide variety of parameters: in particular, the method used in its
preparation. The results indicate that these materials have potential in thin film solar cells.

8. Theoretical Insight

Theoretical simulations are critical in the understanding of the properties of systems
at the atomic level. Therefore, first-principles calculations were performed to complement
the experimental results with an insight on the electronic structure and properties. For
this purpose, the atomic positions were optimized, and the electronic properties were
computed within the Density Functional Theory (DFT) approach. This was conducted
based on the framework of the generalized Kohn–Sham scheme [99–101] in combination
with the projector augmented-wave (PAW) method [102] and the Heyd–Scuseria–Ernzerhof
hybrid functional with the modified fraction of screened short-range Hartree–Fock ex-
change (HSE06) [103–105] as implemented in the Vienna ab initio simulation package
(VASP) [106–110]. Hybrid functionals allow for a more accurate description of electronic
properties of some systems compared to simple DFT calculations with a generalized gradi-
ent approximation for the exchange and correlation term in the Kohn–Sham scheme. The
higher accuracy, however, is reached at the cost of a higher computational time needed to
achieve convergence.

To model the CuCoO2 in the tetragonal phase, a unit cell with 12 atoms (Co3Cu3O6)
was used, while for the hexagonal cell, a smaller cell with 8 atoms (Co2Cu2O4) was needed.
The electronic wave functions were expanded in a plane wave basis setup to a kinetic energy
cutoff of 400 eV. The atomic positions were optimized using the conjugate gradient method
up until the forces on each atom were less than 0.01 eV A−1; and the energy convergence
was less than 10−8 eV for the optimization and less than 10−5 eV for calculations with
the hybrid functional. For the Brillouin zone integration, a 12 × 12 × 6 Monkhorst–Pack
scheme k-point mesh was used [111–114] both for the optimization and the electronic
structure calculation.

Figure 15 shows the atom positions and geometrical structure of the converged unit
cells. The delafossite structure of this ternary oxide can be appreciated fairly. In the
tetragonal structure, an alternate stacking of O-Cu-O dumbbells lie parallel to the z axis,
and there is a layer of Co-centered octahedrons in the xy plane. The stacking follows
an ABCABC pattern, forming a trigonal system with lattice parameters a = 2.86 Å and
c = 16.98 Å, corresponding to a rhombohedral Bravais lattice of volume 120.1 Å3, which
matches the experimental data [52,99]. In the hexagonal cells, the same layers of O-Cu-O
dumbbells and Co-centered octahedron are observed, but with an ABAB stacking pattern.
The lattice constant a = 2.83 Å is practically identical, but c = 11.30 Å is significantly lower;
the unit cell volume of 78.47 Å3 is also lower. However, these differences are due to the
fact that a smaller distance is enough to represent the structure because of the stacking
sequence. Hence, important distances within the unit cell, such as the distances between O
atoms in the O-Cu-O dumbbells (3.71 Å for the tetragonal 3.69 Å in the hexagonal) or the
distances from a cornered O to a centered Co in the octahedron (1.92 Å for the tetragonal
and 1.91 Å in the hexagonal) are practically the same.

The band structure and density of states for the tetragonal phase can be appreciated in
Figure 16. Though the inclusion of the hybrid functional allows the possibility of avoiding
the typical underestimation of gaps in pure DFT approaches; the bandgap values obtained
seems to remain underestimated: 2.31 eV for the tetragonal structure and 2.34 for the
hexagonal one (experimental results are between 2.5 to 3.65 eV [77,98,103]). However, the
structure of the bands and the form of the density of states of the curves are usually well
described in this type of calculations, and despite the small difference in bandgap values
for both structures, the form of the density of states is practically the same, so only one of
them is plotted.
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The obtained gap is an indirect one, which can be appreciated by simple inspection of
the bands structure in the left part of Figure 16. The right part shows the density of states
in which it is appreciable that the edge of the covalent band is apparently dominated by
Cu-3d states. O states show a wide dispersion through the band, but the presence of Co-3d
states is high in this region and, except for the peak at the edge of the band, is comparable
with the contribution from Cu states. Also, the first peak in the conduction band is mainly
due to Co-3d states followed by a second peak with a structure similar to the one that can
be found in CuAlO2. and CuGaO2, as it has been previously reported [98,99,103].

9. Conclusions

In summary, the preparation of delafossite CuCoO2 using three cost-effective tech-
niques yields a well-ordered crystalline mixture comprising two structures: rhombohedral
and hexagonal, exhibiting similar properties and favorable band gap values. To ensure the
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development of an effective coating solution, careful treatment of the resultant nano-sized
precursor powder is necessary. The desired thin films, namely CuCoO2_H (produced via
hydrothermal method), CuCoO2_SG (produced via sol-gel method), and CuCoO2_SSR
(produced via solid-state reaction method), were successfully obtained through the spray
pyrolysis process. Electrochemical impedance spectroscopy measurements reveal that
the Sol-Gel method yields films with superior conductivity compared to the other prepa-
ration methods. As a result, CuCoO2 thin films hold significant potential for solar cell
applications. This is supported by the examination of the electronic properties of the
rhombohedral CuCoO2 through theoretical simulations. Furthermore, electrochemical
impedance spectroscopy measurements demonstrate that the copper cobalt delafossites
prepared using different synthesis methods have the potential to serve as semiconductor
materials. The conductivity values, measured through the plane, increase with temperature
as expected: σcucoo2_sg > σcucoo2_ssr > σcucoo2_h. Among the three samples, CuCoO2_SG ex-
hibits the highest conductivity of approximately 10−3 S cm−1 at 120 ◦C, which is one order
of magnitude greater than CuCoO2_SSR, while still maintaining good ionic conductivities
of approximately 10−4 S cm−1. This value is approximately two orders of magnitude higher
than that of CuCoO2_H. These conductivity measurements, obtained through impedance
spectroscopy, are in agreement with the values determined using the four-probe method,
where resistivity follows the trend of ρCuCoO2_SG < ρCuCoO2_SSR ≈ ρCuCoO2_H. Lastly, our
study demonstrates that samples prepared using method 2 (CuCoO2_SSR) and method 3
(CuCoO2_SG) have relaxation times approximately one order of magnitude smaller than
samples prepared using method 1 (CuCoO2_H). This result emphasizes the significant
impact that the synthesis method and sample preparation can have on producing powders
for building thin films to enhance optical and electrical properties, particularly for solar
cell applications.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nano13162312/s1, Figure S1: Phase angle (φ) corresponding to
the Bode diagrams for (a) CuCoO2_H, (b) CuCoO2_SG, and (c) CuCoO2_SSR delafossite materials at
temperatures ranging from −20 ◦C to 120 ◦C, with increments of 20 ◦C, as shown.
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