This README.txt file was generated on 2024-02-29 by José Bonastre -------------------------- GENERAL INFORMATION -------------------------- Title of Dataset: Dataset: Surface modification of jute fabrics by rGO-ICP for eco-friendly supercapacitors, Journal of Energy Storage 2023 Author information: Principal Investigator: Francisco Cases, Departamento de Ingeniería Textil y Papelera, Escuela Politécnica Superior de Alcoy, Universitat Politècnica de València, Plaza Ferrándiz y Carbonell, s/n, 03801 Alcoy, Spain. fjcases@txp.upv.es ORCID:0000-0001-8105-4489 Associate or Co-investigator: Jose Bonastre, Departamento de Ingeniería Textil y Papelera, Escuela Politécnica Superior de Alcoy, Universitat Politècnica de València, Plaza Ferrándiz y Carbonell, s/n, 03801 Alcoy, Spain. joboca@txp.upv.es ORCID:0000-0002-5068-6608 Associate or Co-investigator:Javier Molina, Departamento de Ingeniería Textil y Papelera, Escuela Politécnica Superior de Alcoy, Universitat Politècnica de València, Plaza Ferrándiz y Carbonell, s/n, 03801 Alcoy, Spain. jamopue@upvnet.upv.es ORCID:0000-0003-3378-8271 Date of experimental data collection: from march 2022 to may 2023. Geographic location of data collection: east=-0.47732457518577576; north=38.69416041174995; name=Carrer Alarcón, 1, 03801 Alcoy, Alicante, Spain Information about funding sources: PDC2021-121617-C22, funded by MCIN/AEI/10.13039/501100011033 and by the “European Union NextGenerationEU/PRTR, and Red E3Tech Plus: Proyecto Redes de Investigación de la AEI Network E3Tech PLUS (RED2022-134552-T) project. Keywords: jute; reduced graphene oxide; polypyrrole; eco-friendly; supercapacitor -------------------------- SHARING/ACESS INFORMATION -------------------------- Open access data: Open Licenses: Open Data Commons (ODC-By) Links: -------------------------- DATA & FILE OVERVIEW -------------------------- File List: Fig.1a Micrograph for jute fabric at 15 Kx.tif Fig.1b Micrograph for jute fabric covered by 4 coatings of rGO at 15 Kx.tif Fig.2 CV curves for the synthesis in 0.20 M pyrrole + 0.03 M AQS on PRGOChem electrode.csv Fig.3a CV cycles in 0.1 M H2SO4 for (a) PChem.csv Fig.3b CV cycles in 0.1 M H2SO4 for (b) PRGOChem.csv Fig.3c CV cycles in 0.1 M H2SO4 for (c) PRGOElec.csv Fig.4a Nyquist Plot for PChem PRGOChem PRGOElec.csv Fig.4b Enlarged image of Fig.4a.csv Fig.5a Bode plot for PChem PRGOChem PRGOElec phase vs frequency.csv Fig.5b Bode plot for PChem PRGOChem PRGOElec Z vs frequency.csv Fig.6 Electrical equivalent circuit model.tif Fig.7 GCD curves at 0.1 A·g-1.csv Fig.8a FESEM for (a) PChem at 5 Kx.tif Fig.8b FESEM for (b) PChem at 15 Kx.tif Fig.8c FESEM for (c) PRGOChem at 5 Kx.tif Fig.8d FESEM for (d) PRGOChem at 15 Kx.tif Fig.8e FESEM for PRGOElec at 5 Kx.tif Fig.8f FESEM for PRGOElec at 15 Kx.tif Fig.9 FESEM cross-section PRGOElec.tif Fig.10a CV cycles for two-electrode system.csv Fig.10b GCD curves for two-electrode system.csv Fig.11a Cycling stability specific capacitance.csv Fig.11b Cycling stability capacity retention.csv Table1. Surface resistivity and cross-section impedance measurements.pdf Table2. Results of impedance fitting data.pdf Table3. Areal values of capacitance energy power densities.pdf relationship between files: not necessary Type of version of the dataset: final version Total size: 11413 kb -------------------------- METHODOLOGICAL INFORMATION -------------------------- Description of methods used for collection/generation of data: https://doi.org/10.1016/j.est.2023.107936 Methods for processing the data: Selection of data obtained from the experimental instrument in CSV format or scanning imagens in tif format. In the case of table 1 the data are obtained after measurements by surface resistivity measurements and Electrochemical Impedance Spectroscopy measurements. In the case of table 2 the data are obtained after Electrochemical Impedance Spectroscopy measurements. In the case of table 3 the data are obtained after GCD curves (4th cycle) at a current density of 0.05 A/g. Software: ZView software (version2.7) for impedance fitting data (Figure 6 and Table 2). Environmental/experimental conditions: room temperature (electrochemical experiences) or ultra-vacuum (FESEM). -------------------------- DATA-SPECIFIC INFORMATION -------------------------- Number of variables: 22 Variable list, defining any abbreviations: E(V)=Potential in volts; I(A)=Intensity in Amperes; j(mA/cm2)=Current density in milli amperes per square centimeters or amperes per gram; t(s)=Time measurements in seconds; Z´´(Ohm) and Z´(Ohm)=Negative imaginary impedance –Z'' is plotted versus the real part of the impedance Z' in ohms; Rs(Ohm/sq)=Surface resistivity in ohms per square; |Z|(Ohm)=Impedance modulus in ohms; Phase(degrees)=Phase angle in degrees; Freq (Hz)=Frequency in hertzs; Rct(Ohm)=Charge transfer resistance in ohms; Cdl(F)=Doble layer capacitance in faradays; Ws-R(Ohm)=Diffusion resistance in ohms; Ws-T(s):Length of the diffusion layer square per diffusion coefficient in seconds; Ws-P=Warburg coefficient (dimensionless no units); Csup(F)=Supercapacitor capacitance in faradays; Rie(Ohm)=Ion-ion charge transfer resistance in ohms. Specific capacitance (F/g)=Specific capacitance in faradays per gram; Capacity retention(%)=Capacity retention in percentage; CA(mF/cm2)=Areal capacitance in faradays per centimeters; EA(microW·h/cm2)=Areal energy density in microwatts·hour per centimeters; PA(microW/cm2)=Areal power density in microwatts per centimeters.