Contents

Contents	i
List of Figures	viii
List of Tables	xiii
List of Equations	xiv
Nomenclature	xvii
Chapter 1 – Introduction	1
1. The imperative for transitioning to sustainable transportation: low carbon fuels as a solution for reducing transport sector emissions	2
2. Alternatives for addressing carbon emissions in the transportation sector	3
3. Challenges and concerns related to tailpipe emissions from internal combustion engine vehicles using low carbon fuels	6
4. Document content and structure	7
5. References	10
Chapter 2 – A Comprehensive Review of Low Carbon Fuels for Diesel Engines	15
1. Introduction	16
2. Types of low carbon fuels for compression ignition engines	17
2.1. Biofuels: from the first generation to the state-of-the-art	18
2.1.1. Fatty Acid Methyl Ester and Rapeseed Methyl Ester	19
2.1.2. Hydrotreated vegetable oil	25
2.2. Synthetic fuels: recycling existing carbon	30

2.2.1. Fischer-Tropsch Diesel	31
2.2.2. OMEx	35
3. Low carbon fuel blends: achieving specific fuel characteristics	41
3.1. Multi-fuel blends	41
3.2. Additives	48
4. Optimizing the vehicle for low carbon fuels	51
4.1. Aftertreatment systems with low carbon fuels	51
4.2. Re-designing the engine for low carbon fuels	54
5. Challenges and barriers for low carbon fuels	55
6. Motivation of the study	57
7. Objectives of the study	58
8. References	60
Chapter 3 – Tools and Methodology	75
Chapter 3 – Tools and Methodology	75 77
1. Introduction	77
1. Introduction. 2. Experimental facilities.	77 78
1. Introduction. 2. Experimental facilities. 2.1. Multicylinder engine description.	77 78 78
1. Introduction. 2. Experimental facilities. 2.1. Multicylinder engine description. 2.1.1. Engine description.	77 78 78 78
1. Introduction. 2. Experimental facilities. 2.1. Multicylinder engine description. 2.1.1. Engine description. 2.1.2. Fuel injection system.	77 78 78 78 78 79
1. Introduction. 2. Experimental facilities. 2.1. Multicylinder engine description. 2.1.1. Engine description. 2.1.2. Fuel injection system. 2.1.3. Air management and exhaust gas recirculation systems.	77 78 78 78 78 79 80
1. Introduction. 2. Experimental facilities. 2.1. Multicylinder engine description. 2.1.1. Engine description. 2.1.2. Fuel injection system. 2.1.3. Air management and exhaust gas recirculation systems. 2.1.4. Engine control system.	77 78 78 78 78 79 80 80
1. Introduction. 2. Experimental facilities. 2.1. Multicylinder engine description. 2.1.1. Engine description. 2.1.2. Fuel injection system. 2.1.3. Air management and exhaust gas recirculation systems. 2.1.4. Engine control system. 2.2. Test cell characteristics.	 77 78 78 78 79 80 80 81

2.2.4. Mass flow measurement	83
2.2.5. Emissions measurement	84
2.2.6. Soot measurement	86
2.2.7. Data acquisition systems	87
3. Fuel properties and characteristics	88
4. Theoretical tools	94
4.1. Combustion diagnosis model	94
4.1.1. Mean effective pressure	95
4.1.2. Combustion efficiency	96
4.2. Equivalent fuel consumption	97
5. Testing methodologies	97
5.1. Stationary operation	97
5.2. Calibration types and test matrix	99
5.2.1. Drop-in calibration	99
5.2.2. Calibration optimization	100
6. Statistical modelling approach	101
6.1. Design of Experiments (DOE)	101
6.1.1. Screening	103
6.1.2. Factorial tests	106
6.1.3. Combined data	107
6.2. Modelling	108
6.3. Optimization	110
6.4. Validation	111
7. Summary and conclusions	114

8. References	16
---------------	----

Chapter 4 – Drop-in use of low carbon fuel blends in compression ignition engines	121
1. Introduction	122
2. Combustion, performance and emissions	123
2.1. Engine settings: reaching drop-in operation	123
2.2. Combustion under drop-in calibration settings	129
2.3. Performance and emissions of drop-in fuel operation	133
2.3.1. Fuel energy utilization	133
2.3.2. Criteria pollutant evaluation	136
3. Unmeasured effects of the use of drop-in fuels	139
4. Summary and conclusions	142
5. References	144
Chapter 5 – Optimization of low carbon fuel blends calibration in compression ignition engines	147
	147 149
engines	
engines 1. Introduction	149
engines 1. Introduction	149 151
engines 1. Introduction. 2. Engine responses with DOE modelling. 2.1. Low-to-medium-load engine performance.	149 151 155
engines 1. Introduction. 2. Engine responses with DOE modelling. 2.1. Low-to-medium-load engine performance. 2.2. High-load engine performance.	149 151 155 159
engines 1. Introduction. 2. Engine responses with DOE modelling. 2.1. Low-to-medium-load engine performance. 2.2. High-load engine performance. 3. Fixed combustion phasing analysis.	149 151 155 159 161
engines 1. Introduction. 2. Engine responses with DOE modelling. 2.1. Low-to-medium-load engine performance. 2.2. High-load engine performance. 3. Fixed combustion phasing analysis. 3.1. Fuel consumption impact.	 149 151 155 159 161 162
engines 1. Introduction. 2. Engine responses with DOE modelling. 2.1. Low-to-medium-load engine performance. 2.2. High-load engine performance. 3. Fixed combustion phasing analysis. 3.1. Fuel consumption impact. 3.2. NOx emissions impact.	 149 151 155 159 161 162 164
engines 1. Introduction. 2. Engine responses with DOE modelling. 2.1. Low-to-medium-load engine performance. 2.2. High-load engine performance. 3. Fixed combustion phasing analysis. 3.1. Fuel consumption impact. 3.2. NOx emissions impact. 3.3. Soot emissions impact.	149 151 155 159 161 162 164 166

4.3. NOx emissions impact	176
4.4. Soot emissions impact	180
5. Experimental optimized responses analysis	184
6. Summary and conclusions	188
6.1. Low-to-medium load and high load performance	188
6.2. Fixed combustion phasing	189
6.3. Fixed calibration settings	190
6.4. Optimized calibration	191
7. References	192
8. Appendix	194
8.1. Optimization calibration settings	194
Chapter 6 – Life Cycle Analysis of Low Carbon Fuels for Light-Duty Combustion Engine Vehicles	197
Engine Vehicles	197 199
Engine Vehicles	199
Engine Vehicles	199 200
Engine Vehicles	199 200 201
Engine Vehicles. 1. Introduction. 1.1. Life cycle analysis: fundamentals and conventions for evaluating the impact of road vehicles. 1.1.1. Goal and scope definition. 1.1.2. Lifecycle inventory (LCI)	 199 200 201 202
Engine Vehicles. 1. Introduction. 1.1. Life cycle analysis: fundamentals and conventions for evaluating the impact of road vehicles. 1.1.1. Goal and scope definition. 1.1.2. Lifecycle inventory (LCI) 1.1.3. Lifecycle impact assessment (LCIA)	 199 200 201 202 203
Engine Vehicles. 1. Introduction. 1.1. Life cycle analysis: fundamentals and conventions for evaluating the impact of road vehicles. 1.1.1. Goal and scope definition. 1.1.2. Lifecycle inventory (LCI) 1.1.3. Lifecycle impact assessment (LCIA) 1.1.4. Interpretation, reporting and review.	 199 200 201 202 203 205
Engine Vehicles. 1. Introduction. 1.1. Life cycle analysis: fundamentals and conventions for evaluating the impact of road vehicles. 1.1.1. Goal and scope definition. 1.1.2. Lifecycle inventory (LCI) 1.1.3. Lifecycle impact assessment (LCIA) 1.1.4. Interpretation, reporting and review. 1.2. Study contributions, novelty, and implications.	 199 200 201 202 203 205 206

2.1.2. Cradle-to-road methodology	208
2.1.3. Functional unit, energy flow and system boundaries	208
2.1.4. Impact categories	211
2.2. Life cycle inventory	212
2.2.1. Vehicle manufacturing	212
2.2.2. Vehicle maintenance	215
2.2.3. Energy production and distribution	216
2.2.4. Vehicle operation: WTT, TTW & WTW	217
3. Impact assessment of low carbon fuel use in light-duty vehicles	229
3.1. Stationary assessment	229
3.2. Driving cycle assessment	233
3.3. Cradle-to-road impact assessment	236
4. Summary and conclusions	245
4.1. Global Warming Potential – GWP	245
4.2. Terrestrial acidification – TAP; fine particle matter formation – PMFP & human health ozone formation – HOFP	246
4.3. Water consumption – WCP	246
5. References	247
6. Appendix	257
6.1. Life cycle inventory for the vehicle manufacturing	257
6.1.1. Glider	257
6.1.2. Drivetrain	259
Chapter 7 – Conclusions and suggestions for future work	263
1. Introduction	264

Bibliography	273
3.2. Powertrain hybridization	270
3.1. Aftertreatment system evaluation and vehicle tests	270
3. Suggestions for future work	269
2.3. Life Cycle Analysis of Low Carbon Fuels for Light-Duty Combustion Engine Vehicles	269
2.2. Optimization of low carbon fuel blends calibration in compression ignition engines	267
2.1. Drop-in use of low carbon fuel blends in compression ignition engines	266
2. Summary and conclusions	264

List of Figures

Chapter 1 - Introduction

Figure 1. GHG emissions by sector for Europe and the World	2
Figure 2. Different alternatives to solving the GHG dilemma in the transport sector	5
Figure 3. Main challenges on the emissions of ICEVs	6
Figure 4. Graphical representation of the argument line followed in the investigation	9
Chapter 2 – A Comprehensive Review of Low Carbon Fuels for Diesel Engines	
Figure 1. Classification of fuels by different criteria	18
Figure 2. FAME production pathways	21
Figure 3. NOx-soot tradeoff compared to diesel across different studies with FAME	24
Figure 4. HC-CO tradeoff compared to diesel across different studies with FAME	25
Figure 5. HVO production pathways	27
Figure 6. NOx-soot tradeoff compared to diesel across different studies with HVO	29
Figure 7. HC-CO tradeoff compared to diesel across different studies with HVO	29
Figure 8. Synthetic diesel production pathways	31
Figure 9. NOx-soot tradeoff compared to diesel across different studies with FT-Diesel	35
Figure 10. NOx-soot tradeoff compared to diesel across different studies with OMEx	37
Figure 11. HC-CO tradeoff compared to diesel across different studies with OMEx	39
Chapter 3 – Tools and methodology	
Figure 1. Piston bowl profile	79
Figure 2. Test cell schematic	81
Figure 3. Low Carbon Fuel (LCF) blends volumetric composition	88
Figure 4. Bivariate correlation between relevant fuel properties	91
Figure 5. Balance of fuel properties for the studied LCF blends	93

Figure 6. Schematic description of the drop-in calibration methodology	100
Figure 7. Three-dimensional Box-Behnken design representation	102
Figure 8. Three-dimensional and two-dimensional screening design representation	103
Figure 9. One-dimensional representation of the "one at a time" screening methodology for a single calibration parameter	104
Figure 10. Representation of the effect sizing evaluation for the reduction of parameters from 8 to 6 for responses BSNOx, soot and BSFC with the combined normalized effect (CNR)	104
Figure 11. Three-dimensional and two-dimensional 2-k factorial design representation	106
Figure 12. Three-dimensional and two-dimensional representation of the combined screening and 2-k factorial design	107
Figure 13. Example of fitted vs. experimental values and residuals vs. experimental values for the linear model	109
Figure 14. Soot, BSNOx and BSFC map from the linear regression models	111
Figure 15. Fitted vs. experimental values for BSFC, BSNOx and BSSoot in the validation dataset outside of the calibration data for the models	113
Chapter 4 – Drop-in use of low carbon fuel blends in compression ignition engines	
Chapter 4 – Drop-in use of low carbon fuel blends in compression ignition engines Figure 1. Pedal requirement for the different LCF blends at the tested operating conditions	124
	124 125
Figure 1. Pedal requirement for the different LCF blends at the tested operating conditions	
Figure 1. Pedal requirement for the different LCF blends at the tested operating conditions Figure 2. Achieved load for the different LCF blends at 3750 rpm and 100% pedal	125
Figure 1. Pedal requirement for the different LCF blends at the tested operating conditions Figure 2. Achieved load for the different LCF blends at 3750 rpm and 100% pedal Figure 3. Injection settings for the different LCF blends under the drop-in calibration Figure 4. Charge renovation settings for the different LCF blends under the drop-in	125 126
 Figure 1. Pedal requirement for the different LCF blends at the tested operating conditions Figure 2. Achieved load for the different LCF blends at 3750 rpm and 100% pedal Figure 3. Injection settings for the different LCF blends under the drop-in calibration Figure 4. Charge renovation settings for the different LCF blends under the drop-in calibration Figure 5. Peak pressure of Ref. Diesel compared with LCD100, LCD66 and LCD33; 	125 126 128
 Figure 1. Pedal requirement for the different LCF blends at the tested operating conditions Figure 2. Achieved load for the different LCF blends at 3750 rpm and 100% pedal Figure 3. Injection settings for the different LCF blends under the drop-in calibration Figure 4. Charge renovation settings for the different LCF blends under the drop-in calibration Figure 5. Peak pressure of Ref. Diesel compared with LCD100, LCD66 and LCD33; MaxOME66 and MaxOME33; RE100 and R33 Figure 6. Comparison of the Heat Release Rate (HRR) of Ref. Diesel with LCD100, LCD66 	125 126 128 130

Figure 9. Brake-specific fuel consumption (BSFC) and equivalent BSFC (BSFCeq) for the different LCF blends under the drop-in calibration	133
Figure 10. Energy distribution for Ref. Diesel under the drop-in calibration at the tested operating conditions	134
Figure 11. Gross brake efficiency (GBE); combustion inefficiency; and exhaust energy loss for the different LCF blends under the drop-in calibration	135
Figure 12. Brake-specific NOx emissions (BSNOx) for the different LCF blends under the drop-in calibration	137
Figure 13. Brake-specific soot emissions (BSSoot) for the different LCF blends under the drop-in calibration	138
Figure 14. Brake-specific HC emissions (BSHC) and Brake-specific CO emissions (BSHC) for the different LCF blends under the drop-in calibration	139
Figure 15. Injector usage summary including the operation time and the fuels used before breakage	140
Figure 16. Relation between the wear scar diameter, the oxygen content, the water content and the viscosity of the fuels	141
Chapter 5 – Optimization of low carbon fuel blends calibration in compression ignition	
Chapter 5 – Optimization of low carbon fuel blends calibration in compression ignition engines Figure 1. Schematic of the analysis approach of the chapter	150
engines	150 155
engines Figure 1. Schematic of the analysis approach of the chapter Figure 2. Correlation matrix of the optimization space for the BSFC, BSNOx, Soot and CA50	
 engines Figure 1. Schematic of the analysis approach of the chapter Figure 2. Correlation matrix of the optimization space for the BSFC, BSNOx, Soot and CA50 for the LCD100, LCD66 and LCD33 fuels at the operating condition 2000 rpm @ 8 bar Figure 3. Correlation matrix of the optimization space for the BSFC, BSNOx, Soot and CA50 	155
engines Figure 1. Schematic of the analysis approach of the chapter Figure 2. Correlation matrix of the optimization space for the BSFC, BSNOx, Soot and CA50 for the LCD100, LCD66 and LCD33 fuels at the operating condition 2000 rpm @ 8 bar Figure 3. Correlation matrix of the optimization space for the BSFC, BSNOx, Soot and CA50 for the MaxOME66 and MaxOME33 fuels at the operating condition 2000 rpm @ 8 bar Figure 4. Correlation matrix of the optimization space for the BSFC, BSNOx, Soot and CA50	155 157
 engines Figure 1. Schematic of the analysis approach of the chapter Figure 2. Correlation matrix of the optimization space for the BSFC, BSNOx, Soot and CA50 for the LCD100, LCD66 and LCD33 fuels at the operating condition 2000 rpm @ 8 bar Figure 3. Correlation matrix of the optimization space for the BSFC, BSNOx, Soot and CA50 for the MaxOME66 and MaxOME33 fuels at the operating condition 2000 rpm @ 8 bar Figure 4. Correlation matrix of the optimization space for the BSFC, BSNOx, Soot and CA50 for the R33 and RE100 fuels at the operating condition 2000 rpm @ 8 bar Figure 5. Correlation matrix of the optimization space for the BSFC, BSNOx, Soot and CA50 	155 157 158
engines Figure 1. Schematic of the analysis approach of the chapter Figure 2. Correlation matrix of the optimization space for the BSFC, BSNOx, Soot and CA50 for the LCD100, LCD66 and LCD33 fuels at the operating condition 2000 rpm @ 8 bar Figure 3. Correlation matrix of the optimization space for the BSFC, BSNOx, Soot and CA50 for the MaxOME66 and MaxOME33 fuels at the operating condition 2000 rpm @ 8 bar Figure 4. Correlation matrix of the optimization space for the BSFC, BSNOx, Soot and CA50 for the R33 and RE100 fuels at the operating condition 2000 rpm @ 8 bar Figure 5. Correlation matrix of the optimization space for the BSFC, BSNOx, Soot and CA50 at the operating condition 3750 rpm @ max. load	155 157 158 160
 engines Figure 1. Schematic of the analysis approach of the chapter Figure 2. Correlation matrix of the optimization space for the BSFC, BSNOx, Soot and CA50 for the LCD100, LCD66 and LCD33 fuels at the operating condition 2000 rpm @ 8 bar Figure 3. Correlation matrix of the optimization space for the BSFC, BSNOx, Soot and CA50 for the MaxOME66 and MaxOME33 fuels at the operating condition 2000 rpm @ 8 bar Figure 4. Correlation matrix of the optimization space for the BSFC, BSNOx, Soot and CA50 for the R33 and RE100 fuels at the operating condition 2000 rpm @ 8 bar Figure 5. Correlation matrix of the optimization space for the BSFC, BSNOx, Soot and CA50 at the operating condition 3750 rpm @ max. load Figure 6. BSFC at different loads under fixed CA50 values 	155 157 158 160 163

Figure 10. Effect of fuel blend properties over the normalized required fuel mass at different engine conditions	170
Figure 11. Effect of fuel blend properties over the BSFC at different engine conditions for cases with equal settings	172
Figure 12. BSFC at different engine conditions with equal engine settings	175
Figure 13. Effect of fuel blend properties over the BSNOx at different engine conditions for cases with equal settings	178
Figure 14. BSNOx at different engine conditions with equal engine settings	179
Figure 15. Effect of fuel blend properties over the BSSoot at different engine conditions for cases with equal settings	180
Figure 16. BSSoot at different engine conditions with equal engine settings	183
Figure 17. BSFC comparison for the optimized vs. drop-in calibration	185
Figure 18. BSNOx (top) and BSSoot (bottom) comparison for the optimized vs. drop-in calibration	186
Figure 19. BSHC (top) and BSCO (bottom) comparison for the optimized vs. drop-in calibration	187
Chapter 6 – Life Cycle Analysis of Low Carbon Fuels for Light-Duty Combustion Engine Vehicles	
Figure 1. Overview of the impact categories that are covered in the ReCiPe2016 method and their relation to the areas of protection	205
Figure 2. Vehicle system boundaries and elementary flows during the cradle-to-road process	209
Figure 3. Schematic for the LCF production assuming renewable sources of energy and raw components	210
Figure 4. GWP distribution for the vehicle manufacturing material stage (without assembly energy)	213
Figure 5. Speed profile for the class 3b WLTC	219
Figure 6. Engine map discretization schematic	221
Figure 7. BSFC difference between the complete and simplified engine maps for the	222

Figure 7. BSFC difference between the complete and simplified engine maps for the 222 reference diesel fuel

Figure 8. Difference in the BSNOx between the complete and simplified engine maps for the reference diesel fuel	224
Figure 9. GT-Power vehicle model schematic	225
Figure 10. Distribution of the engine operating conditions during the WLTP cycle for different vehicle segments	226
Figure 11. Cycle fuel consumption comparison between the complete and simplified engine map	227
Figure 12. Cycle NOx and soot emissions comparison between the complete and simplified engine map	228
Figure 13. TTW CO2 emissions for the stationary operating conditions	231
Figure 14. WTW CO2 emissions for the stationary operating conditions	232
Figure 15. Vehicle operation fuel consumption in liters per 100 km	233
Figure 16. Vehicle operation CO ₂ emissions per km. The dashed lines represent the reference diesel result	234
Figure 17. Vehicle operation NOx emissions per km. The dashed lines represent the reference diesel result	235
Figure 18. Vehicle operation soot emissions per km. The dashed lines represent the reference diesel result	236
Figure 19. Life cycle GWP for three vehicle segments manufactured in 2023 using LCFs for 10 years or 120000 km	238
Figure 20. Summarized life cycle GWP for three vehicle segments manufactured in 2023 using LCFs for 10 years or 120000 km	239
Figure 21. Summarized life cycle TAP for three vehicle segments manufactured in 2023 using LCFs for 10 years or 120000 km	241
Figure 22. Summarized life cycle PMPF for three vehicle segments manufactured in 2023 using LCFs for 10 years or 120000 km	242
Figure 23. Summarized life cycle HOFP for three vehicle segments manufactured in 2023 using LCFs for 10 years or 120000 km	243
Figure 24. Summarized life cycle WCP for three vehicle segments manufactured in 2023 using LCFs for 10 years or 120000 km	244

List of Tables

Chapter 2 – A Comprehensive Review of Low Carbon Fuels for Diesel Engines			
Table 1. Chemical and physical properties of different pure fuels	46		
Table 2. Chemical and physical properties of different fuel blends	47		
Chapter 3 – Tools and methodology			
Table 1. Engine characteristics	78		
Table 2. Injection system characteristics	79		
Table 3. Test cell instrumentation summary	82		
Table 4. Horiba MEXA 7100 D-EGR components, measurement principles range, and associated uncertainty	84		
Table 5. Main fuel properties at standard conditions	90		
Table 6. Minimum targets for the LCF calibration optimization	101		
Chapter 5 – Optimization of low carbon fuel blends calibration in compression ignition engines			
Table 1. Calibration ranges for the different fuels at the tested operating conditions	152		
Table 2. Selected CA50 range for each operating condition	161		
Table 3. Iso-setting calibration setting levels			
Chapter 6 – Life Cycle Analysis of Low Carbon Fuels for Light-Duty Combustion Engine Vehicles			
Table 1. Vehicle and driving strategy characteristics	207		
Table 2. Impact categories overview	211		
Table 3. Summarized inventory data for the vehicle manufacture	214		
Table 4. Vehicle manufacture GWP in kg CO ₂ -eq/kg vehicle from selected literature	215		
Table 5. Summarized inventory data for the vehicle maintenance	216		
Table 6. Well-to-tank carbon intensity for the different fuels assuming completely renewable energy sources and raw materials			

Table 7. Tank-to-wheel carbon intensity for the different fuels assuming complete 218 combustion

 Table 8. Emission correction coefficients for the WLTP cycle using simplified engine maps
 229

List of equations

Chapter 3 – Tools and methodology

Equation 1

$$c_{wet} = k_w \cdot c_{dry} \tag{85}$$

Equation 2

$$k_{w} = \left(\frac{1}{1 + \alpha \times 0.005 \times (c_{CO_{2}} + c_{CO}) - \frac{1.608 \times H_{a}}{1000 + 1.608 \times H_{a}}}\right) \times 1.008$$
85

Equation 3
$$\dot{m}_{emission} = \left(x_i \cdot \frac{MW_{emission}}{MW_{exh}}\right) \cdot \dot{m}_{exh}$$
 86

Equation 4
$$SX = \frac{\dot{m}_{emission}}{P}$$
 86

Equation 5
$$EGR \ [\%] = \frac{CO_{2intake-dry} - CO_{2ambient}}{CO_{2exhaust-dry} - CO_{2ambient}} \times 100$$

Equation 6 soot
$$[mg/m^3] = \frac{1}{0.405} \cdot 4.95 \cdot FSN \cdot e^{(0.38 \cdot FSN)}$$
 87

Equation 7

$$r = \frac{\sum(x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum(x_i - \bar{x})^2 \sum(y_i - \bar{y})^2}}$$
89

Equation 8
$$\Delta HRL = m_{cyl} \cdot \Delta u_{cyl} + \Delta Q_w + p \cdot \Delta V - (h_{f,inj} - u_{f,g}) \cdot \Delta m_{f,evap} + R_{cyl} \quad 94$$
$$\cdot T_{cyl} \cdot \Delta m_{bb}$$

Equation 9

$$IMEP = \frac{\int_{-360}^{360} p dV}{V_{sweep}}$$
95

Equation 10 $COV_{IMEP} = \frac{\sigma_{IMEP_i}}{\overline{IMEP}} = \frac{\sqrt{\frac{1}{n}\sum_{i=1}^{n}(IMEP_i - \overline{IMEP})^2}}{\overline{IMEP}}$ 96

Equation 11
$$BTE = \frac{P_{brake}}{Q_{fuel}}$$
 96

Equation 12

$$\eta_{comb} = \frac{(\dot{m}_{air} + \dot{m}_{fuel})(LHV_{CO}X_{CO} + LHV_{HC}X_{HC})}{Q_{fuel}}$$
96

Equation 13

$$\eta_{exh} = \frac{(\dot{m}_{air} + \dot{m}_{fuel})(h_{exh @ T exhaust} - h_{exh @ T amb})}{Q_{fuel}}$$
97

Equation 14
$$\eta_{cool} = 1 - BTE - \eta_{exh} - \eta_{comb} - \eta_{mech}$$
 97

Equation 15

$$BSFC_{eq} = \frac{LHV_{LCF} \cdot \dot{m}_{LCF}}{LHV_{diesel} \cdot P}$$
97

Equation 16
$$SE_i = \frac{\sigma_i}{\sqrt{n}}$$
 105

Equation 17

$$SR_{i} = \frac{\frac{y_{2} - y_{1}}{x_{2} - x_{1}}}{SE_{i}}$$
105

Equation 18

$$NR_i = \frac{|SR_i - \min(|SR|)|}{\max(|SR|) - \min(|SR|)}$$
105

Equation 19

$$CNR_i = \sum_{response} NR_{iresponse}$$
105

xvi

Equation 20
$$Y = b_0 + \sum b_i X_i + \sum b_{ij} X_i X_j$$
 108

Equation 21
$$Z = c_1 x_1 + c_2 x_2 + \dots + c_n x_n$$
 110

Equation 22
$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n \le b_m$$
 110

Equation 23
$$x_1, x_2, ..., x_n \ge 0$$
 110

Chapter 6 – Life Cycle Analysis of Low Carbon Fuels for Light-Duty Combustion Engine Vehicles

Equation 1
$$k_{CO_2} = y_{C_{fuel}} \cdot \left(\frac{M_C + M_{O_2}}{M_C}\right)$$
 217

Equation 2
$$m_{CO_2} = k_{CO_2} \cdot m_{fuel}$$
 218

Equation 3
$$BSE_{diff.} = BSE_{simp.\ map} - BSE_{comp.\ map}$$
 222

Equation 4
$$E_{cycle} = c_{correction} \cdot E_{simplified map}$$
 229

Nomenclature

Acronyms

AFR	Air-to-Fuel Ratio
AP	Acidification Potential
ATS	Aftertreatment System
BMEP	Brake Mean Effective Pressure
BSEC	Brake Specific Energy Consumption
BSFC	Brake Specific Fuel Consumption
BSFCeq	Equivalent Brake Specific Fuel Consumption
BTE	Brake Thermal Efficiency
BTL CA50	Biomass-to-Liquid Combustion Phasing/Crank Angle at which 50 % of the heat from combustion has been released
CC	Catalytic Converter
CCS	Carbon Capture and Storage
CCU	Carbon Capture and Utilization
CDPF	Catalyzed Diesel Particulate Filter
CED	Cumulative Energy Demand
CFCs	Chlorofluorocarbons
CFPP	Cold Filter Plugging Point
CH4	Methane
CI	Compression Ignition
CN	Cetane Number
CNR	Combined Normalized Response
CO	Carbon Monoxide
CO2	Carbon Dioxide
COME	Castor Oil Methyl Ester
СР	Cloud Point
CR	Compression Ratio
DAC	Direct Air Capture
DI	Direct Injection
DICI	Direct Injection Compression Ignition
DMF	Dimethyl Furan
DNPE	Di-n-pentyl Ether
DOC	Diesel Oxidation Catalyst

DOE	Design of Experiments
DPF	Diesel Particulate Filter
ECU	Engine Control Unit
EEPS	Engine Exhaust Particle Sizer
EF	Environmental Footprint
EGR	Exhaust Gas Recirculation
EGT	Exhaust Gas Temperature
EOC	End of Combustion
EOL	End of Life
EP	Euthrophication Potential
ET	Energizing Time
EV	Electric Vehicle
EVO	Exhaust Valve Opening
FAME	Fatty Acid Methyl Ester
FFA	Free Fatty Acid
FID	Flame Ionization Detector
FIS	Fuel Injection System
FSN	Filter Smoke Number
FT	Fischer-Tropsch
FTIR	Fourier-transform infrared spectroscopy
FU	Functional Unit
GBE	Gross Brake Efficiency
GHG	Greenhouse Gas
GM	General Motors
GREET	Greenhouse Gases, Regulated Emissions and Energy Use in Technologies
GTL	Gas-to-Liquid
GWP	Global Warming Potential
HC	Hydrocarbons
HCLD	Heated Chemiluminescence Detector
HHV	Higher Heating Value
HOFP	Human Ozone Formation Potential
HPA	Heteropoly Acids
HRL	Total Heat Released
HRR	Heat Release Rates
HTP	Human Toxicity Potential
HVO	Hydrotreated Vegetable Oil
ICE	Internal Combustion Engine

ICEV	Internal Combustion Engine Vehicle
IDID	Internal Diesel Injector Deposits
IDT	Ignition Delay Time
IMEP	Indicated Mean Effective Pressure
IP	Injection Pressure
IQR	Interquartile Range
ISCC	International Sustainability and Carbon Certification
ISFC	Indicated Specific Fuel Consumption
ITE	Indicated Thermal Efficiency
IVC	Inlet Valve Closing
LCA	Life Cycle Assessment
LCF	Low Carbon Fuel
LCI	Life Cycle Inventory
LCIA	Life Cycle Impact Assessment
LHV	Lower Heating Value
LNT	Lean-Nox Trap
LO	Lemon Oil
LTHR	Low Temperature Heat Release
MFB	Mass Fraction Burned
MPD	Magneto-Pneumatic Detector
N2O	Nitrous Oxide
NDIR	Non-Dispersive InfraRed
NG	Natural Gas
NMVOC	Non-Methane Volatile Organic Compound
NO	Nitrogen Monoxide
NO2	Nitrogen Dioxide
NOx	Nitrogen Oxides
NP	Nanoparticles
NR	Normalized Response
NVH	Noise Vibration and Harshness
ODP	Ozone Depletion Potential
OEF	Organization Environmental Footprint
OESI	Oxygen Extended Sooting Index
OMEx	Oxymethylene Dimethyl Ethers
PAHs	Polycyclic Aromatic Hydrocarbons
PCS	Post-combustion Capture System
PEF	Product Environmental Footprint

5.00 <i>(</i> 5	
PKME	Pistacia Khinjuk Methyl Ester
PM	Particulate Matter
PMFP	Particle Matter Formation Potential
PODEs	Polyoxymethylene Ethers
POME	Palm Oil Methyl Ester
PRR	Pressure Rise Rates
PSO-NS	Particle Swarm Optimization-Novelty Search
PSZ	Partially Stabilized Zirconia
PTG	Power-to-Gas
PTL	Power-to-Liquid
PY	Pyrogallol
RDE	Real Driving Emissions
RME	Rapeseed Methyl Ester
RSB	Roundtable of Sustainable Biofuels
RSM	Response Surface Methodology
SCR	Selective Catalytic Reducer
SI	Spark Ignition
SO2	Sulfur Dioxide
SOC	Start of Combustion/State of Charge
SOI	Start of Injection
SR	Standardized Response
SX	Specific Emissions
TDC	Top Dead Center
THC	Total Hydrocarbon
TTW	Tank-to-Wheel
TWC	Three-way Catalyst
VGT	Variable Geometry Turbine
WCP	Water Consumption Potential
WLTC	Worldwide harmonized Light vehicles Test Cycle
WPO	Waste Plastic Oil
WSD	Wear Scar Diameter
WTT	Well-to-Tank
WTT CI	Well-to-Tank Carbon Intensity
WTW	Well-to-Wheel