
UNIVERSITAT POLITÈCNICA DE VALÈNCIA

Escuela Técnica Superior de Ingeniería de
Telecomunicación

Grandes modelos del lenguaje para la ayuda automática al
cumplimiento de reglamentos y normativas: Aplicación de

la tecnología a la regulación ISO14001

Trabajo Fin de Grado

Grado en Ingeniería de Tecnologías y Servicios de
Telecomunicación

AUTOR/A: Huertas Pastor, Jorge

Tutor/a: Colomer Granero, Adrián

CURSO ACADÉMICO: 2023/2024

NO COVER PAGE

Resumen

Últimamente he estado trabajando como becario en MAHLE Electronics SLU. Allí

descubrí lo ineficiente y tediosa que es la gestión de la información técnica, y no se limita

a esta única empresa.

Para resolver este problema, deberíamos encontrar una forma más eficiente de almacenar

información o pasar horas memorizando archivos PDF para no tener la necesidad de

buscarlos y, cuando se cambie una determinada norma, hacer todo el proceso otra vez.

Hay demasiadas regulaciones, con demasiadas variables, se actualizan constantemente

cada año y no existe un sistema para organizar toda esta información más allá del

anticuado explorador de archivos. Por eso vamos a proponer una solución alternativa.

Esta solución se basa en la idea de un asistente de inteligencia artificial personalizado que

extrae información de una base de datos predeterminada. La razón por la que esto es

necesario es que los motores de búsqueda habituales están demasiado repletos de

información y no son muy específicos cuando se trata de información técnica. Además,

no pueden acceder a archivos privados o confidenciales que contengan los datos

necesarios.

El objetivo es crear un asistente de inteligencia artificial que utilice algoritmos de

“knowledge retrieval” para extraer y sintetizar datos de una colección de archivos PDF.

La forma de interactuar con este asistente será a través de un chatbot de Telegram. Por lo

tanto, necesitaremos crear el asistente con la información y luego vincularlo a un chatbot

de Telegram para que podamos comunicarnos con él.

Para construir el asistente usaremos el código Python proporcionado por OpenAI y su

API asistente, luego lo vincularemos al chatbot de Telegram a través del ID del bot. Todo

esto se hará en código Python.

Finalmente, evaluaremos el rendimiento de este bot en la búsqueda y síntesis de

información respecto a un trabajador de MAHLE Electronics SLU. Este TFG evalúa el

desempeño del bot, su viabilidad y su potencial. Los resultados muestran cómo un espacio

de trabajo podría beneficiarse con la inclusión de este bot.

Palabras Clave: ChatGPT, Telegram Bot, Inteligencia artificial, Procesamiento del

Language Natural, Comunicación automatitzada.

Resum

Últimament he estat treballant com a becari a MAHLE Electronics SLU. Allà vaig

descobrir que ineficient i tediosa és la gestió de la informació tècnica, i no es limita a

aquesta única empresa.

Per resoldre aquest problema, hauríem de trobar una forma més eficient d'emmagatzemar

informació o passar hores memoritzant fitxers PDF per no tenir la necessitat de buscar-

los i, quan es canviï una determinada norma, fer tot el procés una altra vegada. Hi ha

massa regulacions, amb massa variables, s'actualitzen constantment cada any i no hi ha

un sistema per organitzar tota aquesta informació més enllà de l'antiquat explorador

d'arxius. Per això proposarem una solució alternativa.

Aquesta solució es basa en la idea d'un assistent d'intel·ligència artificial personalitzat

que extreu informació sobre una base de dades predeterminada. La raó per la qual això és

necessari és que els motors de cerca habituals estan massa plens d’informació i no són

molt específics quan es tracta d’informació tècnica. A més, no poden accedir a fitxers

privats o confidencials que continguin les dades necessàries.

L'objectiu és crear un assistent d'intel·ligència artificial que utilitzi algorismes de

“knowledge retrieval” per extreure i sintetitzar dades d'una col·lecció de fitxers PDF. La

manera d'interactuar amb aquest assistent serà mitjançant un chatbot de Telegram. Per

tant, necessitarem crear l'assistent amb la informació i després vincular-ho a un chatbot

de Telegram perquè ens puguem comunicar amb ell.

Per construir l'assistent farem servir el codi Python proporcionat per OpenAI i el seu API

assistent, després el vincularem al chatbot de Telegram a través de l'ID del bot. Tot això

es farà en codi Python.

Finalment, avaluarem el rendiment d'aquest bot en la cerca i la síntesi d'informació

respecte a un treballador de MAHLE Electronics SLU. Aquest TFG avalua l'exercici del

bot, la seva viabilitat i el seu potencial. Els resultats mostren com un espai de treball es

podria beneficiar amb la inclusió d'aquest bot.

Paraules clau: ChatGPT, Telegram Bot, Intel·ligència artificial, Processament del

llenguatge natural, Comunicació automatitzada.

Abstract

Lately, I have been working as an intern in MAHLE Electronics SLU. There I discovered

how inefficient and tiresome the management of technical information is, and it’s not

limited to this one company.

To solve this issue, we should come up with a more efficient way of storing information

ore spend hours memorizing PDFs so that we don’t have the need to search for them and,

when a certain regulation is changed, do it all again. There are too many regulations, with

too many variables, they are constantly getting updated every year and there is not a

system in place to organize all this information beyond the antiquated file explorer. That

is why we are going to propose an alternative solution.

To do so, we came with the idea of a personalized AI assistant that draws information

from a pre-determined database. The reason this is needed is that regular search engines

are too bloated with information and are not very specific when it comes to technical

information. Also, they cannot access private or confidential files that contain the needed

data.

The objective is to build an AI assistant that uses knowledge retrieval algorithms to

extract and synthesize data from a collection of PDFs files. The way to interact with this

assistant will be through a Telegram chatbot. So, we will need to build the assistant with

the information, then link the assistant to a telegram chatbot so that we can communicate

with it.

To build the assistant we will use the python code provided by OpenAI and its assistant

API, then we will link it to the telegram chatbot through the bot’s ID. All of this will be

done in python code.

Finally, we will evaluate the performance of this bot at finding and synthesizing

information compared to a worker in MAHLE Electronics SLU. This bachelor’s degree

thesis evaluates the performance of the bot, its feasibility, and its potential. The results

show how a general workspace could benefit by the inclusion of this bot.

Key Words: ChatGPT, Telegram Bot, Artificial Intelligence, Natural Language

Processing, Automatized Communication.

EXECUTIVE SUMMARY

The degree thesis must develop in the text the following concepts, appropriately justified and discussed, focusing on the

FIELD OF STUDY

CONCEPT (ABET) Done?

(Y/N)

Where?

(page numbers)

1. IDENTIFY:

1.1. Problem statement and opportunity

1.2. Constraints (standards, codes, needs, requirements & specifications)

1.3. Setting of goals

2. FORMULATE:

2.1. Creative solution generation (analysis)

2.2. Evaluation of multiple solutions and decision-making (synthesis)

3. SOLVE:

3.1. Fulfilment of goals

3.2. Overall impact and significance (contributions and practical recommendations)

Table of contents

Chapter 1. Introduction .. 1

1.1 Motivation .. 1

1.2 State of the Art .. 2

1.2.1 Combining Virtual and Robot Assistants ... 2

1.2.2 ChatPDF ... 3

1.2.3 Incorporating Natural Language Processing into Virtual Assistants 5

1.2.4 Assistant API .. 6

1.3 Outline .. 7

Chapter 2. Objectives ... 8

Chapter 3. Background ... 9

3.1 Computer Programming Language .. 9

3.2 Expert Systems ... 10

3.3 Natural Language Processing ... 11

3.4 GPT-4 ... 12

3.5 Information Retrieval ... 14

Chapter 4. Methodology ... 16

4.1 Telegram API ... 16

4.2 Make.com ... 17

4.3 Python ChatGPT Implementation .. 19

4.3.1 Main (the whole code can be found in appendix C) 19

4.3.2 Utilities ... 21

4.3.3 OpenAI Helper ... 21

4.3.4 Telegram Bot .. 22

4.3.5 Evaluation ... 22

4.4 Building an assistant ... 23

Chapter 5. PDF Insight ... 27

5.1 Instructions ... 27

5.2 Telegram Integration (the whole code is present in appendix D)................... 28

5.3 Creating the assistant .. 29

5.4 Results .. 30

Chapter 6. Specifications ... 33

6.1 Pricing ... 33

6.2 Software .. 33

Chapter 7. Conclusion .. 34

Chapter 8. References .. 36

Chapter 9. Appendix A .. 38

Chapter 10. Appendix B ... 45

Chapter 11. Appendix C ... 46

Chapter 12. Appendix D .. 50

Chapter 13. Appendix E ... 52

1

Chapter 1. Introduction

1.1 Motivation

Have you ever noticed how badly Google Search works nowadays?[1]It is something that

happens a lot, as soon as you search for something mildly technical you find yourself with

plenty of useless information that does not really answer what you are looking for. It is a

very frustrating feeling; it seems like there is an overload of nonspecific information and

you just end up wasting time.

Now picture the next scenario, you are a laboratory technician a company has recently

hired. You must do an experiment following an extremely specific set of rules. Every

person that could help you is busy, since it is a big company. However, you know that the

specific rules you must follow are in a PDF file. This file is in the folder of “Daimler”,

which is in the folder of “Client Rules”, which is in the folder of “Rules”, which is in the

folder of “Data”. It has a very nonspecific name, so you cannot search for it using the file

explorer, even if you could, there are so many other folders in “Data” that it would take

up to 5 minutes to complete the search. What do you do?

Well, usually, you scout every folder, find the PDF, build the experiment, and then

someone who has done this experiment before comes by and tells you that you have done

it wrong, since you have chosen the 2023 file, and you should have used the 2018 file. In

the company I am working, this happens constantly. There is too much information, and

the people that could guide you through it are often busy with something else.

It also can happen that after finding the correct file, you just cannot find the information,

or you misread it or even that you misremember it from the previous time you had to

search for it. There are many steps of this process that can go wrong, both from human

error and from the lack of power of the current file explorer.

Something that most of the world agrees on is that time is money, and the current system

not only wastes a lot of time, but it is also prone to error. So, how do we fix it?

The ideal would be a person that knows all the rules and requirements stored in the PDF

files that you can ask for guidance. However, we humans have limited capabilities of

information storages, we can remember things wrong, and we are usually busy with other

work. So, we need to create a system that can store all the information, answers correctly

and precisely and is always available.

If we remove the “always answers correctly” part, we think ChatGPT fits into this

definition. However, ChatGPT comes with its own set of problems. Mainly, you cannot

feed it information. It knows a lot about everything, but it lacks specific knowledge which

most often than not, like Google Search it just makes you waste your time trying it to

answer you correctly.

In summary, we need a ChatGPT that only draws information from a specific database,

that is always available and that always answers correctly. In other words, we need an AI

assistant.

2

1.2 State of the Art

The first modern digital virtual assistant installed on a smartphone was Siri, which was

introduced as a feature of the iPhone 4S on 4 October 2011. Siri provided few advantages

compared with the Google Search bar, like a more human like interaction and voice

commands. The thing that impacted the most of Siri weren’t the capabilities, it was the

novelty of having a machine interact and talk like a human. But if we could apply the

principles of virtual assistants to more specific needs?

1.2.1 Combining Virtual and Robot Assistants

The following article [2] provides a comprehensive case study of integrating virtual

assistants, particularly Amazon’s Alexa, into the realm of industrial robotics. The authors

discovered an issue with human-machine communication when integrating intelligent

robotic assistant systems that cooperate with humans in non-destructive disassembly

processes. They attempted to fix it with a more tactile interface beyond the usual mouse

and keyboard that this caused logistic issues where the tactile panel was out of reach. Due

to this they decided for an alternative way of communication, natural language.

The application they developed uses Amazon Alexa embedded in the Amazon Echo Dot

device. The Echo Dot requires an active internet connection to connect to the Alexa Voice

Service (AVS) running on the Amazon Web Services (AWS). Within the AWS

ecosystem, they further connect the Amazon Voice Service with the Amazon Lambda

service (ALS) and the ALS with Amazon’s Internet of Things (IoT) service. Furthermore,

a microcomputer (Raspberry Pi) is used to route messages from the IoT cloud to a local

network. Through the local network, the single devices of the intelligent robotic

assistance system can be accessed to control or update the devices’ state in the cloud.

The final product is a collaborative robot that can respond to preprogrammed voice

commands which has increased in feasibility with nowadays safer robots. It has

disadvantages such as being susceptible to noise, needing a stable internet connection and

Alexa misinterpreting when a voice line ends or starts. However, despite these flaws it

has proven to be a useful asset in the workplace.

This project focuses on an assistant to help the human-machine communication, but what

about an assistant to help the human-PDF communication, is there something like that?

3

1.2.2 ChatPDF

ChatPDF provides a way of users to interact with their PDF files. It creates a semantic

index over all paragraphs of the PDF. When answering a question, ChatPDF finds the

most relevant paragraphs from the PDF and uses the ChatGPT API from OpenAI to

generate an answer [3]. This is precisely what we had in mind when talking about human-

PDF communication. The article Enhancing PDF interaction for a more engaging user

experience in library: Introducing ChatPDF [4] makes a great point about the

interactivity of the PDF file being quite lacking. It also makes a point to address the

inefficient navigation in longer documents in which the user might have trouble finding

the information they are searching. The article states ChatPDF is a soluction to these

problems, so let’s test it to see how well it fares with more technical information.

Before getting to the testing, we should delve into the interface and workings of the

website, to have a complete picture of the tool we are testing. First of all, we must decide

the version we are going to try. Chat comes with both a free and a plus version, the plus

version having a billing of 111.9€/year or 15.99€/month.

The plus version comes with the following advantages:

• Unlimited PDFs

• Unlimited Questions

• 2000 pages/32 MB size PDFs

• 50 PDFs per folder

Compared to the free version:

• 2 PDFs

• 20 Questions

• 120 pages each

• No information on size or PDFs per folder

For the purpose of this bachelor’s degree thesis, we will focus on the free version and

feed it both the “ISO 10605 [2023] (ESD).pdf” and the “B21 7112-Ed.OR (EMC for HV

parts).pdf” to evaluate its capabilities. Uploading the PDF files is as easy as dropping

them with the mouse or exploring your computer for the file, it also can read PDF files if

the URL is provided. Once everything is set up, we can explore the chatting interface.

The first thing to note in this interface is that it gives you the ability to interact with each

PDF file individually or drop both in a folder to chat with them together, you have also

the additional options of rename chat, export chat, reset chat or delete chat/folder. The

option of export chat is quite interesting since it allows for easy storage of the obtained

information. This option will be used to provide the examples of conversations present in

appendix A.

Interface aside, we need to talk about how good ChatPDF performance is. Its main

advantage is speed. ChatPDF can process a PDF in less than five seconds and every single

answer it gave was preceded by at most a three second delay. The next thing we should

measure is its accuracy. In Figure 1 we can find a pie chart where all the answers

ChatPDF gave are categorized. First let’s start with the test questions “What is god

according to Christianity?” and “what is Natural Language Processing?”.

https://www.chatpdf.com/c/Q0APneZhoY8nsuVCnySet
https://www.chatpdf.com/c/M51gC3fFMA3f3RQHFTIjQ
https://www.chatpdf.com/c/M51gC3fFMA3f3RQHFTIjQ

4

Figure 1. Accuracy of ChatPDF

These two questions are built to test if the application is searching for its information

correctly, neither of them are specified in the PDF files we fed to it, so we expect the

application to recognize this and don’t answer. Instead, it refused to answer the “What is

god according to Christianity?” question as it stated that only answers with information

that is considered technical and factual. He answered the second question “what is Natural

Language Processing?” correctly. This proves that the application can get information

from its own knowledge outside of the PDF files which makes it prone to error, specially

considering it might be searching in an outdated database. This is a meaningful risk

considering how often EMC Validation rules are updated.

Once we have determined if the application can answer with information outside the PDF

file, we should focus on determining how accurate can it be when answering questions

which answer is contained within the PDF file of the fifteen questions asked about

relevant information within the PDF file, ChatPDF answered seven correctly, four wrong

and stated it couldn’t find the answer to three of them. When specified the location of the

answer it was able to find it. In general percentages this gives an approximate 50%

success rate which is well below an acceptable margin, before diving into out conclusions,

we should first talk about the last question.

The website specifies ChatPDF cannot read and understand images. However, I wanted

to try if it could locate the data is present inside a table. Even if it cannot read the table, it

should be able to see that the PDF file information is referencing it to a table or figure.

This small experiment was a failure since ChatPDF could not identify that the required

information was contained inside a table.

Another thing to note is that ChatPDF often links you the page when the obtained

information is at, but sometimes it will not do it. It worked for the first PDF file, but not

for the second nor the folder.

1 1

7

4

3

1
2

Doesn't Answer Answers Based in his own data

Answers Correctly Answers Wrong

Answer is in PDF but doesn't find it Answers correctly after specification

Answer is in a table or graphic

5

In conclusion, its success ratio is 8:7, but it heavily depends on how specific you are with

your prompt. Specifying the segment the data is on will yield better results in the long

run. however, I think it defeats the purpose of the tool since you mainly want it to optimize

searching. ChatPDF works at its best when handling less technical information. Like long

text form essays or even books in a PDF format. The fact that it makes information by

itself is a known issue, but it’s a decent risk considering its fast responses and upload

time.

The main reason we are talking about ChatPDF is this will set the goal post of what we

are trying to achieve with this bachelor’s degree thesis. However, instead of focusing on

the public, we want to implement an assistant that can help workers on a corporative

setting like MAHLE Electronics SLU.

1.2.3 Incorporating Natural Language Processing into Virtual Assistants

This study [5] presents an innovative method aimed at enhancing the Natural Language

Processing (NLP) capabilities of virtual assistant systems, addressing the dual challenges

of efficient information transfer and model size optimization without compromising

performance. At the heart of this method is the use of the SentencePiece tokenizer in

unigram settings, which is crucial for creating a well-balanced vocabulary that ensures an

optimal balance between task performance and resource efficiency. Drawing inspiration

from successful models like BERT and RoBERTa, a novel pre-layernorm design is

introduced, optimizing the placement of layer normalization within transformer layers

during the pretraining phase. This approach involves training teacher models using

masked language modeling objectives and the Deepspeed scaling framework, alongside

exploring modifications to model operations and mixed precision training strategies to

ensure stability. The method employs a two-stage distillation process that effectively

transfers knowledge from the comprehensive teacher models to more compact student

models, beginning with an intermediate model and carefully distilling the data using logit

and hidden layer matching techniques. This transfer of information significantly enhances

the final student model while maintaining an ideal size for applications requiring low

latency. The approach incorporates innovative measurements, such as the precision of

mask filling, to assess the effectiveness and quality of the methods, with the findings

demonstrating substantial improvements over publicly available models. This

underscores the strategy's effectiveness within complete virtual assistant systems,

confirming the potential of the technique to enhance language comprehension and

efficiency, particularly in addressing the challenges posed by real-world user inputs.

Through extensive testing and rigorous analysis, the study validates the method's ability

to meet these objectives, showcasing a significant advancement in the field of NLP for

virtual assistants.

Integrating Natural Language Processing (NLP) into virtual assistants is a key area of

research due to its potential to greatly enhance functionality. However, this technology

faces several challenges and limitations. One major issue is the inherent ambiguity of

natural language and its context-dependence, which can lead to misunderstandings of user

requests. Additionally, supporting multiple languages efficiently is crucial since

performance can vary significantly across languages, impacting user experience. Real-

6

time processing is essential for seamless interaction, yet NLP's computational demands

can cause delays, reducing effectiveness. Many virtual assistants also struggle to

generalize from user interactions, relying too much on preset responses and struggling to

adapt to unique user needs.

Limitations include a lack of common-sense reasoning, which hampers the ability to

engage in truly natural conversations and understand everyday contexts. Long

conversations can lead to a loss of context, resulting in irrelevant responses. There's also

a risk of spreading misinformation, especially in sensitive fields like healthcare, if virtual

assistants cannot verify the information they provide. Furthermore, NLP models may lack

depth in certain knowledge areas, leading to inaccurate or incomplete responses in

specialized contexts. The high cost and resource requirements for developing and

maintaining NLP-driven assistants pose significant barriers to access, especially for

smaller entities and underserved communities. Overcoming these challenges requires

ongoing research to improve models' contextual understanding, multilingual support,

real-time processing, and adaptability, along with strong privacy measures and cost-

effective implementation strategies.

But what if we had an assistant that we could update just by uploading a new PDF file?

1.2.4 Assistant API

The Assistant API from OpenAI is the main reason this project is feasible. The Assistants

API allows you to build AI assistants within your own applications. An Assistant has

instructions and can leverage models, tools, and knowledge to respond to user queries.

The Assistants API currently supports three types of tools: Code Interpreter, Retrieval,

and Function calling. [6]

The Assistant API, in a general context, refers to a set of programming interfaces designed

to enable developers to create applications that can interact with users through natural

language processing (NLP) and machine learning algorithms. These APIs are the

backbone of virtual assistants, enabling them to understand, process, and respond to user

queries in a conversational manner. The functionality provided by an Assistant API

typically includes voice recognition, text-to-speech conversion, language understanding,

and the ability to integrate with various web services and databases to retrieve information

or perform actions based on user requests.

At the core of an Assistant API is its NLP capabilities, which allow the assistant to parse

and understand the intent behind a user's text or voice input. This involves complex

processes such as tokenization, part-of-speech tagging, named entity recognition, and

dependency parsing, which collectively help the assistant grasp the nuances of human

language. Once the intent is understood, the assistant uses predefined or dynamically

generated responses to engage with the user, often accessing external APIs to fetch data

or perform tasks like setting reminders, playing music, providing weather updates, or

answering questions based on a wide range of knowledge.

Assistant APIs are built on advanced machine learning models that are trained on vast

datasets of human interactions, enabling them to improve over time through continuous

learning and adaptation to user preferences and speech patterns. This makes them

increasingly efficient and personalized in their interactions. Developers can leverage

https://platform.openai.com/docs/assistants/tools

7

these APIs to integrate conversational AI capabilities into various applications, ranging

from mobile apps and websites to smart home devices and customer service bots,

enhancing user experience and engagement through natural and intuitive interfaces.

Using this API, we can build an assistant that serves a similar function to ChatPDF, but

we can program it with certain tools so it’s more efficient at working with technical

information.

1.3 Outline

In this bachelor’s degree thesis, we will attempt to build an assistant that can help the

EMC Validation Lab Technicians of MAHLE Electronics SLU. With the help of the

OpenAI assistant API we can create a personalized assistant that draws information from

its database and helps us solve the doubts that could appear.

It attempts to give the workers an easier way to process, find and learn information,

beyond the classic scrolling. Its focus is not to replace anyone, just help save time and

better comprehend the reasons behind the constraints of policies such as the IEC CISPR

25 for Electro Magnetic Validation.

The structure of this bachelor’s degree thesis is organized as follows:

• Chapter 2: We explain the objectives and goals of this bachelor’s degree thesis.

• Chapter 3: We provide the background necessary to understand the progression

of this bachelor’s degree thesis.

• Chapter 4: We delve into the detailed theory developed throughout this work. We

explain the different stages of development and we introduce the formulation and

variables employed to address these challenges.

• Chapter 5: We discuss the actual implementation reached. Seeing its capabilities

and experimenting with it.

• Chapter 6: We delve into the material aspects, such as specifications, budget,

plans, hardware, etc.

• Chapter 7: We present conclusions, open questions, and theorize some testing we

could do with more resources.

8

Chapter 2. Objectives

The main objective of this bachelor’s degree thesis is to use the OpenAI assistant API to

create a virtual assistant based on the GPT-4 model that can store PDF files in its database

and answer questions related to that specific information. To communicate with this

assistant, we will use a Telegram Chatbot.

This assistant is meant to be implemented in the MAHLE Electronics SLU EMC

Validation department where it will assist engineers and technicians in building complex

setups according to either global or client specifications and requirements.

The secondary objectives are:

• Provide the background necessary for understanding what we are trying to

achieve. Delving into Computer Programming, Expert Systems and Natural

Language Processing.

• Make the assistant versatile enough so it can be easily updated, even implemented

in another workplace.

• Explain the series of step that have led to the creation of this assistant.

• Evaluate the assistant functionality comparing it mainly to ChatPDF one of its

closest relatives.

• Provide some examples of the ideal testing we could do with more resources.

• Discuss other alternatives to the assistant implementation.

9

Chapter 3. Background

Recently, artificial intelligence is becoming more available for both the public and the

corporate market. According to IBM, 35% of businesses have already embraced AI [7]

and it is estimated that the AI powered Netflix Recommendation Engine, saved Netflix

over one billion dollars in 2016[8].

Artificial intelligence is a specialty within computer science that is concerned with

creating systems that can replicate human intelligence and problem-solving abilities [9].

The groundwork for this technology started in the early 1900s and it has made major

strides in recent years with ChatGPT, DALL-E and most recently SORA which allows

you to create video from text [10]. We mainly will focus on the processing and generating

of text, since those are the key foundational concepts and theories that set the stage for

this bachelor’s degree thesis.

3.1 Computer Programming Language

A computer programming language serves as a medium of communication between

humans and machines, enabling the former to instruct the latter to perform specific tasks

or solve complex problems. These languages are constructed around a syntax and a set of

semantic rules that define the structure and meaning of various code constructs. The

diversity in programming languages arises from their design goals, which cater to

different domains ranging from web development and data analysis to system

programming and scientific computing.

Going more in depth, in figure 2 we can see a diagram describing the different levels of

computer programming language. High-level languages, such as Python, Java, and C++,

abstract away the complexities of the hardware, allowing developers to focus on solving

domain-specific problems using constructs that are closer to human language.

Assembly language and machine language however, interface directly with a computer's

hardware. Machine language, the most basic level of programming, consists of binary

code (a series of 0s and 1s) that represents the most fundamental instructions understood

by the computer's central processing unit (CPU). It is highly specific to the architecture

of the CPU, making it difficult for humans to read or write. Assembly language, one step

higher than machine language, provides a more readable format using mnemonics

(symbolic representations of machine language instructions) and allows programmers to

write code that corresponds closely to the hardware operations.

10

Figure 2. Computer Language and its types

3.2 Expert Systems

Expert systems leverage artificial intelligence to mimic human expertise in specialized

domains, using a detailed knowledge base and an inference engine (as it can be seen in

figure 3). XCON, developed for Digital Equipment Corporation (DEC), automated the

complex task of configuring VAX computer systems by encoding the expert knowledge

of DEC's specialists into a rule-based system [11]. The inference engine applied these

rules through backward chaining, starting with the desired configuration outcome and

working backward to determine the necessary steps. This architecture allowed XCON to

handle complex configuration tasks efficiently, demonstrating the practical application of

expert systems in automating decision-making processes that traditionally required

specialized human knowledge. However, maintaining the system's extensive rule base

posed challenges, highlighting the need for ongoing updates as domain knowledge

evolved.

Figure 3. Expert System

11

Despite this, expert systems are nowadays widely used in the medical field [12],

specifically for diagnosis purposes. The previous article talks about the fuzzy-based

expert system, an advanced artificial intelligence system that uses unconventional

thinking to reduce the uncertainty that is often associated with the diagnosis process of

diseases. In the field of medical diagnostics, where symptoms can overlap, and patient

reports are often uncertain, fuzzy logic provides a significant advantage to medical expert

systems in identifying diseases. This form of logic extends beyond the binary framework

of traditional decision-making by accommodating the variability present in medical

information, reflecting the complex decision-making process of healthcare professionals.

Fuzzy logic recognizes the variability in symptom presentation, enabling expert systems

to process a broad range of patient data with high accuracy. This method improves the

dependability of diagnoses and supports the development of treatment plans that are more

closely aligned with each patient's specific needs. Additionally, the flexible nature of

fuzzy logic allows these systems to stay up-to-date with the latest medical findings,

ensuring their continuous improvement and relevance. Through these capabilities, fuzzy

logic plays a crucial role in enhancing the performance of medical expert systems,

contributing to more accurate and individualized patient care.

Although we wont use fuzzy logic in our assistant, expert systems are a great example of

how AI can improve performance in the workplace. Picture an assistant that can be

uploaded with a set of predetermined rules and teaches you how to correctly set up your

EMC Validation test or any other kind of test. It shows how the world is adopting AI to

cover the shortcoming of regular people.

3.3 Natural Language Processing

Natural Language Processing (NLP) is a pivotal technology in the field of artificial

intelligence that enables machines to understand, interpret, and generate human language

[13]. At its core, NLP combines computational linguistics (rule-based modeling of human

language) with statistical, machine learning, and deep learning models. These

technologies allow computers to process human language in the form of text or voice data

and to understand its full meaning, complete with the speaker or writer's intentions and

sentiments.

The technical foundation of NLP involves several key tasks and processes:

1. Tokenization: This is the process of breaking down text into its basic units, called

tokens, which can be words, phrases, or symbols. This step is crucial for

understanding the structure of the text and preparing it for further analysis.

2. Part-of-Speech Tagging: Once the text is tokenized, each token is tagged with

its part of speech (noun, verb, adjective, etc.), which helps in understanding the

grammatical structure of sentences and the roles of individual words.

3. Parsing: This process involves analyzing the grammatical structure of a sentence

to understand the relationships between tokens. It helps in identifying the

sentence's subject, predicate, and objects, thereby contributing to the

comprehension of the sentence's meaning.

4. Named Entity Recognition (NER): NER involves identifying and classifying

key elements in text into predefined categories, such as the names of people,

organizations, locations, dates, and times. It is essential for extracting useful

information from text.

12

5. Sentiment Analysis: This involves analyzing text to determine the sentiment

expressed in it, such as positive, negative, or neutral. This is particularly useful in

understanding opinions, reviews, and social media commentary.

6. Machine Translation: One of the most complex NLP tasks, machine translation

involves automatically translating text from one language to another, considering

the grammatical structure and meaning of the original text.

7. Semantic Analysis: This process goes beyond the literal meaning of words to

understand the nuances and intended meaning in a given context. It involves word

sense disambiguation (determining the meaning of a word based on context) and

understanding relationships between words and phrases in a sentence.

8. Question Answering: This involves building systems that can answer questions

posed by humans in a natural language. It requires the system to understand the

question, retrieve relevant information, and present it in a coherent answer.

Modern NLP systems leverage deep learning models, particularly those based on

transformer architecture, like BERT (Bidirectional Encoder Representations from

Transformers)[14] and GPT (Generative Pretrained Transformer)[15], to perform these

tasks with a high degree of accuracy. These models are trained on vast amounts of text

data and can capture complex patterns in language, enabling more nuanced understanding

and generation of text. So, how does the latest of these models look like?

3.4 GPT-4

GPT-4, an advancement in the Generative Pre-trained Transformer series, is built on the

transformer architecture (figure 4), which significantly improves machine understanding

and generation of human language through technical sophistication. Central to this

architecture is the multi-head attention mechanism, dependent on the scaled Dot-Product

attention mechanism and designed to analyze and interpret complex relationships within

textual data more effectively than previous models limited by recurrent or convolutional

structures.

Figure 4. The Transformer – model architecture.

13

Within the scaled Dot-Product attention mechanism, each input element is initially

encoded into three distinct vectors: the query (Q), the key (K), and the value (V). These

vectors are generated through tailored linear transformations, setting the stage for the

subsequent computation of attention scores.

The crux of the scaled-dot product attention involves calculating the dot product between

the query vector of one element and the key vectors of all other elements in the sequence.

This operation yields raw attention scores that signify the relevance of each element to

the others. However, to prevent these scores from escalating with the increase in

dimensionality, which could destabilize the model, a scaling factor is applied[16].

The scaling is mathematically represented as:

𝑆𝑐𝑎𝑙𝑒𝑑 𝑆𝑐𝑜𝑟𝑒 =
𝑄𝐾𝑇

√𝑑𝑘
 (1)

Here, dk is the dimensionality of the key vectors, and this division ensures the scores

remain manageable, preserving computational stability.

Following the scaling, the softmax function is employed to normalize these scores into a

probability distribution, emphasizing the relative importance of each element's value

vector in the context of the sequence. This distribution is calculated using the formula:

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑𝑘
) 𝑉 (2)

This step is critical as it highlights the contextual relevance of each word, contributing to

a composite output that encapsulates the semantic and syntactic nuances of the input.

Building on this foundational mechanism, the multi-head attention framework augments

the model's capacity to interpret data by parallelizing the attention process across multiple

"heads." Each head operates independently, employing unique sets of linear

transformations for Q, K, and V, thereby enabling the model to concurrently analyze

different aspects of the input sequence. The outputs from these heads are then unified

through concatenation and subjected to a final linear transformation to synthesize the

comprehensive output of the multi-head attention module. This process is encapsulated

in the equation:

𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(𝑄, 𝐾, 𝑉) = 𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑1, . . . , ℎ𝑒𝑎𝑑ℎ)𝑊𝑂(3)

ℎ𝑒𝑎𝑑𝑖 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑊𝑄
𝑖, 𝐾𝑊𝑖

𝐾 , 𝑉𝑊𝑖
𝑊)(4)

Where headi represents an individual attention process, and WO is the weight matrix for

the concluding transformation.

14

This intricate melding of scaled-dot product attention with the multi-dimensional

perspective offered by multi-head attention equips transformer-based models like GPT-4

with an exceptional ability to dissect and assimilate complex sequences. Through these

mechanisms, the models adeptly capture the diverse linguistic structures and

dependencies present in natural language, powering their sophisticated generative and

analytical functionalities.

3.5 Information Retrieval

Information Retrieval (IR) is a pivotal field within computer science that focuses on the

organization, storage, retrieval, and management of information. It encompasses the

processes and systems designed to collect, parse, and store data, and to retrieve relevant

information in response to a specific query or need. The essence of IR lies in its ability to

filter through vast amounts of data to find pieces of information that match a user's

criteria, a task that has become increasingly complex with the exponential growth of

digital data. [17]

Modern IR systems utilize advanced algorithms and machine learning techniques to

improve the accuracy and relevance of search results. These systems employ natural

language processing to understand the intent behind queries and to parse and index

documents more effectively. Furthermore, the use of distributed computing allows IR

systems to scale and manage the vast quantities of data on the web and in large databases.

Semantic search and knowledge graphs represent the latest advancements in IR, aiming

to understand the context and relationships between entities within the data, thus enabling

more intuitive and accurate information retrieval.

The article Information Retrieval: Recent Advances and Beyond [18] makes a great job

at summarizing some of the modern information retrieval techniques such as the diagram

present in Figure 5.

Figure 5. Overview of Modern Information Retrieval System

15

It also distinguishes between representation-based models and interaction-based models.

Representation models use separate neural networks to turn queries and documents into

feature vectors. They then calculate relevance scores between these vectors using simple

methods like cosine similarity or more complex ones like a Multi-Layer Perceptron. For

instance, the Deep Structure Semantic Model uses a Siamese network structure, while

others like ARC-I and various Convolutional Neural Network based models use

convolutional layers for feature extraction. Recurrent Neural Networks, including Long

Short-Term Memory variants, are also employed for generating fixed-length vectors from

sentences, capturing semantic relationships within texts. These models ultimately

compute relevance by analyzing interactions between query and document features, often

employing pooling and MLPs for final scoring.

While Interaction-focused models, like the Deep Relevance Matching Model and K-

NRM, concentrate on capturing crucial matching signals between queries and documents

that representation-focused models might miss. They start by creating interaction

matrices using basic representations of queries and documents, then use deep learning to

identify key interactions. These models employ various similarity measures and feature

extraction techniques to enhance the accuracy of document retrieval, addressing

challenges like non-differentiability and computational inefficiency in earlier models.

Taking a more wide approach, in text retrieval, the objective is to rank a set

L=[d1,d2,...,dn] of documents from a larger collection D=[d1,d2,...,dm] in response to

a query q. Dense retrieval models achieve this by representing both queries and

documents as dense vectors through functions ϕ(⋅) and ψ(⋅), which map them to l-

dimensional vector spaces. The relevance Rel(q,d) between a query and a document is

determined by a similarity function fsim(ϕ(q),ψ(d)) often implemented using neural

networks.

𝑅𝑒𝑙(𝑞, 𝑑) = 𝑓𝑠𝑖𝑚(𝜑(𝑞), 𝜓(𝑑)) (5)

Information retrieval is a crucial tool that our assistant will use to obtain relevant

information from the PDFs in its database.

16

Chapter 4. Methodology

At this point, we know everything we need to start working in the creation of our AI

Assistant, that we have named PDF Insight, as it is meant to contain a PDF files database

with which the engineers and technicians of MAHLE Electronics SLU can interact

through a telegram chatbot. This makes clear what out structural pipeline (represented as

a flow diagram on figure 6) must be. First, we will start with a way of linking the OpenAI

API and the Telegram API, then we will adapt it so we can communicate with our

personalized assistant instead of with ChatGPT. Finally, we will compile all the code in

an online server so the assistant can always be running. Now we will delve deeper into

each module.

Figure 6. Overview of Modern Information Retrieval System

4.1 Telegram API

So, at first, we had to decide how will the assistant interact with the employees. Would

we create a customized APP? Would we have them interact with the assistant directly?

Eventually we decided on using the telegram API to create a chatbot that can relay the

messages from the assistant directly to out phone, laptop, or pc.

This seemed the fastest way to give the assistant an intuitive interface so it could

communicate easily with the workers. It also makes it easy to implement and spread and

requires no installation whatsoever.

How do we create a chatbot? It can be done following simple steps:

1. Open Telegram. Either on your PC App, your phone, or the webpage.

2. Type /start to see the commands then /newbot.

3. Give it a name.

4. Give it a username (must end in _bot)

5. Congratulations, you’ve created a bot. With its own token that you must store.

17

All of this will be shown step by step with screenshots in appendix B.

Now that we have our bot, we must look for a way to connect it with ChatGPT, for that

we will need the OpenAI API key that can be found in our OpenAI account. Once we

have both we should be able to communicate with ChatGPT through telegram. This is

how we do it.

4.2 Make.com

Make.com [19] is a powerful visual platform that allows users to design workflows, tasks,

and automate processes across apps and systems. It enables the creation and automation

of virtually anything within a unified interface, making it a versatile tool for individuals

and businesses looking to streamline their operations.

In this section of the bachelor’s degree thesis, we delve into the practical application of

integrating Telegram with ChatGPT via Make.com, exemplifying the process of

automating interactions between these platforms. The objective is to create a scenario

where messages sent to a Telegram channel are automatically forwarded to ChatGPT,

with the AI's response subsequently relayed back to the Telegram channel. Figure 7

shows an example of the scenario we want to create.

Figure 7. Make Scenario

The initiation of this process involves selecting Telegram from a plethora of available

applications on Make.com and configuring it to "Watch updates." This setup ensures that

any message posted to the designated Telegram channel triggers an event, captured via a

webhook, thereby bypassing the need for periodic polling. A crucial step in this

configuration is defining the webhook, which serves as a conduit for messages to be

directly relayed to Make.com in real-time.

For the webhook to function, it necessitates linkage to the Telegram account using an API

token, a unique identifier obtained during the bot's creation within Telegram. This token

authenticates the connection between Make.com and Telegram, allowing for the seamless

transmission of messages.

Upon establishing this connection, it is advisable to conduct a test to verify the operational

integrity of the module. By sending a test message to the Telegram channel and observing

its acknowledgment on Make.com, one can confirm the successful setup. This test also

facilitates the retrieval of the chat ID, a critical identifier that distinguishes the specific

Telegram chat, ensuring that responses are accurately directed.

18

The subsequent phase involves the integration of ChatGPT into the workflow. By adding

another module within Make.com and selecting OpenAI's GPT, we can configure it to

generate responses based on the incoming messages from Telegram. This step requires

the specification of an account within Make.com, linked to OpenAI via an API key and

organization ID, ensuring secure and authenticated access to GPT services.

In configuring the interaction with ChatGPT, one must define the type of completion

desired, along with the selection of an appropriate model, such as GPT-3.5 Turbo. The

critical component here is mapping the incoming Telegram message as the input to

ChatGPT, necessitating the selection of the message content from the data structure

provided by the Telegram module.

The final leg of the scenario entails relaying ChatGPT's response back to the original

Telegram chat. This is achieved by adding a module for sending a text message via the

Telegram bot, utilizing the previously acquired chat ID to pinpoint the exact destination

within Telegram. The content of this message is derived from ChatGPT's output,

effectively closing the loop of interaction.

Upon configuring these modules, a test run is essential to validate the entire workflow.

By initiating a query and observing the response loop from Telegram to ChatGPT and

back to Telegram, one can ensure the system's functionality.

To operationalize this scenario, it is imperative to activate the scheduling feature on

Make.com, setting the scenario to run continuously. This activation guarantees that the

workflow remains operational, ready to process messages as they arrive, thereby

automating the interaction between Telegram and ChatGPT.

This exploration within the bachelor’s degree thesis not only demonstrates the practical

application of Make.com in automating interactions between diverse platforms but also

highlights the potential for further customization and expansion, leveraging the vast array

of applications supported by Make.com to create complex, conditional workflows tailored

to specific needs.

Although this is a good first attempt at the telegram implementation, we have many

problems with it. The main issue is its versatility. Due to it being based on prebuilt

modules, you really cannot work around those modules. There was no Assistant API

module at the time, so we needed to get creative with http website modules. This proved

to be way harder than to look for another implementation that allowed more coding and

debugging. Of course, we are talking about a python implementation that lets you run

code connecting telegram and ChatGPT. What we just did, but in python.

19

4.3 Python ChatGPT Implementation

Python seemed to be the best way to implement an assistant powered telegram chatbot.

There is already information on how to build an assistant using python code, present in

the assistant API website [6]. Luckily for us there are already plenty of implementations

of python meant to connect ChatGPT with Telegram. We will now explain one of these

implementations. The ChatGPT Telegram Bot is a github created by the use n3d1117

[20]. We will now briefly explain how this code works, making an emphasis on the

telegram implementation aspect that is what we really want to take out from here.

4.3.1 Main (the whole code can be found in appendix C)

The “main.py” file contains the setup and execution process for a ChatGPT Telegram bot,

starting with loading essential environment variables for secure API interactions and

configuring logging to monitor the bot's activities. It validates the presence of critical

environment variables like the Telegram bot token and OpenAI API key to ensure the bot

has the necessary credentials to function. The setup includes configuring interaction

parameters with the OpenAI API and Telegram settings, such as the API model and bot

language. Additionally, a Plugin Manager is initialized to extend the bot's capabilities

through plugins, and an OpenAI Helper object is created to manage interactions with

OpenAI's services. The bot, encapsulated within the ChatGPT Telegram Bot class, is then

initialized with these configurations, and set to run, processing incoming Telegram

messages through OpenAI's GPT model, effectively enabling dynamic, AI-driven

conversations within a Telegram channel.

In setting up the environment for a ChatGPT Telegram bot, the process begins by loading

environment variables from a .env file using “load_dotenv()” from the “dotenv” package

(figure 8). This step is crucial for securely managing sensitive information such as API

keys and bot tokens, which are essential for interacting with external services like

Telegram and OpenAI.

from dotenv import load_dotenv

 load_dotenv()
Figure 8. Load .env file

Following the environment setup, logging is configured to provide insightful information

about the bot's operation. The “basicConfig” method from the logging module (figure 9)

is used to define the format and level of log messages, ensuring that important events are

recorded for debugging and monitoring purposes. Additionally, to avoid unnecessary log

clutter from the “httpx” library, its logging level is set to “WARNING”, reducing the

verbosity of messages related to HTTP requests.

 logging.basicConfig(

 format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',

 level=logging.INFO

)

 logging.getLogger("httpx").setLevel(logging.WARNING)
Figure 9. basicConfig

20

An essential part of the initialization process involves validating the presence of critical

environment variables (figure 10), specifically the Telegram bot token and the OpenAI

API key. This validation step checks for these variables and logs an error message listing

any missing values, preventing the bot from running without the necessary credentials,

which could lead to failures or unintended behavior.

 required_values = ['TELEGRAM_BOT_TOKEN', 'OPENAI_API_KEY']

 missing_values = [value for value in required_values if

os.environ.get(value) is None]

 if len(missing_values) > 0:

 logging.error(f'The following environment values are missing in

your .env: {", ".join(missing_values)}')

 exit(1)
Figure 10. Validation of Required Values

The configuration process for the ChatGPT Telegram Bot is meticulously designed to

ensure seamless operation and interaction with the OpenAI and Telegram platforms.

Initially, the setup delineates critical parameters within the “openai_config” and

“telegram_config” dictionaries, which encompass essential settings like the OpenAI API

key, the choice of the GPT model (defaulting to 'gpt-3.5-turbo'), the Telegram bot token,

and the bot's default language. These configurations act as the backbone of the bot's

functionality, dictating how it interfaces with the respective APIs and processes

information.

To further augment the bot's capabilities, a “PluginManager” is strategically employed,

drawing from a predefined list of plugins specified in the environment variables. This

modular approach not only enhances the bot's functionality by incorporating additional

features and behaviors but also promotes scalability and adaptability by allowing new

plugins to be seamlessly integrated as the bot's operational requirements evolve.

Building upon this foundation, an “OpenAIHelper” object is instantiated, serving as the

conduit for all interactions with OpenAI's API. This pivotal component, configured with

the OpenAI settings and the PluginManager, ensures that the bot's functionality is

enriched with the capabilities provided by the plugins, thereby enabling a more

sophisticated and versatile interaction with OpenAI's services.

The culmination of this setup process is the initialization of the ChatGPT Telegram Bot,

which is meticulously configured with the tailored Telegram settings and the

“OpenAIHelper”. Upon activation, the bot vigilantly listens for incoming messages on

Telegram, adeptly processing them with OpenAI's GPT model to deliver insightful and

contextually relevant responses. This entire orchestration of the bot's functionality is

encapsulated within the “main()” function, a safeguard that ensures the bot's setup and

execution are meticulously managed and initiated only when the script is executed

directly. This thoughtful design underscores the intricate interplay between configuration,

functionality enhancement, and execution, ensuring the ChatGPT Telegram Bot operates

efficiently and effectively within its designated ecosystem.

21

4.3.2 Utilities

This code includes utility functions and some core logic for a Telegram bot that interacts

with users in various ways, using OpenAI's services for processing user inputs. OpenAI

Helper will leverage these utilities in its functions. A few of the relevant ones are:

• ‘message_text’: Extracts the text from a Telegram message excluding bot

commands.

• ‘get_reply_to_message_id’: Determines the appropriate message ID to which the

bot should reply, supporting features like quoting the original message in the bot's

response.

• ‘is_allowed’: Determines if a user is allowed to interact with the bot based on

configuration settings like allowed user IDs.

4.3.3 OpenAI Helper

This Python script provides utility functions and a class “OpenAIHelper” designed to

facilitate interaction with OpenAI's GPT models, including vision models. This class is

the main reason the code works since it can retrieve messages and images generated from

ChatGPT. It outlines a structured approach for developing a ChatGPT-based Telegram

bot, incorporating OpenAI's GPT models to handle a wide range of tasks. It starts by

importing necessary libraries and defining various GPT model configurations to support

text and image processing tasks, demonstrating the bot's adaptability to different

operational requirements.

At the core of the script is the “OpenAIHelper” class, designed to streamline interactions

with the OpenAI API. Initialized with operational configurations and a “PluginManager”,

this class emphasizes a modular architecture, allowing for the easy integration of new

features through plugins. This not only facilitates the expansion of the bot's capabilities

but also ensures that it can be updated to meet future demands.

The “OpenAIHelper” class includes several key methods like “get_conversation_stats”,

“get_chat_response”, and “get_chat_response_stream”, which are crucial for managing

chat interactions. These methods keep track of conversation history, enabling the bot to

provide contextually relevant responses. This mechanism ensures the bot's interactions

are coherent and aligned with the context of the conversation, enhancing user

engagement.

The script also includes functionality for processing visual inputs, as seen in the

“interpret_image” and “interpret_image_stream” methods. This feature expands the bot's

utility beyond text, allowing it to analyze and respond to visual data. It showcases the

bot's ability to engage with a wider variety of content, making it more versatile.

Error handling and rate limit management are integral parts of the script, incorporating

retry mechanisms to address potential API rate limit errors effectively. This ensures the

bot remains operational and reliable, even under high demand or when facing API

limitations.

22

Additionally, the script supports localization and customization through the

“localized_text” function and various configurable parameters. This allows the bot to

serve a diverse user base by adapting to different languages and specific user preferences.

Overall, the script provides a comprehensive framework for building a ChatGPT-based

Telegram bot capable of text and image processing. It combines a range of functionalities

with a focus on modularity, reliability, and user-centric customization, laying the

groundwork for a versatile and dependable bot.

4.3.4 Telegram Bot

This code defines a sophisticated Telegram bot built to handle a variety of tasks, including

responding to user messages, generating images and text-to-speech (TTS) audio,

transcribing audio messages, interpreting images, and supporting inline queries. The bot

is initialized with a configuration dictionary and an “OpenAIHelper” object, which

facilitates communication with the OpenAI API for generating responses.

The bot supports a range of commands, such as /help, /reset, /stats, and /resend, each with

a specific function like displaying a help menu, resetting the conversation, showing usage

statistics, or resending the last message. Additionally, the bot can generate images and

text-to-speech (TTS) audio from prompts, and it has capabilities for transcribing audio

messages and interpreting images using vision models.

The script utilizes the telegram library to define command handlers and message handlers

for processing commands and messages. For instance, the prompt method handles

incoming text messages, generating responses based on the content of the message and

the context of the conversation. The bot also supports inline queries, allowing users to

interact with the bot directly from any chat by typing “@botusername <query>”.

Finally, the script also includes error handling to ensure the bot can manage errors and

continue operating smoothly. Moreover, it features a usage tracking system to monitor

user activity and enforce usage limits. The core of the script is designed to support a

ChatGPT-based Telegram bot with multiple features for user interaction. It can handle

text, images, and audio, making it a versatile tool for different use cases.

4.3.5 Evaluation

This code provides a solid groundwork to implement an integration between the assistant

API and Telegram. However, it is much more complex than what we need to the point in

which trying to alter it seems unfeasible. It has many plugins and capabilities that we

don’t care about for the purpose of this bachelor’s degree thesis. It is a very complete and

powerful code, which makes it difficult to adapt for our purposes. Even then the code

snippets it provides will be very useful when forming the final integration.

23

4.4 Building an assistant

OpenAI's assistant API represents a significant leap forward in the development of

artificial intelligence, aiming to establish a centralized AI agent. This agent differs

fundamentally from previous iterations of AI interactions, such as chat completions.

Unlike the endless and often directionless conversations enabled by chat completions, the

AI agent is designed with a clear, singular purpose. Users can input information, pose

questions, and engage in dialogue, all the while the AI maintains a focus on its predefined

goal, offering more structured and goal-oriented interactions.

This approach allows for the creation of a tailored knowledge base, distinct from the vast,

generalized pool of data used in chat completions. The assistant relies solely on the

information provided to it, ensuring that its responses are aligned with the specific

purpose it has been assigned. This marks a departure from the AI's previous reliance on

external data sources, confining its responses to the user-defined knowledge base.

The development of the assistant API introduces several new concepts and components,

including the assistant object, threads, messages, and runs, each playing a crucial role in

the AI's operation. The assistant object acts as the core of the AI agent, housing the

instructions and tools necessary for its function. Threads represent individual

conversations or lines of inquiry within the broader context of the assistant's purpose.

Messages, which can be either user-generated or produced by the assistant, are the

building blocks of these threads. Runs, on the other hand, are the processes that execute

the thread, requiring activation and monitoring to progress towards completion.

This structured approach to AI interaction offers enhanced capabilities and precision,

allowing for the development of highly specialized and efficient AI agents. However, this

complexity also necessitates a deeper understanding and more intricate management of

the AI's components, from the creation and expansion of knowledge bases to the initiation

and tracking of threads and runs.

In practice, this means that developers must now navigate a more segmented and detailed

process to achieve the desired outcomes from their AI interactions. Each step, from

ingesting data and defining the assistant's purpose to managing threads and monitoring

runs, requires careful consideration and execution. This granularity offers the potential

for highly customized and effective AI solutions but also demands a greater investment

of time and resources in the development process.

The introduction of the assistant API by OpenAI is a testament to the evolving landscape

of artificial intelligence, offering new possibilities and challenges in the pursuit of more

purpose-driven and efficient AI agents. As developers and users alike adapt to this new

framework, the potential for innovation and specialized application of AI is vast,

promising a new era of AI utility and impact.

24

To build an AI assistant using OpenAI's API, you begin by specifying the location of your

data sources. This initial step involves a function that allows the assistant to access and

process PDF files or other supported document types. This function is critical as it defines

where the assistant will retrieve its information, ensuring it has a comprehensive

knowledge base for generating responses, it can be seen in figure 11.

from openai import OpenAI

import time

def saveFileOpenAI(location):

 client = OpenAI(api_key='OPENAI_API_KEY’)

 file = client.files.create(file=open(location, "rb"),

purpose='assistants')

 return file.id

Figure 11. Location

Following the data specification, the next step is the creation and configuration of the

assistant itself. This process is handled by a function that initializes the assistant with a

unique set of instructions and selects an appropriate model for it to operate on. The

function (present in figure 12) also incorporates tools for information processing and

links the assistant to the previously defined data sources by including file IDs. This step

is pivotal in establishing the core operational framework of the assistant, setting the stage

for its interactive capabilities.

def startBotCreation(file_id):

 client = OpenAI(api_key='OPENAI_API_KEY’)

 instructions = "You are a knowledge assistant. Use your knowledge

to best respond to customer queries"

 model = "gpt-3.5-turbo-1106"

 tools = [{"type":"retrieval"}]

 file_ids=[file_id]

 assistant =

client.beta.assistants.create(instructions=instructions,model=model

,tools=tools,file_ids=file_ids)

Figure 12. Assistant

With the assistant created, the focus shifts to initiating conversations, or "threads,"

through another function, that we can see in figure 13). Each thread represents a separate

interaction with the assistant and requires a prompt to kickstart the dialogue. This aspect

of the process underscores the conversational nature of the assistant, allowing for dynamic

exchanges between the user and the AI.

25

def startThreadCreation(prompt):

 messages = [{"role": "user", "content":prompt}]

 client = OpenAI(api_key='OPENAI_API_KEY’)

 thread =client.beta.threads.create(messages=messages)

 return thread.id

Figure 13. Thread

However, for the assistant to respond within a thread, it must first be activated or "run."

This action is performed by a specific function that takes the thread ID and the assistant

ID (figure 14), essentially waking the assistant to participate in the conversation. Without

this crucial step, the thread exists in a dormant state, awaiting interaction.

def runAssistant(thread_id, assistand_id):

 client = OpenAI(api_key='OPENAI_API_KEY’)

 run =

client.beta.threads.runs.create(thread_id=thread_id,assistant_id=as

sistant_id)

Figure 14. Run

To monitor the assistant's activity and ensure it is actively engaging in the conversation,

another function allows you to check the run status. This function is essential for

understanding whether the assistant is processing the query, has completed its response,

or is encountering any issues.

def checkRunStatus(thread_id, run_id):

 client = OpenAI(api_key='OPENAI_API_KEY’)

 run =

client.beta.threads.runs.retrieve(thread_id=thread_id,run_id=run_id

)

 return run.status

Figure 15. Run Status

Once the assistant has processed the interaction, you can retrieve its response through a

function designed to pull the assistant's messages from the thread. This function not only

fetches the direct response from the assistant but also provides references or "annotations"

from the knowledge base, offering insights into how the assistant formulated its reply.

This feature enhances the transparency and reliability of the assistant's responses.

Lastly, the capability to add new messages to an existing thread allows for ongoing

conversations with the assistant. This functionality is crucial for maintaining a fluid and

natural dialogue, mimicking human-like interactions. Each new message requires the

thread to be "run" again, prompting the assistant to provide further responses. The code

snippets to retrieve messages and add messages to the current thread can be found at

figures 16 and 17 respectively.

26

def retrieveThread(thread_id):

 client = OpenAI(api_key='OPENAI_API_KEY’)

 thread_messages=client.beta.threads.messages.list(thread_id)

 list_messages = thread_messages.data

 assistant_message = list_messages[0]

 reference =

assistant_message.content[0].text.annotations[0].file_citation.quot

e

 message_text = assistant_message.content[0].text.value

return message_text, reference

Figure 16. Receive Message

def addMessageToThread(thread_id, prompt):

 client = OpenAI(api_key='OPENAI_API_KEY’)

 thread_message = client.beta.threads.messages.create(thread_id,

role="user", content=prompt)

Figure 17. Add Message

By combining these steps and utilizing the provided Python commands, we can construct

an AI assistant tailored to our specific needs. This assistant can perform a range of tasks,

from information retrieval and transactional tasks to scheduling, communication, and

even entertainment, all depending on the tools and functions we integrate into its

framework. For this project, the focus will be on enhancing the assistant's accuracy in

analyzing PDF files, leveraging custom tools to refine its capabilities and ensure more

precise and relevant responses.

27

Chapter 5. PDF Insight

PDF Insight is how we call the final implementation of our project. Since all the

characteristics that it uses are already built in the Assistant API, such as code interpreter

and knowledge retrieval, it doesn’t need any additional tools to work. This resource hub,

by Jannis Moore is the foundation upon which the final implementation of this bachelor’s

degree thesis is built [21]. It gives us both a good code structure with telegram already

implemented and prompt that we can use to build our own customized tools and

instructions. Finally, lets see how the actual AI Assistant looks like.

5.1 Instructions

The instructions are stored in a ‘.txt’ file that the assistant will read. These instructions

are built by ChatGPT with a specified prompt to assure that the assistant comprehends

perfectly what it must do.

PDF Assistant Instructions

This assistant is specifically designed to provide information based on content from

uploaded .pdf files. It's optimized for users seeking detailed answers exclusively from

these documents.

Key Functions and Approach:

1. PDF Content Query Handling:

 - When users ask questions, the assistant should first confirm that the query pertains to

the content of uploaded .pdf files.

 - Deliver precise answers derived solely from the .pdf content, ensuring accuracy and

relevance. Do not deliver information that is not in the assistant files.

2. Data Synthesis:

 - When the user asks a question, and the answer is not directly in the .pdf file the

assistant should check if a table is mentioned where the information could be located.

 - Then inform the user in which table the data is located, even if you cannot extract the

actual data.

 - Deliver precise answers derived solely from the .pdf content, ensuring accuracy and

relevance.

28

Interaction Guidelines:

 - Maintain a focused, knowledgeable, and user-friendly demeanor, emphasizing the

assistant's unique capability to extract and rely on .pdf content.

 - Clearly communicate the scope of assistance, ensuring users understand that answers

are based exclusively on the content of uploaded .pdf files.

 - Encourage users to provide specific questions or context to improve search accuracy

and relevance.

 - In cases where the assistant cannot find an answer within the .pdf resources, politely

inform the user and suggest uploading additional .pdf files if necessary.

Remember, the assistant's effectiveness lies in its ability to accurately search and

convey information from .pdf files, making it an invaluable resource for users requiring

specialized knowledge contained within these documents. Use Markdown to format text

and links.

These instructions are meant to ensure a couple of things:

• The assistant checks if the information is in the PDF.

• The assistant only answers with information contained in the PDF.

• The assistant checks for tables that may contain the information.

• The assistant references you to these tables.

This way we can optimize the flow of information and prevent the assistant of making

things up when asked about information outside its database.

5.2 Telegram Integration (the whole code is present in appendix D)

The integration of a Telegram bot with OpenAI's conversational AI system is achieved

using the “telebot” library for handling Telegram interactions and a bespoke

“core_functions” module, which is tasked with database operations and other essential

functionalities. The process begins with the bot acquiring the “TELEGRAM_TOKEN”

from the environment variables, a crucial step for authenticating requests with the

Telegram API. This token is then used to initialize a “telebot.TeleBot” instance,

effectively bringing the bot to life on the Telegram platform.

Upon initialization, the bot is programmed to handle the /start command, a typical

interaction that users initiate upon their first engagement with the bot. In response, the

bot greets the user with a friendly message, setting a welcoming tone for the interaction.

Beyond the initial greeting, the bot is equipped with a general message handler designed

to catch and process any message that doesn't correspond to predefined commands like

/start. This handler acts as the core of the bot's functionality, where user messages are

processed, and queries are dispatched to the OpenAI API for generating responses, which

are then relayed back to the user within the Telegram chat interface.

29

For managing conversations, the bot leverages OpenAI's thread and run creation

capabilities. When a new conversation is initiated or when an existing chat mapping is

absent, the bot sets up a new thread with OpenAI and triggers a run within that thread.

This setup is pivotal for maintaining a coherent conversational context with the AI,

ensuring that interactions are seamless and contextually aware.

An essential aspect of the bot's operation involves checking for and establishing a

database mapping between Telegram chat IDs and OpenAI thread IDs. This step ensures

that ongoing conversations are correctly associated with their respective threads in

OpenAI, facilitating a consistent and personalized interaction for each user. In cases

where a mapping doesn't exist, the bot proceeds to create a new thread and updates the

database with the new mapping, thereby laying the groundwork for a structured

conversation flow.

The bot's interaction with the OpenAI API extends to processing user inputs and

generating AI-driven responses. Upon receiving a message from the user, the bot sends

this input to the designated OpenAI thread and then retrieves the AI's response from the

thread. This response, encapsulated within the latest message from the thread, is then

presented back to the user in the Telegram chat, creating a dynamic and interactive user

experience.

To ensure the bot remains responsive and agile, it employs thread-based polling, a

technique that allows the bot to continuously monitor Telegram for updates without

blocking the main thread. This approach is facilitated using Python's threading module,

which enables the bot to maintain an attentive stance, ready to engage with incoming

messages at any moment.

In summary, this code sets up a Telegram bot that uses OpenAI's conversational AI to

respond to user messages. It handles the ‘/start’ command, processes general text

messages, manages database mappings between Telegram chats and OpenAI threads, and

ensures responses from the AI are relayed back to the appropriate Telegram user. The bot

uses threading to keep polling for messages in the background.

5.3 Creating the assistant

We went over this code in the segment 4.4. The only difference from the functions

presented is that now we store every variable in a JSON file. This way the program checks

if the JSON file exists and uses the already built assistant instead of creating a new one.

Everything else we need like the location of the files and the API keys are already present

in the Replit project.

30

5.4 Results

Now that we have our assistant up and running, loaded with the information we want it

to know we must test if the assistant answers correctly and if it is a viable option to

implement as an asset in MAHLE Electronics SLU EMC Validation department. First,

we loaded the assistant with 10 randomly selected PDFs related to EMC validation:

• CISPR 16-2-1 - Methods of measurement of disturbances and inmmunity -

conducted disturbance measurements.

• CISPR 25 Ed5 2021

• CISPR 22 - Equipos de tecnologia de la informacion - Caracteristicas de las

perturbaciones radioelectricas - Limites y metod

• PSA B21 7110 [2015-07] Version E

• B21 7112-Ed.OR (EMC for HV parts)

• B21_7112_-_Ind.A_-_EN

• PSA B21 7110 - Ind.F - EN (002)

• ISO 10605 [2023] (ESD)

• dg-11846-1.1 [PHEV] EMC and Electrical_testplan_draft

• Elektra Manual

Then we asked the assistant the following questions:

• What is God according to Christianity?

• What is Natural Language Processing?

• According to CISPR25 what are the ALSE Emissions?

• What is Elektra Fundamental Principles?

• According to the PSA B21 what is CE_03?

• Explain the CE03 test to me?

• Where should you put the probe in CE04? In which lines?

• How long must be the HV lines in an AN test?

• What are the options for recovering data?

Some of these questions were asked multiple times across multiple days to test the

assistant’s reliability at relaying the same information. In Appendix E we can find all the

questions asked and the answers PDF Insight gave, but I have chosen to categorize them

in Figure 18. First let’s start with the test questions “What is god according to

Christianity?” and “what is Natural Language Processing?”.

31

Figure 18. Accuracy of PDF Insight

As I said in segment 1.2.2, these two questions are built to test if the application is

searching for its information correctly. Since neither of them are specified in the PDF

files we fed to it, we expect the application to recognize this and don’t answer. PDF

Insight did the correct thing and refused to answer both questions, specifying that it would

need to be built with a PDF File that contained that information if the user wanted to learn

about the topic. I consider this a success as we do not want the valuable information from

the PDF files to be contaminated by some outdated source.

Once we determined that the assistant cannot answer with information outside the PDF

file, we focused on determining how accurate can it be when answering questions which

answer is contained within the PDF file. Of the twenty questions asked about relevant

information within the PDF file, PDF insight answered eleven correctly, three of them

after specification; it also two wrong, saw three of them were in a table that it could not

read and the five that are left he either repeated your prompt back to you or stated that the

answer was not present in the currently open PDF file. When instructed to look in other

PDF files in its database it was able to find the answer.

Let’s focus on the two most strange responses, the repeated prompt and the assistant

getting stuck in the current PDF. This two happen when the assistant must make too many

requests and reaches its limit. If the assistant has not managed to formulate response the

telegram bot will just send the last message left in the assistant interface. Comparatively,

the assistant will try to search in the current PDF file before moving to other PDF files,

so if the PDF file is too long it will run out of time before it can search other PDF files.

This shows the limitations of having to work with the limited capabilities of the Assistant

API that cannot handle this number of requests.

2

8

2
2

3

3
2

Doesn't Answer Answers Correctly

Answers Wrong Answers correctly after specification

Answer is in a table or graphic Repeats your prompt

Get's locked in a certain PDF

32

In a more positive note, when asked for the Limits of ALSE Emissions, located in the

CISPR25, the assistant was able to realize the information was in a table although it could

not access it. The assistant was also great at handling contradictory information. It simply

stated the two pieces of information and the source of each one and when given a more

specific prompt it was able to detect which of the contradictory pieces of information was

relevant to the question.

In summary, the success ratio considering specifications, is close to 10:7 with a response

rate of 60 seconds per question. This is far from ideal, but I will reserve my thoughts and

evaluation for the conclusion.

Wanting to make a brief experiment I gave the same set of questions to a college:

• According to CISPR25 what are the ALSE Emissions?

• What is God according to Christianity?

• What is Natural Language Processing?

• What is Elektra Fundamental Principles?

• According to the PSA B21 what is CE_03?

• Explain the CE03 test to me?

• Where should you put the probe in CE04? In which lines?

• How long must be the HV lines in an AN test?

• What are the options for recovering data?

Then I gave him the PDF database and told him to please answer all the questions by

searching in it, but that the information might not be in the PDFs so he should account

for that.

He was able to intuitively eliminate the God according to Christianity question and a

quick search through the PDF files also eliminated the Natural Language Processing

question. However, it took for him over 20 minutes to answer the rest of the questions

correctly and he was not certain of having done so until I confirmed it.

I think this proofs that an optimized version of this assistant with a reduced rate of failure

could be incredibly helpful in a workplace specialized in following a strict set of rules

through thorough testing such as the EMC Validation department from MAHLE

Electronics SLU.

33

Chapter 6. Specifications

6.1 Pricing

This assistant utilizes and is intended to work with gpt4-turbo. This model is priced at

0.01$/1k Tokens or 0.0092€ / 1k Token in the input, and three times as much in the output.

So how many tokens does it use? Well, the last day of testing we reached over 3.5 million.

That’s about 35$. 7655 of these tokens were generated tokens. The other 3.5 million were

context tokens. So, what are context tokens?[22] Apparently, no one really knows it. They

seem to be additional tokens the Assistant API uses due to the accumulated number of

messages in a thread, but there is no way to destroy messages in a thread without deleting

the thread or the assistant itself.

6.2 Software

My main code is stored in Replit which has a lot of ram limitations in its free version. I

think this is the main cause of the 60 second delay since asking the assistant directly from

the assistant playground causes faster responses of at least half the time. The RAM is

capped to 500MiB which is less than ideal, and it is partially guilty for the lengthy

response time that PDF Insight has.

34

Chapter 7. Conclusion

We have managed to implement a useful and certainly pricey assistant that can help

employees by giving them almost immediate solutions to their queries. It is at least

competitive with the nowadays implementations of similar technology like ChatPDF and,

although it is still on its early stages it certainly has potential. It relayed messages slower

than ChatPDF but we must consider it was working with a larger database. Testing was

done with only two PDFs and the answers were significantly shorter, around ten seconds

for answer. It seems to be more precise at first glance, although further testing should be

done in this aspect.

The aspect we can agree on is that currently this is not viable for an implementation as an

asset in EMC Validation, or in any other workplace for that matter. The technology is

way to modern and the pricing is a drawback that we cannot work around. “Context

tokens” are still a mystery within the AI community and OpenAI support experts have

not yet clarified what are they, what purpose they serve and how can we reduce their

elevated usage. In a scenario where pricing was not an issue, it would be viable and

beneficial to have an assistant in the workplace, even with its limited success it does not

fare badly compared with a human employee. Even in this state and with a reduced

database the assistant finds information way quicker than any human. Imagine in a

database of 2 Gb of data. How long would a human take to find anything? While an

assistant can do it in a matter of seconds.

There is a lot of testing that we simply have not done due to a lack of resources. Ideally,

we should implement this assistant in a department and analyze its efficiency over a

trimester. I think this would give us enough research to draw a better understanding of

how useful an assistant can be. It does not seem to be any company that is publicly using

the Assistant API. So, we do not have any concrete data yet.

Finally, I would like to propose an alternative solution to the inefficient system of

information handling, specifically PDF files, present in MAHLE Electronics SLU. This

is a github repository [23] that uses the RAG approach using the Chat Completion API.

It is more scalable, less expensive and will give us at a minimum the same results we are

getting now, if not better.

35

36

Chapter 8. References

[1] J. Bevendorff, M. Wiegmann, M. Potthast, and B. Stein, “Is Google Getting

Worse? A Longitudinal Investigation of SEO Spam in Search Engines”, Accessed:

Mar. 02, 2024. [Online]. Available: https://github.com/webis-de/ECIR-24

[2] J. Jungbluth, K. Siedentopp, W. Krieger, and P. Plapper, “Combining Virtual and

Robot Assistants—A Case Study about Integrating Amazon’s Alexa as a Voice

Interface in Robotics,” … -Academy Conference for …, no. June, 2018.

[3] “ChatPDF - Chat with any PDF!” Accessed: Feb. 24, 2024. [Online]. Available:

https://www.chatpdf.com/

[4] S. Panda, “Enhancing PDF interaction for a more engaging user experience in

library: Introducing ChatPDF,” IP Indian Journal of Library Science and

Information Technology, vol. 8, no. 1, pp. 20–25, Jun. 2023, doi:

10.18231/J.IJLSIT.2023.004.

[5] F. Antonius et al., “Incorporating Natural Language Processing into Virtual

Assistants: An Intelligent Assessment Strategy for Enhancing Language

Comprehension,” IJACSA) International Journal of Advanced Computer Science

and Applications, vol. 14, no. 10, p. 2023, Accessed: Mar. 02, 2024. [Online].

Available: www.ijacsa.thesai.org

[6] “Assistants overview - OpenAI API.” Accessed: Feb. 25, 2024. [Online].

Available: https://platform.openai.com/docs/assistants/overview

[7] “IBM Global AI Adoption Index 2022,” 2022.

[8] “How Netflix Utilizes Data Science - Lighthouse Labs.” Accessed: Feb. 24, 2024.

[Online]. Available: https://www.lighthouselabs.ca/en/blog/how-netflix-uses-

data-to-optimize-their-product

[9] “What is the history of artificial intelligence (AI)? | Tableau.” Accessed: Feb. 24,

2024. [Online]. Available: https://www.tableau.com/data-insights/ai/history

[10] “Sora.” Accessed: Feb. 24, 2024. [Online]. Available: https://openai.com/sora

[11] “XCON – AI – The Future.” Accessed: Feb. 24, 2024. [Online]. Available:

https://aithefuture.wordpress.com/2018/05/08/xcon/

[12] L. J. Muhammad and E. A. Algehyne, “Fuzzy based expert system for diagnosis

of coronary artery disease in nigeria,” Health Technol (Berl), vol. 11, no. 2, 2021,

doi: 10.1007/s12553-021-00531-z.

[13] “What is Natural Language Processing (NLP)? A Beginner’s Guide | DataCamp.”

Accessed: Feb. 24, 2024. [Online]. Available:

https://www.datacamp.com/blog/what-is-natural-language-processing

[14] J. Devlin, M.-W. Chang, K. Lee, K. T. Google, and A. I. Language, “BERT: Pre-

training of Deep Bidirectional Transformers for Language Understanding”,

Accessed: Feb. 24, 2024. [Online]. Available:

https://github.com/tensorflow/tensor2tensor

[15] “Generative Pre-Trained Transformer (GPT) definition | Encord.” Accessed: Feb.

24, 2024. [Online]. Available: https://encord.com/glossary/gpt-definition/

37

[16] A. Vaswani et al., “Attention is all you need,” in Advances in Neural Information

Processing Systems, 2017.

[17] I. C. Mogotsi, “Christopher D. Manning, Prabhakar Raghavan, and Hinrich

Schütze: Introduction to information retrieval,” Inf Retr Boston, vol. 13, no. 2,

2010, doi: 10.1007/s10791-009-9115-y.

[18] K. A. Hambarde and H. Proenca, “Information Retrieval: Recent Advances and

beyond,” IEEE Access, vol. 11, 2023, doi: 10.1109/ACCESS.2023.3295776.

[19] “Make | Automation Software | Connect Apps & Design Workflows.” Accessed:

Mar. 03, 2024. [Online]. Available: https://www.make.com/en

[20] “GitHub - n3d1117/chatgpt-telegram-bot: A Telegram bot that integrates with

OpenAI’s official ChatGPT APIs to provide answers, written in Python.”

Accessed: Feb. 25, 2024. [Online]. Available:

https://github.com/n3d1117/chatgpt-telegram-bot

[21] “How I build OpenAI Assistants in 2024 (GPT Chatbot Framework 2.0) |

Integraticus.” Accessed: Feb. 25, 2024. [Online]. Available:

https://hub.integraticus.com/how-i-build-openai-assistants-in-2024-gpt-chatbot-

framework-2-0/

[22] “Assistant API - What are Context Tokens in the Billing calculation? - API -

OpenAI Developer Forum.” Accessed: Feb. 26, 2024. [Online]. Available:

https://community.openai.com/t/assistant-api-what-are-context-tokens-in-the-

billing-calculation/497675/17

[23] “GitHub - mayooear/gpt4-pdf-chatbot-langchain at feat/vectordbqa.” Accessed:

Feb. 26, 2024. [Online]. Available: https://github.com/mayooear/gpt4-pdf-

chatbot-langchain/tree/feat/vectordbqa?tab=readme-ov-file

38

Chapter 9. Appendix A

ISO 10605 [2023] (ESD).pdf

PDF: Hello and welcome to the helpful PDF file on Road vehicles test methods for

electrical disturbances from electrostatic discharge! This document, ISO 10605:2023,

provides essential information on testing procedures to ensure the safety and reliability

of road vehicles in relation to electrostatic discharge.

1. What is the purpose of ISO 10605:2023 and why is it important for road vehicles?

2. How can this standard help manufacturers and regulators in the automotive industry?

3. Are there any specific requirements or guidelines outlined in the document for

conducting tests on electrical disturbances from electrostatic discharge?

Me: Describe the ESD powered-up test?

PDF: The ESD powered-up test, as described in ISO 10605:2023, is a component

immunity test method that involves applying direct and indirect discharges to the Device

Under Test (DUT) while it is powered up. This test is crucial for evaluating the immunity

of electronic modules in road vehicles to electrical disturbances from electrostatic

discharge.

1. **Direct Type Discharges**: In the direct type discharges, either contact or air

discharge mode is applied directly to the DUT and to remote parts accessible by vehicle

users, such as surfaces of switches, diagnostic connectors, and buttons. This simulates

discharges that may occur directly on the components themselves.

2. **Indirect Type Discharges**: The indirect type discharges simulate discharges that

occur to other conductive objects in the vicinity of the DUT. These discharges are applied

through an intervening metal, such as to a ground point. This type of discharge helps

evaluate the immunity of the DUT to disturbances from electrostatic discharge in the

surrounding environment.

By subjecting the DUT to direct and indirect discharges while it is powered up, the ESD

powered-up test assesses the ability of electronic modules in vehicles to withstand and

operate reliably in the presence of electrostatic discharge events. This test is essential for

ensuring the overall performance and safety of electronic components in road vehicles

under real-world conditions where ESD events can occur.

For more detailed information on the ESD powered-up test and its specific procedures,

you can refer to ISO 10605:2023, particularly in section 8 of the document.

https://www.chatpdf.com/c/Q0APneZhoY8nsuVCnySet

39

B21 7112-Ed.OR (EMC for HV parts).pdf

PDF: Hello and welcome to the PSA PEUGEOT - CITROËN Specifications for Electrical

and Electronic High Voltage Equipments PDF file! This document provides detailed

information on the environmental specifications, electrical characteristics, and

restrictions for high voltage equipment. It was created on 16/09/2015 and is available for

internal use. If you have any questions, please contact normespsa@mpsa.com.

Example questions:

1. What are the key environmental specifications outlined in this document?

2. Who were the participants involved in drafting and checking this norm?

3. How can I access the full content of the PSA PEUGEOT - CITROËN B21 7112

standard?

Me: How long should the HV lines be in a test setup?

PDF: In the PSA PEUGEOT - CITROËN document, the length of the shielded high

voltage ("200V") lines should be 1700 ± 300 mm. Additionally, the length of the high

voltage lines should be 1700 ± 300 mm. These specifications ensure proper testing

conditions and compliance with the standards outlined in the document.

Me: Where should the probe me connected in CE_04 test?

PDF: In the CE_04 test, the current probe measurements have to be performed on the

HV+ and HV- power supply lines, and the three-phase lines of the electric motor,

separately (if applicable) and commonly. The emission should be measured with the

probe positioned at d = 50 mm and d = 750 mm (depending on harness length) from the

EUT. The current measuring probe should be placed successively in various positions

along the concerned branch as indicated in the document.

Me: Should the communication lines be measured?

PDF: In the PSA PEUGEOT - CITROËN document, there is no specific mention of

measuring communication lines in the context of EMC testing for high voltage

equipment. The focus is primarily on the measurement of high voltage power lines, three-

phase lines, and related components. However, it is always recommended to refer to the

specific testing requirements and standards applicable to the communication lines in the

given system to ensure comprehensive EMC testing and compliance.

https://www.chatpdf.com/c/M51gC3fFMA3f3RQHFTIjQ

40

Me: How does the CE_03 test work?

PDF: In the PSA PEUGEOT - CITROËN document, the CE_03 test involves the

measurement of conducted emissions on the high voltage power supply lines (HV+ and

HV-) and the three-phase lines of the electric motor. The emissions are measured with

the probe positioned at specific distances from the Equipment Under Test (EUT) along

the concerned branches. The test setup and procedure for CE_03 are detailed in the

document to ensure accurate measurement of conducted emissions on the specified lines.

Me: No, it doesn't

PDF: I apologize for the oversight. In the PSA PEUGEOT - CITROËN document, the

CE_03 test procedure is not explicitly described. For detailed information on how the

CE_03 test works, it is recommended to refer to the specific testing standards and

guidelines provided by the relevant regulatory bodies or consult with EMC testing experts

familiar with the CE_03 test requirements.

Me: Yes it is, in BC/CE_03: RF CONDUCTED EMISSION ON AC OR DC LINES

PDF: I apologize for the confusion. In the PSA PEUGEOT - CITROËN document, the

CE_03 test, which involves RF conducted emission on AC or DC lines, is detailed in the

document. The test procedure for CE_03 includes measuring the level of radio frequency

conducted disturbances generated by equipment connected to power mains through its

AC or DC lines. The specific test setup, measurement points, and requirements for CE_03

are outlined in the document.

Me: Describe the objective of the CI_05 test

PDF: In the PSA PEUGEOT - CITROËN document, the objective of the CI_05 test is to

demonstrate the immunity of equipment connected to power mains, such as a battery

charger, to harmonics and interharmonics along AC power lines. The test aims to ensure

that the equipment can withstand and operate effectively in the presence of harmonics

and interharmonics on the AC power lines. The test procedure for CI_05 complies with

the CEI 61000-4-13 standard, and the test level requirements are established based on the

test method specified in the standard.

41

Both PDFs

Me: What is ESD?

PDF: ESD stands for Electrostatic Discharge. It is the sudden flow of electricity between

two electrically charged objects caused by contact, an electrical short, or dielectric

breakdown. ESD can damage electronic components and integrated circuits, leading to

malfunctions or complete failure of electronic devices. Standards such as ISO 10605

provide guidelines for testing electronic modules to evaluate their resistance to electrical

disturbances from electrostatic discharge.

Me: What is god according to christianity?

PDF: I specialize in technical and factual information. If you have any questions related

to science, technology, or general knowledge, feel free to ask!

Me: What is natural language processing?

PDF: Natural Language Processing (NLP) is a branch of artificial intelligence that focuses

on the interaction between computers and humans using natural language. It involves the

development of algorithms and models that enable computers to understand, interpret,

and generate human language. NLP techniques are used in various applications such as

language translation, sentiment analysis, chatbots, speech recognition, and text

summarization. By processing and analyzing large amounts of natural language data,

NLP systems can extract meaningful information and provide valuable insights.

Me: Describe the ESD powered up test

PDF: The ESD powered-up test, as described in ISO 10605:2023, involves the application

of direct and indirect discharges to the Device Under Test (DUT) while it is powered on.

This test is designed to evaluate the immunity of electronic components to electrostatic

discharges in real-world operating conditions.

1. **Direct Discharges**: Direct discharges can be in contact or air discharge mode and

are applied directly to the DUT and other remote parts accessible by users, such as

switches, diagnostic connectors, and buttons.

42

2. **Indirect Discharges**: Indirect discharges simulate discharges that occur to

conductive objects near the DUT and are applied through an intervening metal, such as a

ground plane.

By subjecting the DUT to direct and indirect discharges while it is powered up, the test

assesses the component's ability to withstand electrostatic discharges during normal

operation. This helps in ensuring the reliability and robustness of electronic components

in the presence of ESD events.

Me: Can you tell me the limits of the signal lines in CE_04?

PDF: In the document provided, PSA PEUGEOT - CITROËN B21 7112, the limits for

RF conducted emission on signal lines in test BC/CE_04 are specified according to

CISPR 22 standards. Unfortunately, the specific limits for signal lines in CE_04 are not

mentioned in the excerpts you provided. For detailed information on the limits of RF

conducted emissions on signal lines in test CE_04, you may need to refer to the complete

document or the referenced standard CISPR 22.

Me: Describe me an ESD setup

PDF: An Electrostatic Discharge (ESD) setup typically consists of the following

components and elements:

1. **ESD Generator**: This is the device that generates controlled electrostatic

discharges. It can be of various types such as Human Body Model (HBM), Machine

Model (MM), Charged Device Model (CDM), or Contact and Air Discharge modes.

2. **Device Under Test (DUT)**: The electronic component or system being tested for

its immunity to electrostatic discharges.

3. **Ground Plane**: A conductive surface that provides a reference ground for the ESD

setup to ensure proper discharge paths.

4. **ESD Mat**: A dissipative mat placed on the work surface to prevent the buildup of

static charges and provide a controlled path for discharges.

5. **Ground Connection Wire**: Used to connect the ESD generator, DUT, and other

components to the ground plane to ensure proper grounding.

43

6. **Test Fixture**: Depending on the test requirements, a test fixture may be used to

hold the DUT in place during testing.

7. **Monitoring Equipment**: Instruments such as oscilloscopes, current probes, and

voltage probes may be used to monitor the effects of electrostatic discharges on the DUT.

8. **Safety Equipment**: Personal protective equipment such as ESD wrist straps,

gloves, and safety glasses may be used to protect the operator and prevent accidental

damage to sensitive components.

9. **Test Procedure**: A defined test procedure outlining the test parameters, discharge

levels, test points, and measurement methods to ensure consistent and repeatable testing.

By setting up these components in a controlled environment following standard

procedures, an ESD setup can effectively evaluate the susceptibility of electronic devices

to electrostatic discharges and ensure their reliability in real-world scenarios.

Me: What about the positions of the components?

PDF: In an ESD setup, the positions of components play a crucial role in ensuring

accurate and reliable testing. Here are some key considerations for positioning

components in an ESD setup:

1. **Device Under Test (DUT)**:

 - The DUT should be positioned securely in the test fixture or on the test table to prevent

movement during testing.

 - Ensure that the DUT is oriented correctly according to the test requirements, especially

for direct discharge testing where the angle of discharge matters.

2. **Ground Plane**:

 - The ground plane should be positioned beneath the DUT to provide a reference ground

for the ESD setup.

 - The test points on the DUT should be aligned with the ground plane for accurate

discharge paths.

3. **ESD Generator**:

 - Position the ESD generator in a convenient location for easy access during testing.

 - Ensure that the discharge tip or air discharge tip is positioned correctly for contact or

air discharge testing, respectively.

44

4. **Ground Connection Wire**:

 - Connect the ground connection wire securely between the ESD generator, DUT, and

ground plane to establish proper grounding.

5. **Monitoring Equipment**:

 - Position monitoring equipment such as oscilloscopes and probes in a way that allows

for easy observation of the DUT's response to electrostatic discharges.

6. **Safety Equipment**:

 - Ensure that safety equipment such as ESD wrist straps and gloves are worn by

operators and positioned within reach for quick access.

7. **Test Procedure**:

 - Follow the defined test procedure to ensure that components are positioned according

to the specified test points, distances, and orientations for consistent and accurate testing.

By carefully positioning components in the ESD setup according to the test requirements

and procedures, you can conduct effective and reliable electrostatic discharge testing to

evaluate the immunity of electronic devices to ESD events.

45

Chapter 10. Appendix B

46

Chapter 11. Appendix C

import logging

import os

from dotenv import load_dotenv

from plugin_manager import PluginManager

from openai_helper import OpenAIHelper, default_max_tokens,

are_functions_available

from telegram_bot import ChatGPTTelegramBot

def main():

 # Read .env file

 load_dotenv()

 # Setup logging

 logging.basicConfig(

 format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',

 level=logging.INFO

)

 logging.getLogger("httpx").setLevel(logging.WARNING)

 # Check if the required environment variables are set

 required_values = ['TELEGRAM_BOT_TOKEN', 'OPENAI_API_KEY']

 missing_values = [value for value in required_values if

os.environ.get(value) is None]

 if len(missing_values) > 0:

 logging.error(f'The following environment values are missing in

your .env: {", ".join(missing_values)}')

 exit(1)

 # Setup configurations

 model = os.environ.get('OPENAI_MODEL', 'gpt-3.5-turbo')

 functions_available = are_functions_available(model=model)

 max_tokens_default = default_max_tokens(model=model)

 openai_config = {

 'api_key': os.environ['OPENAI_API_KEY'],

 'show_usage': os.environ.get('SHOW_USAGE', 'false').lower() ==

'true',

 'stream': os.environ.get('STREAM', 'true').lower() == 'true',

 'proxy': os.environ.get('PROXY', None) or

os.environ.get('OPENAI_PROXY', None),

 'max_history_size': int(os.environ.get('MAX_HISTORY_SIZE', 15)),

 'max_conversation_age_minutes':

int(os.environ.get('MAX_CONVERSATION_AGE_MINUTES', 180)),

47

 'assistant_prompt': os.environ.get('ASSISTANT_PROMPT', 'You are a

helpful assistant.'),

 'max_tokens': int(os.environ.get('MAX_TOKENS',

max_tokens_default)),

 'n_choices': int(os.environ.get('N_CHOICES', 1)),

 'temperature': float(os.environ.get('TEMPERATURE', 1.0)),

 'image_model': os.environ.get('IMAGE_MODEL', 'dall-e-2'),

 'image_quality': os.environ.get('IMAGE_QUALITY', 'standard'),

 'image_style': os.environ.get('IMAGE_STYLE', 'vivid'),

 'image_size': os.environ.get('IMAGE_SIZE', '512x512'),

 'model': model,

 'enable_functions': os.environ.get('ENABLE_FUNCTIONS',

str(functions_available)).lower() == 'true',

 'functions_max_consecutive_calls':

int(os.environ.get('FUNCTIONS_MAX_CONSECUTIVE_CALLS', 10)),

 'presence_penalty': float(os.environ.get('PRESENCE_PENALTY',

0.0)),

 'frequency_penalty': float(os.environ.get('FREQUENCY_PENALTY',

0.0)),

 'bot_language': os.environ.get('BOT_LANGUAGE', 'en'),

 'show_plugins_used': os.environ.get('SHOW_PLUGINS_USED',

'false').lower() == 'true',

 'whisper_prompt': os.environ.get('WHISPER_PROMPT', ''),

 'vision_model': os.environ.get('VISION_MODEL', 'gpt-4-vision-

preview'),

 'enable_vision_follow_up_questions':

os.environ.get('ENABLE_VISION_FOLLOW_UP_QUESTIONS', 'true').lower() ==

'true',

 'vision_prompt': os.environ.get('VISION_PROMPT', 'What is in this

image'),

 'vision_detail': os.environ.get('VISION_DETAIL', 'auto'),

 'vision_max_tokens': int(os.environ.get('VISION_MAX_TOKENS',

'300')),

 'tts_model': os.environ.get('TTS_MODEL', 'tts-1'),

 'tts_voice': os.environ.get('TTS_VOICE', 'alloy'),

 }

 if openai_config['enable_functions'] and not functions_available:

 logging.error(f'ENABLE_FUNCTIONS is set to true, but the model

{model} does not support it. '

 f'Please set ENABLE_FUNCTIONS to false or use a

model that supports it.')

 exit(1)

 if os.environ.get('MONTHLY_USER_BUDGETS') is not None:

 logging.warning('The environment variable MONTHLY_USER_BUDGETS is

deprecated. '

 'Please use USER_BUDGETS with BUDGET_PERIOD

instead.')

48

 if os.environ.get('MONTHLY_GUEST_BUDGET') is not None:

 logging.warning('The environment variable MONTHLY_GUEST_BUDGET is

deprecated. '

 'Please use GUEST_BUDGET with BUDGET_PERIOD

instead.')

 telegram_config = {

 'token': os.environ['TELEGRAM_BOT_TOKEN'],

 'admin_user_ids': os.environ.get('ADMIN_USER_IDS', '-'),

 'allowed_user_ids': os.environ.get('ALLOWED_TELEGRAM_USER_IDS',

'*'),

 'enable_quoting': os.environ.get('ENABLE_QUOTING',

'true').lower() == 'true',

 'enable_image_generation':

os.environ.get('ENABLE_IMAGE_GENERATION', 'true').lower() == 'true',

 'enable_transcription': os.environ.get('ENABLE_TRANSCRIPTION',

'true').lower() == 'true',

 'enable_vision': os.environ.get('ENABLE_VISION', 'true').lower()

== 'true',

 'enable_tts_generation': os.environ.get('ENABLE_TTS_GENERATION',

'true').lower() == 'true',

 'budget_period': os.environ.get('BUDGET_PERIOD',

'monthly').lower(),

 'user_budgets': os.environ.get('USER_BUDGETS',

os.environ.get('MONTHLY_USER_BUDGETS', '*')),

 'guest_budget': float(os.environ.get('GUEST_BUDGET',

os.environ.get('MONTHLY_GUEST_BUDGET', '100.0'))),

 'stream': os.environ.get('STREAM', 'true').lower() == 'true',

 'proxy': os.environ.get('PROXY', None) or

os.environ.get('TELEGRAM_PROXY', None),

 'voice_reply_transcript':

os.environ.get('VOICE_REPLY_WITH_TRANSCRIPT_ONLY', 'false').lower() ==

'true',

 'voice_reply_prompts': os.environ.get('VOICE_REPLY_PROMPTS',

'').split(';'),

 'ignore_group_transcriptions':

os.environ.get('IGNORE_GROUP_TRANSCRIPTIONS', 'true').lower() == 'true',

 'ignore_group_vision': os.environ.get('IGNORE_GROUP_VISION',

'true').lower() == 'true',

 'group_trigger_keyword': os.environ.get('GROUP_TRIGGER_KEYWORD',

''),

 'token_price': float(os.environ.get('TOKEN_PRICE', 0.002)),

 'image_prices': [float(i) for i in os.environ.get('IMAGE_PRICES',

"0.016,0.018,0.02").split(",")],

 'vision_token_price': float(os.environ.get('VISION_TOKEN_PRICE',

'0.01')),

 'image_receive_mode': os.environ.get('IMAGE_FORMAT', "photo"),

 'tts_model': os.environ.get('TTS_MODEL', 'tts-1'),

49

 'tts_prices': [float(i) for i in os.environ.get('TTS_PRICES',

"0.015,0.030").split(",")],

 'transcription_price':

float(os.environ.get('TRANSCRIPTION_PRICE', 0.006)),

 'bot_language': os.environ.get('BOT_LANGUAGE', 'en'),

 }

 plugin_config = {

 'plugins': os.environ.get('PLUGINS', '').split(',')

 }

 # Setup and run ChatGPT and Telegram bot

 plugin_manager = PluginManager(config=plugin_config)

 openai_helper = OpenAIHelper(config=openai_config,

plugin_manager=plugin_manager)

 telegram_bot = ChatGPTTelegramBot(config=telegram_config,

openai=openai_helper)

 telegram_bot.run()

if __name__ == '__main__':

 main()

50

Chapter 12. Appendix D

import os

import logging

import telebot

import core_functions

Configure logging

logging.basicConfig(level=logging.INFO)

Defines if a DB mapping is required

def requires_mapping():

 return True

def setup_routes(app, client, tool_data, assistant_id):

 # Initialize Telegram

 TELEGRAM_TOKEN = os.environ.get('TELEGRAM_TOKEN')

 if not TELEGRAM_TOKEN:

 raise ValueError("No Telegram token found in environment variables")

 bot = telebot.TeleBot(TELEGRAM_TOKEN)

 @bot.message_handler(commands=['start'])

 def send_welcome(message):

 telegram_chat_id = message.chat.id

 logging.info("Starting a new conversation...")

 chat_mapping = core_functions.get_chat_mapping("telegram",

 telegram_chat_id,

 assistant_id)

 # Check if this chat ID already has a thread ID

 if not chat_mapping:

 thread = client.beta.threads.create()

 # Save the mapping

 core_functions.update_chat_mapping("telegram", telegram_chat_id,

 assistant_id, thread.id)

 logging.info(f"New thread created with ID: {thread.id}")

 bot.reply_to(message, "Howdy, how can I help you?")

 @bot.message_handler(func=lambda message: True)

 def echo_all(message):

 telegram_chat_id = message.chat.id

 user_input = message.text

51

 db_entry = core_functions.get_chat_mapping("telegram",

telegram_chat_id,

 assistant_id)

 thread_id = core_functions.get_value_from_mapping(db_entry,

"thread_id")

 if not thread_id:

 thread = client.beta.threads.create()

 # Save the mapping

 core_functions.update_chat_mapping("telegram", telegram_chat_id,

 assistant_id, thread.id)

 thread_id = thread.id

 logging.info(f"XXXXXX: {thread_id}")

 if not thread_id:

 logging.error("Error: Missing OpenAI thread_id")

 return

 logging.info(

 f"Received message: {user_input} for OpenAI thread ID:

{thread_id}")

 client.beta.threads.messages.create(thread_id=thread_id,

 role="user",

 content=user_input)

 run = client.beta.threads.runs.create(thread_id=thread_id,

 assistant_id=assistant_id)

 # This processes any possible action requests

 core_functions.process_tool_calls(client, thread_id, run.id,

tool_data)

 messages = client.beta.threads.messages.list(thread_id=thread_id)

 response = messages.data[0].content[0].text.value

 # Use the original Telegram chat ID here, not the OpenAI thread ID

 bot.send_message(telegram_chat_id, response, parse_mode='Markdown')

 # Start polling in a separate thread

 from threading import Thread

 Thread(target=bot.polling).start()

52

Chapter 13.Appendix E

53

54

55

56

57

58

