
 

Document downloaded from: 

 

This paper must be cited as:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The final publication is available at 

 

 

Copyright 

 

Additional Information 

 

http://hdl.handle.net/10251/202929

Rodríguez-Agut, D.; Tornero-Gavilá, R.; Flich Cardo, J. (2023). Towards Efficient Neural
Network Model Parallelism on Multi-FPGA Platforms. IEEE. 1-6.
https://doi.org/10.23919/DATE56975.2023.10137117

https://doi.org/10.23919/DATE56975.2023.10137117

IEEE



Towards Efficient Neural Network Model Parallelism
on Multi-FPGA Platforms

David Rodrı́guez Agut
Universitat Politècnica de València

Valencia, Spain

Rafael Tornero
Universitat Politècnica de València

Valencia, Spain

Josè Flich
Universitat Politècnica de València

Valencia, Spain

Abstract—Nowadays, convolutional neural networks (CNN) are
common in a wide range of applications. Their high accuracy and
efficiency contrast with their computing requirements, leading to
the search for efficient hardware platforms. FPGAs are suitable
due to their flexibility, energy efficiency and low latency. However,
the ever increasing complexity of CNNs demands higher capacity
devices, forcing the need for multi-FPGA platforms. In this
paper, we present a multi-FPGA platform with distributed shared
memory support for the inference of CNNs. Our solution, in
contrast with previous works, enables combining different model
parallelism strategies applied to CNNs, thanks to the distributed
shared memory support. For a four FPGA setting, the platform
reduces the execution time of 2D convolutions by a factor of 3.95
when compared to single FPGA. The inference of standard CNN
models is improved by factors ranging 3.63-3.87.

Index Terms—Multi-FPGA, Neural Networks, Deep Learning

I. INTRODUCTION

In recent years, FPGAs have been gaining popularity not only
as prototyping platforms but also as hardware accelerators. One
of the fields where FPGAs have been explored, is Deep Neural
Networks (DNN). DNNs are broadly used in a vast range of
applications such as autonomous driving, image classification,
natural language processing, computer vision, etc.

Among DNNs, convolutional neural networks (CNNs) stand
out over the rest due to their great accuracy on many tasks
though in exchange for a computational cost. CNNs are
mainly composed of convolutional layers, each being a high-
dimensional convolution operator. FPGAs stand out due to
their low latency and reduced power consumption compared
to CPUs/GPUs and flexibility compared to ASICs [1]–[3].
Although there has been work done on the training of neural
networks with FPGAs [4], their use has been focused on
inference with fixed-point or integer-based arithmetic where
they can achieve lower latency and energy consumption.

Originally, most FPGA-based proposals target single FPGA
designs [5]–[7]. However, with the increase in size of CNNs,
and the prospect of models getting bigger by the time, a single
FPGA device falls short with the increasing requirements in
terms of resources. To overcome the resource limitation, and
at the same time aiming to obtain better performance, in the
last couple of years multi-FPGA platforms have been explored

This project has received funding from the European High-Performance
Computing Joint Undertaking (JU) under grant agreement No 955558
(eFlows4HPC project). The JU receives support from the European Union’s
Horizon 2020 research and innovation programme, and Spain, Germany,
France, Italy, Poland, Switzerland, and Norway.

as an option. But with the use of multi-FPGA platforms new
challenges arise, such as how to efficiently use all the resources
available, or how to increase overall performance without
affecting latency or energy consumption.

With FPGAs two approaches can be followed. First, the
model can be synthesised and optimised. This leads to the
best performance achievable as the weights of the convolution
filters can be encoded on chip using BRAMs. However, running
different models requires a reprogramming step which usually
takes hundreds of milliseconds. In addition, large models may
not fit on-chip. Second, a generic accelerator (kernel) design
can be implemented and programmed from the host, and
iterated over in order to infer a complete model. The accelerator
can be scaled to the FPGA resources and does not need to be
reprogrammed to run different models.

When targeting multiple FPGAs, external memory allocation
is critical. Each accelerator has access to its own local memory
but to exchange data explicit memory transfers are needed. To
overcome this, we propose a novel multi-FPGA platform for the
effective execution of inference processes of CNN models. The
approach relies on the distributed shared memory programming
paradigm. Our platform implements a shared memory address
space distributed across all FPGA boards, following a NUMA
architecture. Thus, explicit memory transfers between FPGAs
are avoided. On each FPGA we implement a generic accelerator
which can be programmed to work on different partitioning
schemes for a set of specific neural network layers. Therefore,
several accelerators can be programmed to run the same set of
layers concurrently and cooperatively. By the use of the shared
memory address space, we allow different partitioning schemes
to be used concurrently as well. This is key to enable close ideal
speed-ups.

II. RELATED WORK

In recent years several works have explored the concept of
connecting several FPGAs with a certain topology to execute
DNNs. In [8] authors propose a pipelined FPGA cluster to
increase the throughput of CNN applications through the use
of a dynamic programming algorithm to map CNN layers
on the FPGAs. In their solution they use seven FPGAs, one
used as controller, forming a ring topology. Each FPGA has a
customised accelerator for a specific set of layers. As a result,
the design lacks flexibility since the FPGAs are highly coupled
with each other, so to execute different CNNs the FPGAs need
to be reconfigured each time. Extending their original work in



[9] they propose a dynamic algorithm for mapping DNNs in
asymmetric multi-FPGA platforms. In both works, they aim to
map a DNN model on a multi-FPGA platform layer by layer
to increase throughput. Following the same approach in [10]–
[14] authors also propose different techniques and algorithms
to efficiently map a DNN in a multi-FPGA platform.

Other works follow a different approach. In [15] a framework
to partition CNNs in FPGA clusters is proposed. The focus
is on reducing latency by employing different layer partition
schemes, as well as by alleviating off-chip memory usage by
making use of the inter-FPGA links. However, due to the
implementation of their solution, employing different partition
schemes between layers entails unavoidable data movement
which in consequence is detrimental to their solution. There-
fore, they are bound to use the same partition strategy between
all the FPGAs so as not to affect latency as a result of explicit
data exchange between FPGAs. Contrary to this, in this paper,
we allow the combination of different partition schemes. Other
multi-FPGA papers aim at reducing inference time in RNNs.
In [16], [17] the Microsoft Brainwave project aims at reducing
latency by pining weights on the FPGAs. In [18] authors also
focus on reducing latency in RNNs by partitioning the layers
and pipelining the computation.

III. BACKGROUND

The convolution operation is defined as Input(I × HI ×
WI) ⊛ Filter(O × I ×KH ×KW ) = Output(O ×HO ×
WO). The input is defined as a three dimensional tensor I ×
HI × WI where I represents the number of input channels
(or feature maps) and HI and WI represent the height and
width of each channel, respectively. Similarly, the convolution
operation produces a three dimensional tensor output O×HO×
WO. Typically, each input-output pair has a KH×KW filter.
Thus, O × I filters are used in a convolution. The filters are
applied on every KH ×KW subset of inputs and are shifted
vertically and horizontally over the input channels.

A convolution can be divided in partitions that run in parallel,
leading to different distribution schemes of input activations,
weights and feature maps. Mainly, we can apply batch, row,
column, output channel and input channel partition schemes.
Batch partition is mainly used in training processes. In real
time inference processes batch size is set to one.

In (input) row partition (IRP, Fig. 1a), all input channels
are split in several partitions, each with a disjoint set of rows.
Each partition performs the convolution using the same filters,
therefore filters are shared between partitions. Each convolution
on each partition produces a subset of output rows for all output
channels. Depending on the horizontal stride of the convolution
some rows need to be shared between adjacent partitions,
therefore, not being a perfect partitioning scheme. IRP requires
that input data, although partitioned, be accessed by different
FPGA accelerators. In a non-shared memory system this will
entail explicit data copies. In column partition, channels are
partitioned in sets of columns instead of rows. This scheme
has the same side effects as row partition.

With output channel partition (OCP, Fig. 1b), the output
feature maps are partitioned/computed in parallel. Filters are

⊗

(a) Row Partition.

⊗

(b) Output Channel Partition.

Fig. 1: Layer Partition schemes.

partitioned since they belong to different output channels.
However, input data is shared and thus, every accelerator needs
to read the same data. Finally, in input channel partition, the
input is partitioned in sets of channels and for each partition
the complete set of output channels is computed. Similarly
to OCP, filters are partitioned by input channel. However, the
output produced by each partition must be compounded by an
additional layer to add all partitions together.

IV. SHARED MEMORY DESIGN

Our baseline design (Fig. 2) features four Xilinx Kintex
Ultrascale FPGAs interconnected following a bidirectional ring
topology. Each FPGA board has two QSFP+ modules and four
optical cables for communication with its two neighbour FPGA
boards. At the design level, Chip2Chip and Aurora IP cores
from Xilinx have been used for the communication between
FPGAs. These IP cores allow board-to-board communication
following the AXI4 protocol. Additionally, each FPGA board
includes a 2GB DDR4 memory module and its corresponding
memory controller. This controller handles local memory ac-
cesses and has not been modified in our design. Furthermore,
one FPGA is connected to the host system through PCIe via the
PCIe IP core. Each FPGA board includes also an accelerator.
All the components within the design are interconnected and
configured via an AXI interconnect infrastructure. As a result,
for the host application the whole design appears as a single
platform with four accelerators and 8GB of memory.

A. Distributed Shared Memory Support

For distributed shared memory support, each FPGA includes
a hierarchy of AXI interconnects (SmartConnect IP). Four AXI
modules are used on FPGA1, FPGA2 and FPGA3; whereas
six are used in FPGA0. Up to three modules route incoming
traffic either from a neighbour FPGA, which can access the
local memory or being routed to another FPGA (using this
FPGA as in-transit), from the local accelerator, or from the PCI
express module in case of FPGA0. These AXI modules have
different outputs depending on the communication patterns
allowed. Each output can deliver the data directly to the final
destination: local memory, or arrive to a new AXI module
that delivers the data to the corresponding neighbour FPGA
device. The interconnection between AXI modules is not a fully
connected topology as some links are not implemented.



Kernel
(Accelerator) 

AXI Int.

AXI Int.

AXI Int.

AXI Int.

AXI Int.

AXI Int.PCIe

AuroraSlave
C2C 

Aurora

Slave
C2C

Memory
Controller 

AuroraMaster
C2C

FPGA1

Aurora

Master
C2C FPGA2

FPGA3

0x00000000-
0x7FFFFFFF 

0x100000000-
0x1FFFFFFFF 

0x80000000-
0xFFFFFFFF 

FPGA0

Kernel
(Accelerator) 

AXI Int.

AXI Int. AXI Int.

AXI Int.

AuroraSlave
C2C

Aurora

Slave
C2C

Memory
Controller

AuroraMaster
C2C FPGA0

FPGA1

Aurora

Master
C2C

FPGA3

0x100000000-
0x17FFFFFFF 

0x180000000- 
0x1FFFFFFFF

0x00000000-
0xFFFFFFFF 

FPGA2

FPGA1

FPGA3

Fig. 2: Multi-FPGA architecture with distributed shared memory

Application

Driver

Host

PCIe x8

FPGA0 FPGA1

FPGA3FPGA2

API

Runtime

HAL

Fig. 3: Host layer hierarchy

All the modules have been configured to support distributed
shared memory. Every accelerator on any FPGA will be able
to access all the memories using the same memory addressing
space. Table I shows the configuration of the AXI interfaces
on each FPGA with the range of addresses and the paths
used to access each memory by all FPGA devices. Physically,
FPGAs are connected following a bidirectional ring. However,
internally, FPGAs are logically grouped by rows. Each FPGA
can access its direct neighbours DDR through the inter-FPGA
links. But to access a DDR memory located on a non-neighbour
FPGA, it has to go through its neighbour in the other row. For
instance, FPGA0 will have to go through FPGA2 in order
to access DDR3. This means also that FPGA0 and FPGA2

will end up sharing the link between FPGA2 and FPGA3 if
both try to access DDR3 at the same time.

FPGA links are configured to work at an effective read and
write bandwidth of 2.2 GB/s duplex mode. The bandwidth
is limited by the QSFP+ modules which support a maximum
transfer rate of 10 Gb/s per lane, whereas FPGA transceivers
support data rates up to 16.375 Gb/s, and by the Chip2Chip
IP core that in tandem with Aurora can only be configured to
use three lanes maximum. Therefore links are configured to use
three lanes each working at 10 Gb/s.

B. Runtime software

The platform is exposed to the host as a memory mapped
PCIe device with two memory regions: one for controlling the
accelerators in each FPGA, and one for mapping the different
device memory banks (DDRs) through a unified address space.
In order to provide access to this platform we have developed
an OpenCL-like runtime software library, inspired by the Xilinx
OpenCL software stack and composed of three layers: an API,
a runtime and a hardware abstraction layer (HAL).

Fig. 3 illustrates the hierarchy of layers in the library. From
top to bottom, the API presents two main abstractions to the

host application, named device and buffer. These abstractions
are similar to the respective abstractions in the OpenCL speci-
fication. In the platform initialisation process an instance of the
device abstraction is created for each device in the platform.
Through this abstraction, the host application developer can
control the kernels programmed in the physical device the
instance has been attached to. The buffer abstraction represents
a memory area located in device memory, and the API provides
high level functions to perform efficient memory-to-memory
data transfers from the host system memory to those buffers
allocated in some of the device memory banks. The runtime
layer sits between the API and the HAL. It provides the
required services for implementing the API, taking care of the
overall platform memory management in a flexible way. The
HAL provides a high level interface that hides the physical
platform details to the runtime layer and it relies on the Xilinx
XDMA driver [19] to implement the low-level communication
details to the hardware platform. It provides two access modes
to the hardware. First, it allows to read and write 32- or 64-bit
data registers using 32-bit register addresses. Second, it allows
to program the platform DMA to perform efficient memory
transfers between host and device memory.

C. FPGA-FPGA Link Evaluation

Once we have defined our platform with distributed shared
memory capabilities, we need to define the allocation and
mapping strategy of both data and the accelerator workload.
Notice that depending on the location of the data, accelerators
may require to access non-local memories and could even
congest some links. Before defining such mapping policy we
need first to evaluate the bandwidth attainable by FPGA-to-
FPGA links and to analyse the read and write requirements of
the different types of data used in an inference process.

To check the impact in performance of the FPGA-FPGA
links, Table II shows the relative performance achieved when



Address range FPGA0 FPGA1 FPGA2 FPGA3

0x000000000
0x07FFFFFFF Local FPGA1 → FPGA0 FPGA2 → FPGA0 FPGA3 → FPGA1 → FPGA0

0x080000000
0x0FFFFFFFF FPGA0 → FPGA1 Local FPGA2 → FPGA0 → FPGA1 FPGA3 → FPGA1

0x100000000
0x17FFFFFFF FPGA0 → FPGA2 FPGA1 → FPGA3 → FPGA2 Local FPGA3 → FPGA2

0x180000000
0x1FFFFFFFF FPGA0 → FPGA2 → FPGA3 FPGA1 → FPGA3 FPGA2 → FPGA3 Local

TABLE I: Path configuration for the multi-FPGA platform.

running a 2D convolution with a 256 × 256 × 256 input. The
accelerator has been tested running on each FPGA (Ki when
running on FPGAi) and data has been located (input, output,
and filters) on each DDR memory (DDRi). Remote access to
neighbour DDRs has a negligible impact in performance com-
pared to local memory, thus both being comparable. However,
accessing a remote non-neighbour DDR (e.g. K0 ↔ DDR3)
entails a penalty of around 9-11%. Thus, access to remote non-
neighbour memory should be minimised and controlled.

K0 K1 K2 K3

DDR0 1.00 0.99 0.99 0.90
DDR1 0.99 1.00 0.90 0.99
DDR2 0.99 0.91 1.00 0.99
DDR3 0.88 0.99 0.99 1.00

TABLE II: Relative performance of a 256× 256× 256
convolution on different FPGA devices and data location.

Another important aspect to analyse are the read and write
requirements of the accelerator for the different types of data
(input, filters and outputs). Indeed, convolution operations have
a large arithmetic intensity since weights are reused over
the entire input. This suggests that weights read bandwidth
requirements are much lower than input and output read and
write bandwidth requirements. In order to confirm this, we have
reproduced the previous experiment but in this case we have
allocated input and output data on the local DDR memory
where the accelerator is running. Weights are placed on the
most distant DDR (e.g. k0 running and accessing input and out-
put data from DDR0 and weights at DDR3). The performance
of the accelerator when performing the convolution equals the
optimal performance achieved when all the data is local. This
means that weights location do not affect final performance. As
an additional experiment we placed input and output data on
remote DDR and weights on local DDR. We achieved the most
significant impact approaching 0.9 of relative performance.

D. Mapping Algorithm

We devised a mapping algorithm (Listing 1) to determine
which kernels will run and which work they will perform
(rows to read from input and output channels to compute). The
algorithm uses either output channel partition (OCP) and input
row partition (IRP) schemes at the same time (we refer to it as
Hybrid Partition, HP) or just OCP. The algorithm is computed
offline and before inference is performed. It is called for every
layer of the model.

The algorithm takes as threshold the number of rows (rowth)
to decide whether HP or OCP is used (line 2). The threshold has
been obtained experimentally from the platform and depends
on the data type used and the link bandwidth. For our tests it

Algorithm 1 Mapping algorithm.

1: nk ← min(4, O
CPO )

2: if H ≥ rowth & nk = 4 then ▷ Hybrid Partition
3: rows{k0,k1} ← 0 . . . H

2 − 1
4: rows{k2,k3} ← H

2 . . . H − 1
5: OC{k0,k2} ← 0 . . . O

2 − 1
6: OC{k1,k3} ← 0

2 . . . O − 1
7: ASSIGN BUFFER(. . .) ▷ Call to API
8: LAUNCH KERNEL(kth, rows,OC, . . .)
9: else ▷ Output Channel Partition

10: OC{kth} ← O
nk
× kth . . .

O
nk
× (kth + 1)− 1

11: ASSIGN BUFFER(. . .)
12: LAUNCH KERNEL(kth, OC, . . .)
13: end if

is set to 56. The number of output channels determines how
many accelerators will be launched (line 1). We assume enough
output channels are provided for dividing the workload between
two accelerators in the HP case (lines 5-6).

When assuming HP, the input (lines 3-4) and output (lines
5-6) configuration of each accelerator is different (input data
can be distributed in different DDR memories). In this case, the
runtime uses DDR0 and DDR2 for storing those buffers with
the input data being halved between them. So, each accelerator
will process I × H

2 × W pixels of the input data, and will
compute half of the output channels for that part of the input
data: O

2 ×
H
2 ×W . Notice that DDR assignment is performed

by the runtime.
Additionally, K0 and K1 will work in tandem with DDR0 as

well as K2 and K3 with DDR2. Since accessing filters and bias
has a negligible impact on performance, as commented before,
they will be in DDR0. On the other hand, when assuming
OCP, the algorithm will map O

nk
output channels to each

accelerator. Notice nk determines the number of accelerators to
use. Weights are not shared, therefore they can be distributed
among all the memories. Function ASSIGN BUFFER (lines
7 and 11) configures the buffers for outputs and weights and
assigns them to DDR memories.

Fig. 4 shows the mapping produced for the VGG16 model
as an example. Here we can see how HP is used in the first
seven convolution layers. The remaining layers only use OCP.
Notice how the four kernels run concurrently for all the layers,
achieving maximum kernel utilisation. In the first seven layers
two groups of kernels work on the same output channels but
each computing different output rows. Data is split by the
runtime between DDR0 and DDR2. Indeed, the kernels are the
ones that write in the correct DDR memory. As an example, in



Fig. 4: VGG Mapping on the multi-FPGA platform.

the first layer all the kernels read the input data from DDR0 but
two of the kernels write the results on DDR2. In the following
layers this split is already taken into consideration, so K2 and
K3 operate on DDR2. Notice that in the seventh layer all
the kernels write on DDR0 since the next layer does not use
HP. From that layer on, all the kernels work concurrently on
different output channel intervals, thus exploiting only OCP.

V. DESIGN EVALUATION

To evaluate our platform we run multiple inferences and
compute the average time for each FPGA configuration. In-
ference time has been measured from the host. To carry out
the tests we used the HLSinf [20] accelerator configured to use
FP32 data type. Although it is advisable to use fixed point data
types in FPGAs, the accelerator achieves better performance
with FP32. Additionally, FP32 allows us to stress the inter-
FPGA links. For the host-side application we used the EDDL
library [21] to train and infer neural network models, similarly
to TensorFlow. VGG16, Hourglass neural network for human
pose estimation (HG) and Residual network (Resnet50) models
are used. We compare the results of speed-up using output
channel partition (OCP) with all the accelerators accessing the
same DDR, with hybrid partition (HP) and a combination of
both strategies using the mapping algorithm described in the
previous section. Input data is 3× 224× 224 pixels.

First, we analyse the efficiency when using OCP and remote
memory access. In this test each accelerator has its weights and
bias in its local memory (Ki on DDRi) whereas data (input and
output) is kept at DDR0. Thus, all accelerators access DDR0

at the same time. Fig. 5 shows the speed-up achieved when
compared to single FPGA for the three analysed CNN models.
OCP results correspond to the dotted line. As can be seen, with
two FPGAs the speed-up is close to linear, however with four
FPGAs the platform fails to achieve optimal performance. As
discussed, the cause for this drop is the overload in one of
the inter-FPGA links, as well as the access to non-neighbour
memory without any mechanism to control it.

In order to avoid this loss, we use hybrid partitioning (HP)
by combining IRP with OCP. This way instead of having the
input data in one DDR that is accessed by all the accelerators,
the input data in distributed in two DDRs (DDR0 and DDR2).
As before, weights and bias are in the local memory of each
accelerator. The speed-up achieved with HP is shown in Figure

5 (dashed line). In the VGG and HG models the results have
significantly improved. However, in the Resnet model the use
of HP translated in negligible gains. Even though we tackled
the cause for the loss in performance, the platform still fails
at achieving optimal results. Also, VGG and HG still do not
achieve acceptable performance values.

To further increase performance we have analysed the speed-
up obtained with both strategies. Table III shows the speed-up
achieved for each layer in the VGG model when using either
OCP or HP. Now, some layers behave much better with HP
whereas others perform better with only OCP. The layers that
run better with OCP correspond to layers with a large number
of output channels and not many rows per channel, whereas
layers with large number of rows per channel behave better
with HP. This motivates for the algorithm we introduced.

Configuration Speed-up OCP Speed-up HP OCP vs HP

3x224x224 2,80 3,70 0,90
64x224x224 1,75 3,94 2,19
64x112x112 1,78 3,88 2,11

128x112x112 2,04 3,90 1,86
128x56x56 2,45 3,70 1,25
256x56x56 2,45 3,84 1,39
256x56x56 3,76 3,84 0,08
256x28x28 3,85 3,70 -0,16
512x28x28 3,87 3,73 -0,14
512x28x28 3,87 3,72 -0,14
512x14x14 3,91 3,43 -0,48
512x14x14 3,91 3,43 -0,48
512x14x14 3,81 3,43 -0,38

TABLE III: Performance gain with OCP and HP.

Thus, we now apply the mapping algorithm. Some layers are
computed with HP and others with OCP. Data buffers are also
strategically put either in DDR0 or split in DDR0 and DDR2

based on the mapping algorithm. Fig. 5 shows the speed-
up achieved when using the mapping algorithm (dense line).
With the use of both partition strategies we further increase
performance with four FPGAs. With VGG and HG we gain a
10% in performance whereas with ResNet the gain is 66%.

As we can see from the results, there is still some margin
for improvements. Indeed, VGG, HG, and ResNet achieve 3.87,
3.63, and 3.75 speed-up factors, respectively. After measuring
the link bandwidths and the memory bandwidth requirements
for the different models, we confirmed that the platform was not
introducing any bottleneck. Thus, we focus on the efficiency of



1 2 4

1

2

3

4

x1.87

x3.77

x2.87

x3.87

Number of FPGAs

Sp
ee

d-
up

(a) VGG.

1 2 4

1

2

3

4

x1.94

x3.53

x2.28

x3.63

Number of FPGAs

OCP
HP

OCP+HP

(b) HG.

1 2 4

1

2

3

4

1-FPGA

x1.95

x3.09

x3.06

x3.75

Number of FPGAs

(c) Resnet.

Fig. 5: Performance results achieved for varying number of FPGAs and partitioning schemes. Different NN models used.

the accelerator. Table IV shows the performance achieved by
four different synthetic models made of a single 2D convolution
layer, each model with a different size of convolution. We
run the inference of those models in one FPGA and compare
with the theoretical execution time to obtain the efficiency.
The theoretical execution time is obtained by the formula:
H ×W × I

CPI ×
O

CPO cycles.

Configuration Efficiency Configuration Efficiency

16x16x16x16 0.39 128x128x128x128 0.97
64x64x64x64 0.93 256x256x256x256 0.98

TABLE IV: Accelerator efficiency with different convolutions.
Thus, the reason for the loss in performance is due to some

internal inefficiencies of the accelerator. For small convolutions
the accelerator does not achieve maximum performance. Con-
trary to this, the platform manages large convolutions with an
efficiency factor close to the ideal factor.

VI. CONCLUSION

We presented a multi-FPGA platform with shared distributed
memory for the inference of CNNs. With the support for shared
distributed memory, we combine different partition strategies
to achieve close to linear speed-up with up to four FPGAs.
Furthermore, we have devised a preliminary mapping algorithm
that takes into account the parameters of each layer of a
given model and applies different partition strategies to obtain
optimal performance. The platform has enough communication
resources to increase the number of FPGAs, and the mapping
algorithm and host library can be improved to achieve higher
performance and support complex workloads.

REFERENCES

[1] E. Nurvitadhi et al., “Accelerating Binarized Neural Networks: Compar-
ison of FPGA, CPU, GPU, and ASIC,” in 2016 Int. Conf. on Field-
Programmable Technology. Xi’an, China: IEEE, Dec. 2016, pp. 77–84.

[2] J. Qiu et al., “Going Deeper with Embedded FPGA Platform for Convo-
lutional Neural Network,” in Proc. of the 2016 ACM/SIGDA Int. Symp.
on Field-Programmable Gate Arrays. ACM, Feb. 2016, pp. 26–35.

[3] J. Cong et al., “Understanding Performance Differences of FPGAs and
GPUs,” in 2018 IEEE 26th Annual Int. Symp. on Field-Programmable
Custom Computing Machines. Boulder, CO, USA: IEEE, Apr. 2018.

[4] T. Geng et al., “A Framework for Acceleration of CNN Training on
Deeply-Pipelined FPGA Clusters with Work and Weight Load Bal-
ancing,” in 2018 28th Int. Conf. on Field Programmable Logic and
Applications (FPL). Dublin, Ireland: IEEE, Aug. 2018, pp. 394–3944.

[5] C. Zhang et al., “Optimizing FPGA-based Accelerator Design for Deep
Convolutional Neural Networks,” in Proc. of the 2015 ACM/SIGDA Int.
Symp. on Field-Programmable Gate Arrays. ACM, 2015, pp. 161–170.

[6] Y. Ma et al., “Optimizing Loop Operation and Dataflow in FPGA Ac-
celeration of Deep Convolutional Neural Networks,” in Proc. of the 2017
ACM/SIGDA Int. Symp. on Field-Programmable Gate Arrays. Monterey
California USA: ACM, Feb. 2017, pp. 45–54.

[7] N. Suda et al., “Throughput-Optimized OpenCL-based FPGA Accelerator
for Large-Scale Convolutional Neural Networks,” in Proc. of the 2016
ACM/SIGDA Int. Symp. on Field-Programmable Gate Arrays. Monterey
California USA: ACM, Feb. 2016, pp. 16–25.

[8] C. Zhang et al., “Energy-Efficient CNN Implementation on a Deeply
Pipelined FPGA Cluster,” in Proc. of the 2016 Int. Symp. on Low Power
Electronics and Design. San Francisco Airport CA USA: ACM, Aug.
2016, pp. 326–331.

[9] W. Zhang et al., “An Efficient Mapping Approach to Large-Scale DNNs
on Multi-FPGA Architectures,” in 2019 Design, Automation & Test in
Europe Conf. & Exhibition. IEEE, Mar. 2019, pp. 1241–1244.

[10] J. Shen et al., “Scale-out Acceleration for 3D CNN-based Lung Nodule
Segmentation on a Multi-FPGA System,” in Proc. of the 56th Annual
Design Automation Conf. 2019. Las Vegas NV USA: ACM, Jun. 2019.

[11] S. Biookaghazadeh et al., “Toward Multi-FPGA Acceleration of the
Neural Networks,” ACM Journal on Emerging Technologies in Computing
Systems, vol. 17, no. 2, pp. 1–23, Apr. 2021.

[12] J. Shan et al., “CNN-on-AWS: Efficient Allocation of Multikernel Ap-
plications on Multi-FPGA Platforms,” IEEE Tran. on Computer-Aided
Design of Integrated Circuits and Systems, vol. 40, no. 2, Feb. 2021.

[13] R. Li et al., “Improving CNN performance on FPGA clusters through
topology exploration,” in Proc. of the 36th Annual ACM Symp. on Applied
Computing. Virtual Event Republic of Korea: ACM, Mar. 2021.

[14] T. Alonso et al., “Elastic-DF: Scaling Performance of DNN Inference
in FPGA Clouds through Automatic Partitioning,” ACM Transactions on
Reconfigurable Technology and Systems, vol. 15, no. 2, Jun. 2022.

[15] W. Jiang et al., “Achieving Super-Linear Speedup across Multi-FPGA for
Real-Time DNN Inference,” ACM Transactions on Embedded Computing
Systems, vol. 18, no. 5s, pp. 1–23, Oct. 2019.

[16] E. Chung et al., “Serving DNNs in Real Time at Datacenter Scale with
Project Brainwave,” IEEE Micro, vol. 38, no. 2, pp. 8–20, Mar. 2018.

[17] J. Fowers et al., “A Configurable Cloud-Scale DNN Processor for Real-
Time AI,” in 2018 ACM/IEEE 45th Annual Int. Symp. on Computer
Architecture (ISCA). Los Angeles, CA: IEEE, Jun. 2018, pp. 1–14.

[18] Y. Sun et al., “FiC-RNN: A Multi-FPGA Acceleration Framework for
Deep Recurrent Neural Networks,” IEICE Transactions on Information
and Systems, vol. E103.D, no. 12, pp. 2457–2462, Dec. 2020.

[19] Xilinx, “Xilinx DMA IP Reference drivers,”
https://github.com/Xilinx/dma ip drivers.

[20] J. Flich et al., “Efficient Inference Of Image-Based Neural Network
Models In Reconfigurable Systems With Pruning And Quantization,”
in 2022 IEEE International Conference on Image Processing (ICIP).
Bordeaux, France: IEEE, Oct. 2022, pp. 2491–2495.

[21] H. D. project, “European Distributed Deep Learning (EDDL) Library,”
https://github.com/deephealthproject/eddl.


