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We prove a factorization theorem for Lipschitz operators acting on certain subsets of 
metric spaces of measurable functions and with values on general metric spaces. Our 
results show how a Lipschitz operator can be extended to a subset of other metric 
space of measurable functions that satisfies the following optimality condition: it is 
the biggest metric space, formed by measurable functions, to which the operator 
can be extended preserving the Lipschitz constant. As an application, we show the 
coarsest metric that can be given for a metric space in which an order bounded 
lattice-valued-Lipschitz map is defined. Concrete examples involving the relevant 
space L0(μ) are given.

© 2023 The Author(s). Published by Elsevier Inc. This is an open access article 
under the CC BY license (http://creativecommons .org /licenses /by /4 .0/).

1. Introduction and basic definitions: metric function spaces

Optimal extension of linear operators between Banach function spaces is a classical topic of Functional 
Analysis. Once one has a relevant operator defined on an Lp-space —for example, the Fourier transform, 
convolution maps or other operators of interest in Harmonic Analysis—, the next step to solve some impor-
tant problems is to analyze if there is a bigger domain for the same operator. Some developments have been 
introduced in recent years to provide a new methodology to systematically construct such a maximal space, 
and it has been successfully used for more advanced theoretical results and applications (see [11–14,16,25]
and the references therein). Further research has been also done to extend these results in the locally convex 
context, for example for the case of Fréchet function spaces (see [6], in particular, see Section 3.3, Theorem 
3.3.1), and even for the non-locally convex setting (quasi-Banach function spaces, see [26]).

Rather than extending the results to more general classes of linear domain spaces, in this paper we 
are interested in the analysis of optimal extensions of a relevant class of non-linear operators. We are 
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concerned with Lipschitz operators acting in what we call metric function spaces, that form a weaker version 
—topologically and algebraically— of the notion of Banach function space, including for example some 
particular subsets of function spaces of measurable functions endowed with a Fréchet topology (see [10]). 
Moreover, our results are somewhat connected with the analysis of the Lipschitz structure of Banach and 
quasi-Banach spaces, which is a topic of current interest; let us mention here the relevant works [1–4,17,22]. 
On the other hand, the specific study of Lipschitz operators on certain function spaces has also been carried 
out in recent years; we should refer here to a series of profound papers published by Kalton already in the 
present century (see [19–21]). The focus of attention in almost all of these papers is on ∞-norms: in fact, the 
cases of c0, �∞ and C(K) have proved to be of central importance for the study of Lipschitz isomorphisms 
on Banach spaces and, in general, of extensions of Lipschitz maps. Looking at the arguments presented 
there, the underlying reason for this seems to be that in these cases uniform pointwise domination and 
norm domination are the same thing. However, this property does not hold for general Banach function 
spaces, that are the main references for our framework, so we have to work with different ideas. Anyway, 
some of our arguments are inspired in the previously mentioned papers —mainly in [20]—, although we do 
not explicitly use them in our results.

Motivated also by some classical problems of the function theory, the aim of the present paper is to obtain 
the main optimality results for operators on function spaces in the metric context. That is, if (Ω, Σ, μ) is 
a measure space, we will consider the natural elements for this study: metric spaces whose elements are 
classes of μ-a.e. equal measurable functions, that is, subsets of L0(μ). Our original motivation is given by 
the classical research project of improvement —in the sense of the function spaces involved—, of the results 
of Carleson on almost everywhere convergence of norm convergent series [8]. One of the results that is 
needed for this aim is related to the need of finding a (quasi) Banach function space continuously included 
in L0(μ) as big as possible and still preserving continuity of a given (linear) operator (see for example [5,9]
and the references therein). The inclusion is of course a linear map, but we can consider weaker structures: 
Lipschitz injective maps and subsets of measurable functions endowed with a metric preserving a minimal 
structure as function space. Thus, emulating the method for linear operators, we are interested in this paper 
in providing a constructive method to obtain the largest “structured” metric space to which a Lipschitz 
map can be extended.

In the second part of this introductory section, we provide some definitions and notions that will be 
central in the paper. Throughout the paper (Ω, Σ, μ) will be a finite measure space and (E, d) a metric 
space. As usual, we write L0(μ) for the space of (classes of μ-a.e. equal) μ-measurable functions endowed 
with the μ-a.e. convergence. If ν is another measure on Σ, we will write ν � μ if ν is absolutely continuous 
with respect to μ.

Definition 1.1. We say that a subset I(μ) ⊆ L0(μ) is a function ideal set if for every A ∈ Σ, χA · I(μ) ⊆
I(μ). A function ideal set is a metric function space if there is a metric ρ : I(μ) × I(μ) → R such that 
ρ(fχA, gχA) ≤ ρ(f, g) for all A ∈ Σ and f, g ∈ I(μ). We call such a metric ρ a function metric.

Example 1.2. Let us provide some examples.

1) Let us show first a standard example. Consider a Banach function space X(μ) over μ (see the definition 
at the end of the section). Then it is a metric function space endowed with the distance provided by 
the norm, i.e. ρ(f, g) = ‖f − g‖X(μ). However, note that the linearity is not required in the definition of 
metric function spaces, and so any set as {fχA : A ∈ Σ}, f ∈ X(μ), is a metric function space with the 
metric given by the norm.

2) On the other hand, there are relevant distances other than normed metrics that we want to consider 
as function metrics. For instance, the canonical distance d0 in L0(μ) is a function metric, since for 
f, g ∈ L0(μ),
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d0(f, g) =
∫
Ω

|f − g|
|f − g| + 1 dμ ≥

∫
A

|f − g|
|f − g| + 1 dμ

=
∫
Ω

|fχA − gχA|
|fχA − gχA| + 1 dμ = d0(fχA, gχA), A ∈ Σ.

Recall that this metric is not defined by any norm.

We are interested in not assuming the translation invariance of the metric in some of our results, and so 
we work in a more general framework than the one that is usually given by norms and seminorms in Banach 
and Fréchet function spaces.

The norms defined on classical Banach spaces of integrable functions (e.g., the Lp(μ) spaces for 1 ≤ p ≤
∞) provide metrics that are well suited to the measure used to support the function space. Indeed, the 
norm of a Banach function space X(μ) fits with the measure μ, since ‖χA‖X(μ) = 0 if and only if μ(A) = 0. 
However, we do not restrict our attention to the case of Banach function spaces: we want our results to 
work for operators on the metric space (L0(μ), d0).

A recent attempt to relate metrics to measures in the context of Lipschitz functions is given by the 
so called intrinsic measures on metric spaces, appeared in the setting of the Dirichlet and Wiener spaces. 
A complete study of this concept can be found in [18] and the references therein. However, although this 
theory is interesting for applications in, for example, evolution equations, it does not fit with our aim. The 
reason is that the notion of measurable pseudometric is central in that development, and our main natural 
example —that is given by the distance defined by a norm in a Banach function space— does not satisfy the 
axioms of a measurable pseudometric. Concretely, Axiom 4 in [18, Definition 2.1] is not satisfied by metrics 
like d(f, g) = ‖f − g‖X(μ), where X(μ) is a Banach function space and f, g ∈ X(μ).

As we already said, along the paper we will compare our construction with the case of linear operators 
defined on Banach function spaces. Recall that X(μ) is a Banach function space over μ if it is a Banach 
space defined by equivalence classes of μ-a.e. equal measurable functions, with a lattice norm (that is, if 
|f | ≤ |g|, then ‖f‖ ≤ ‖g‖). A strictly positive function 0 < h ∈ X(μ) is what is called a weak unit for 
X(μ). The space X(μ) is order continuous if each decreasing sequence fn ↓ 0 satisfies that lim ‖fn‖ = 0. 
A continuous linear operator T : X(μ) → E, where E is a Banach space, always defines a vector measure 
mT : Σ → E given by the formula

mT (A) = T (χA), A ∈ Σ.

If X(μ) is order continuous, then mT is countably additive. The semivariation of this vector measure is 
given by

‖mT ‖(A) = sup
B∈Σ

‖T (χA∩B)‖, A ∈ Σ.

For the definition of what a Banach function spaces is and its main properties, we refer to [24, p.28]. The 
space L1(mT ) of integrable functions with respect to the vector measure mT plays a fundamental role in 
the general theory of operators acting in Banach function spaces, since it provides the description of the 
so-called optimal domain of a given operator. Indeed, if X(μ) is an order continuous Banach function space 
with a weak unit and T : X(μ) → E is a linear and continuous operator, there is a factorization of T
through L1(mT )
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X(μ) T ��

i ���
��

��
���

�
E,

L1(mT )
ImT

�����������

where ImT
is the integration operator associated to the vector measure mT . This factorization is maximal 

(or optimal); in the sense that L1(mT ) is the biggest order continuous Banach function space with weak 
unit to which T can be extended. In other words, if there is another factorization like that through a space 
Y (μ) satisfying these requirements, then Y (μ) ⊆ L1(mT .) The reader can find all the information needed 
on these spaces in [25, Ch.3], and on the optimal factorization in [25, Ch.4] (see Th.4.14).

2. Extension of Lipschitz functions to maximal metric domains

The extension of Lipschitz functions defined on a subset of a metric space to the whole space is a central 
topic in mathematical analysis. Let us recall here some important facts on the topic. For the real-valued 
case, the McShane-Whitney theorem establishes that, given a subset U of a metric space (M, ρ) and a 
Lipschitz function T : U → R with Lipschitz constant k, there always exist Lipschitz functions M → R

extending T and with the same Lipschitz constant k; for example, the functions

T1(x) := inf
u∈U

{T (u) + k ρ(x, u)}, x ∈ M,

and

T2(x) := sup
u∈U

{T (u) + k ρ(x, u)}, x ∈ M,

provide two extensions of T that keep as Lipschitz constant k.
In the vector valued case, the celebrated Kirszbraun theorem gives extensions of Lipschitz operators that 

take values in Hilbert spaces. It states that if H and K are Hilbert spaces, U is a subset of H and T : U → K

is a Lipschitz operator, then there is another Lipschitz operator T̃ : H → K that extends T and has the 
same Lipschitz constant as T (see [23], [27, p.21]). However, the result is not true for general Banach spaces, 
even in the finite dimensional case.

As we said in the introduction, there are many recent results on the extension of Lipschitz maps from 
subsets of Banach spaces to the whole space. Special attention must be paid to the case of Lipschitz maps on 
C(K) spaces; see [19] and the references already given. Our results are of a different nature, and they deal 
with extensions of Lipschitz maps on metric (non-linear) subspaces I(μ) of measurable functions in L0(μ)
to a bigger space. Technically, they must be probably called “factorizations” rather than “extensions”, as 
they give factorization theorems preserving Lipschitz maps.

The technique we use is inspired in a series of results that are sometimes called optimal domain theorems 
for Banach function spaces, which give descriptions of the biggest Banach function spaces satisfying a certain 
property to which a given linear operator can be extended. We have already given some indications in this 
regard in the introduction. The reader can find information about the fundamental structure of the theory 
in [25, Ch.4] and the references therein; see also the references given in the introduction. The same type 
of technique has been recently applied in more general contexts, for example in the case of continuous 
operators acting in quasi-Banach spaces ([26]), or for operators on Banach function spaces that satisfy a 
certain domination inequality ([7]). The papers which are directly connected with the present one are [10,11]. 
In [11] an optimal domain theorem for operators on L0(μ) is given. Conceptually, this is the starting point 
of our analysis, since it provides a description of the maximal domain for operators having values in the 
space L0(μ), in which the topology is not given by a (quasi) norm but by a metric. The main difference 
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of our study is that we are interested in working with (non necessarily linear) function spaces preserving 
some lattice properties in the context of the metric spaces, which is the natural one when dealing with 
Lipschitz functions. In [10] it is treated the situation of factoring Lipschitz maps on metric spaces with 
values in a Banach function space through Lipschitz maps that are maximal in the sense that any other 
similar factorization scheme relates the extension to the former one. In the present paper the point of view 
is completely different: instead of considering spaces of measurable functions as the range of the extendable 
Lipschitz map, we locate the measurable functions in the domain, where we provide a structure of what we 
call metric function space, which can be considered an extension of the notion of Banach function space to 
the metric setting, with no linear structure.

Lemma 2.1. Let (I(μ), ρ) be a metric function space, S ⊆ I(μ) a subset, and consider a Lipschitz map 
T : I(μ) → E into the complete metric space (E, d). Then the restriction T |S of T to S can be factored 
through a map i with Lipschitz constant Lip(i) ≤ Lip(T ) and a Lipschitz operator T : ST → E with 
Lip(T ) ≤ 1 as

S
T |S ��

i ���
��

��
��

� E,

ST

T

����������

where (ST , dT ) is a complete metric space in which i(S) is dense, and dT is the quotient metric associated 
to the pseudometric

dT (f, g) := sup
A∈Σ

d(T (fχA), T (gχA)), f, g ∈ S.

Besides, if we assume that S = S(μ) ⊆ I(μ) is a metric function space (that is, χA · S ⊂ S for all A ∈ Σ) 
then Lip(T ) = 1, and if we assume that S = I(μ) then Lip(i) = Lip(T ).

Proof. Consider the function dT : S × S → R defined by

dT (f, g) := sup
A∈Σ

d(T (fχA), T (gχA)), f, g ∈ S.

Note that it can only take a finite value, since for f, g ∈ S and A ∈ Σ we have

d(T (fχA), T (gχA)) ≤ Lip(T ) ρ(fχA, gχA) ≤ Lip(T ) ρ(f, g) < ∞, (1)

due to the fact that ρ is a function metric. Let us show that dT is a pseudo metric on I(μ). Clearly, dT is a 
symmetric function, for each f ∈ S, dT (f, f) = 0 and for f, g, h ∈ S, dT (f, h) ≤ dT (f, g) + dT (g, h).

Consider the quotient S/dT endowed with the quotient metric dT .
Let i : S → S/dT be the quotient map and denote ST the completion of S/dT keeping the notation dT for 

the extended metric. We have that (ST , dT ) is the desired factorization space. Indeed, the map i : S → ST

given by i(f) := [f ]dT
, where [·]dT

is the corresponding equivalence class, is the required map. It follows
from (1) that i is a Lipschitz map with Lip(i) ≤ Lip(T ).

Define T0 : i(S) → E by T0(i(f)) := T (f). Let us show that T0 is well defined. Take f, g ∈ S so that 
i(f) = i(g). Then, dT (f, g) = 0. Hence, d(T (f), T (g)) = 0. Thus T0(i(f)) = T (f) = T (g) = T0(i(g)).

We extend T0 to T : (ST , dT ) → E by continuity, providing the factorization T |S = T ◦ i.
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Note that

d(T (i(f)), T (i(g))) = d(T (f), T (g)) ≤ sup
A∈Σ

d(T (fχA), T (gχA))

= dT (f, g) = dT (i(f), i(g)),

and so Lip(T ) ≤ 1.
Note also that

dT (i(f), i(g)) = sup
A∈Σ

d(T (fχA), T (gχA))

≤ Lip(T ) sup
A∈Σ

ρ(fχA, gχA) ≤ Lip(T )ρ(f, g),

and so Lip(i) ≤ Lip(T ).
Let us assume now that S = I(μ) and let us prove that Lip(i) = Lip(T ). Note that given ε > 0 there are 

f, g ∈ I(μ) such that d(T (f), T (g)) > (Lip(T ) − ε)ρ(f, g). Thus,

dT (i(f), i(g)) = dT (f, g) ≥ d(T (f), T (g)) > (Lip(T ) − ε)ρ(f, g),

what gives that indeed Lip(i) = Lip(T ).
We have already proved that Lip(T ) ≤ 1. Let us see that Lip(T ) = 1 under the assumption that χA·S ⊂ S

for all A ∈ Σ. Assume that this is not the case, so there is a constant 0 < C < 1 such that

d(T (i(f)), T (i(g))) ≤ CdT (i(f), i(g))

for all f, g ∈ S. Fix f, g ∈ S, f = g. Let ε := 1−C
2 dT (f, g) > 0. By the definition of dT , we can find A ∈ Σ

such that

d(T (fχA), T (gχA)) > dT (i(f), i(g)) − ε.

By the definition of dT it is easy to check that dT (f, g) ≥ dT (fχA, gχA). Then we have that

CdT (f, g) ≥ CdT (fχA, gχA)

= CdT (i(fχA), i(gχA))

≥ d(T (i(fχA)), T (i(gχA)))

= d(T (fχA), T (gχA))

> dT (i(f), i(g)) − ε

= dT (f, g) − ε

Therefore, we get that (1 − C)dT (f, g) < ε = 1−C
2 dT (f, g), which is a contradiction. We have then proved 

that Lip(T ) = 1.
This finishes the proof. �

Remark 2.2. Note that an alternative definition to the one given in Lemma 2.1 would be given by a formula 
as

τ(f, g) := sup d(T (fχA), T (gχB)).

A,B∈Σ
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However, this formula does not generalize our main examples. In fact, it is not a pseudometric in general. 
For instance, if the metric is given by a Banach function space norm ‖ · ‖ and T is the identity map, that 
is d(f, g) := ‖f − g‖, we have that the expression

τ(f, g) := sup
A,B∈Σ

d(T (fχA), T (gχB)) = sup
A,B∈Σ

‖fχA − gχB‖

does not satisfy that τ(f, f) = 0.

Results on this kind of factorization for the case of linear operators acting on Banach function spaces 
—even for quasi-Banach spaces— are nowadays well-known, and can be compared with the previous lemma. 
In the linear case, the role that plays the space ST in Lemma 2.1 is played by the space L1(mT ) of integrable 
functions with respect to a vector measure (see for example [12,15] and for a complete explanation of the 
underlying ideas and applications, see also [25, Ch.4]). Of particular interest for the present paper —due to 
the fact that non-normable topologies are explicitly considered—, are the papers [11,26]. In these cases, the 
factorization is also optimal; we will see in Lemma 2.3 below that this is also the case with our factorization.

If I(μ) and J(ν) are metric function spaces such that ν � μ, then any pair f, g of μ-measurable functions 
which are equal μ-a.e., are ν-measurable and coincide ν-a.e. We are interested in metric function spaces 
I(μ) and J(ν) such that the canonical mapping i0 : I(μ) → J(ν) that sends a function f ∈ I(μ) to its 
class in J(ν) can be defined and is continuous. Note that for any f ∈ I(μ) and any A ∈ Σ we have that 
i0(fχA) = i0(f)χA.

Lemma 2.3. Let (I(μ), ρ) be a metric function space and consider a Lipschitz map T : I(μ) → E into the 
complete metric space (E, d). Then the factorization through I(μ)T given by Lemma 2.1 is maximal in the 
following sense. Assume there is a complete metric function space (J(ν), ρ) over a measure ν with ν � μ

such that the canonical map i0 : I(μ) → J(ν) is well defined and continuous. Assume that:

1. the operator T factors as T = T̃ ◦ i0, with T̃ : J(ν) → E,
2. T̃ is Lipschitz with Lip(T̃ ) ≤ 1,
3. i0(I(μ)) is dense in J(ν).

Then there is a Lipschitz map k : J(ν) → I(μ)T such that Lip(k) ≤ 1, k ◦ i0 = i, and T ◦ k = T̃ . Besides, 
if Lip(T̃ ) = 1 then Lip(k) = 1.

Proof. For the proof, note that we are in the setting of Lemma 2.1 for S = I(μ), so the factorization 
through I(μ)T follows with Lip(T ) = 1. Assume that there are a complete metric function space J(ν) for 
an absolutely μ-continuous measure ν such that i0(I(μ)) is dense in J(ν) and Lip(i0) ≤ Lip(T ), and a 
Lipschitz mapping T̃ : J(ν) → E with Lip(T̃ ) ≤ 1 such that T = T̃ ◦ i0.

We aim to define a map k so that the following factorization diagram holds,

I(μ) T ��

i ���
��

��
��

�

i0

���
��

��
��

��
��

��
��

�
E,

I(μ)T
T

		��������

J(ν)

T̃



																
k

��
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We define k : i0(I(μ)) → I(μ)T as the mapping given by k(i0(f)) := i(f). First we see that k is well 
defined, that is, if i0(f) = i0(g) for f, g ∈ I(μ), then i(f) = i(g). Indeed, if i0(f) = i0(g) then T (f) = T (g). 
Hence i(f) = i(g) by the construction in the proof of Lemma 2.1.

Taking into account that ρ is a metric function on J(ν) we get that

dT (k(i0(f)), k(i0(g))) = dT (i(f), i(g)) = dT (f, g) = sup
A∈Σ

d(T (fχA), T (gχA))

= sup
A∈Σ

d(T̃ (i0(fχA)), T̃ (i0(gχA))) ≤ sup
A∈Σ

ρ(i0(fχA), i0(gχA)) ≤ ρ(i0(f), i0(g)).

Now we extend k so defined to the whole J(ν) using the density of i0(I(μ)) in J(ν). So extended, we have 
that k is a Lipschitz map and Lip(k) ≤ 1 by the inequalities above.

Let us now assume that Lip(T̃ ) = 1 and let us see that Lip(k) = 1. Since Lip(T̃ ) = 1 we have that given 
ε > 0 there are f, g ∈ J(ν) such that d(T̃ (f), T̃ (g)) > (1 − ε)ρ(f, g). Using both the continuity of T̃ and the 
continuity of k, we can find δ > 0 such that if f0, g0 ∈ I(ν) satisfy ρ(f, i0(f0)) < δ and ρ(g, i0(g0)) < δ then

d
(
T̃ (i0(f0)), T̃ (f)

)
< ε, d

(
T̃ (i0(g0)), T̃ (g)

)
< ε

and

dT
(
k(i0(f0)), k(f)

)
< ε, dT

(
k(i0(g0)), k(g)

)
< ε.

Hence,

(1 − ε)ρ(f, g) < d
(
T̃ (f), T̃ (g)

)
≤ d

(
T̃ (f), T̃ (i0(f0))

)
+ d

(
T̃ (i0(f0)), T̃ (i0(g0))

)
+ d

(
T̃ (i0(g0)), T̃ (g)

)
< ε + sup

A∈Σ
d
(
T̃ (i0(f0χA)), T̃ (i0(g0χA))

)
+ ε

= 2ε + sup
A∈Σ

d
(
T (f0χA), T (g0χA)

)
= 2ε + dT

(
i(f0), i(g0)

)
= 2ε + dT

(
k(i0(f0)), k(i0(g0))

)
≤ 4ε + dT

(
k(f), k(g)

)
.

Since ε is arbitrary, we get that Lip(k) ≥ 1 and thus Lip(k) = 1. �
Note that the maximal metric space I(μ)T is not necessarily formed by classes of measurable functions 

with respect to μ. However, if the operator T appearing in Lemma 2.1 is injective, we have that dT is a 
metric, and so the functions in I(μ) (as equivalence classes of functions with respect to μ) are held when 
considered in I(μ)T . Any other measure ν and space J(ν) allowing a factorization as above must satisfy that 
is equivalent to μ, at least in the support of the functions of I(μ). However, these arguments are delicate 
and will be treated in the next section.

3. Measure-type aspects concerning the optimal factorization of Lipschitz maps acting in subsets of 
metric function spaces

In what follows, we will analyze the measure theoretic aspects of the concepts appeared in the previous 
results. Adapting the notion of μ-determined operator that is used in the linear case, we introduce the 
following definition.

Recall that a sequence (fn) of measurable functions is said to be a Cauchy sequence in μ-measure if, 
given ε > 0, there is an N such that for all m, n ≥ N we have μ{w ∈ Ω : |fn(w) − fm(w)| ≥ ε} < ε.
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Definition 3.1. A Lipschitz map T : I(μ) → E is μ-determined if and only if every dT -Cauchy sequence (fn)
in I(μ) is Cauchy in μ-measure.

Remark 3.2.

1) We may assume that both metric spaces are pointed and T (0) = 0. Note that being T μ-determined 
implies that given A ∈ Σ, then d(T (fχA), 0) = 0 for all f ∈ I(μ) if and only if μ(A) = 0. Indeed, if we 
fix A ∈ Σ such that d(T (fχA), 0) = 0 for all f ∈ I(μ), in particular d(T (χBχA), 0) = 0 for all B ∈ Σ. 
Then,

dT (χA, 0) = sup
B∈Σ

d(T (χAχB), T (0χB)) = sup
B∈Σ

d(T (χAχB), 0) = 0.

Therefore, the alternate sequence (fn), where fn = χA if n is even and fn = 0 if n is odd is dT -Cauchy. 
Hence, assuming that T is μ-determined, it follows that (fn) is Cauchy in μ-measure. In particular, for 
any ε > 0,

μ({w : |χA(w)| ≥ ε}) < ε,

and so μ(A) = 0. The converse is obvious.
2) In the particular case that T is linear, (I(μ), ρ) is a Banach function space X(μ) and (E, ‖.‖E) is 

a Banach space, Definition 3.1 coincides with the usual definition of μ-determined operator (see for 
example [25, 4.2, p.187]). Indeed, changing the distances in the argument above by the corresponding 
norms, we get that if A is a measurable set and the semivariation of the vector measure mT associated 
to the operator T in A,

‖mT ‖(A) := sup
B∈Σ

‖T (χA∩B)‖

is 0, then μ(A) = 0. This means that T is μ-determined in the standard sense.

In the case that a linear continuous operator from a Banach function space X(μ) to a Banach space 
E is μ-determined, we have that the map i in the maximal factorization through the space L1(mT ) of 
integrable functions that has been explained in the introduction, is injective. The next result provides the 
corresponding Lipschitz version. However, to get it we need another additional property for the Lipschitz 
operator T that plays the role of the order semi continuity of the operator in the linear case. This is usually 
obtained as a consequence of the order continuity of the Banach function space X(μ) (see for example [24, 
I]). Let us give the corresponding property for Lipschitz maps.

Definition 3.3. Let I(μ) a metric function space and E a metric space. We say that a Lipschitz map T :
I(μ) → E is order semi continuous if for each pair of dT -convergent sequences (fn), (gn) in I(μ), if we have 
that |fn − gn| ↓n 0 μ-a.e., then d(T (fn), T (gn)) →n 0.

If we introduce the hypothesis that the Lipschitz map T is μ-determined and order semi continuous, we 
get a better factorization theorem, which improve the previous results in two different ways. The first one is 
that the factorization is properly an extension. The second one is that the maximal domain is also a metric 
function space.

Theorem 3.4. Let (I(μ), ρ) be a metric function space and consider a Lipschitz map T : I(μ) → E with 
values in the metric space (E, d). Suppose that T is order semi continuous and μ-determined. Then T can 
be extended to a Lipschitz map T : I(μ)T → E with Lipschitz constant 1, that is,
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I(μ) T ��

i ���
��

��
��

�
E,

I(μ)T
T

		��������

where (I(μ)T , dT ) is a complete metric function space in which I(μ) is dense, dT is defined by

dT (f, g) := sup
A∈Σ

d(T (fχA), T (gχA)), f, g ∈ I(μ),

and i is an inclusion map with Lip(i) = Lip(T ).
Moreover, T is maximal, in the sense that I(μ)T is the biggest metric function space in which I(μ) is 

dense and to which the operator T can be extended as a Lipschitz operator.

Proof. As a consequence of Lemma 2.1, we have the factorization through the space I(μ)T with Lip(T ) = 1
and Lip(i) = Lip(T ). We only have to show that the fact that T is μ-determined implies that (I(μ)T , dT )
is a metric function space and that i : I(μ) → I(μ)T is an inclusion map. We have for f, g ∈ I(μ) that 
dT (f, g) ≤ Lip(T )ρ(f, g). Consider a Cauchy sequence (fn) in the quotient space I(μ)/dT that converges 
to x ∈ I(μ)T with respect the quotient metric dT . Since T is μ-determined, we have that (fn) is Cauchy 
in μ-measure, and so converges to a function h0 ∈ L0(μ). We identify the function h0 with the element of 
the completion x as follows. Note that the function h0 does not depend on the particular sequence that 
we choose: if (gn) is another sequence with limit x, the sequence defined as hn = fn/2 if n is even, and 
hn = g(n+1)/2 if n is odd, dT converges also to x and so is dT -Cauchy. Therefore, converges to h0 in the 
Hausdorff topology given by the convergence in μ-measure, and so each subsequence (fn) and (gn) must 
have the same limit.

This allows to construct a map k : I(μ)T → L0(μ) by x �→ h0. To see that k is in fact injective we 
need to use the order semi continuity of T . Indeed, if there are two different elements x, y ∈ IT (μ) such 
that k(x) = k(y), there are two different sequences (fn) and (gn) that converge in μ-measure to the same 
function h0 = k(x) = k(y) ∈ L0(μ). Therefore, there are subsequences (fnk

) and (gnk
) of (fn) and (gn), 

respectively, such that

• limk dT (fnk
, x) = 0,

• limk dT (gnk
, y) = 0, and

• limk fnk
= limk gnk

= h0 μ-a.e.

Consider the inequalities

dT (x, y) ≤ dT (fnk
, x) + dT (gnk

, y) + dT (fnk
, gnk

).

By the definition of dT , there are Ak ∈ Σ such that

dT (fnk
, gnk

) ≤ d(T (fnk
χAk

), T (gnk
χAk

)) + 1/k.

Note that

|fnk
χAk

− gnk
χAk

| = |fnk
− gnk

|χAk
≤ |fnk

− gnk
| ↓k 0

μ-a.e., and then using the fact that T is order semi continuous, we get that limk d(T (fnk
χAk

), T (gnk
χAk

)) =
0. Thus
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dT (x, y)
≤ lim

k
dT (fnk

, x) + lim
k

dT (gnk
, y) + lim

k
d(T (fnk

χAk
), T (gnk

χAk
)) + lim

k
1/k = 0,

what gives a contradiction with the fact that dT (x, y) > 0.
Let us prove now that k(I(μ)T ) is a function ideal set; that is, for every h0 ∈ k(I(μ)T ) and A ∈ Σ, 

h0χA ∈ k(I(μ)T ). Let x ∈ I(μ)T be so that k(x) = h0 and take a sequence (fn) in I(μ)/dT converging to 
x. Then dT (fnχA, fmχA) ≤ dT (fn, fm) and so (fnχA) is dT -Cauchy. Since T is μ-determined, we have that 
this sequence converges also in μ-measure to a function hA ∈ L0(μ). On the other hand, (fn) converges in 
μ-measure to h0 and so (fnχA) converges in μ-measure to h0χA too. Therefore, we have the μ-a.e equality 
h0χA = hA ∈ k(I(μ)T ) as we wanted to show.

We have already identified via k the space I(μ)T with a subset of L0(μ) that satisfies that k(I(μ)T )χA ⊂
k(I(μ)T ). Thus, we can use this identification to consider from now on I(μ)T as a subset of L0(μ) endowed 
with the metric function dT to define a metric function space.

Moreover, let us see that if f, g ∈ I(μ) are such that dT (f, g) = 0 then f = g μ-a.e.; that is, the map 
i : I(μ) → I(μ)T is injective. Indeed, if we define fn = f when n is odd and fn = g when n is even then the 
sequence (fn) is clearly dT -Cauchy. As T is μ-determined it follows that (fn) is Cauchy in μ-measure and 
so f = g μ-a.e.

Identifying I(μ)T with k(I(μ)T ), let us consider the distance

dT,k : k(I(μ)T ) × k(I(μ)T ) → R

given by dT,k(k(x), k(y)) = dT (x, y). We prove that (k(I(μ)T ), dT,k) is a metric function space, i.e.

dT,k(k(x)χA, k(y)χA) ≤ dT,k(k(x), k(y))

for any x, y ∈ I(μ)T . Take hn, fn ∈ I(μ) dT -converging to x, y respectively. As above we have that hn, fn
converge μ-a.e. to h0 = k(x) and f0 = k(y) respectively. The sequences χAhn and χAfn converge μ-a.e. to 
χAh0 and χAf0 respectively and since both sequences are dT -Cauchy and T is μ-determined then χAhn and 
χAfn converge μ-a.e. to some hA, fA ∈ L0(μ) respectively. Since I(μ)T is complete, the sequences χAhn and 
χAfn also converge to some xA and yA in I(μ)T respectively. Then,

hA = h0χA = k(xA) and fA = f0χA = k(yA).

Hence,

dT,k(h0χA, f0χA) = dT (xA, yA) = lim
n

dT (χAhn, χAfn)

= lim
n

dT (χAhn, χAfn) ≤ lim
n

dT (hn, fn)

= lim
n

dT (hn, fn) = dT (x, y) = dT,k(h0, f0).

Clearly T |I(μ) = T .
Finally, the maximality of T is easy to see. Indeed, take another extension T0 : J → E such that 

i0 : I(μ) → J is a continuous inclusion and its range is dense in (J, ρ), which is a metric function space (and 
so included in L0(μ)). A direct application of Lemma 2.3 gives the result. �

In the case of Banach spaces, this result provides a “genuine Lipschitz” extension theorem not necessarily 
preserving linearity but acting on linear structures. We need an additional requirement for preserving the 
linear structure of the factorization space that is related with the dT -continuity of the operations of the 
linear space.
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Definition 3.5. Let E be a complete metric space and X(μ) be a Banach function space. We say that the 
Lipschitz operator T : X(μ) → E is linear-space-preserving if for every pair of dT -Cauchy sequences (fn)
and (gn) in X(μ) and a, b ∈ R, we have that the sequence (afn + bgn) is also dT -Cauchy.

Corollary 3.6. Let X(μ) be a Banach function space, E a complete metric space, and let T : X(μ) → E

be a semi order continuous μ-determined Lipschitz map. Then T can be extended to a maximal Lipschitz 
map T : X(μ)T → E —in the sense of Theorem 3.4—, with Lipschitz constant 1, where (X(μ)T , dT ) is a 
complete metric function space in which the linear space X(μ) is dense.

Moreover, if T is linear-space-preserving, then X(μ)T is a linear metric function space.

Proof. It is a direct consequence of Theorem 3.4. Only the “moreover” part needs a proof. Take f0, g0 ∈
X(μ)T , a, b ∈ R and consider sequences (fn) and (gn) in X(μ) that dT -converge to f0 and g0, respectively. 
Then by hypothesis we have that (afn + bgn) ⊂ X(μ) is dT -Cauchy. Then it converges to an element h0 of 
X(μ)T , that we know that can be represented as a (class of) measurable function(s).

On the other hand, we have that (afn) converges in μ-measure to af0, and (bgn) to bg0. Therefore, 
(afn+bgn) converges in μ-measure to af0+bg0. Since T is μ-determined, we have that (afn+bgn) converges 
in μ-measure to h0. Consequently, we have that af0 + bg0 = h0 ∈ X(μ)T , and the result is proved. �
Remark 3.7.

1) Corollary 3.6 provides a useful application. Under the assumptions of Theorem 3.4, if there is another 
Banach function space Z(μ) containing X(μ) such that the second one is dense in the first one and 
T can be extended to Z(μ), then we know that Z(μ) is included in X(μ)T . Moreover, although there 
is no reason to assume that the topology in X(μ)T is normable, in the case that T is linear-space-
preserving we have that there is a (linear) inclusion of Z(μ) into X(μ)T . This opens the door to find 
new maximality results on Lipschitz maps acting in Banach function spaces, in cases in which at least 
the linear structure of the space is preserved.

2) If the range space E is a Banach space Y , we have an explicit formula for the metric function dT as

dT (f, g) = sup
A∈Σ

‖T (fχA) − T (gχA)‖Y , f, g ∈ X(μ)

that suggests the relation with the linear case and the equivalent norm for the maximal space

‖f‖T = sup
A∈Σ

‖T (fχA)‖Y

for any f ∈ I(μ). Recall that in this case, the maximal space is the space of integrable functions L1(mT ). 
Note that ‖.‖T determines a norm in the quotient space X(μ)/‖.‖T and X(μ)T is its completion endowed 
with the extended norm. Therefore, (X(μ)T , ‖.‖T ) becomes a Banach space in this case (see [25, Ch.4]).

4. The optimal metric for Lipschitz operators acting in subsets of metric function spaces

In Section 2 we have shown how to factor Lipschitz maps T that are defined on subsets S of metric function 
spaces I(μ). To get such a factorization, the operator had to be defined on the whole metric function space 
I(μ). In this section we will see that we can get such a factorization just considering Lipschitz maps defined 
on S instead of in the whole I(μ). In order to get this, we need to ask for a lattice structure on the range 
space. The order relation in the range space will play a relevant role.

Let ν be a measure. We say that a metric space (E, d), where E is a vector lattice of (classes of ν-a.e. 
equal) measurable real functions, is a metric vector lattice if for each x, y ∈ E, d(x, y) ≤ ‖y − x‖L∞(ν).
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Definition 4.1. Let (I(μ), ρ) be a metric function space, and let A ⊂ I(μ) be a subset. We define the metric 
function space generated by A as the space

I(A, μ) :=
{
fχA : f ∈ A, A ∈ Σ

}
endowed with the metric ρ.

In a vector lattice E, the supremum u ∈ E of an order bounded set {xr}r∈R set is the unique element 
satisfying xr ≤ u for every r ∈ R. Recall that a vector lattice E is order complete if every order bounded 
set has a supremum.

Theorem 4.2. Let (I(μ), ρ) be a metric function space and consider a subset A ⊆ I(μ). Let (E, d) be an 
order complete metric vector lattice of real valued functions that contains all constant functions. Consider 
a Lipschitz map T : A → E such that T (A) is order bounded. Then there is a factorization of T as

A T ��

i ��













 E,

AT

T

����������

such that (AT , ρT ) is a complete metric space containing i(A) as a dense subspace, T is a Lipschitz map 
with constant 1, and i is a Lipschitz map with Lip(i) ≤ Lip(T ).

Proof. Consider the metric function space I(A, μ) ⊆ I(μ) generated by A. The set {T (g) : g ∈ A} is by 
hypothesis order bounded, and so by the order completeness of E there is a lower upper bound u for it.

Now we claim that the formula

T̂ (fχA) := sup
g∈A

{T (g) − Lip(T )ρ(fχA, g)}

gives an extension of T to I(A, μ) that is Lipschitz with constant Lip(T̂ ) = Lip(T ). Recall that we are 
assuming that the range is a metric space having a linear lattice structure, and it is also order bounded by 
an element u ∈ E. We have that for each g ∈ A,

T (g) − Lip(T )ρ(fχA, g) ≤ T (g) ≤ u

and so

{T (g) − Lip(T )ρ(fχA, g) : g ∈ A}

is also order bounded. By the order completeness of E there is a supremum for this set, what gives that T̂
is well-defined.

Let us show now that 1) T̂ is an extension of T , and 2) that T̂ is Lipschitz with Lip(T̂ ) = Lip(T ).

1) First suppose that f ∈ A. Then T̂ (f) = supg∈I{T (g) − Lip(T )ρ(f, g)} ≥ T (f), and for every g ∈ A,

T (g) − T (f) ≤ Lip(T )ρ(f, g)

and so
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T (g) − Lip(T )ρ(f, g) ≤ T (f),

what gives T̂ (f) = T (f).
2) If A, B ∈ Σ and f, h ∈ A,

T̂ (fχA) − T̂ (hχB) ≤ sup
g∈A

{T (g) − Lip(T )ρ(fχA, g)} − sup
v∈A

{T (v) − Lip(T )ρ(hχB , v)}

≤ sup
w∈A

{T (w) − T (w) − Lip(T )ρ(fχA, w) + Lip(T )ρ(hχB , w)}

≤ sup
w∈A

{Lip(T )ρ(hχB , fχA)} = Lip(T )ρ(hχB , fχA).

Thus, taking into account that f and h can be interchanged in the computations, we get

|T̂ (fχA) − T̂ (hχB)| ≤ Lip(T )ρ(hχB , fχA),

and so Lip(T̂ ) ≤ Lip(T ). Since the converse inequality is direct, we get Lip(T̂ ) = Lip(T ).

Then, by Lemma 2.1 applied to I(A, μ) and T̂ , the map T can be factored through a map i with Lipschitz 
constant Lip(i) ≤ Lip(T ) and a Lipschitz operator T : AT → E with Lipschitz constant equal to 1, where 
(AT , dT ) is a complete metric space in which i(A) is dense in AT , and dT is the quotient metric associated 
to the pseudo-metric

dT (f, g) := sup
A∈Σ

d(T̂ (fχA), T̂ (gχA)), f, g ∈ A. �
Basic examples of the result above are given when T is real valued, or the range of T is order bounded 

as a subset of an order complete Banach lattice, for example, a Banach function space.
Let us finish the paper by giving an extension theorem for Lipschitz operators on L0(μ)—endowed with 

its natural metric d0—that can be obtained from our results. As we said in the Introduction, to provide new 
tools for the analysis of Lipschitz operators on this space was one of the main motivations of the present 
paper. Recall that

d0(f, g) =
∫
Ω

|f − g|
|f − g| + 1 dμ, f, g ∈ L0(μ),

and

d0(f, g) ≥
∫
A

|f − g|
|f − g| + 1 dμ =

∫
Ω

|fχA − gχA|
|fχA − gχA| + 1 dμ = d0(fχA, gχA),

for all A ∈ Σ. Thus, (L0(μ), d0) is a (complete) metric function space.

Corollary 4.3. Let (I(μ), ρ) a metric function space. Consider an injective Lipschitz map T : I(μ) → L0(μ)
such that T (I(μ)) is order bounded. Then there exists a factorization for T as

I(μ) T ��

i ���
��

��
��

�
L0(μ),

I(μ)T
T

�����������
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where (I(μ)T , ρT ) is a complete metric space, i is an injective Lipschitz map with Lip(i) = Lip(T ), I(μ)T
contains i(I(μ)) as a dense subspace, and T is a Lipschitz map with constant 1.

Note that Theorem 3.4 asserts that I(μ)T is a metric function space under the assumption of being T
order semi continuous and μ-determined. In this case, the metric ρT is given by

ρT (f, g) := sup
A∈Σ

∫
Ω

|T (fχA) − T (gχA)|
|T (fχA) − T (gχA)| + 1

dμ, f, g ∈ I(μ)T ,

where

T (fχA) := sup
g∈I(μ)

{T (g) − ρ(fχA, g)}.
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