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Resumen  

El proceso de verificación de circuitos integrados evita la propagación de errores desde la etapa 

de diseño hasta el proceso de fabricación y el producto final, evitando así un gasto baldío de 

tiempo y recursos económicos. El objetivo principal es validar el comportamiento de un circuito 

ante cualquier entrada posible, lo que requiere la aleatorización de estímulos y, a su vez, 

detallados modelos de referencia. Por lo tanto, el desarrollo de bancos de pruebas se convierte en 

una tarea compleja. En este contexto, los ingenieros de Robert Bosch en Dresden han considerado 

aplicar el uso de una nueva tecnología basada en Python, con el propósito de acelerar el proceso 

de verificación sin afectar la calidad y la validez de las pruebas. El presente trabajo aplica un 

nuevo paradigma en la industria de la verificación digital basado en el lenguaje de programación 

Python, contrastándolo con el enfoque ampliamente adoptado de SystemVerilog. El objetivo 

principal del desarrollo se centra en la librería "coroutine based cosimulation testbench" (cocotb), 

y su implementación de la Metodología de Verificación Universal (UVM), PyUVM. La intención 

final es proporcionar información exhaustiva sobre su funcionamiento y uso en entornos 

industriales, comentando las ventajas y limitaciones respecto a metodologías alternativas. El 

proyecto comienza con un análisis meticuloso del panorama actual de la verificación digital, el 

cual abarca un examen de las metodologías existentes y una evaluación de los desafíos que cada 

una de ellas presenta. Posteriormente, se realiza una exploración de las librerías cocotb y PyUVM, 

describiendo su mecanismo operativo y desarrollando en el manejo de ambas desde una 

perspectiva de usuario. Para demostrar su eficacia, estas librerías se emplean en tres escenarios 

de verificación distintos, entre los que destaca la verificación de un diseño digital perteneciente a 

un circuito integrado actualmente en desarrollo. La culminación del trabajo está marcada por un 

resumen de los resultados obtenidos y su comparación con el enfoque convencional 

UVM/SystemVerilog. El segmento final evalúa críticamente la viabilidad y potencial integración 

generalizada de esta nueva tecnología en la industria contemporánea de la verificación digital. 

Resum 

El procés de verificació de circuits integrats evita la propagació d'errors des de l'etapa de disseny 

fins al procés de fabricació i el producte final, evitant així una despesa erma de temps i recursos 

econòmics. L'objectiu principal és validar el comportament d'un circuit davant qualsevol entrada 

possible, la qual cosa requerix l'aleatorització d'estímuls i, al seu torn, detallats models de 

referència. Per tant, el desenvolupament de bancs de proves es convertix en una tasca complexa. 

En este context, els enginyers de Robert Bosch en Dresden han considerat aplicar l'ús d'una nova 

tecnologia basada en Python, amb el propòsit d'accelerar el procés de verificació sense afectar la 

qualitat i la validesa de les proves. El present treball aplica un nou paradigma en la indústria de 

la verificació digital basat en el llenguatge de programació Python, contrastant-lo amb 

l'enfocament àmpliament adoptat de SystemVerilog. L'objectiu principal del desenvolupament se 

centra en la llibreria "coroutine based cosimulation testbench" (cocotb), i la seua implementació 

de la Metodologia de Verificació Universal (UVM), PyUVM. La intenció final és proporcionar 

informació exhaustiva sobre el seu funcionament i ús en entorns industrials, comentant els 

avantatges i limitacions respecte a metodologies alternatives. El projecte comença amb una anàlisi 

meticulosa del panorama actual de la verificació digital, el qual abasta un examen de les 

metodologies existents i una avaluació dels desafiaments que cadascuna d'elles presenta. 

Posteriorment, es realitza una exploració de les llibreries cocotb i PyUVM, descrivint el seu 



 

 

 

 

 

mecanisme operatiu i desenvolupant en el maneig de totes dues des d'una perspectiva d'usuari. 

Per a demostrar la seua eficàcia, estes llibreries s'empren en tres escenaris de verificació diferents, 

entre els quals destaca la verificació d'un disseny digital pertanyent a un circuit integrat 

actualment en desenvolupament. La culminació del treball està marcada per un resum dels 

resultats obtinguts i la seua comparació amb l'enfocament convencional UVM/SystemVerilog. El 

segment final avalua críticament la viabilitat i potencial integració generalitzada d'esta nova 

tecnologia en la indústria contemporània de la verificació digital. 

Abstract 

The verification process for integrated circuits prevents the propagation of errors from the design 

stage to the manufacturing process and the final product, thus avoiding a futile spending of time 

and economic resources. Ideally, the main goal is to validate the behaviour of a circuit under any 

inputs, which requires elaborated stimuli randomization and intricate reference models. Hence, 

rendering the development of testbenches a complex task. In this context, engineers from Robert 

Bosch at Dresden have considered the use of a new Python-based technology, with the purpose 

of speeding up the verification process without affecting the quality and validity of the tests. This 

work applies a new Python paradigm to digital verification, contrasting it with the widely adopted 

SystemVerilog approach. The primary focus of this project centres on the "coroutine based 

cosimulation testbench" (cocotb) library and the Universal Verification Methodology (UVM) 

abstraction of it (PyUVM). The overarching goal is to provide comprehensive insights into their 

practical application in industrial settings, commenting on the advantages and limitations vis-à-

vis alternative methodologies. The project starts with a meticulous analysis of the current 

landscape of digital verification, encompassing an examination of extant methodologies and an 

assessment of the challenges inherent in their implementation. Subsequently, an exhaustive 

exploration of the cocotb and PyUVM libraries ensues, describing their underlying operational 

mechanism and untangling the expected usage patterns from the end-user perspective. To 

substantiate their efficacy, these libraries are deployed in three distinct application scenarios, 

notably including the verification of a digital design part of an integrated circuit currently in active 

development. The culmination of the present work is marked by an extensive summary, wherein 

the obtained results are presented and carefully benchmarked against the conventional 

UVM/SystemVerilog approaches. The concluding segment critically assesses the viability and 

potential wide integration of this Python framework within the contemporary digital verification 

industry. 
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Chapter 1. Introduction 

1.1 General overview 

Developing a new integrated circuit (IC) is a resource-intensive task that can expand indefinitely 

through time as well as through economical capabilities. These ICs present more complexities 

with each iteration, allowed by the advance in semiconductor technology, and a manufacturing 

failure of a sole product can cause havoc for any company. Errors, malfunctions, or mismatches 

between the expected behaviour and the one observed, should be corrected before it propagates 

further down the design workflow, avoiding the fabrication of a faulty design at all costs. 

A study from 2020 (1) notes that the growth in demand for verification engineers between 2007 

and 2020 was more than double that for design engineers. Although the mean ratio between both 

positions seems to be one-to-one across the industry, specific markets (for instance, processor 

units) may experience 5-to-1 ratios. Verification is not merely a quality control measure; it is the 

linchpin that fortifies the foundation upon which the semiconductor industry thrives. 

Digital designs are built using a Hardware Description Language (HDL) such as Verilog (2) and 

VHDL (3) to transform lines of code into synthesizable logic. However, this is not a requirement 

for verification, and that allows other languages to thrive. Eventually, a Verilog superset, 

SystemVerilog (4), was created to unify design and verification in a single language, which in turn 

has synthesizable structures and others that are not. 

SystemVerilog has been the most popular option for digital verification (5) in the last decade. 

Nonetheless, as ICs grow in complexity, the tests and the models also do. This intricacy presents 

a problem for a language such as SystemVerilog. Its syntax complexity does not provide the ideal 

environment for maintainability, and its non-usage outside the semiconductor industry introduces 

a significant barrier for new verification engineers.  

Python (6) is one of the most used programming languages across disciplines with more than 

512,937 projects available (7), and cocotb (coroutine based cosimulation testbench) (8) takes 

advantage of it. First released in 2013 (9), the cocotb framework allows for integration into an 

elevated number of the available HDL simulators, enabling the creation of testbenches using the 

Python language. Its popularity has awarded it to be used in the industry, presented at verification 

conferences (10) , and the creation of libraries that build upon it, the most notable being PyUVM 

(11). 

This project is a result of the imperative for enhancing verification methodologies, specifically 

for digital designs. Semiconductor companies, such as Robert Bosch GmbH (Bosch) being the 

director of this thesis, have a special interest in cocotb. This document will explore this library 

and related frameworks, thus providing helpful insight into the potential benefits that this 

emerging technology brings to the forefront of IC digital verification. Its comparison to already 

known and established verification methodologies, and its application to an in-development 

industrial design, will help to determine its significance in future projects. Additionally, this 

dissertation may help to understand how to apply cocotb in further verification environments. 
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1.2 Objectives 

The main objective of this project is to apply the cocotb framework as a behavioural digital 

verification tool and extract how this technology can be further integrated into (or replace) 

existing verification environments based. 

Significant milestones will define the success of achieving the main goal: 

- Examine the current state of the IC verification industry, the challenges of 

SystemVerilog-based testbenches, and how cocotb can address them. 

- Provide a straightforward understanding of how cocotb works, as well as how to use it 

for testbench design. 

- Design and run cocotb-based testbenches to verify diverse digital designs under 

controlled scenarios: a ramp-up project and a significantly more complex design. 

- Evaluate how cocotb-based testbenches compare to SystemVerilog ones using the 

previously verified designs. 

- Apply the acquired knowledge of cocotb to verify a digital design in active development 

by Bosch. 

- Explore how cocotb can be used for future projects inside the company and, more 

generally, in the verification industry. 

1.3 Methodology 

This project was conducted at the facilities of Robert Bosch GmbH in Dresden, Germany, under 

the guidance of the Mobility Electronics (ME) department. Certain set-up decisions have been 

selected according to company standards or by common usage across the department. 

1.3.1 Setup 

The computer environment in which simulations are run has been configured according to the 

cocotb requirements specified in its documentation. 

- Operative system: The selection of a UNIX-based OS (Fedora 7.3) is a Bosch decision. 

The work environment is already set up, which includes the simulator software and 

licenses to use it. 

- cocotb: The latest release available while developing this thesis (v.1.8.0) has been 

chosen. It provides an updated insight into the current capabilities and limitations of the 

framework. 

- Python: The used version must be no older than 3.6. To maximize the benefits of the 

language, the most recent release with ongoing security maintenance until October 2026 

(v3.10) has been chosen. This ensures that written code will remain compatible with 

future updates. 

- Code editor: Among the diverse options for code editors, Visual Studio Code was the 

preferred choice due to its intuitive usage and abundance of external plugins to enhance 

the user experience. The used version corresponds to build number 1.82.2. 

- GNU Make: To effectively execute the Python code with system calls to the simulator, 

an executable is essential. The framework requires GNU Make as the chosen tool, and it 

requires a version no earlier than the third release (v3) to ensure compatible functionality. 

The given environment provides the 4.3 version. 

- Simulator: Given that the framework only provides the means to code the testbench, a 

compatible simulator must be used to execute it. Due to the abundance of licenses 

available in the workspace, the ME team opted to use Cadence Xcelium. This decision 

was influenced by their previous testbenches being successfully executed using the same 

simulator. The proximity in experimental conditions will enable a meaningful 

comparison of the results obtained for both approaches. 
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Three designs have been chosen for this project, all of them provided by Bosch. Each one 

represents a Design Under Test (DUT) to be verified: 

- Synchronous First-In First-Out (SFIFO): Ramp-up project for verification engineers. 

Since it is the first DUT for new employees, it provides helpful data regarding the learning 

curve of the framework. 

- Bus arbiter: Verification challenge from 2018. It presents a more complex design that 

requires a more demanding testbench, therefore highlighting the benefits and limitations 

of cocotb against other approaches. 

- Chirp Start: Digital design block found in the current project being developed by the ME 

team. It will set the stage for future real-life usage cases of the framework in the company. 

1.3.2 Metrics 

To perform a valid comparison against already existent verification environments, the conditions 

of testing must be similar. Although different companies may have diverse approaches to digital 

verification, the one used the most across the field (5) is the Universal Verification Methodology 

(12) (UVM). Therefore, it has been chosen as the standard for this comparison. 

The UVM approach to verification is discussed and explained in section 2.4.1. However, it can 

be described as a workflow/framework to implement reusable testbenches.  

For SystemVerilog, there exists a library to implement this framework, while for cocotb there are 

multiple libraries available. During this project, the PyUVM library will be used as the default 

implementation of UVM in cocotb. This selection against other alternatives is discussed further 

ahead. 

Henceforth, the application of UVM in SystemVerilog will be referred to as SV/UVM. To evaluate 

how it differs from PyUVM, the comparison will focus on the following categories: 

- Learning curve: How easy it is to start a project, increase knowledge, and master its use. 

Availability of documentation, tutorials, and community support will be considered. 

- Performance: The simulation speed of each of the testbenches. This metric can vary 

depending on the efficiency of the written testbench rather than the simulator used. 

Additionally, the number of code lines between testbenches will be compared, although 

the same statements could have been expressed differently. 

- Integration: Ease of integrating each of the options with existent and future verification 

tools. 

- Maintainability: How the code is structured and how the programming language used 

can influence the maintenance of the testbench. 

- Industrial adoption: Number of users, successful deployments, and industry 

recognition. 

1.3.3 Development timeline 

To accomplish the target objectives, the project has been structured into specific tasks. Each task 

has been assigned a time frame in which it should be completed. Note that the development of 

this thesis extends from September 2023 until March 2024. 

1. cocotb basics: This part of the project involves setting up the work environment as well 

as designing and running basic testbenches using the cocotb and PyUVM frameworks. A 

month is dedicated to this purpose. 

2. SFIFO and bus arbiter verification: This task is related to the development of PyUVM 

and SV/UVM testbenches for both the SFIFO and the bus arbiter designs. Being the first 

application of the framework and involving multiple DUTs, this development phase takes 

place over two months. 

3. Chirp Start verification: The verification of a real design requires special dedication. 

The functioning of both PyUVM and cocotb is already known, but the testbench for this 
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scenario requires higher attention to detail. Thus, a month is the time given to complete 

this task. 

4. Summary and writing: The analysis of the results, as well as narrating the development 

process, is a complicated task that involves constant review between the people involved 

in this thesis. Therefore, two months is expected to coherently assemble the recorded 

notes into this document. 
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Chapter 2. State of the art 

Electronic designs in the digital domain contemplate electronic circuits whose input and output 

signals are discrete values, governed by Boolean logic. As a simpler definition; circuits whose 

minimal building blocks are logic gates. 

This chapter aims to provide the reader with background knowledge on the Register Transfer 

Level (RTL) design of digital Application-Specific Integrated Circuit (ASIC), with special 

attention to the techniques used in the process of verification. 

2.1 Design flow 

When building a new system, each company may have its own custom approach to the design 

flow to follow. Nonetheless, these processes are mostly based on the same basic steps (13) (14) (15) 

(16). For simplicity, the market survey phase and stages regarding physical design will be omitted. 

The process starts with a design idea, and at the same time, the specification phase takes place. 

During this step, the design architecture is defined, and its behaviour and characteristics are 

described as detailed as possible. Concurrently, an attempt at balancing system requirements 

(based on client targets) and capabilities happens. The main goal of this phase is to establish how 

the overall system and its architectural blocks behave. 

Although specifications are the basic description of a design, new scenarios and applications can 

be discovered once the design process has taken place. As a result, specifications can be improved 

in further stages and are constantly open to modifications.  

Once the specifications have a solid foundation, the RTL design phase can commence. To 

describe digital logic as well as memory components, designers use a dedicated language. An 

HDL may look like a common programming language, but it can characterize logic components 

as readable text. Popular options are Verilog, SystemVerilog, and VHDL. As soon as all RTL 

designs are finished, they are merged into a final top design. 

Concurrently to the design stage, the verification process takes place. Using different techniques, 

the design behaviour is compared against the specification. This process has a close connection 

to the RTL design step. As verification engineers discover faulty functioning in the design, the 

results are reported to the designer to be fixed. Once the system behaves as expected, the next 

stages can take place. 

Further steps on the design flow include synthesizing the HDL code into logic structures, 

describing the connection between these structures (netlist), and the fabrication of the physical 

layout.  

Figure 1. Simplified ASIC design flow from market 

survey until success of RTL verification. 
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The existence of the verification process is meant to avoid the downstream propagation of errors 

and faulty behaviours of the design. This avoids the manufacturing of partially defective circuits, 

which can result in a significant economic impact on a company. In addition, backtracking the 

design flow from the manufacturing phase until the RTL design has a notable time impact, thus 

resulting in release delays and an overall disadvantage over competitors. In an industry where 

49.3% of the market revenue corresponds to just ten companies (17), pre-silicon verification 

becomes an asset.  

These verification engineers, although closely related to the design team, are a separate entity 

whose object is to compare a design against its specifications. The designers should not execute 

this task themselves as they inevitably introduce a level of bias to the process. 

The designers have explicit knowledge on how the HDL code is going to behave, then they could 

inadvertently avoid testing specific cases, or only check specific scenarios where the design works 

correctly. An external observer provides valuable information, as it will determine if the 

specifications are unambiguous and if the design behaves accordingly. 

The importance of the verification process is remarkably significant that in some market sectors, 

for instance, microprocessors, it is possible to find five verification engineers per designer (1). 

2.2 Verification plan 

For the verification process, there are multiple tools available. The main target, however, is to 

check that the design behaves accordingly, that it can work for every expected circumstance, and 

that it can manage unexpected scenarios correctly. Even though there are multiple approaches to 

evaluate the design’s capabilities, a common step is defined: a verification plan. 

This phase has a significant importance, as it lays out the failure and success conditions. If the 

verification plan is completed successfully, then the design is stated to work correctly and can 

continue the development flow. If not, the errors are reported to be fixed.  

The plan introduces details such as to which verification approach or methodology to follow, 

which cases are forbidden by the specifications, which cases may present special interest, and 

how much the design should be stressed. This last feature establishes how many input 

combinations should be tested, thus indirectly designating for how long the test should run. 

In the end, this is a delicate stage where every detail must be drawn, but it is also the most crucial. 

The verification plan is responsible for determining the conditions and scenarios that have 

significant importance to assess the validity of a design. 

While there are multiple methodologies to approach the verification of a design, the following 

sections will focus on two of the most significant ones (18); static and functional verification. 

2.3 Static verification 

Digital designs are based upon logic elements and thus, they can be described using Boolean 

arithmetic. This factor allows digital designs to be characterized as mathematical models, which 

introduces the possibility of assessing their validity (also referred to as correctness) with a 

mathematical approach. 

Take for instance the truth table of Figure 2 defining the functioning of an AND gate. It 

specifically defines the expected output for a given set of inputs. If a verification engineer wanted 

to prove that every time both inputs are 1 the output is also 1, it could use equation (1) to 

mathematically assert that statement.  
𝐀 ∙ 𝐁 = 𝐂                                                                                         (1) 
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This mathematical approach to verification is given the name of static verification, although it 

can also be referred to as formal verification. This methodology requires specific tools that may 

differ from what the reader may expect. 

In essence, a formal verification tool analyses the provided HDL code and extracts its logical 

behaviour, being able to describe it as a mathematical model. In turn, this allows the tool to handle 

every possible state of the design. 

The behaviour of a design can be checked as a set of logical properties that must be asserted. An 

assertion is a statement about a logical property that should hold under a set of conditions. If the 

statement is found to be false under those circumstances, the assertion is said to have failed. 

In this context, there exist formal specification languages that let the user define assertions for a 

target design. These languages can be interpreted as mathematical statements that formal 

verification tools can use to observe if they hold against the design’s mathematical model. 

The SystemVerilog Assertion (19) (SVA) language is commonly used for this task, building upon 

the popularity of the SystemVerilog language itself. The language allows a variety of structures 

to describe the specifications of a design, although this section will only cover the basics. 

An assertion is defined by the assert keyword and can be either immediate or concurrent. An 

immediate assertion is checked in reference to its location on the code; it can be considered a 

condensed if-else statement. A concurrent assertion, on the other hand, establishes a property to 

be checked constantly at any point, or state. 

Both types of assertions can be used in formal and functional verification, nevertheless, both types 

are explained in this section. To understand concurrent assertions, it is helpful to first provide an 

overview of the immediate approach: 

 

    assert (C == 1); 

    CheckForC: assert (C == 1) $display("C is 1") else $display("C is not 1"); 

 

Note that both assertions are immediate but additional options are added to the second one. Both 

statements check for the value of C being 1, but the second one is assigned a name (CheckForC) 

and displays a message if the assertion succeeds or fails. In formal verification tools, the failure 

or success of the assertion will be reported whether there is a $display message or not. 

Concurrent assertions may follow a similar structure. They are described by adding the property 

keyword to the assertion statement. For example: 

 

    CheckWrRd: assert property (!(WR && RD)); 

 

The previous assertion declares that at any given moment, the signals WR and RD cannot be both 

1. If at some point, or state, both signals are at their high-level value, the assertion will trigger a 

failure. 

More types of behaviours can be described using the SVA language, but their explanation escapes 

the scope of this section. Nonetheless, to provide further insights into the capabilities of the 

language, another example is shown: 

Figure 2. Truth table of an AND logic gate. 
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    BAfterA: assert property @(posedge clk) disable iff (!reset_n) 

             $rose(A) |-> ##[1:3] $rose(B); 

 

 

The previous assertion declares initially that the check should take place at the rising edge of the 

clk signal and only if the reset_n signal is not 0. Afterwards, if the signal A changed from 0 to 1 

($rose), at some point between the next three clk cycles the signal B should also change from 0 

to 1. 

At this point, it may be clear that the formal simulator has a mathematical model for the design 

(from the HDL code) and another one for the expected behaviour (SVA code), but not all 

scenarios may be possible to check. Specifications of a design may forbid specific input 

combinations, and the SVA language provides a solution, called assumptions. 

An assumption lets the simulator know which input combination or scenarios are not allowed by 

the specifications, for example: 

 

    reset_1clk: assume property @(posedge clk) !reset_n |=> reset_n; 

 

The previous assumption establishes that if the reset_n signal is set to 0, it must return to 1 in the 

next clk cycle. The simulator will correctly understand this assumption and constrain its input 

stimuli accordingly. 

This approach to verification may seem ideal. The engineer can almost input the specifications as 

plain text and the simulator manages the rest. Nonetheless, there is a significant drawback (11); 

runtime. 

The design is expressed as a mathematical model, but it is still a combination of multiple equations 

with multiple outcomes that influence future equations. The tool evaluates every combination and 

every state transition; this is how the result of an equation affects the ones that depend on it. 

Each design presents a specific number of logic combinations (states), and multiple paths to get 

to each of them. States can either be illegal or valid. Illegal states represent a faulty behaviour of 

the design based upon the specifications. On the other hand, valid states are logic combinations 

allowed by the specifications. Figure 3 provides further information on the possible states of a 

design. 

A state contained in the design space but not covered by the specifications is considered a faulty 

behaviour, an error. On the other side, a state contained in the specification state but that does not 

have a design implementation represents a missing functionality. 

Figure 3. Possible states of a design behaviour and those allowed by 

specifications. 
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The goal of the formal tools is to match both the specification and the design spaces using 

assertions. These tools have different approaches to checking all these states and transitions 

(bounded model check, induction, etc.), based on mathematical techniques. This process requires 

a noticeable runtime the more complex a design is; the more logical states are introduced. 

For basic/simple designs, formal verification may be the best approach as it provides a 

straightforward case to completely verify its behaviour. For more complex designs, the number 

of available states and state transitions may make the simulation run for longer, thus making it 

unsuitable for an agile workflow. Nonetheless, formal verification is a valid methodology being 

used in the industry (18) and, like other alternatives, it has its target cases and its disadvantages. 

2.4 Functional verification 

A functional approach to verification refers to handling the inputs and outputs of the DUT directly 

through a simulator. It differs from formal verification approaches as the target is not to check the 

overall correctness of a design but rather to observe how it behaves under certain stimuli. The 

elevated runtime of formal verification makes this approach an attractive option for complex 

sequential designs, or to speed up the verification process when checking specific scenarios. 

Referring to Figure 3, functional verification has the goal of matching both the specification and 

the design spaces using custom stimuli. 

There are specific tools that can synthesize and extract the behaviour of an HDL design to simulate 

it; HDL simulators. The design functionality is understood, and the simulator can imitate its 

behaviour using computer operations. In this case, the design is not parsed into a mathematical 

model but rather into a set of executable instructions. 

Simulators per se do not present the autonomous capability to analyse the correctness of a design, 

the engineer must generate the stimuli. To manipulate the inputs and extract information from the 

outputs, a testbench is used. A testbench (also shortened to tb) is a structure written in an HDL 

that handles the stimulus generation as well as the output checking. The DUT module is 

instantiated and its signals are controlled directly. Engineers determine the stimuli to use based 

on the cases or scenarios to evaluate the test cases. 

Although there exist multiple options of HDL to perform functional verification, this section will 

explore the SystemVerilog language, based on its popularity for this approach (18). 

The following code presents a simple testbench module. Internal signals are created to connect 

them to the ones in the DUT, which is instantiated afterwards. Initially the value of d is set to 1, 

and after the next rising edge of the clk signal, the value of the q signal is checked to be 1. 

 

    module tb_example; 

        reg d, clk, q, q_n; 

 

        flip_flop_d dut (.d(d), .clk(clk), 

                         .q(q), .q_n(q_n)); 

        initial begin 

            d <= 1'b1; 

            @(posedge clk); 

            assert (q == 1'b1); 

        end 

    endmodule 

Functional verification allows engineers to customize the stimuli generation step by step. If static 

verification checks every possible state, functional verification could directly observe the 

behaviour of a design for tailored scenarios. 
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However, testing how a design works under a constant input sequence endlessly does not provide 

enough information. Ideally, the input must represent a real usage situation; different scenarios in 

a varying sequence. 

Randomized stimuli approximate the real conditions under which the design will be held. For 

instance, in the previous example, the value of the d signal was explicitly set to 1. However, that 

may not be always the case, as the same signal could have also been 0. It is possible to add a 

couple more lines of code to also test this last case, although it is not a scalable method for signals 

with a higher number of bits.  

The idea of randomized stimuli is a powerful tool that may require control over the generated 

values. The specifications of a design may describe not allowed input combinations, sequences, 

or usage conditions. In these cases, signals may have explicit rules to obey or a range of valid 

values. Constrained Random Verification (CRV) allows for a wide range of possible scenarios as 

the inputs of the DUT are constantly randomized, while also targeting the functionality of a 

design. This approach allows for input signals to take different values through the simulation, 

while at the same time limiting the valid values by specific conditions. 

In SystemVerilog, random variables contained inside a class are defined with the rand keyword. 

Their value is randomized when calling the randomize function of the class. On the other hand, 

constraints are defined with the constraint keyword and can implement different types of 

restrictions, from simple ones to more intricate scenarios. An example follows: 

 

    class crv_class; 

        rand byte in_data; 

        rand bit reset_n; 

 

        constraint allowed_range {in_data inside [2:5];} 

        constraint reset_val {reset_n dist {0:=80, 1:=20};} 

    endclass 

 

    crv_class tst_example = new(); 

    tst_example.allowed_range.constraint_mode(0); 

    tst_example.randomize(); 

 

The previous code shows a class (crv_class) containing two randomizable variables: in_data and 

reset_n. Then, two constraints are defined. The first one limits the in_data variable to values 

between 2 and 5 (both included). The second one establishes a weighted distribution of values for 

reset_n: the value will be 0 with a probability of 80/100, and it will be 1 with a probability of 

20/100. Afterwards, an instance of the class is generated (tst_example) and before its variables 

are randomized, the constraint regarding in_data is deactivated. 

This randomized approach to verification allows for a colourful palette of combinations and 

sequences to be observed. Nevertheless, the simulation could run indefinitely if not stopped 

manually or by the failure of an assertion. To determine if the DUT has been stressed enough, the 

goals established in the verification plan come into use. 

To assess the validity of a design, the general rule is that the more cases are evaluated the better. 

Static verification represents the extreme of this approach, as all possible scenarios are covered. 

In functional verification, however, because the stimuli are generated by the engineer, specific 

cases may be never tested. The solution to this problem is to measure which scenarios have taken 

place: the coverage of the testbench. 

The SystemVerilog language natively implements structures to handle coverage. A coverpoint is 

an expression or statement that will be evaluated at a sampling point. A covergroup contains 
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multiple coverpoints and specifies a common sampling point for the evaluation of each of them. 

The percentage of coverage from a coverpoint is defined by the number of sampled cases and the 

number of possible ones. A simple example follows: 

 

    covergroup my_coverage @ (posedge clk); 

        cover_data  : coverpoint in_data; 

        cover_rst   : coverpoint reset_n; 

    endgroup 

 

The previous code establishes that for every rising edge of the clk signal, the values of in_data 

and reset_n will be registered. Each coverpoint will have a complete coverage (100%) when all 

their possible values are sampled; when each signal has taken every possible value. 

While effective, the coverage tool even presents more capabilities. For instance; if the signal 

in_data is constrained to values between 2 and 5, its coverage will never be complete. 

Additionally, it may not make sense to sample the value of in_data if the reset is active. For these 

scenarios, there is a possible implementation: 

 

    covergroup my_coverage @ (posedge clk); 

        cover_data : coverpoint in_data iff (reset_n) { 

            bins my_range = {[2:5]}; 

        } 

    endgroup 

In the previous code, the value of in_data will only be sampled in the range between 2 and 5 and 

whenever the reset is not active (high-level). More coverage constructs are available to use, such 

as observing the combinations between two signals (cross coverage), but they present a more 

advanced topic not related to this thesis. 

2.4.1 Universal Verification Methodology 

A common approach to testbenches does not present a real option for scalability and reusability. 

Changes and evaluation of the DUT signals are made through statements that are written directly 

on the testbench code. Each time a new test is written, the engineer must write the sequence to 

follow and, at the same time, handle how the variables are connected to the DUT. Ideally, the last 

step would be ignored; the engineer would only have to write the sequences to run and there 

would be a structure in place to send the sequence to the DUT. 

The Universal Verification Methodology (UVM) is an approach to apply the best practices for 

verification, focused on the reusability of its components for changing testbenches. It was 

designed by Accellera based upon the Open Verification Methodology and it is now an IEEE 

standard (12) supported by multiple simulators from varied Electronic Design Automation (EDA) 

vendors. It is also the predominately used methodology for verification in industrial settings (18). 

A library that implements the UVM methodology can be found in the SystemVerilog language. 

In summary, this methodology is a powerful tool that can improve reusability and efficiency for 

testbench design. The capabilities of UVM are notably useful as they target exclusively the 

improvement of the verification process. In turn, mastering UVM is a time-consuming task, and 

learning the basics of it also presents challenges. It is a methodology with a steep learning curve 

that, when understood, drastically boosts testbench design and reusability. 

This section will focus on a basic description of a simple UVM testbench. This technology, while 

widely used in the industry, presents characteristics that allow for advanced testbenches, and thus, 

to cover all its capabilities, entire books have been dedicated to that purpose. This section aims to 

provide the reader with a basic notion of how UVM testbenches operate (20). 



 

 

 

 

18 

Further explanations will be made based on the block diagram shown in Figure 4. 

The minimal unit on a UVM testbench is a sequence item. This is the lowest object needed to 

send information from an engineer’s perspective to the DUT. These items contain information 

which data shall be driven to the DUT. 

A set of ordered sequence items is called a sequence. A sequence can be seen as a function; it 

contains multiple directives in the form of sequence items to interact with the DUT. To execute 

these directives, a sequencer manages when the next item of a sequence must be called. A 

sequencer can only handle one sequence at a time. 

To interact with the DUT, UVM testbenches use a driver and a monitor. The first component 

receives the sequence items from the sequencer and decodes the data into the DUT input pins. On 

the other hand, the monitor encodes the DUT output pins into a sequence item. Each component 

has a specific event that triggers its functioning. For example, the monitor could execute its 

function on every falling edge of the clock signal, and the driver could send the next item to the 

DUT on every rising edge. A set of DUT pins is defined by the interface SystemVerilog structure 

All these components are wrapped by a class called agent. Multiple agents can exist, and they can 

handle different signals of a DUT. For example, in a design with a read interface and a write 

interface, a different agent for each one can be useful, as it allows to insulate different 

functionalities of the DUT. Each agent may also have its own coverage class to apply coverage 

structures to its connected DUT pins. 

The last steps involve checking the items from each monitor. These items are sent to a scoreboard 

where the engineer has defined a reference model. This reference model is an implementation of 

the expected behaviour of the design. Analysing the driven items, the model decides which 

outputs are expected next, and compares its expectations with the monitored items. 

The agents and the scoreboard are included in a single class, an environment. Then, the 

environment can be reused in different tests, a test class. Each test will share the same environment 

but will implement its own set of sequences to execute. Thus, the engineer can reuse the structure 

to interact with the DUT and can focus specifically on designing the sequences. 

The UVM testbenches allow for all the explained SystemVerilog structures; random constrained 

stimuli, assertions, and coverage. Thus, a UVM testbench can be considered a significant 

powerful tool when it comes to functional verification. 

Figure 4. Basic multi-agent UVM testbench. 
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Chapter 3. Study of cocotb 

3.1 Overview 

Cocotb (8) (from coroutine-based cosimulation testbench) is a Python-based framework for the 

verification of VHDL and Verilog designs. It was first released on July 9th, 2013, as an open-

source project from Potential Ventures, supported by Solarflare Communications Ltd (9). Since 

mid-2018, the project has been administrated by the Free and Open-Source Silicon UK-based, 

non-for-profit, foundation (FOSSi). The source code is hosted on a GitHub repository (21) 

protected under the BSD-3-Clause license, which allows its usage and modification by any user 

without any cost, including industrial environments. 

In essence, cocotb allows its users to perform the verification of HDL designs running testbenches 

written in the Python programming language. The framework works with many existing 

simulators, both proprietary and open-source ones (22). 

The project is updated regularly; four new minor versions were released in 2021, four in 2022, 

two in 2023, and there is already a new major version in the works. It is sponsored by Cadence 

Design Systems, Siemens Digital Industries Software, and Aldec (8). These EDA tool providers 

supply simulator licenses to cocotb developers for integration testing. 

Additionally, cocotb was also part of the Open-Source Silicon Conference (ORConf) of 2023 (10). 

This backed-up support by significant and popular EDA companies, as well as participation in 

industry-focused conferences, has made cocotb known across the verification landscape. During 

the ORConf conference, information from a Siemens research study showed that cocotb is an 

alternative being used as a functional verification tool for ASIC and Field-Programmable Gate 

Array (FPGA) testbenches in real design projects. 

One of the most significant cases of industrial adoption of cocotb is presented by the European 

Council for Nuclear Research (CERN) on its ATLAS experiment, in collaboration with the 

University of Pennsylvania (23). In the experiment, two ASICs were successfully verified using the 

cocotb framework, and the verification team is planning to use the same approach in the future. 

Note that in this case, the plain cocotb library was used with no UVM implementation. 

3.2 Internal functioning 

An HDL simulator is a software program that models the behaviour of a design described in 

languages like SystemVerilog, VHDL, or similar. It reads the provided file, compiles the human-

readable code into a connectivity description between logic components (a netlist), and elaborates 

a model of how the design works. As such, a simulator transforms HDL design code into computer 

operations to replicate its behaviour. 

Behavioural simulators do not change the input signals of a design on their own, a stimuli 

generator is needed; a testbench. The testbench is also written and described in HDL code, thus it 

can also be interpreted directly by the simulator. Nonetheless, simulators allow for the execution 

of already compiled C/C++ code. Through dedicated interfaces, the C/C++ programs are granted 

access to the data contained in a simulation, providing the ability to actively change the state of a 

design. This code can either be started right away or be called from an HDL testbench; an example 

of the latter scenario is shown in Figure 5. 
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Each HDL describes its interface, thus resulting in the existence of multiple interfaces such as the 

VHDL Procedural Interface (VHPI), the SystemVerilog Procedural Interface (VPI), and the 

Foreign Language Interface (FLI). The latter is a non-standard proprietary interface used by the 

QuestaSim simulator. 

At its highest description level, cocotb provides a wrapper for Python to interact with the 

simulator through the VHPI, VPI, and FLI interfaces using a background C/C++ structure. 

Nonetheless, its functioning presents an interesting case. 

Firstly, note that each HDL uses its own interface. To get around multiple functions, cocotb 

implements a single Generic Procedural Interface (GPI) in C++ that can effectively communicate 

the same desired action to the simulator using any of the three mentioned interfaces (24). 

Subsequently, a problem is met. The simulator is the one that triggers the communication with 

C/C++ programs, thus a Python testbench cannot directly start the simulation. The solution lies 

in the Python/C application programming interface (API). This API allows the Python interpreter 

to be embedded into C/C++ modules, and for extension modules so Python can make use of 

C/C++ code (25). 

When cocotb is started, the GPI C++ library is compiled by the framework into a shared library 

and loaded into the simulator. At the same time, the Python interpreter is embedded into the shared 

library as well. When the simulation begins, the simulator triggers the Python environment 

through the embedded interpreter, which runs the Python testbench (24) (26). 

At this point, the testbench is being interpreted inside the simulator. Thus, when a call to the 

simulator is made (e.g., changing a signal value), the previously compiled GPI module can be 

used. The Python directive is communicated to the simulator through the GPI C++ extension 

module, and the action is performed (26). 

As a non-developer user, the internals of cocotb may appear complex. Nevertheless, the expected 

ordinary use does not require to understand these intricacies. Thus, cocotb can simply be seen as 

a wrapper that allows simulation control from Python. For a block diagram description of how 

cocotb operates, refer to Figure 6.  

  

Figure 5. Block diagram example of C code execution in a simulator using VPI. 

Figure 6. Block diagram on the internal functioning of cocotb. 
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3.3 Coroutines 

In the context of a programming language, a subroutine can be described as a set of statements 

stored in memory that can be executed externally. A program might call a subroutine, wait until 

its completion, and then return to the caller execution flow. This behaviour allows for code 

reusability across a main program and can be easily exemplified with a Python function calling 

another function. 

Coroutines, however, allow for concurrency. While a coroutine is waiting for an event to take 

place, the execution flow is returned to the caller function, thus freeing up resources for other 

actions to be executed while waiting. After the event is triggered, cocotb resumes the coroutine 

execution where it was previously suspended. To do so, cocotb uses a “scheduler”. This structure 

can be seen as an execution flow manager that dictates the order in which different actions may 

take place. 

The cocotb framework is based on the use of coroutines for advancing simulation time; like the 

SystemVerilog task construct. When a coroutine is waiting for an event to happen (for example, 

a rising edge of the clock signal), other coroutines can be executed. When the scheduler detects 

that all the coroutines are waiting for their events, the simulation time is advanced until one of 

these events is triggered. Then, the coroutines are resumed and the execution continues. 

3.4 Basic concepts 

The following section makes use of available documentation (27) (28) to explain the basic notions 

needed to code a testbench using cocotb.  

In the cocotb framework, the main entry point of code execution is a test. All functions decorated 

with cocotb.test() represent structures where calls will be made to the simulator. These functions 

can take multiple input arguments, but the documentation encourages the user to only use one; a 

handle to the DUT. A simple test can be defined as follows: 

 

    @cocotb.test() 

    async def tst_base(dut:HierarchyObject) -> None: 

        ... 

 

A testbench file can contain multiple test functions, each function’s name is considered the test’s 

name. Note that the decorated function must be a coroutine, defined by the async keyword. 

Additionally, note that type-hinting the input and output of the function is an optional 

characteristic of Python. 

The DUT object contains the handle for every modifiable object inside it. These objects can be 

accessed with the standard dot (“.”) notation. The value of a signal can be changed as follows: 

 

    dut.clk.value = 0 

    dut.clk.setimmediatevalue(0) 

 

The previous approaches to changing the value of a signal are slightly different. The former 

schedules the value to be changed at the end of the current simulator step. The latter changes the 

value immediately. Meta values can also be assigned using dedicated type structures: 

 

    dut.clk.value = Logic("X") 

    dut.wr_data.value = LogicArray("01XZ") 
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When reading a signal, the syntax follows conventional rules, with a notable difference: 

 

    rd_val = dut.rd_data.value 

    rd_val = dut.rd_data 

 

The first statement reads the value of a signal while the second one retrieves the handle of a signal; 

a reference. The value of a signal is expressed as an integer by default. Nonetheless, an exception 

will raise if the signal contains a meta value. To avoid this situation, the value object provides the 

binstr property that returns the signal value as a binary string. 

Bit slicing is also allowed either when writing or reading a signal, as shown below: 

 

    rd_bit = dut.rd_data[0].value 

    dut.wr_data[0].value = 0 

 

In cocotb, time is advanced through triggers, as explained in the coroutine subsection. When 

calling these triggers, the Python testbench yields control to the simulator, which in turn 

advances the simulation time until the trigger is fired. Afterwards, the code continues its 

execution. The most significant ones are: 

 

    await FallingEdge(dut.clk) 

    await RisingEdge(dut.clk) 

    await Edge(dut.clk) 

    await ClockCycles(dut.clk, 1, rising=False) 

    await Timer(1, units='ns') 

 

The first two triggers wait for a falling and rising edge of a given signal, respectively. The third 

one waits until a signal changes its value. The ClockCycles trigger waits for n number of cycles 

of a signal to be completed; the rising keyword argument establishes if it should count rising or 

falling edges. The last one is a timer that waits for a specific time. 

Additionally, further structures allow for the combination of multiple triggers, for example: 

 

    await First(FallingEdge(dut.clk), RisingEdge(dut.clk)) 

    await Combine(FallingEdge(dut.clk), RisingEdge(dut.clk)) 

 

The First trigger waits until one of the specified triggers is completed. The Combine structure 

waits until all the triggers are completed. These types of structures, found in SystemVerilog, are 

of significant relevance when designing testbenches. 

A testbench is not only meant to drive stimuli, but it must also compare the output signals against 

a designated reference. The assert built-in Python statement can be used to trigger an exception 

and finish the test if a condition is not met: 

 

    assert dut.rd_data == 20, “Error message” 
 

The assertion approach can be useful for errors that are considered fatal; if the assertion condition 

is not met, the simulation will stop executing the current test and start the next one. A less 

aggressive alternative is to use the logging capabilities of cocotb. 

The DUT object contains a logger object from the Python built-in logging library. It allows to 

print messages of different priority levels during the simulation. The priority level can be changed, 

hiding messages below the specified level. 
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    dut._log.debug("DEBUG") 

    dut._log.info("INFO") 

    dut._log.warn("WARNING") 

    dut._log.error("ERROR") 

    dut._log.critical("CRITICAL") 

    dut._log.setLevel(logging.INFO) 

 

Note that the print Python function does not work during the execution of the simulation, as the 

console output is managed by the simulator. These print statements are buffered and will be 

shown once the simulator flushes the output buffer.  

To run the simulation, a Makefile is used. Some parameters of the testbench to run are needed, 

such as the simulator to use, the HDL files of the design, the top module of the RTL code as well 

as the name of the Python file that contains the tests. Additional arguments for the simulator’s 

various stages can also be provided. An example of a basic Makefile is shown: 

 

# Simulator options 

SIM = xcelium 

TOPLEVEL_LANG = verilog 

 

# Design files 

VERILOG_SOURCES += $(PWD)/design_1.v 

VERILOG_SOURCES += $(PWD)/design_1_a.sv 

VHDL_SOURCES    += $(PWD)/design_1_b.vhd 

 

# Simulator arguments 

COMPILE_ARGS    = -v93 -sv 

RUN_ARGS        = -q -gui 

 

# Testbench description 

TOPLEVEL_LANG   = verilog 

TOPLEVEL        = design_1     # Design top file 

MODULE          = python_tb    # Python testbench file name 

 

Note that more options can be specified in the Makefile for a more customizable execution (29). 

Once the simulation starts, running the Makefile, each of the tests will run until its completion, or 

until an assertion error is triggered. Once every test has finished, the simulation will end, and 

information on the runtime and status of each test will be displayed in the console output. 

3.5 PyUVM 

Although the cocotb framework can be useful for rapid testing, a main problem arises when it 

comes to industrial adoption. The Siemens research study from 2022 (5) showed that, for ASIC 

verification, the most used methodology was UVM. Additionally, the study provides data from 

2014 and 2018, where this methodology was also in the lead. 

The majority within the verification industry uses the UVM approach to verification, thus for an 

opportunity for Python-based testbenches to find their way into industrial adoption, a UVM 

library based upon cocotb may simplify the transition. 
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In this context, two open-source libraries provide a UVM framework using cocotb as their 

background engine: PyUVM (11) and uvm-python (30). The former introduces a more Python-based 

approach whereas the latter can be considered a 1:1 port of SV/UVM made for users who have 

already knowledge of the framework using SystemVerilog. An example of this can be found in 

the use of the UVM “phase” object, which is not required in PyUVM. Additionally, uvm-python 

provides a Perl script to convert SV/UVM code into Python. Both are licensed under the Apache-

2.0 license, which also allows for its free usage and implementation in industrial environments. 

Although uvm-python may appear the best option for this project, it is also important to note that 

PyUVM presents a more promising future perspective. The latter has had more updates and 

community activity to its repository in recent years than uvm-python. Furthermore, the author has 

also published a book on how to use the cocotb and PyUVM libraries (31). It is also significant to 

note that PyUVM has received support from Siemens, featuring a series of online blogs dedicated 

to its usage (32). 

For these reasons, the availability of resources, community activity, and sponsorship of Siemens, 

this project will use the PyUVM library. 

The PyUVM testbenches are structured as the SV/UVM ones. Its reference guide provides enough 

information on how to set up the verification environment, how to connect the components, and 

how to run the simulation, which makes use of the same type of Makefile as cocotb. 

Nevertheless, the user must have some knowledge of cocotb. SV/UVM connects its agents to the 

DUT through an interface struct, which is a SystemVerilog construct, not a UVM one. Python 

does not provide an equivalent object, so the user must code an additional object: a Bus Functional 

Model (BFM). 

By its simplest description, the BFM will connect the DUT to the driver and the monitor. It must 

be able to receive sequence items and translate them into DUT signals, and monitor the DUT 

signals and send a sequence item containing them. To perform these operations, the BFM will use 

cocotb triggers such as RisingEdge or FallingEdge to time when to drive and when to monitor 

signals. Additionally, signals will be written and read which also requires cocotb knowledge. 

The following code snippets are shown to demonstrate the simplicity of PyUVM for the creation 

of an agent and its components, except the coverage class for directness. Note that this is a 

minimal implementation of a basic UVM agent. Additionally, the inherited classes are imported 

from the PyUVM library. 

This sequence item has two transactional variables. When the item is created it can optionally 

receive a value for each, defaulting to 0 if not found. An additional function is written, which 

randomizes the value of one variable. 

 

class MySeqItem(uvm_sequence_item): 

    def __init__(self, name:str="m_item", **kwargs) -> None: 

        super().__init__(name) 

 

        self.i_wr_data  = kwargs.get("i_wr_data", 0) 

        self.o_rd_data  = kwargs.get("o_rd_data", 0) 

 

    def randomize(self) -> None: 

        self.i_wr_data  = randint(0, pow(2,32)-1) 
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The next object is the BFM. It provides a queue of a single space for the driving items and an 

infinite queue for the monitored items. It also has direct access to the DUT pins. Two functions 

are dedicated to handle the interaction with the queues, and an additional function resets the input 

signal. Finally, two background functions are initiated when start is called. The _driver structure 

waits for the next rising edge of the clock signal and waits until there is an item in the driver 

queue; once the item is found the input signal is relayed to the DUT. The _monitor function on 

the other hand waits for the falling edge of the clock signal and then creates a sequence item in 

which it stores the signal values from the DUT; it then stores the item in the monitor queue. 

 

class MyBfm(): 

    def __init__(self) -> None: 

        self.dut        = cocotb.top 

        self._driver_q  = Queue(maxsize=1) 

        self._monitor_q = Queue(maxsize=0) 

 

    async def get_item(self) -> MySeqItem: 

        seq_item = await self._monitor_q.get() 

        return seq_item 

 

    async def send_item(self, m_item:MySeqItem) -> None: 

        await self._driver_q.put(m_item) 

 

    async def reset(self) -> None: 

        self.dut.i_wr_data.setimmediatevalue(0) 

        await RisingEdge(self.dut.clk) 

 

    async def _driver(self) -> None: 

        while True: 

            await RisingEdge(self.dut.clk) 

            seq_item : MySeqItem = await self._driver_q.get() 

 

            self.dut.i_wr_data.value = seq_item.i_wr_data 

 

    async def _monitor(self) -> None: 

        while True: 

            await FallingEdge(self.dut.clk) 

            seq_item = MySeqItem("seq_item") 

 

            seq_item.i_wr_data = self.dut.i_wr_data.value 

            seq_item.i_rd_data = self.dut.i_rd_data.value 

            self._monitor_q.put_nowait(seq_item) 

 

    def start(self) -> None: 

        start_soon(self._driver()) 

        start_soon(self._monitor()) 
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The following snippets refer to the monitor and the driver components. Each of them retrieves the 

BFM object from a shared database. The monitor additionally creates a port to communicate with 

other components. 

The driver object applies the reset of the BFM and starts its background functions. Afterwards, it 

waits until the sequencer sends a new sequence item and then forwards it to the BFM driver queue. 

The monitor waits until there is a new monitored item from the BFM and then sends it through 

its port. 

 

class MyDriver(uvm_driver): 

    def build_phase(self): 

        self.bfm = ConfigDB().get(None, "", "my_bfm") 

 

    async def run_phase(self): 

        await self.bfm.reset() 

        self.bfm.start() 

        while True: 

            seq_item = await self.seq_item_port.get_next_item() 

            await self.bfm.send_item(seq_item) 

            self.seq_item_port.item_done() 

 

class MyMonitor(uvm_monitor): 

    def build_phase(self): 

        self.bfm = ConfigDB().get(None, "", "my_bfm") 

        self.analysis_port = uvm_analysis_port("analysis_port", self) 

 

    async def run_phase(self): 

        while True: 

            seq_item = await self.bfm.get_item() 

            self.analysis_port.write(seq_item) 

 

Finally, the agent class creates the driver, the monitor, a sequencer, and a port. Subsequently, the 

driver is connected to sequencer and the monitor port is connected to the agent port. 

 

class MyAgent(uvm_agent): 

    def build_phase(self): 

        super().build_phase() 

        self.m_seqr     = uvm_sequencer("m_seqr", self) 

        self.m_driver   = MyDriver("m_driver", self) 

        self.m_monitor  = MyMonitor("m_monitor", self) 

        self.a_port     = uvm_analysis_port("a_port", self) 

 

    def connect_phase(self): 

        super().connect_phase() 

        self.m_driver.seq_item_port.connect(self.m_seqr.seq_item_export) 

        self.m_monitor.analysis_port.connect(self.a_port) 
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The following code represents a simple sequence that the agent could execute: a sequence item 

is created and randomized. 

class SimpleSeq(uvm_sequence): 

    async def body(self): 

        seq_item = MySeqItem() 

        await self.start_item(seq_item) 

        seq_item.randomize() 

        await self.finish_item(seq_item) 

 

To finish the testbench, a top environment and a test is needed. Note that the following 

environment does not implement a scoreboard, for simplicity of the code snippet. The agent port 

would have been connected to the scoreboard object, as shown in Figure 4. 

The environment contains the designed agent and creates the BFM object. This BFM object is set 

into a database so that other components can retrieve it and use it. The environment is instantiated 

into a test, where sequences can be executed (started) using the adequate sequencer. 

class TopEnv(uvm_env): 

    def __init__(self, name:str="top_env", parent:Any=None): 

        super().__init__(name, parent) 

        self.my_ag : MyAgent = None 

 

        ConfigDB().set(None, "*", "my_bfm", MyBfm()) 

 

    def build_phase(self): 

        self.my_ag = MyAgent("my_ag", self) 

 

@test() 

class TstTest(uvm_test): 

    def build_phase(self): 

        self.env = TopEnv("m_env", self) 

 

    async def run_phase(self): 

        self.raise_objection() 

        SimpleSeq.start(self.env.my_ag.m_seqr) 

        self.drop_objection() 

 

Note that the previous code provides a simple example with missing capabilities such as 

coverage or a scoreboard. Nonetheless, the reader should be able to understand the basic 

testbench structure in PyUVM.  
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Chapter 4. Synchronous First-In First-Out 

For the initial usage case, a design of a synchronous first-in first-out (SFIFO) will be used. This 

kind of circuit is one of the most common digital designs, and its simplicity in functioning makes 

it ideal for verification training as well as ramp-up projects.  

Three different versions of the design have been provided; two of them present faulty behaviour 

that is meant to be found. This design makes it an ideal starting point to design a testbench in 

PyUVM for the first time. 

4.1 Specifications and verification plan 

The structure shown in Figure 7 consists of a memory array with user-accessible control logic. 

New data can be written to the SFIFO and then read in the same order it was written. The main 

characteristics are as follows: 

- Signals are clocked at the rising edge of the clock signal. 

- Read and write operations are independent of each other, with their own enabling signal. 

- Read data is provided one cycle after the read request. 

- Status flags are updated on the following cycle of an operation. 

- Read access is ignored if the empty flag is asserted. 

- Write access is ignored if the full flag is asserted. 

- Output data, memory contents, and status flags can be cleared with the synchronous clear 

signal. 

- Reset signal reset_n is asynchronous. 

- The clear and reset_n signals have priority over read or write access. 

From the previous bullet list, it can be observed that the SFIFO has four different operations; read, 

write, clear, and reset. 

At the same time, although randomization is the key to exhaustive verification, there are specific 

cases that could be interesting to observe directly without waiting for an unknown number of 

cycles until randomization produces the needed stimuli. These scenarios are as follows: 

- Write access when memory is full. 

- Read access when memory is empty. 

- Read and write accesses at the same time. 

- Reset asserted asynchronously. 

- Clear asserted asynchronously. 

Figure 7. Block diagram of the SFIFO design. 
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For these specific cases, the main goal is to observe the behaviour of the design on specific 

conditions; the test will run until it has completed the action and then it will stop to check that the 

outputs match expectations. Contrary, the randomized test can run indefinitely until a fault is 

found.  

The completeness of verification is defined via coverage. This can include the SFIFO being full 

and empty, all possible 8-bit values being written, or other scenarios. To track these insights, the 

coverage of the following signals will be tracked: 

- Read and write data, to obtain a metric on the different values have they taken, with 

interesting cases for 0 and 255 values. 

- Status flags, to check that the SFIFO has been full and empty during the test. 

- All combinations of input signals (excluding write data). 

For a fully randomized test, it will be considered that the design has been verified when all 

operations (read, write, clear, and reset) have been performed in all their combinations. 

Additionally, the SFIFO must be empty and full at least once during the test, and the values 0 and 

255 must be written to memory at least once each. 

4.2 Reference model 

To match the outputs, a model of the SFIFO must be created. Because of its behaviour, an array 

is the simplest approach, but its implementation varies depending on the programming language.  

For the PyUVM testbench, the reference model in Python can use a list to match the functioning 

of a FIFO structure. Each time there is a new write operation, new data will be added at the end 

of the list using the append method. When reading, the first element of the list will be extracted 

using the pop method. This last method not only gets the value of the indexed element of a list 

but also deletes it from it. An example follows: 

 

# Initial state 

model = [0, 1, 2, 3] 

# Write operation 

wr_data = 4 

model.append(wr_data) 

print(model) 

# Read operation 

rd_data = model.pop(0) 

print(rd_data) 

print(model) 

> [0, 1, 2, 3, 4] 

> 0 

> [1, 2, 3, 4] 

 

 

Note that, by nature, Python lists are not fixed in length and can be expanded as much as wanted.  

For the SV/UVM approach, a queue SystemVerilog object has been used. This type of object 

consists of a data array that can append and extract values at the end and the start of the array. To 

correctly model the SFIFO behaviour, written values will be pushed at the end of the queue, while 

read values will be extracted from the start of the queue. An application example of this type of 

object follows: 
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// Initial state 

logic [7:0] model [$:7];   // A queue of 8 slots of 8 bits each 

model.push_back(0); 

model.push_back(1); 

$display(model); 

// Write operation 

byte wr_data = 2; 

model.push_back(wr_data); 

$display(model); 

// Read operation 

byte rd_data; 

rd_data = model.pop_front(); 

$display(rd_data); 

$display(model); 

 

> [0, 1] 

> [0, 1, 2] 

> 0 

> [1, 2] 

 

Note that the $display function cannot be used directly with objects as shown in the previous 

code. The purpose nonetheless is to observe the state of the queue after performing the operations. 

Note also that both model implementations have control structures over the length of the memory 

array to replicate the SFIFO status flags. 

4.3 Testbench structure 

The following section explains the structure followed in designing the UVM testbench to use. 

Both, the SV/UVM and PyUVM approaches, will be based upon this structure of components and 

their connections. 

For the PyUVM approach, there are two different implementations. One of them generates the 

clock using the cocotb clock class inside the Python file, whereas the other one generates the clock 

signal in a SystemVerilog auxiliary file. The purpose is to later observe how it affects simulation 

runtime. 

Regardless of the implementation, when designing a UVM-based testbench, deciding the number 

of agents and their scope is a vital part of the process. There is not a single valid answer to this 

question, because it mostly depends on the number of functional interfaces needed. 

In the case of this device, three main interfaces can be easily identified: 

- Write: Drives the enable and data signals of the write operation. 

- Read: Drives the enable signal of the read operation and monitors the read data. 

- Control: Drives the reset_n and clear signals and monitors the status flags.  

While no output signal is being monitored by the Write agent, it is necessary to track the stimuli 

used so that the scoreboard reference model can match the expected behaviour. Thus, while not 

monitoring any output, the write agent also incorporates a monitor component.  

This agent configuration is meant to separate the interfaces by their operations, which allows for 

a simple implementation of concurrency. Each operation will have its own dedicated sequence, 

and because each of them uses a different interface, they can be run simultaneously. 
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The testbench structure in Figure 8 shows all agents instantiated on the top environment alongside 

the scoreboard, which contains the reference model. 

The Write agent contains three sequences. The first one asserts the enable signal and randomizes 

the write data, while the second one de-asserts the enable signal. Splitting the write transaction 

like this gives more control to the verification engineer, who can let the enable signal on a high 

level indefinitely if needed. Finally, the third sequence randomizes the write data and activates 

the enable signal with a probability of 70%; this sequence is meant to be used for a high-level 

randomization test. 

The Read agent presents the same sequence structure as the one just explained: enable transaction, 

disable transaction, and enable transaction with a 70% probability. No data is randomized because 

read data is an output signal of the DUT. 

Note that the probability value has been chosen arbitrarily. In the verification plan, it has been 

explained that the SFIFO should be checked on full and empty scenarios. If for every write access 

there was a read, the “full” condition could not be met. On the other hand, a probability of 50% 

for each access can keep the simulation running without reaching either condition. A 70% 

probability presents the possibility of concatenating multiple accesses of the same type, thus 

amplifying the chances of reaching a full or empty SFIFO at the same time as allowing other 

states. 

At last, the Control agent. It contains a sequence for activating the reset_n signal and deactivating 

it afterwards and the same sequence for the clear signal. Additionally, there is also another 

sequence that enables the reset signal with a 0.05% probability and enables the clear signal with 

a 0.5%, providing the setup for every combination of both signals. 

For the last sequence of the control agent, probability values for the reset_n and clear signals 

have been decided based on functionality. Constantly clearing or resetting the SFIFO to its initial 

state decreases the chances of “full” or “almost full” scenarios. 

  

Figure 8. UVM structure of the SFIFO testbench. 
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It could be noticed that the write and read accesses are recurrent across tests, and the split between 

the enabling and the disabling sequences could be tedious. It is repetitive, and where there is 

repetition there is reusability. There exist two top-level sequences called WriteCycles and 

ReadCycles that perform a defined number of read or write accesses, de-asserting the enable 

signal once the access is finished. 

Although the basic components have already been explained, the testbench is missing its final 

element: the tests. The simulator needs an execution entry point that coordinates which sequence 

to run. 

Following the verification plan goals, the following tests have been designed: 

- TstWriteFull: Performs a write access per memory slot available, and an additional 

one. Afterwards, the memory is read completely. 

- TstReadEmpty: A read access is performed after a reset. Later, a random number of 

write accesses are performed, followed by the same number of read accesses, and an 

additional one. 

- TstReadNWrite: Read and write accesses are performed concurrently for a random 

number of times. 

- TstReset: Writes a random number of times and a reset operation is performed 

afterwards. Subsequently, a random number of write accesses take place and later, the 

SFIFO is read completely. 

- TstClear: Mimics the structure of TstReset but instead of applying a reset signal, the 

clear signal is activated. 

- TstRandom: The random sequences of each agent are run concurrently for a given 

number of cycles. This test is meant to be the most exhaustive one, as all the input 

signals are randomized at the same time, every time. By default, the number of cycles 

is set to 5000; the time span should be enough for the conditions to be met. If not, a 

new regression can be run again. 

4.4 Test results 

There are three different versions of the SFIFO design, two of them contain known errors meant 

to be found. The following simulations are run using the default configuration (256 8-bit slots). 

Nonetheless, to observe the waveform of certain errors, a smaller memory length will be used (8 

8-bit slots) for the sake of visual ease. 

Both the PyUVM and SV/UVM testbenches were simulated, and the observed results matched 

between approaches. The following analysis of the test results is based on the PyUVM testbench. 

First version result: 

  

Figure 9. Simulation results of the first SFIFO version. 
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As described in Chapter 3, cocotb provides a summary at the end of each simulation, highlighting 

the duration of each test and whether it has failed or not. In Figure 9 it is possible to observe that 

half of the designed tests have failed. Locating each assertion error will provide further 

information. 

TstWriteFull has failed because the full flag is expected to be 1, but the observed value is 0. Before 

ruling this scenario as a design bug, it is necessary to assert confidently that the testbench works 

correctly.  

Figure 10 shows eight write accesses being performed properly, with the write enable signal being 

activated. According to specifications, the full flag should be asserted on the next clock after the 

last access (at 20 ns), however, this behaviour is not observed. Therefore, the error is triggered by 

a fault in the design.  

On the other hand, TstReadEmpty has failed because the empty flag is expected to be one 1 but 

the observed signal has a value of 0. 

In Figure 11 a reset is performed, and a read access follows. Because the memory is empty, the 

read access does not have any effect on the design. Afterwards, four continuous write accesses 

take place and the empty flag is de-asserted correctly. To finish the test, four continuous read 

accesses are subsequently executed.  

According to specifications, read data and status flags are not updated until the following cycle 

after a read access. The first access occurs at 35 ns and no data is given until 37 ns. The last access 

takes place at 41 ns, and the model expects the empty flag to assert the next clock cycle (43 ns). 

It is possible to observe that the value of the read data has changed and matches the last written 

value, thus concluding that the read access works correctly, and the problem lies in the empty 

flag.  

Finally, TstRandom has failed because the empty flag is not asserted after reading the entirety of 

the SFIFO; the same faulty behaviour observed in TstReadEmpty. 

 

Figure 10. Waveform of TstWriteFull simulation for the first SFIFO version. 

Figure 11. Waveform of TstReadEmpty for the first SFIFO version. 
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Second version result: 

In this run, the second version of the design is the target of the testbench. Looking at the results 

of each test in Figure 12, it seems like the flag errors have been fixed, although TstRandom fails 

again. 

The logging messages of cocotb place the assertion error in a mismatch in the read data signal, 

which is expected to have a value of 0. The waveform observed in Figure 13 shows multiple read 

and write access happening, but then the clear signal is asserted. 

According to specifications, accesses are ignored when the clear signal is asserted, status flags 

should return to their initial state, and the read data value should be 0. The empty flag is observed 

to change to 1. Nevertheless, the value of read data is not as expected. 

This error has not been observed in TstClear because no read operation was performed before the 

clear; the read data value was always 0. This situation should remind the reader of the importance 

of randomized stimuli. 

Third version result: 

Figure 12. Simulation results of the second SFIFO version. 

Figure 13. Waveform of TstRandom for the second SFIFO version. 

Figure 14. Simulation results of the third SFIFO version. 
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For the final design version, every error detected previously has been solved as all tests are seen 

to pass successfully in Figure 14. Additionally, to assess the validity of the random test, the 

coverage of each signal can be observed in Figure 15. 

Although a significant part of the coverpoints have been completed successfully, the full flag has 

only taken one of its two values. The waveform reveals that during the random test, the memory 

has never been full. This situation could be resolved by adjusting the probability values of each 

type of access, favoring more write access than read, for example. At the same time, tests like 

TstWriteFull have already verified the validity of the full flag. 

4.4.1 Testbench comparison 

The different testbench approaches are compared to provide further insights into their own 

characteristics. The metrics of the comparison have already been described in the introduction of 

this document. 

The line count metric in Table 1 is based on usable code lines, excluding comments and blank 

lines. At the same time, both languages allow for multiple ways to write the same statements, 

varying the line count without any difference in functionality. There has been an attempt to keep 

consistency in formatting between both approaches. 

 

 SV/UVM PyUVM (RTL clock) PyUVM (cocotb clock) 

Code lines 1257 870 867 
Table 1. Line count comparison for SFIFO testbenches. 

Note that the line count for the PyUVM RTL clock implementation accounts for the lines written 

to generate the clock in the SystemVerilog auxiliary file. 

For the runtime comparison, the third version of the design has been chosen because it allows for 

a longer simulation time since no assertion is going to fail. The test to be run is TstRandom 

because randomization itself is a resource-exhaustive task from which better insights can be 

extracted. At the same time, the random test allows for an indefinite number of iterations. 

Each approach will execute the test for three different numbers of iterations, providing a detailed 

observation of how the runtime behaves over time. At the same time, the value of each runtime is 

an average of 100 executions, to assert that the value is not influenced by computer background 

activity noise. The GUI mode of the simulator is not being used, and the randomization seed value 

is stable across all approaches and executions. 

Figure 15. Coverage of TstRandom for the third 

SFIFO version. 
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Figure 16 shows the results obtained for the runtime comparison, with the values normalized to 

the slowest simulation time. 

4.4.2 Discussion 

The artificial design errors introduced in the first versions of the SFIFO have been detected 

correctly by both the PyUVM and the SV/UVM testbenches. It can be stated thus that PyUVM, 

and therefore cocotb, are proven working frameworks for the verification of essential digital 

designs. 

The difference in code lines observed in Table 1 is a result of PyUVM presenting less boiler-plate 

code in its UVM implementation than SystemVerilog. Additionally, Python features such as list 

comprehension and built-in functions to perform elaborated tasks contribute to a lighter reference 

model. 

Finally, regarding the observed runtime in Figure 16 the SV/UVM implementation is consistently 

60% faster than both PyUVM alternatives. However, delegating the clock generation to 

SystemVerilog instead of cocotb provides a 10% runtime improvement. This improvement, while 

not comparable to a 60% difference, could also be relevant for prolonged runtimes. 
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Figure 16. Comparison of the mean runtime of different SFIFO testbench approaches for varying iterations of 
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Chapter 5. Bus arbiter 

The PyUVM and cocotb frameworks have been evaluated and compared against the SV/UVM 

approach through the verification of the SFIFO design. Nonetheless, the reasonable next step is 

to implement a more complex testbench. This section aims to approximate the usage of both 

frameworks to an industrial application while providing more insight into the comparison between 

approaches. A bus arbiter will be used as DUT and, once more, two structurally equal testbenches 

will be designed and simulated; one written in PyUVM and another one written in SV/UVM. 

However, prior to the design specifications, it may be necessary to provide an overview of how 

bus arbiters operate. 

Usually, multiple devices in an IC may need to communicate with each other. Instead of 

connecting each block separately with the rest, the idea of a bus comes in handy. It can be 

summarized as a data line that connects two or more endpoints; a shared wire between multiple 

devices. Nevertheless, communication on bus lines requires a set of rules. 

If all devices are performing accesses to the same target at the same time, no information will be 

legible; the line will become flooded with data. This set of rules is referred to as a protocol; a 

common method to share information and to make communication possible. Although significant 

transmission problems are solved using protocols, there is a functionality missing. 

For example, a bus line in a car connects the brake system and the dashboard display (masters) 

with the tire pressure sensors (slave). The brake system uses the information to stop the car if a 

failure happens (one of the tires loses more than 80% of air pressure). The dashboard display just 

prints the information for the driver to see. If a failure scenario occurs and both masters are trying 

to access the slave at the same time, safety-wise, access should be granted to the brake system. 

Priority is needed, and there are protocols that do not enforce it. 

Thus, an arbiter acts as the moderator of an “electronic” debate. In case multiple devices try to 

access the same target, it decides who gets the priority based on specific guidelines. Note that an 

arbiter is an intermediary that has knowledge of the protocol used and just applies priority rules. 

5.1 Specifications and verification plan 

The provided design was used as a challenge for verification engineers back in 2018, presenting 

up to seven known errors to be found. It is considered complex because it requires the 

implementation of a transmission protocol for the masters and slaves and serves as the 

characteristic example for agent reusability. 

The main basic characteristics of the bus arbiter design can be summed up as follows: 

- Signals are clocked on the rising edge of the clock signal. 

- Support for three masters (0, 1, 2) and four slaves (0, 1, 2, 3). 

- Accessibility to slaves is restricted as shown in Figure 17. Not all slaves are accessible to 

every master, and the format of valid addresses is restricted in range. Access to a non-

valid address does not forward access to any slave. 

- Arbitration only takes place if multiple masters try to access the same slave 

simultaneously. 

- Master and slave interfaces implement the AMBA 3 APB protocol. 

- A reset signal restarts all accesses. 

- The master with the lowest index number has the highest priority. 

- A master with lower priority is only granted access when all higher-priority masters are 

not accessing the same slave or when an access has been completed. 

- Slave decoders for master data are combinational. 

- The address value selected by a master will be masked in the target slave using the 

0x07FFFF mask. 
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- The bit length of each address is constrained to 24 bits. At the same time, the bit length 

of the transmitted data is constrained to 32 bits. 

The arbiter description is unambiguous; however, the implemented protocol (AMBA 3 APB) 

must be understood prior to the testbench design. Note that the protocol explanation is a simplified 

version of its real application. Refer to the AMBA 3 APB specifications (33) for further 

information. 

Any master can perform two types of accesses to a slave: read and write. To do so, a finite state 

machine (FSM) is defined by two signals: PSEL and PENABLE (see Figure 18). 

- IDLE: The initial state where the master performs no operation. Both PSEL and 

PENABLE are set to 0. 

- SETUP: The PSEL signal is asserted to 1. In this state, access configuration is prepared. 

This configuration includes PADDR, PWRITE, and PWDATA (data to be sent) signals, 

which must remain valid and stable as long as PSEL is set. 

- ACCESS: The PENABLE signal is asserted to 1. The master is not granted access until 

the PREADY signal, from the targeted slave, is asserted. After being granted access, the 

master can either return to the IDLE or SETUP state. 

  

Figure 17. Bus arbiter connection structure and address map. 

Figure 18. State diagram of the AMBA 3 APB protocol 

for a master-slave access (33). 
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The following considerations should be noted: 

- The PWRITE signal indicates a write (1) or a read (0) access. 

- The PREADY signal is only considered valid during the ACCESS phase. 

- There exists a PSLVERR signal that asserts if the address targeted by the PADDR value 

is not valid (see Figure 17). Additionally, if this signal is triggered on a slave, it should 

also be visible on its connected master. 

- On a read access type, the data read from a slave (PRDATA) has only to be stable during 

PREADY being asserted. 

With this much information on the functioning of the arbiter, the design of a verification plan may 

look overcomplicated. Nonetheless, if the protocol description is ignored to focus on the actual 

target (the arbiter), the following verification goals can be extracted: 

- Priority scheme is respected. Masters with a lower index number are preferred, and lower-

priority masters are not given access until higher-priority masters are not accessing the 

same slave. 

- The address value at the slave interface is masked using the 0x07FFFF value. 

- Incorrect addresses trigger the PSLVERR signal. 

- Masters should be able to access their allowed slaves in their address map. 

- For incorrect addresses, access should not be forwarded to any slave. 

- Read data and write data values between a master and its targeted slave should match 

during a valid read or write access, respectively. 

To accomplish the previous goals, the required coverage must be established: 

- Number of allowed master-slave connections. 

- Addresses to an existent slave. This includes values outside the valid range so that the 

address map is evaluated exhaustively. 

- The fact that an access can be either read or write. 

- All values that the transmitted data (PWDATA and PRDATA) can take. 

If all the previous values are meant to have a coverage of 100% the simulation could easily take 

multiple days to finish. A more realistic goal must be established: 

- All master-slave connections are evaluated, even non-allowed ones. This includes 20% 

of the addresses inside the valid range and 20% of the addresses outside it. 

- There are 219 (524288) valid addresses for each master-slave allowed connection, and that 

number corresponds only to one type of access (read or write). Both types of access must 

be assessed for 20% of the valid addresses. 

- Values for PWDATA and PRDATA must take 5% of the possible values each for valid 

accesses of their respective type. 

- For each master, 20% of the address values that do not point to any slave must be 

evaluated. 

This approach (20% goal for 219 addresses) provides a notable validity to each single simulation 

run, without the necessity to check every situation. For the data values, 5% has been chosen as 

the goal since its absolute value (5% of 232) represents a significant amount altogether. 
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5.2 Reference model 

The most notable behaviour that the model should match is the arbitration scheme. The arbiter 

assigns a master-slave connection according to addressing and priority rules already described. 

Nevertheless, the assignment of a master to a slave can only happen when the latter is not being 

accessed by any other master, or at the end of an existent access phase (when PREADY asserts). 

Figure 19 describes the decision-making process of the reference model to update a master-slave 

connection. Addressing a slave with non-valid addresses finishes the process instantly. 

Additionally, to assign the new master, the targeted slave must be IDLE (not being accessed by 

any other master) or at the end of an access phase (PREADY=1). Finally, if the slave can be 

assigned to a new master, the highest priority one is assigned. 

This behaviour, while straightforward, presents an added issue. When deciding new connections 

on time #N, the arbiter checks the value of each master’s PADDR signal on #N-1. This means 

that the model must assign new master-slave connections based on the data of the previous cycle. 

Once the arbitration scheme is set up, other checks must be performed. Note that, even when 

access fails (e.g., non-valid address to an existent slave), PREADY is asserted. In this sense, 

PREADY indicates that the access phase has finished, correctly or incorrectly. 

There are two main scenarios where checks can be performed; prior to an access, and during an 

access. In the former, master-driven signals must be stable while PENABLE is set. This requires 

that, every time a master asserts its PENABLE signal, the values of PADDR, PWRITE, and 

PWDATA are recorded and checked to be the same, every clock cycle until the access is 

completed. The latter scenario presents a higher complexity. 

Because of the nature of combinational logic, found in the slave and master decoders, the 

assertions cannot always be performed because of signal noise. By specifications, signal matching 

in a master-slave connection is only considered to take place when PREADY is asserted in the 

access phase. Thus, checks to compare whether the signals in the master interface match the 

values observed in the slave, can only happen at the end of a correct access phase. 

The first item to model is the PSLVERR signal, which should be 1 at the master interface if it is 

trying to access a forbidden slave, an incorrect address of a valid slave, or a non-existent slave 

(according to Figure 17). This situation should also assert that the slave that the master was 

pointing to cannot have its PSEL signal asserted. 

Finally, if the access is valid, then all signals must match between the master and slave, excluding 

the PADDR signal, which should match the masked value of the master address with 0x07FFFF. 

Figure 19. Flowchart for master-slave 

connection assignment. 
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5.3 Testbench structure 

The following section explains the structure followed in designing the UVM testbench to use. 

Both the SV/UVM and PyUVM approaches will be based on this structure of components and 

their connections. 

For the PyUVM approach, there are three different implementations. One of them generates the 

clock using the cocotb clock class inside the Python file. The second one generates the clock 

signal in a SystemVerilog auxiliary file. Finally, the third one also generates the clock signal in a 

SystemVerilog auxiliary file but the BFM of its agents is different. 

As explained in Chapter 3, cocotb uses an interface to communicate with the simulator. The usage 

of this interface is a significant driver of the runtime. To increase performance, one could reduce 

the calls to said interface by not constantly changing the signal values, for example; instantiating 

the clock signal on an RTL wrapper. 

The improved method of the last implementation consists of creating an auxiliary variable that, 

for each agent, concatenates the input signals into one, and the same approach for the outputs. In 

this sense, the PyUVM testbench has been modified so that all driver signals are coded into a 

single value, sent to the DUT using cocotb, and then decoded on the RTL side. The same applies 

to the output signal but the other way around. This way, if multiple signals change at once, a 

single transaction is performed. 

Regarding the testbench itself, this design contains an elevated number of input and output 

signals, and thus separating them into functional interfaces may appear complicated. Nonetheless, 

the signals can be classified into three groups; related to a master, to a slave, or to arbiter control. 

A valid approach could be to control all the signals from all masters using a single agent, but 

scalability is compromised. It is possible to write a parametric sequence to perform a read/write 

access by a specific master, however, the problem lies in the sequencer. A sequencer can only 

manage one item at a time, meaning that multiple sequences cannot run concurrently on the same 

sequencer. For each master to act independently, it will need an exclusive sequencer. The same 

logic applies to the slave counterpart. 

All masters share functionalities and signal layout; thus, the key is to design a generic agent with 

basic sequences for a single master, and then create an instance of this agent per each existing 

master. The agent object is the same, but the interface connected to each one is different. The 

same logic applies to the slave counterpart. With this approach, the agent object is kept simple 

allowing for greater scalability and readability. 

Subsequently, three different functional interfaces appear: 

- Master: Drives and monitors the signals of a single master. 

- Slave: Drives and monitors the signals of a single slave. 

- Control: Drives the arbiter’s reset signal. 

In the testbench structure shown in Figure 20, the blocks corresponding to Master[1,2] and 

Slave[1,2,3] are simplifications of the Master0 and Slave0 agents respectively, and thus share the 

same component structure as well as sequences. 
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The control agent contains two different sequences; one that enables the reset signal and another 

one to disable it. These two sequences are used separately so that a reset operation of random 

length in clock cycles can be studied. 

The slave agents only contain a single sequence; randomize the value of the PRDATA signal. 

Since a master can read data from a slave, this data should change over time to assert that the 

observed value at the master interface is valid. Alternatively, additional code structures could 

have been added so the slave holds the values that other masters have written in the past (during 

a write access). This would reduce randomization processes (less resource usage for the simulator) 

while presenting the same validity. Nonetheless, the option to randomize the read value has been 

chosen to allow for a wider range of values to be evaluated. 

The master agent is more complex. For starters, its sequence item can be randomized with two 

distinct functions. Both functions randomize the value of the PWDATA signal, the difference lies 

in PADDR. The first function needs a target slave so that the address is constrained to point to 

that slave, including the non-valid addresses. The second function randomizes the address for the 

rest of the values. These different approaches help to build sequences that cover more cases. 

When it comes to the master sequences, they are structured following the functioning of the APB 

protocol. Initially, the master is in an idle state, and it can continue in it or perform a transaction. 

The first sequence performs a complete transaction; setup and access phase. It has two parameters; 

whether the access is read or write, and the number of the targeted slave. If the targeted slave 

exists, it will randomize the PADDR value for the selected slave, else it will randomize the value 

for the rest of the values. This sequence ends on the access phase so that a new transaction can 

begin afterwards, but for randomization purposes, the master could also return to its idle state. 

There is a second sequence that sets the value of PSEL and PENABLE so that the master is in its 

initial condition. 

  

Figure 20. UVM structure of the bus arbiter testbench. 
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Coordinating these sequences in a test may be a complex task, although they can be grouped using 

the same “functional identification” as before. Each master will run independently from the rest, 

and it will either perform a transaction or stay idle. 

In this context, there is a top sequence called RandomGen. It requires the number of operations 

(n_ops) to run and the number of the master to use (n_master), to select its corresponding 

sequencer. For each iteration of the loop, the agent must decide whether to stay idle or perform a 

transaction. For the latter option, it should also randomize the number of the target slave, and the 

access type (read or write). If the transaction is a read access to an existent slave, the sequencer 

of said slave is retrieved to run the sequence of PRDATA randomization previously. 

The RandomGen sequence contains weighted randomization values. For instance, the chance of 

performing a transaction is 80%, against the 20% probability of staying idle. The idle state does 

not represent the same probability value as performing a transaction, because the arbitration takes 

place if there are multiple masters accessing the same slave. Nonetheless, the action of staying 

idle is a scenario that should also be considered. The loop flow is shown in Figure 21. 

Regarding the transaction sequence itself, because there is no real difference between writing and 

reading, the type of access is balanced. For deciding the target slave and address, the process is 

more elaborated. 

The purpose of this testbench is to verify the arbiter’s functioning, and if the master is mostly 

pointing to incorrect addresses, then no arbitration is going to happen. From this perspective, a 

valid slave will be targeted more than half of the time (60% probability), and a valid address will 

be preferred with a 75% probability. The rest of the time, a master could access a forbidden but 

existent slave or a non-existent one. The latter represents a wider range of addresses, and if it 

works correctly and the testbench prioritizes this type of target, most simulation time is going to 

be spent just asserting that an error should trigger. It has been considered that this scenario should 

only be checked sporadically with a 10% probability. The remaining 30% is dedicated to an 

interesting case; a master tries to access a forbidden slave. Multiple results can be obtained from 

this one, such as validating the address map, or whether the arbiter forwards the access or not.  

Figure 22 provides a detailed graph of the transaction sequence and the weighted probability 

applied for different scenarios. 

  

Figure 21. RandomGen sequence flowchart model. 
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There exists another sequence, NAccess, that performs N continuous read or write accesses 

(balanced probability) from a selected master to a single specified slave. Afterwards, the master 

returns to its idle state. 

Finally, a RandomCtrl sequence is meant to be run for a specific number of operations (n_ops) 

and enable the reset signal with a probability of 0.05%. The reasoning follows the one explained 

in the SFIFO chapter; multiple resets during a simulation will not provide meaningful results as 

the number of covered scenarios and chained sequences is low. 

These sequences are all meant to be used, although the NAccess one has been designed because 

it provides a specific setup and can be useful to observe an error with a greater level of detail. 

Nonetheless, because of the complexity of the arbitration process, a single test has been created: 

TstRandom. 

This test runs the RandomGen sequence for all three masters concurrently between them and, at 

the same time, the RandomCtrl one. The number of operations is set to 5000 by default, 

considering it an optimal test length when it comes to the number of scenarios to be covered. 

Nevertheless, the test length can be modified as needed for future simulations. 

5.4 Test results 

Only one version of the bus arbiter has been provided. As explained in the introduction, this 

design presents seven known faulty behaviours that will trigger assertion errors. The test will stop 

once a mismatch between the model and the design is detected, thus cutting the simulation short 

to observe other errors. 

The testbench will be constrained as errors are found. For example, if Master0 can access Slave3 

and that triggers a model error, then for the next regression, the test will not allow Master0 to 

access Slave3. This approach assumes that there is just one error between connections, which is 

specified on the challenge. 

Both the PyUVM and SV/UVM testbenches were simulated, and the observed results matched 

between approaches. The following analysis of the test results is based on the PyUVM testbench. 

  

Figure 22. Transaction sequence weighted random stimuli. 
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Error #1: Master0 can access certain Slave2 addresses. 

Figure 23 shows Master0 trying to access a Slave3 address at 216 ns, and the PSLVERR signal 

being correctly asserted at 218 ns. Afterwards, Master0 tries to perform a write access to a Slave2 

address (0x2431A0) at 220 ns. The bus arbiter address map (see Figure 17) forbids this 

connection, so PSLVERR is expected to be set at 222 ns. Nevertheless, the signal is never set, 

wrongly indicating that the access is valid. 

Further simulations can help to constrain the scenarios where this same error is triggered. For 

instance, Figure 24 shows Master0 trying to perform a write access to a different address of Slave2 

(0x2182BD). This time, the PSLVERR signal asserts as expected. 

If Master0 cannot access every address of Slave2, and if for the same type of access (write) the 

PSLVERR signal is different, the error must lie on the targeted address of Figure 23. Additional 

simulations have shown the same failure scenario for addresses of the type 0x24XXXX. 

Error #2: Slave3 does not mask Master2 addresses. 

As per specifications, addresses forwarded to any slave are masked with the hexadecimal value 

0x07FFFF. Running the random stimuli test, it is possible to observe a mismatch with this 

specification description when Slave3 is accessed from Master2. A waveform showing this error 

can be seen in Figure 25. 

It should be noted that it cannot be asserted that Slave3 does not mask any address. This behaviour 

is only observed for Master2 because it is the only master allowed to access. Nevertheless, if other 

masters were allowed to access Slave3 it is unknown if the address values would be masked or 

not. 

 

 

Figure 23. Arbiter error regarding Master0 and Slave2. PSLVERR mismatch. 

Figure 24. Arbiter error regarding Master0 and Slave2. No PSLVERR mismatch. 
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Error #3: Master2 can access out-of-scope addresses of Slave2. 

The waveform in Figure 26, shows signals of all masters as well as Slave2. The assertion error is 

triggered because of a PSEL mismatch at Slave2. Observing the waveform, it is possible to assert 

that neither Master0 nor Master1 are accessing addresses to said slave; they are pointing to slaves’ 

numbers 0 and 9, respectively. The only master that is trying to access Slave2 is Master2. 

The address value of Master2 is selecting Slave2 out of the valid scope (0x2C6027 > 0x27FFFF). 

Because of this, there are no masters correctly accessing Slave2, thus the PSEL signal at the slave 

is expected to be 0. However, the signal is asserted at 82 ns. 

The waveform in Figure 27, shows Master0 and Master1 pointing to both to Slave1, while 

Master2 is trying to access an incorrect address of Slave2 (0x29E5B9). This time the slave 

recognizes that the address is not valid, and thus the PSEL signal is not asserted. 

Figure 25. Arbiter error regarding Master2 and Slave3. Unmasked address value. 

Figure 26. Arbiter error regarding Master2 and Slave2. PSEL mismatch. 
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In both Figure 26 and Figure 27, the PSLVERR signal in the Master2 interface is asserted. The 

master knows that this access is not valid, but the slave does not react accordingly. 

Further iterations of the test fail whenever Master2 tries to access Slave2 within the address range 

of [0x2C0000-0x2CFFFF]. 

Error #4: Master1 cannot access a valid address for Slave2. 

Due to the weighted probabilities established during the testbench structure section, 60% of the 

accesses are dedicated to a valid slave, and even then, a valid address is selected with a 75% 

probability. A simple calculation shows that a completely valid access is performed 45% of the 

time. 

This approach presents a natural problem; if there is a short range of valid addresses that fail, the 

number of iterations to run before detecting them is going to be significant. One could argue that 

there should be a test to try every possible valid address, but that is computationally not feasible 

(for the time and resources the simulation will consume). The preferred action plan is to run the 

test multiple times until the coverage goals are achieved. 

In Figure 28 Master1 is trying to access Slave2 with a valid address (0x27FFF4). However, the 

PSLVERR signal rises unexpectedly, failing to meet the expectations of the model.  

The same result has also been observed for two more addresses of the kind 0x27FFFX. 

In this case, the error is not a convoluted one but straightforward; Master1 cannot access specific 

valid addresses for Slave2. The problem lies in the conditions needed to find this error.  

Figure 27. Arbiter error regarding Master2 and Slave2. No PSEL mismatch. 

Figure 28. Arbiter error regarding Master1 and Slave2. PSLVERR mismatch. 
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Evaluating every valid address between Master1 and Slave2 would require 219 (524288) accesses. 

Now, for every master and slave combination, the simulation time required will be notable. 

Nevertheless, it is accurate and exhaustive. This approach will find the error at the end of the 

execution. For randomization, a wider range of cases and scenarios are evaluated in the same 

simulation time, but the probability of pointing to a valid address, in a range of 16 values of a 

valid slave, is 0.0014 % in the designed testbench. 

This error should remind the reader that verification can be addressed from multiple perspectives; 

prioritize a wider spectrum of cases through randomization, or exhaustively assess specific cases. 

Both are equally valid approaches, but they serve different purposes and should be used 

accordingly, depending on the established verification goals. 

Error #5: PRDATA mismatch for read access between Master1 and Slave0 

In Figure 29 Master1 is shown trying to perform a read access to a valid Slave0 address 

(0x02862C). The targeted slave had been accessed in the past and does not prioritize Master1 

until 212 ns. Then, the access is completed at 214 ns, but an assertion error is triggered by the 

reference model. A mismatch has been found between the PRDATA value in Master1 

(0xEE51ABA1) and Slave0 (0x6E51ABA1). The signal is identical except for the most 

significant bit (MSB). 

In specific cases during the verification process, errors are not isolated but are the result of a chain 

of sequences. In Figure 29 it is possible to observe the previous value of PRDATA at Master1 

(0x86FABB7B), which had the MSB asserted. 

Comparably, Figure 30 shows a valid read access between Master1 and Slave0. In this case, the 

access is forwarded at 72 ns and completed at 74 ns. Again, a mismatch on the PRDATA signal 

is noted: 0x0CD76985 does not match 0x8CD76985. In this case, the MSB should be 1 but it is 

0. If the previous value of PRDATA at Master1 is observed, the MSB is 0. 

Figure 29. Arbiter error regarding Master1 and Slave0. PRDATA mismatch (MSB = 1). 

Figure 30. Arbiter error regarding Master1 and Slave0. PRDATA mismatch (MSB = 0). 
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Further simulations of the test show that when Master1 performs a read access to Slave0, the MSB 

of the PRDATA signal, at the master interface, maintains its previous value. 

Error #6: Masked address mismatch for Master2 and Slave1 

Building on the importance of checking chains of sequences, this error may be more 

representative. 

Figure 31 shows Master2 trying to access Slave1 using a valid address (0x15115B). The access 

is delayed because a higher-priority master (Master1) is accessing it. The priority is forwarded at 

191,584 ns and the access is completed at 191,586 ns. Subsequently, the reference model triggers 

an assertion error because the masked address observed in the slave interface (0x05114B) does 

not match expectations (0x05115B). 

This error may be reminiscent of the previous one. In this case, the 5th bit by the right is set to 0 

when it should be asserted. The previous value of PADDR (0x03CADD) at Slave1 had the same 

bit set, so the same explanation as before may not be valid. To better assess the cause of the error, 

another regression must take place. 

In Figure 32, Master2 is pointing to a valid Slave1 address, and the PREADY signal grants access 

at 54,642 ns after a delay, because of higher-priority accesses. The same error arises; the 5th bit 

of the masked PADDR value in Master2 (0x03CC7F) does not match the one observed in Slave1 

(0x03CC6F). Again, the 5th bit value has been set to 0 when it should be asserted. 

Figure 31. Arbiter error regarding Master2 and Slave1. PADDR mismatch. 

Figure 32. Arbiter error regarding Master2 and Slave1. An additional PADDR mismatch. 
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Observing the previous figures, the only common trait between them is that Master2 had to wait 

because another master had access. The master that blocked the access is the same (Master1), but 

even more of a coincidence is that the number of accesses performed between Master1 and 

Slave1, prior to the observed error; is the same (4). 

Multiple simulations were run, and the error was triggered in the same scenario with the same 

result. When Slave1 has been accessed four continuous times by Master1, the masked address of 

a subsequent Master2 access has the 5th bit (from the right) of PADDR set to 0. 

Error #7: PSLVERR not asserting for Master0 and Slave1 (CHECK WAVEFORMS) 

In the case of this arbiter, the specifications established that a PSLVERR on a slave should 

propagate to the accessing master. The errors seen in the master interfaces so far are triggered by 

wrong addressing, which is managed by the arbiter. A slave can also manage its error signal by 

itself, presenting an input to evaluate. 

The driver component of the slave agents has been modified to assert the PSLVERR signal if the 

masked address is not 4-byte aligned. This signal assertion should propagate to the accessing 

master. Note that the specifications do not model this behaviour (triggering an error if the address 

is not 4-byte aligned), but it provides a method to evaluate if the propagation of the PSLVERR, 

from a slave to a master, happens.  

Figure 33 shows Master0 accessing a valid Slave1 address, but not 4-byte aligned (0x170002 % 

4 != 0). The Slave1, with its newly implemented driver, asserts the PSLVERR signal but it does 

not match the PSLVERR signal in Master0. 

The error has not been observed in any other master-slave connection. Thus, the faulty behaviour 

can be described as the PSLVERR signal not being forwarded to Master0 when it is asserted at 

Slave1. 

Obtained coverage. 

Although in this case the number of errors to find was known, in a real industrial scenario the end 

of the verification process can only be asserted through the coverage goals. In this context, the 

random test has been left to run for a million iterations (each master must perform said number 

of operations). Both the stimuli and the scoreboard have been constrained so none of the previous 

errors triggers an assertion error.  

The selection of a million iterations is due to previously observed coverage when the test was run 

to find the known errors. To obtain values close to the 20% specified earlier, a longer simulation 

must be performed. 

Figure 33. Arbiter error regarding Master0 and Slave1. PSLVERR mismatch. 
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To provide an example of the coverage, results associated with Master1 are shown in Figure 34. 

As observed, the addresses to allowed slaves (0, 1, 2) are almost covered up to 20%, whereas the 

accesses to Slave3 were not as much. Non-slave addresses were also evaluated and read and write 

operations to valid addresses took place significant times. Nonetheless, the values of written and 

read data were not near the desired percentage; due to the number of available possibilities. 

Coverage should also serve as a metric on how stimuli are generated in the testbench. For instance, 

the proximity in value between valid write and read accesses, shows that the type of access is an 

equally weighted random option (50% probability), as described in the testbench structure. 

To further increase the coverage, either more simulations can be run, or stimuli generation can be 

modified.  

5.4.1 Testbench comparison 

The different testbenches approaches are compared to provide further insights into their own 

characteristics. The metrics of the comparison have already been described in the introduction of 

this document. 

The line count metric in Table 2 is based on usable code lines, excluding comments and blank 

lines. At the same time, both languages allow for multiple ways to write the same statements, 

varying the line count without any difference in functionality. There has been an attempt to keep 

consistency in formatting between both approaches. 

 

 SV/UVM PyUVM  

(enhanced) 

PyUVM  

(RTL clock) 

PyUVM  

(cocotb clock) 

Code lines 1548 1069 1033 1030 
Table 2. Line count comparison for bus arbiter testbenches. 

Note that the line count for the PyUVM RTL clock implementation accounts for the lines written 

to generate the clock in the SystemVerilog auxiliary file. 

For the runtime comparison, the TstRandom will be run, because of the resource-exhaustive task 

that randomization represents. Additionally, applying constraints on the available inputs and 

which signals to check, the random test allows for an indefinite number of iterations without 

running into any of the described errors. 

Each approach will execute the test for three different numbers of iterations, providing a detailed 

observation of how the runtime behaves over time. At the same time, the value of each runtime is 

an average of 100 executions, to assert that the value is not influenced by computer background 

activity noise. The GUI mode of the simulator is not being used, and the randomization seed value 

is stable across all approaches and executions. 

Figure 34. Coverage of TstRandom for Master1. 
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Figure 35 shows the results obtained for the runtime comparison, with the values normalized to 

the slowest simulation time. 

5.4.2 Discussion 

The verification challenge has been completed successfully as all the artificial errors have been 

discovered, by both the PyUVM and the SV/UVM testbenches. It can be stated thus that PyUVM 

is a suitable framework for the verification of complex digital designs, capable of handling 

advanced testbench structures. 

The difference in code lines observed in Table 2 is a result of an easier and more direct 

implementation of UVM in PyUVM than in SystemVerilog. Again, the low syntax complexity of 

Python allows for a reference model that matches the verification goals with fewer statements 

than its SystemVerilog counterpart. Nevertheless, the enhanced approach of the PyUVM 

testbench presents more lines of code. This is due to the encoding and decoding structures needed. 

Finally, regarding the observed runtime in Figure 35, the PyUVM implementation using the 

cocotb clock class is the slowest. When the clock generation is described using SystemVerilog 

instead, the runtime improves by 10%, and using the enhanced approach makes a difference of 

20%. Again, the SV/UVM testbench is the fastest, presenting a consistent 65% improvement over 

the slowest option. 
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Figure 35. Comparison of the mean runtime of different bus arbiter testbench approaches for varying 

iterations of TstRandom. 
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Chapter 6. Chirp Start 

Through the bus arbiter example, it has been shown that PyUVM can be used for the verification 

of complex digital designs. Not only so, but the validity of the designed test has been asserted, as 

all hidden errors were discovered. At this stage, the relevance of PyUVM as a reliable tool for 

digital verification may appear significant, however there is a milestone left. 

The previously used designs, although complex, were isolated systems with already defined 

known errors, meaning that they do not represent a completely real verification environment. This 

chapter will apply every piece of knowledge from the past chapters to a digital design, which 

belongs to an integrated circuit in active development. The nature of this approach will provide 

insightful data on how PyUVM operates directly in the semiconductor industry. 

6.1 Specifications and verification plan 

In ICs, it is a widespread practice to utilize multiple clocks, driven by considerations of efficiency 

and specific requirements. The use of a higher clock speed inherently provides a superior sample 

rate. However, not all functional blocks within a system require updates at identical rates. To 

illustrate this concept further, the analogy of a car can be used again. Most modern cars are 

equipped with radar sensors to monitor their surroundings. In this context, monitoring other 

features like air conditioning temperature might not be as critical. Consequently, the radar 

operates with a higher sample rate, ensuring a faster response to any potential danger. 

Nonetheless, the introduction of multiple clocks in a system introduces challenges related to 

synchronism. Transmitting data between subsystems governed by distinct clocks operating at 

different speeds demands a level of control to ensure accurate data sampling at the precise 

moment, preventing information loss. In this context, the Chirp Start block is employed to address 

what is known as “clock domain crossing”, the transfer of data between asynchronous clock 

domains. 

This block connects subsystem A and subsystem B. Each of these subsystems operates on its own 

internal clock, with one of them commutating at a rate four times faster than the other. The 

objective is for A to activate B. However, due to the divergence in sampling rates, the duration of 

the enabling signal from A might be insufficient for B to reliably detect it. This scenario is 

illustrated in Figure 36, where the START signal is synchronized with clk. The pulse width of the 

START signal, as well as its phase, shows a change in its value outside the pclk synchronizer (its 

rising edge), and thus not being captured. 

The Chirp Start block is designed to circumvent this situation. Its main objective is to detect the 

START signal correctly, and then generate it again on the new clock domain. This re-generated 

signal called RAMP is the same signal as START but translated to the pclk domain, as shown in 

Figure 37. 

  

Figure 36. Exemplary waveform of a signal not being captured in a clock domain crossing scenario. 



 

 

 

 

54 

To achieve this, the Chirp Start design incorporates two distinct functionalities. The first, 

calibration, is responsible for selecting the optimal sampling point to capture START. The 

second, relay, samples START accordingly and then it generates RAMP. A simple block diagram 

shown in Figure 38 should provide the reader with an overview of the input and output signals, 

as well as a structural view of the multiple functionalities of this system. 

Note that the modes are mutually exclusive; the system is either being calibrated or acting as a 

relay. 

While the system is enabled, it must receive constantly an external SAMP signal. This signal is a 

pulse with the width of a clk period and must be received once every pclk cycle. Its phase relative 

to the pclk rising edge is unknown (can arrive at any point during the pclk cycle), but it must be 

constant on average. An example of this requirement is shown in Figure 39. Note that SAMP 

sometimes arrives 1 unit before the falling edge of pclk, and sometimes 1 unit after it, therefore 

making the phase constant on average. 

  

Figure 37. Exemplary waveform of START being correctly translated from the clk domain to the pclk one. 

Figure 38. Simplified block diagram of the Chirp Start system. 

Figure 39. Exemplary waveform on how the SAMP signal must be received. 
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During calibration mode, the ideal point to sample the START signal is calculated. The method 

involves the SAMP signal and the pclk rising edge. 

Every time a pclk rising edge is detected, after 2 clk cycles the system generates an internal pulse 

called RS_PCLK. Additionally, every time a SAMP pulse is detected, after DELAY clk cycles, 

the system generates an internal pulse called RS_SAMP. Figure 40 shows a waveform of this 

scenario. 

Note that both pulses have a width of a clk cycle, and that both are asserted with a clk rising edge. 

The SAMP signal is received as explained before; although its phase relative to the pclk rising 

edge varies, it is constant on average. The DELAY register has a default initial value. 

These internal signals of the system are then used during the calibration mode, to measure the 

ideal point to sample START. By its most basic description, the system measures the number of 

clk cycles between RS_PCLK and RS_SAMP falling edges. This number is added to ACCUM 

and, once the calibration is finished, a new DELAY value is calculated by an internal equation. 

Figure 41 shows the calibration process. 

Note that, because the SAMP signal has a 1-unit error, the system sometimes counts 2 clk cycles 

and other times counts 3 clk cycles; this is the correct behaviour. The new ideal sampling point 

of START is closely related to the new calculated value of DELAY. 

This calibration mode is triggered by a pulse of the TRIG signal. The duration of the calibration 

is established by the DURATION signal. The calibration starts when the system asserts the 

ACTIVE signal. This behaviour is shown in Figure 42. 

  

Figure 40. Exemplary waveform on how internal signals RS_SAMP and RS_PCLK are generated. 

Figure 41. Exemplary waveform on how the calibration mode operates. 
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Once the calibration is done, the ideal point to sample START has been calculated and the relay 

mode can take place. Once a START pulse is received, the system generates an internal signal 

RS_START for 1 pclk cycle. The value of RS_START is then sampled when RS_SAMP is on a 

high level. In the next pclk cycle, the captured value is generated in the RAMP output. 

As shown in Figure 43, the system has successfully translated the START signal from the clk 

domain to the pclk domain as RAMP. 

While the block description introduces more complexities compared to previous designs, such 

intricacies are expected in a subsystem embedded within a real IC. Nevertheless, the existence of 

such distinct functionalities allows for the formulation of a verification plan with distinct 

objectives in a simplified manner. For the calibration component, the following checks are 

conducted: 

- The ACTIVE signal is asserted for the duration of the calibration. 

- The ACUMM value is accurately calculated and retained until the initiation of the next 

measurement, after which it is reset to 0. 

- The internal DELAY value is computed in accordance with the internal equation. 

Simultaneously, the relay part must verify that for a given START input, a RAMP output signal 

occurs as per the depicted behaviour in Figure 37. 

Ideally, the testing process should encompass the coverage of DURATION and DELAY values. 

The former signal evaluates the equation’s validity for low-measurement cycles, while the latter 

ensures that the block functions for every conceivable delay value. This comprehensive approach 

facilitates a robust verification process for the Chirp Start block.  

Figure 42. Exemplary waveform on how to trigger the calibration mode. 

Figure 43. Exemplary waveform on how the relay mode operates. 
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6.2 Reference model 

6.2.1 Clocking issues 

Before describing the reference model behaviour, an issue regarding the existence of two 

independent clocks must be addressed. 

For instance, let it be assumed that each signal is sampled by their clock’s falling edge. The model 

could implement two concurrent functions that update, or read, from it whenever a falling edge 

of any of the clocks takes place. This option works correctly until both falling edges happen at 

the same time. If the model must be updated before it is read, concurrency allows for a possibility 

where race conditions may occur. The model could be read before it is updated and subsequently 

generate assertion errors due to a failure on the model, not of the design itself. 

For this reason, to avoid race conditions, all signals will be monitored on the falling edge of the 

fastest clock. 

6.2.2 Model behaviour 

During the length of the simulation, the model will generate its own resampled version of the pclk 

edges and the SAMP signal. Both signals are required either for calibration or relay operation, 

thus their generation is needed. 

For the calibration, a measurement takes place whenever the TRIG signal is set to 1, thus for the 

model to start its internal measurement function it must wait until this signal is asserted. However, 

the ACTIVE signal is not asserted right away, but once the first resampled SAMP is registered. 

Additionally, ACTIVE must not be 1 if the block was not enabled in the first place, or if TRIG 

was not activated. 

Once ACTIVE is set, a timer will start and wait for the expected duration of the calibration. 

During this time, the model will enable a background function to calculate the value of ACUMM 

using its resampled signals. This value will be compared each time against the monitored value. 

Finally, at the end of the measurement, the ACTIVE signal must return to 0 and the new DELAY 

value must match the value of the equation described in the specifications.  

During the relay function, once a START signal is detected, the process described prior in Figure 

43 will take place. The model will initiate a background function to assert RAMP at the right 

moment. The value of the RAMP signal is compared each time against the monitored value. 

6.3 Testbench structure  

In this chapter, the testbench will only be implemented using the PyUVM framework, to focus all 

efforts on the verification of the DUT over the comparison of testbench approaches. The PyUVM 

implementation is designed to efficiently manage the interactions with the simulator, as the 

PyUVM enhanced approach on the bus arbiter. 

This design connects two blocks of different clock speeds together, and at the same time presents 

two functionalities. The selection of interfaces based on functionality (calibration or signal relay) 

may be appealing, but each of these functionalities contains signals from both clock domains; 

complicating the agent’s components since each signal would have to be driven and monitored at 

different clock edges. 

In this context, the division of agents based on clock domains appears the simplest, and it does 

not present any qualitative disadvantage. The only significant modification is that SAMP is a 

signal that must be generated constantly, and for the sake of simplicity to drive the other signals, 

SAMP may have its own agent. With this approach, the other pclk signals are free to be driven at 

any time, without potentially being blocked by the generation of SAMP, which agent is 

relinquished to run in the background.  



 

 

 

 

58 

- PCLK agent: Drives every input signal, except SAMP. 

- CLK agent: Monitors every output signal, and drives RESET_N. 

- SAMP agent: Manages the generation of the SAMP signal.  

The PCLK agent presents a customized driver component for the TRIG signal. Since it must be 

a pulse, the driver will automatically set it to a low level after it has been asserted. For this, once 

a calibration trigger is registered, a background function is initiated to wait the necessary time 

until de-asserting TRIG.  

It is noteworthy that for SAMP, it is imperative for it to be a clk pulse at the pclk rate with an 

average delay relative to pclk. This flexibility allows for various methods of generating the SAMP 

signal. For instance, it could be generated with the pclk rising edge, just before its falling edge, or 

in the middle. Different SAMP waveforms result in different DELAY values. Figure 45 shows 

multiple valid implementations of the SAMP signal. Note that all the presented signals arrive at 

pclk rate with different phases, and from time to time, introduce an offset. 

 

The phase of the generated SAMP signal will be randomized, at the start of the simulation and 

for every RESET_N or PRESET_N signal, between 0 and the pulse width of pclk. That is; SAMP 

must be asserted at any point after the pclk rising edge, right away or at the end. To maintain an 

offset average, each time a SAMP pulse is sent, a delay of 1 clk cycle will be added with a 50% 

probability, making the offset constant on average. A custom driver component on the SAMP 

agent will manage the phase and offset every time it receives a sequence item where SAMP is 

enabled. 

PCLK contains five sequences: two for enabling and disabling the clock respectively, another 

one that randomizes the value of the measurement duration, then one that asserts TRIG, and one 

sequence to perform a reset. This final reset sequence will trigger a new randomization of the 

SAMP phase. These sequences are simple, and they are meant to be used on a higher sequence 

altogether. By reducing each action to its simplest sequence form, more control over how signals 

are driven is provided. 

Since the CLK agent mostly monitors signals, it contains just two basic sequences: one to enable 

RESET_N and another one to disable it. 

Figure 44. UVM structure of the Chirp Start testbench. 

Figure 45. Examples of implementation of the SAMP signal. 
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The SAMP agent only contains a single sequence; enabling the SAMP signal. The handling of 

the phase and the offset is left to its modified driver component. 

The sequences of the PCLK agent are all grouped into two top sequences. The first one is called 

DoCalibration. In this case, the measurement duration is randomized, and the block is enabled; 

afterwards, the calibration is started with the TRIG. Finally, the sequence waits for the expected 

measurement duration and the block is disabled subsequently. On the other hand, a second 

sequence named DoStart performs the relay operation. The block is again enabled at first, and 

the START signal is generated. Finally, the block is disabled. 

Finally, a top sequence called DriveSamp is meant to generate the SAMP signal for a given 

number of pclk cycles. This sequence is meant to be executed in the background until the end of 

the simulation. 

This testbench will run a single test (TstRandom) that randomizes the activity of the block as 

shown in Figure 46. 

All the actions are modelled as sequences, despite “no operation” not requiring any kind of 

stimuli. In this context, the test will perform N actions, choosing randomly in each iteration which 

action to perform. 

Since “no operation” does not bring that much significant value, its probability will be set at 3%. 

It is still required to analyse how the system behaves in its IDLE state. Then, although the relay 

operation is the main goal of the block, the calibration presents a higher level of complexity, and 

it is the basis for the correct functioning of the block. For this reason, a calibration operation will 

take place with a probability of 60%, while the relay action will use 35%. 

The remaining 2% will be dedicated to PRESET_N and RESET_N equally. It could be considered 

an elevated percentage for reset sequences but given that when they are triggered the SAMP signal 

is randomized, they present a significant opportunity to cover multiple cases in just one simulation 

run. 

6.4 Test results 

This section has notable importance not only to this document and the development of the project 

but also because this design belongs to a marketable integrated circuit. The identification and 

classification of errors are crucial for the final product to work adequately. 

In this case, there are no safety nets as to which errors do exist, and thus exhaustive examination 

for failure scenarios is required. The following results are based on the PyUVM testbench. 

Figure 46. State diagram for the random test 

of the Chirp Start testbench. 
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ERROR #1: ACTIVE signal during calibration is asserted for more cycles than expected. 

The first error found is shown in Figure 47. It can be observed that the block is enabled correctly, 

and the DURATION signal is set to 3. At 29.5 ns the TRIG signal starts the calibration, and 

multiple commutations of SAMP take place, matching the waveform described in the 

specifications. 

An assertion error is triggered around 109.5 ns, related to the ACTIVE signal; it is still asserted. 

To discard an error in the model, the waveform in Figure 47 was checked and the duration of the 

calibration predicted was correct. The error is located within the design. 

Because the number of values allowed for the DURATION signal is not elevated, all cases have 

been evaluated, and all of them trigger the previous assertion error. Nonetheless, if the simulation 

is allowed to continue as in Figure 48, disabling the previous assertion, it is possible to observe 

how the ACTIVE signal returns to 0 after a couple cycles more. Thus, the error is not a matter of 

ACTIVE never being de-asserted again, but that it expands more cycles than expected.  

The error was correctly reported to the designer for future fixes, but further simulation runs proved 

another existing scenario in the verification process. 

Notice that, so far, the sequence being run is DoCalibration, which disabled the block after the 

measurement. This scenario affects the ACTIVE signal as if it could not change its value 

whenever the block is not enabled. This explains why, in Figure 48, ACTIVE is set back to 0 after 

the block is enabled again. Additionally, Figure 49 shows the correct behaviour. 

Figure 47. Calibration measurement. Assertion error on ACTIVE. 

Figure 48. Calibration measurement. Expanded simulation. 

Figure 49. Calibration measurement. Correct behaviour of ACTIVE. 



 

 

 

 

61 

In this case, the problem did not lie within the design itself, but on the specifications of the block. 

The ENABLE signal is meant to be activated rarely, if not just once every time the IC starts. 

While this scenario was not thought of as a use case, the specifications did not forbid it, thus the 

error was triggered. The reader should be reminded that a design must be verified for all possible, 

not forbidden, cases. 

ERROR #2: ACCUM signal value is not frozen until the next measurement. 

According to specifications, once the measurement has finished, a new DELAY signal is 

calculated using an equation that factors the ACCUM signal. However, the accumulator value of 

each measurement remains stable until a new measurement starts. Note that this situation requires 

TRIG to be asserted again. 

Figure 50 shows a measurement of the same kind as Figure 49, but the ACCUM signal has been 

added. For each clk cycle, the accumulator value is compared against the reference model. The 

calculations during the measurement are correct. Nonetheless an assertion error rises at 109.5 ns. 

The value of ACCUM is set back to 0 following the ACTIVE signal being de-asserted. This 

observation does not match the expected behaviour, as the accumulator value should remain stable 

(or “frozen”) until the start of the next measurement. It is possible to conclude that this waveform 

represents a design error. 

This error was noted and fixed by the designer on the following iteration of the design. 

ERROR #3: RAMP signal not asserting correctly. 

The following error shows the intricacies of clock domain crossing designs, and how specific 

situations can trigger errors in a design that works correctly for most scenarios. 

At the waveform observed in Figure 51, a reset on the pclk domain takes place. It does not affect 

the DELAY value as this is managed by clk, thus the previous value is kept (0x1). Additionally, 

the SAMP signal is constant at pclk rate, and it is resampled correctly into rs_SAMP. Finally, the 

START signal is asserted at 171,995 ns and resampled into rs_START. 

Note that the resampled signals are not used for comparison but are shown in the waveform to let 

the reader understand the scenario. 

Figure 50. Calibration measurement. Accumulator values. 

Figure 51. Chirp Start error regarding missing RAMP signal after a reset. 
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According to specifications, the value of rs_START is registered during a rs_SAMP high level. 

Then, the latest value registered is replicated on the RAMP output signal at the next clk rising 

edge. Regardless, the design description asserts that, if all signal requirements are met (pulse rate 

and width), setting START to a high level will result in the RAMP signal also being set to 1. 

The assertion error arises at 172,015 ns. During the time window in which rs_SAMP is at its high 

level, the value of rs_START changes from 1 to 0, thus only recording this last value. At the same 

point, a clk rising edge arrives and the model predicts that RAMP should be asserted, but it is not 

and will not be. The rs_START signal is already set back to 0 and the opportunity to capture its 

high-level value has already been missed. 

Technically, the sampling mechanism is working as intended but the START signal is lost, 

something that the design should not allow. Both SAMP and START match specifications 

regarding pulse rate and width, and therefore the issue lies in the sampling mechanism itself. 

While it works for almost any scenario, this situation triggers unexpected behaviour. There is an 

intricate issue in how the design operates. 

The observed scenario can also be replicated not only after a reset but also after calibration, as 

shown in Figure 52, indicating that it is an issue that can realistically happen over the course of 

the system usage. 

This error serves as an example of how the verification process not only finds errors related to the 

implementation of a design but to its concept. The former is an issue that can be primarily solved 

by re-writing the HDL code, the latter requires restructuring the internal mechanism. 

6.4.1 Discussion 

This DUT is significantly more complicated when it comes to its functioning compared to the 

previous designs. Nonetheless, the testbench was executed correctly and multiple errors were 

found, including a category not previously explored: behaviour missing in the specifications. 

This chapter, while may present a less convoluted testbench than the one observed for the bus 

arbiter, proves that PyUVM and cocotb are suitable for the verification of real designs being 

developed in the industry. The testbench was able to successfully detect three scenarios where the 

design was failing, thus avoiding the propagation of these errors to future stages in the 

development process. 

Although there is no SV/UVM implementation to compare, the previous chapters provide 

information on this topic. The purpose of this chapter was to solely focus on the verification of a 

real design. 

 

  

Figure 52. Chirp Start error regarding missing RAMP signal after a calibration. 
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Chapter 7. Summary 

The present chapter aims to provide a clear and comprehensive conclusion to the present 

document. Using the objective data obtained in each of the three verification scenarios, the 

obtained results for PyUVM and SV/UVM will be compared. Then, analysing the user experience 

as well as each used programming language, further distinctions between both approaches will be 

drawn. Subsequently, notes on the expected usage of cocotb in the verification industry will be 

described. 

Finally, the initial goals of the thesis will be reviewed and thoughts about this new digital 

verification technique will be written. Additionally, ideas on how cocotb can be further developed 

and used in the verification industry will be discussed. 

7.1 Comparison 

This subsection presents an objective comparison between PyUVM and SV/UVM based on the 

obtained results for the SFIFO and the bus arbiter testbenches. This comparison should reflect an 

unbiased point of view. Additionally, a personal evaluation can also be found. 

As observed in previous chapters, the number of code lines needed to implement a testbench in 

SV/UVM compared to PyUVM is significant. For instance, the SFIFO testbench required 

approximately 30% more lines of code. Although it has been discussed the fact that there exist 

multiple ways of writing the same statement, there is a point to be considered. The UVM 

framework is considered a high-verbose approach to verification, and certain structures must be 

defined every time, generating what is known as “boilerplate” code; code that does not help to 

implement any functionality but instead is required for the testbench structure to work. The syntax 

complexity of SystemVerilog amplifies this, resulting in more line codes, and thus generating 

more points of failure for future maintainability.  

Regarding runtime, each DUT has been simulated on the same dedicated machine, sharing an 

equal UVM testbench structure, with the same stimuli generator and for multiple executions of 

varied iterations. Additionally, the random seed has been fixed for all simulation runs. These 

conditions are considered enough for this metric to be regarded as objective. 

In every verification scenario, for all number of iterations, the observed runtime in SV/UVM-

based testbenches is lower than the one presented by PyUVM. Figure 53 shows the average 

runtime difference between both approaches for each verified DUT, normalized to the slowest 

implementation. Note that this average includes the three possible numbers of iterations. The 

enhanced implementation of the PyUVM testbench is not shown for the SFIFO.  
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This result does not come as a surprise. As explained in Chapter 3, the fact that simulators can 

directly interpret code written in SystemVerilog allows for better performance, since the cocotb 

framework must use a dedicated interface between the simulator and Python. Even when PyUVM 

has been optimized as shown in the enhanced approach, the observed runtime is 47% slower than 

its SV/UVM counterpart. 

From this point onwards, the following metrics are based on the experience acquired while 

working with PyUVM and cocotb. Although the subsequent statements are validated with 

references, these metrics hold a different type of value from the previous ones, based more on the 

user experience rather than the frameworks themselves. 

An example of this is the learning curve. Both verification and coding skills are independent of 

this comparison since both are required to use either PyUVM or SV/UVM. For this reason, the 

analysis revolves around the used programming languages. In this context, the number of users 

for each one could merely represent popularity, and the extension of its documentation could 

reflect the available capabilities. Additionally, SystemVerilog is not a programming language as 

such, but an HDVL, making it even harder to compare. 

Python is a general-purpose language taught across diverse professional and academic fields. Its 

low level of syntax complexity provides a comprehensive environment where scripts can be 

designed and run easily. On the other hand, SystemVerilog is a language exclusively dedicated to 

the design and verification of circuits. This feature of SystemVerilog allows its users to use 

specific structures and functions related to the application field. Nevertheless, to extract the 

maximum performance out of these structures and functions, the user must have a significant level 

of knowledge of the language and must cope with the unavailability of data access techniques 

compared to Python. 

While SystemVerilog presents powerful tools that specifically target verification, these tools 

require more time and dedication than using Python-based testbenches.  

When it comes to integration, Python is one of the best-known scripting languages. The 

considerable number of available third-party libraries, and its popularity as a programming 

language, allow for multiple ways to manage the simulation data and perform different actions 

over it. Nonetheless, most EDA tools are based on the premise of using SystemVerilog or other 

HDLs. For this reason, this comparison has two different approaches. 

For custom tools or scripts to analyse the performed simulation, Python represents the best option. 

An example of this could be a script that performs statistical analysis of the obtained data or 

building a dedicated regression manager. 

In the case of connecting with other EDA tools of the same vendor, and in specific cases with 

other vendors, SystemVerilog may be the best approach. It is one of the standard languages of the 

verification industry and thus, usable across different programs. 

The maintainability of each approach lies again in their programming language. The lower 

syntax complexity of Python allows for easier-to-read code, thus increasing maintainability. As 

discussed in the line count comparison, the more statements required to define a functionality, the 

more failure points are introduced, and the more readability is compromised. Python is a language 

whose syntax rules allow the user to quickly understand how the code operates. A simple but 

effective example of this is the implementation of the logical AND operator as “and” instead of 

“&&”. While most programmers are used to the latter notation, the former makes Python a 

readable programming language that quickly describes the implemented functionality. 

Finally, in the industrial adoption category, the most relevant is easily SystemVerilog. As 

commented previously, it is the default language of significant EDA vendors (besides VHDL). 

This situation results in the verification industry and verification environments being dominated 

by SystemVerilog. 
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Nonetheless, cocotb has been used by the CERN on the ATLAS experiment (23) for three different 

ASICs. Although this last example used the plain cocotb library, the sponsorship of PyUVM by 

a notable EDA vendor such as Siemens is an indication of the growing interest in the industrial 

application of this technology. 

7.1.1 Limitations and target cases 

The most significant problem for cocotb, and its derived libraries, is the runtime. This issue has 

been observed in sections 4.4.1 and 5.4.1 At the same time, its most powerful characteristic is its 

simplicity thanks to the Python programming language. This scenario presents a clear trade-off 

between time spent in the simulation itself and designing and maintaining the testbench. 

For a defined runtime, if there is an error to be fixed, the overall time spent in verification is 

exponentially higher. The error must be found, documented, fixed, and simulated again. The more 

time is spent in simulation, the more the fixing process is delayed. The repercussion of a higher 

runtime has significant ramifications. 

In this sense, PyUVM could present a better option for complex designs that require intricate 

reference models. Its simplicity allows, as seen in the arbiter chapter, to recreate the target’s 

design behaviour rapidly and with simple statements. However, testbenches with significant 

coverage requirements need more tests to be run and thus more simulation time, not being the 

best scenario for PyUVM.  

It can be said then, that while PyUVM and cocotb present a higher runtime when it comes to the 

simulation itself, the simplicity of writing and running the testbenches makes these frameworks 

capable of managing the verification of complex designs. Additionally, the maintainability of 

Python-based testbenches, as discussed before, can also save time when readjusting testbench 

parameters for an updated version of the design, adding functionalities, or modifying the 

environment. 

7.1.2 Performance enhancing 

The GitHub repository of cocotb presents a discussion regarding methods to improve the 

performance of the testbenches. The most significant proposals are the use of fewer triggers, as 

well as not changing values constantly. 

In its functioning, every trigger or change of value presents a call to the simulator interface. This 

call is costly because the simulator stops, communicates through the interface, and does not restart 

until the data has arrived at the Python code. The less transactions, the better the runtime. 

This scenario can be observed with the enhanced version of PyUVM for the arbiter. Because the 

change of multiple signals is done at the same time, the observed runtime is less than the original 

version. 

7.2 Goal review 

In this subsection, the initial goals described in section 1.2 will be reviewed, and their success 

will be assessed based on the different chapters of this document. 

In the first place, an examination of the current challenges of SV/UVM-based testbenches has 

been described in Chapter 2. A look was taken at how complex reference models slow the 

verification process, and how new engineers may find an additional barrier in the SystemVerilog 

language. Additionally, a case for Python-based testbenches was made with reasonable 

statements. 

Another goal was to provide insight into the functioning of cocotb, how it is possible for Python 

code to interact with simulators, and the basic details on how to write and build testbenches using 

the plain cocotb library and the PyUVM framework. This information has been extensively 

covered in Chapter 3. 
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The most significant goal was the use of this new Python-based framework for the verification of 

different DUTs that represent three different scenarios (a ramp-up project, a more complex 

testbench, and an industrial application). This goal has been completed successfully in Chapter 4, 

Chapter 5, and Chapter 6. 

The main goal is covered in this chapter as well as the previous ones. The purpose of this thesis 

was to evaluate the viability of PyUVM testbenches in the verification industry. This has been 

accomplished through its comparison to the already stablished SV/UVM approach, and its 

application to a design currently being developed by a notable company (Bosch) in the 

semiconductor industry In this sense, this goal can be considered covered, and thus, the thesis 

purpose has been completed. 

7.3 Concluding thoughts 

The usage of this framework during the length of six months has provided invaluable knowledge 

about its usage and viability. Referring to its limitations and target cases, cocotb can be considered 

a framework that works as expected, that accomplishes its purpose of using Python as a 

verification language, and that its main disadvantage is a matter of optimization. 

This last point, optimization, may not lie entirely on the cocotb side but on the used interface. 

Since the simulators are predominately used with SystemVerilog, it is possible that the usage of 

interfaces like VPI has not been optimized, although this is an assumption. 

Nonetheless, although it is possible that the runtime cannot be matched any time soon, cocotb 

presents a notable alternative to the verification industry. New engineers, or other professionals 

not related to the verification of digital designs, can find an easier way to get started in the design 

of testbenches. This allows for a bigger market of candidates as well as reducing the training time 

of new engineers; they are only confronted with learning the concepts of verification instead of 

also learning a new language such as SystemVerilog. 

Overall, with its defined target cases and limitations, cocotb and PyUVM can be considered a 

notable tool to be used for digital verification. 

7.4 Future work 

The next significant scenario in the IC industry revolves around unifying verification with 

validation. 

As of now, the pre-silicon verification of a design (simulation) is performed by a specific team 

with its own testbench, whereas the post-silicon validation (tests on a physical prototype) is 

conducted by another department with its specialized tests. These tests differ as the physical 

prototype requires inputs from a signal generator, and its outputs can be monitored in an 

oscilloscope, for example.  

Available languages like SystemC can bridge this problem, as they allow to drive C-based 

interfaces of the physical testers. Nonetheless, it could be feasible to implement a similar structure 

with Python, as there are already libraries that allow to control these instruments; a framework 

from the ground up to relate cocotb testbenches to testers. The advantage over SystemC has the 

same basis as why PyUVM is a valid alternative to SV/UVM. Syntax simplicity and popularity 

of the language allow for newcomers to focus on the verification/validation process instead of 

dedicating useful time to overcome the barrier that languages like C, C++, or SystemVerilog 

present.  

Although it is not the same to control a simulator as to manage instruments like an oscilloscope, 

an intermediate framework based on cocotb could make it possible. In this sense, a single 

testbench could be used for both pre- and post-silicon verification. This scenario allows the design 

to be held under the same expectations before and after its production, presenting the culmination 

of reproductivity and reusability. 
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Further future work may involve optimizing the cocotb framework to reduce runtime, as well as 

adding new features or creating new related projects that may help other engineers, like a 

regression manager. 

For applications outside the scope of improving the technology, cocotb and PyUVM could 

become a notable approach for the verification of digital designs in the semiconductor industry. 

7.5 SDG alignment 

This project aligns with several points described in the United Nations (UN) Sustainable 

Development Goals (SDG) (34). 

One of the topics of this thesis is to provide the semiconductor industry with an understanding of 

a new technology, thus fostering innovation in the field. For this reason, the project aligns with 

goal number nine (industry, innovation and infrastructure). 

At the same time, a successful verification process avoids the fabrication of faulty products, 

increasing the efficiency of the manufacturing process. Thus, presenting cocotb as an 

improvement or expansion of existing verification environments aligns with goal number twelve 

(responsible consumption and production). 

Finally, this technology presents a smoother learning curve compared to SV/UVM while at the 

same time being able to obtain the same test results. This provides a friendly environment for new 

engineers as well as maintaining the validity of the tests. In this context, Chapter 3 and the 

subsequent verification of multiple DUTs align with goal number eight (decent work and 

economic growth). 
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