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Abstract

Abusive language detection is a task that has become increasingly impor-
tant in the modern digital age, where communication takes place via various
online platforms. The increase in online interactions has led to an increase
in the occurrence of abusive language. Addressing such content is crucial
to maintaining a safe and inclusive online environment. However, this task
faces several challenges that make it a complex and ongoing area of research
and development. In particular, detecting abusive language in environments
with sparse data poses an additional challenge, since the development of
accurate automated systems often requires large annotated datasets.

In this thesis we investigate different aspects of abusive language detec-
tion, paying particular attention to environments with limited data. First,
we study the bias toward abusive keywords in models trained for abusive
language detection. To this end, we propose two methods for extracting po-
tentially abusive keywords from datasets. We then evaluate the bias toward
the extracted keywords and how this bias can be modified in order to influ-
ence abusive language detection performance. The analysis and conclusions
of this work reveal evidence that it is possible to mitigate the bias and that
such a reduction can positively affect the performance of the models. How-
ever, we notice that it is not possible to establish a similar correspondence
between bias mitigation and model performance in low-resource settings with
the studied bias mitigation techniques.

Second, we investigate the use of models based on graph neural networks
to detect abusive language. On the one hand, we propose a text represen-
tation framework designed with the aim of obtaining a representation space
in which abusive texts can be easily distinguished from other texts. On the
other hand, we evaluate the ability of models based on convolutional graph
neural networks to classify abusive texts. The next part of our research fo-
cuses on analyzing how data augmentation can influence the performance
of abusive language detection. To this end, we investigate two well-known
techniques based on the principle of vicinal risk minimization and propose
a variant for one of them. In addition, we evaluate simple techniques based
on the operations of synonym replacement, random insertion, random swap,
and random deletion.

The contributions of this thesis highlight the potential of models based on
graph neural networks and data augmentation techniques to improve abusive
language detection, especially in low-resource settings. These contributions
have been published in several international conferences and journals.



Resumen

La detección del lenguaje abusivo es una tarea que se ha vuelto cada vez
más importante en la era digital moderna, donde la comunicación se produce
a través de diversas plataformas en línea. El aumento de las interacciones
en estas plataformas ha provocado un aumento de la aparición del lenguaje
abusivo. Abordar dicho contenido es crucial para mantener un entorno en
línea seguro e inclusivo. Sin embargo, esta tarea enfrenta varios desafíos que
la convierten en un área compleja y que demanda de continua investigación
y desarrollo. En particular, detectar lenguaje abusivo en entornos con es-
casez de datos presenta desafíos adicionales debido a que el desarrollo de
sistemas automáticos precisos a menudo requiere de grandes conjuntos de
datos anotados.

En esta tesis investigamos diferentes aspectos de la detección del lenguaje
abusivo, prestando especial atención a entornos con datos limitados. Primero,
estudiamos el sesgo hacia palabras clave abusivas en modelos entrenados
para la detección del lenguaje abusivo. Con este propósito, proponemos dos
métodos para extraer palabras clave potencialmente abusivas de colecciones
de textos. Luego evaluamos el sesgo hacia las palabras clave extraídas y cómo
se puede modificar este sesgo para influir en el rendimiento de la detección
del lenguaje abusivo. El análisis y las conclusiones de este trabajo revelan
evidencia de que es posible mitigar el sesgo y que dicha reducción puede
afectar positivamente el desempeño de los modelos. Sin embargo, notamos
que no es posible establecer una correspondencia similar entre la variación
del sesgo y el desempeño de los modelos cuando hay escasez datos con las
técnicas de reducción del sesgo estudiadas.

En segundo lugar, investigamos el uso de redes neuronales basadas en
grafos para detectar lenguaje abusivo. Por un lado, proponemos una es-
trategia de representación de textos diseñada con el objetivo de obtener un
espacio de representación en el que los textos abusivos puedan distinguirse
fácilmente de otros textos. Por otro lado, evaluamos la capacidad de redes
neuronales convolucionales basadas en grafos para clasificar textos abusivos.
La siguiente parte de nuestra investigación se centra en analizar cómo el au-
mento de datos puede influir en el rendimiento de la detección del lenguaje
abusivo. Para ello, investigamos dos técnicas bien conocidas basadas en el
principio de minimización del riesgo en la vecindad de instancias originales
y proponemos una variante para una de ellas. Además, evaluamos técnicas
simples basadas en el reemplazo de sinónimos, inserción aleatoria, intercam-
bio aleatorio y eliminación aleatoria de palabras. Las contribuciones de esta
tesis ponen de manifiesto el potencial de las redes neuronales basadas en
grafos y de las técnicas de aumento de datos para mejorar la detección del
lenguaje abusivo, especialmente cuando hay limitación de datos. Estas con-
tribuciones han sido publicadas en conferencias y revistas internacionales.



Resum

La detecció del llenguatge abusiu és una tasca que s’ha tornat cada ve-
gada més important en l’era digital moderna, on la comunicació es produïx
a través de diverses plataformes en línia. L’augment de les interaccions en
estes plataformes ha provocat un augment de l’aparició de llenguatge abusiu.
Abordar este contingut és crucial per a mantindre un entorn en línia segur
i inclusiu. No obstant això, esta tasca enfronta diversos desafiaments que la
convertixen en una àrea complexa i contínua de recerca i desenvolupament.
En particular, detectar llenguatge abusiu en entorns amb escassetat de dades
presenta desafiaments addicionals pel fet que el desenvolupament de sistemes
automàtics precisos sovint requerix de grans conjunts de dades anotades.

En esta tesi investiguem diferents aspectes de la detecció del llenguatge
abusiu, prestant especial atenció a entorns amb dades limitades. Primer,
estudiem el biaix cap a paraules clau abusives en models entrenats per a
la detecció de llenguatge abusiu. Amb este propòsit, proposem dos mè-
todes per a extraure paraules clau potencialment abusives de col·leccions
de textos. Després avaluem el biaix cap a les paraules clau extretes i com
es pot modificar este biaix per a influir en el rendiment de la detecció de
llenguatge abusiu. L’anàlisi i les conclusions d’este treball revelen evidència
que és possible mitigar el biaix i que esta reducció pot afectar positivament
l’acompliment dels models. No obstant això, notem que no és possible es-
tablir una correspondència similar entre la variació del biaix i l’acompliment
dels models quan hi ha escassetat dades amb les tècniques de reducció del
biaix estudiades.

En segon lloc, investiguem l’ús de xarxes neuronals basades en grafs per
a detectar llenguatge abusiu. D’una banda, proposem una estratègia de
representació textual dissenyada amb l’objectiu d’obtindre un espai de rep-
resentació en el qual els textos abusius puguen distingir-se fàcilment d’altres
textos. D’altra banda, avaluem la capacitat de models basats en xarxes neu-
ronals convolucionals basades en grafs per a classificar textos abusius. La
següent part de la nostra investigació se centra en analitzar com l’augment
de dades pot influir en el rendiment de la detecció del llenguatge abusiu.
Per a això, investiguem dues tècniques ben conegudes basades en el prin-
cipi de minimització del risc en el veïnatge d’instàncies originals i proposem
una variant per a una d’elles. A més, avaluem tècniques simples basades en
el reemplaçament de sinònims, inserció aleatòria, intercanvi aleatori i elimi-
nació aleatòria de paraules. Les contribucions d’esta tesi destaquen el poten-
cial de les xarxes neuronals basades en grafs i de les tècniques d’augment de
dades per a millorar la detecció del llenguatge abusiu, especialment quan hi
ha limitació de dades. Estes contribucions han sigut publicades en revistes i
conferències internacionals.
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Chapter 1

Introduction

1.1 Problem Description

In the contemporary digital era, the ubiquitous presence of social media and
online platforms has led to the proliferation of abusive language as a complex
and critical problem. Abusive language is a multifaceted phenomenon that
encloses not only explicit threats and derogatory comments but also more
subtle forms of expression that can have extensive implications for individ-
uals and society as a whole. The use of abusive language, including hate
speech and different forms of offensive or harmful content, produces a sig-
nificant challenge to maintaining healthy online communities and promoting
inclusive digital spaces. Therefore, understanding the impact and prevalence
of abusive language in the current digital scenario is not only a critical social
concern but also a topic of active research in fields such as natural language
processing, psychology, and sociology.

According to various research (Waseem and Hovy, 2016; Fortuna and
Nunes, 2018a; Malmasi and Zampieri, 2018; Jurgens et al., 2019; Caselli
et al., 2021a; Kiritchenko et al., 2021; Pamungkas et al., 2023), the abusive
language phenomenon covers a wide spectrum of abusive behaviors, includ-
ing offense, online aggression, hate speech, abuse, stereotyping, cyberbullying
and doxxing. Poletto et al. (2021) also expose these concepts and illustrate
their connections in Figure 1.1. Currently, most approaches emphasize of-
fensive language (Pradhan et al., 2020), abusive language (Vidgen and Der-
czynski, 2020), and hate speech (Yin and Zubiaga, 2021; Alkomah and Ma,
2022) for their social impact. Although they are communicative categories
that belong to the same phenomenon, they differ in features and targets.
Offensive language may be used to provoke a negative emotional reaction,
but it might not necessarily target specific groups or identities. Hate speech,
on the other hand, promotes prejudice and discrimination against specific
groups based on their characteristics. Abusive language encompasses a wide
range of harmful language, but may not be based on the same prejudices as
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hate speech.

Figure 1.1: Abusive language phenomena (source Poletto et al. (2021)).

A major challenge in the study of the abusive language phenomenon is
low-resource settings. Typically, these settings have significant limitations
in terms of available data. The lack of sufficient labeled data hinders the
training of robust models capable of distinguishing between abusive and
non-abusive content. Moreover, abusive language can be subtle and context-
dependent (Sánchez-Junquera et al., 2021a; Frenda et al., 2023; Merlo et al.,
2023). Detecting such abuses is particularly difficult when working with
limited data and resources. Therefore, ingenious techniques are essential
solutions to adapt to specific linguistic contexts.

In this thesis, we aim to explore the abusive language phenomena as the
task of abusive language detection in low-resource settings. Our research is
focused on the concepts of offensive language, hate speech, and abusive lan-
guage in general. We address this study from three perspectives: 1) analysis
of bias toward abusive keywords in models, 2) graph-based models, and 3)
data augmentation (see Section 1.5). These perspectives involve different
techniques that allow us to analyze the problem of data limitation.

The research is structured as follows. First, we propose two techniques to
extract keywords from text collections and use them in the context of abu-
sive language detection. One of the methods leverages the BERT multi-head
self-attention mechanism, while the other uses some statistics from the col-
lections. However, both methods focus on identifying terms that are highly
relevant to abusive texts but irrelevant to other texts. We then analyze the
bias of the models toward these terms, and the conclusions provide insight
into how this bias can affect the performance of abusive language detection.
The next part of our research focuses on graph neural networks. We first
propose a strategy based on graph auto-encoders to generate a text repre-
sentation (embeddings), and the findings show its capability to discriminate
abusive language. Then, we use a model based on convolutional graph neu-
ral networks to evaluate the effectiveness of graph-based models compared
to state-of-the-art models in low-resource settings. Finally, we study data
augmentation techniques to diversify the data in low-resource settings. We
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evaluate two strategies and propose a variant based on the principle of vicinal
risk minimization (Chapelle et al., 2000).

The rest of this chapter overviews reference methods for the detection of
abusive language, hate speech, and offensive language, as well as for abusive
language detection in low-resource settings. Next, we motivate our work and
present our objectives. Finally, we present our research questions, contribu-
tions, and the structure of this thesis.

1.2 Abusive Language and Hate Speech

Abusive language and hate speech involve the use of harmful language but
generally differ in their scope, intent, and the specific types of harm they
can cause. Abusive language can be directed at an individual or group for
reasons like personal conflicts or disagreements. This does not necessar-
ily involve targeting people based on their characteristics (Swamy et al.,
2019; Clarke and Grieve, 2017). While hate speech is specifically directed
at groups based on their inherent characteristics, such as race, religion, or
ethnicity. This promotes discrimination and prejudice against these groups
(Waltman and Mattheis, 2017; ElSherief et al., 2018; Bilewicz and Soral,
2020). Consequently, abusive language can cause emotional distress and
harm to the target but does not necessarily lead to discrimination against a
specific group. On the other side, hate speech can contribute to a broader
culture of discrimination and can incite violence or harassment in specific
communities.

Although there are differences between these two concepts, they are
closely related concepts. In the field of natural language processing, hate
speech detection (HSD) and abusive language detection (ALD) share com-
monalities in terms of their objectives and methodologies. They both fall
under the broader category of text classification tasks aimed at identifying
harmful language in textual data (MacAvaney et al., 2019; Putri et al., 2020;
Anand et al., 2023). Therefore, it is usual to find that many works for hate
speech detection also encompass or reference abusive language detection.
This overlap occurs because hate speech is a subset of abusive language (see
Figure 1.1), and many of the techniques and models developed for HSD can
be applied to a wider range of ALD tasks. Furthermore, the linguistic fea-
tures and patterns associated with hate speech often overlap with those of
other abusive languages. Models trained to identify hate speech are likely
to recognize common linguistic cues shared with other forms of abusive lan-
guage. Due to the limited availability of data labeled for other subcategories
of abusive language, research can focus on the detection of hate speech ac-
knowledging that studies can also serve as a basis for detecting abusive lan-
guage more broadly. The distinction between HSD and ALD depends on the
specific goals and context of the research or application.
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In this thesis, both concepts are discussed and studied, but abusive
language detection is used as the general terminology to explore the phe-
nomenon of abusive language.

1.2.1 Abusive Language Detection

A large number of machine learning methods have been used for hate speech
detection and abusive language detection, ranging from traditional machine
learning to deep learning techniques. In the early days, the strategies were
mainly based on traditional machine learning approaches. Models like Naive
Bayes (NB) (Kiilu et al., 2018), Logistic Regression (LR) (Ginting et al.,
2019) and Support Vector Machines (SVM) (MacAvaney et al., 2019; Sevani
et al., 2021; Das et al., 2023), were employed for classification. Furthermore,
some approaches relied on features extracted from text data, such as n-
grams, sentiment analysis, and part-of-speech tagging. Waseem and Hovy
(2016) analyzed the impact of various linguistic features in conjunction with
character n-grams on hate speech detection and concluded that this approach
provides a solid foundation. However, most methods based solely on these
kinds of approaches are not typically considered effective because they have
several limitations, including issues related to context, generalization, and
the dynamic nature of the abusive language.

The introduction of artificial neural networks, particularly deep learn-
ing, marked a significant shift. The methods involved the use of Recurrent
Neural Networks (RNNs) (De la Pena Sarracén et al., 2018; Saksesi et al.,
2018; Pitsilis et al., 2018b; Corazza et al., 2020a) and Convolutional Neu-
ral Networks (CNNs) (Gambäck and Sikdar, 2017), with Bidirectional Long
Short-Term Memory (BiLSTM) gaining further popularity (Rajamanickam
et al., 2020). These methods improved the ability to capture context and
nuances in abusive language. Akhter et al. (2021) studied abusive language
detection using four deep learning models (CNN, LSTM, BLSTM, and Con-
volutional Long Short-Term Memory (CLSTM)) and five machine learning
models including NB, SVM, and LR. They compared the performance of the
models and concluded that deep learning models perform significantly better
than conventional machine learning models. Badjatiya et al. (2017) inves-
tigated the application of deep neural network architectures to detect hate
speech and also showed that these models significantly outperform previous
methods.

Recently, state-of-the-art methods for abusive language detection are pri-
marily based on the Bidirectional Encoder Representations from Transform-
ers (BERT) (Devlin et al., 2019a). This is due to the ability of BERT to
capture contextual and semantic information in text, making it more effective
in recognizing abusive language. Moreover, BERT has been pre-trained on a
large amount of text data in an unsupervised manner, which allows transfer
learning. This has proven to be very effective for a wide range of natu-
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ral language processing tasks, offering a significant increase in performance
compared to training models from scratch. Mozafari et al. (2020a) investi-
gate the ability of BERT to capture hateful context with transfer learning
using fine-tuned methods. Their results indicate that this strategy can im-
prove the results obtained by previous approaches. Similarly, Swamy et al.
(2019) show that BERT has established itself as a state-of-the-art model
through the comparison to other neural networks. Mnassri et al. (2022) fo-
cus on classifying hate speech using various models that integrate BERT and
different neural network architectures. Additionally, they combine pairs of
the first models to evaluate several ensemble techniques. The experiments
show good results especially the ensemble models by stacking. Fortuna et al.
(2021) also find that BERT tends to generalize the best with respect to a
number of other models they experimented with, across several datasets.
Beyond BERT, various transformer-based models, like RoBERTa (Liu et al.,
2019a), XLNet (Yang et al., 2019) and Generative Pre-trained Transformer
(GPT) (Radford et al., 2018), have been fine-tuned for abusive language de-
tection. Like BERT, these models have demonstrated superior performance
by capturing context and semantics (Mutanga et al., 2020; Shishah and Fa-
jri, 2022). In our study, we focused on transformer-based models due to their
strengths and the results reported in most recent works.

1.3 Offensive Language

Abusive language also includes cases of offensive language, but there are
cases where offensive language is not abusive (see Figure 1.1). Offensive lan-
guage can encompass a wide range of expressions that are considered socially
inappropriate, impolite, or disrespectful. Still, they may not necessarily be
intended to cause significant harm or be abusive (Pradhan et al., 2020; Risch
et al., 2020). In fact, offensive language can sometimes be used uninten-
tionally or can arise from various situations, including misunderstandings
or cultural differences. In many cases, this can be a matter of individual
perception, and what one person finds offensive, another might not.

Offensive language detection (OLD) and ALD share the goal of iden-
tifying harmful content, but ALD is often more complex because abusive
language includes a wider range of harmful expressions, including threats,
harassment, and personal attacks. However, similar techniques and models,
such as traditional machine learning and deep learning models, have been
used for both tasks.

Large-scale pre-trained language models like BERT (Alavi et al., 2021),
ALBERT (Singh and Li, 2021) and GPT (Liu et al., 2020) have been funda-
mental in improving offensive language detection. Fine-tuning these models
on labeled datasets specific to offensive content has shown remarkable re-
sults. Alavi et al. (2021) describe a study on using attention mask input in
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BERT for detecting offensive content. The results indicate that models can
be enhanced with this methodology. Singh and Li (2021) introduce a domain
adaptation training procedure to ALBERT, such that it can use auxiliary
data from source domains to improve the OLD performance in a target do-
main. The results on benchmark datasets show that this approach obtains
state-of-the-art performances in most cases. Particularly, the approach ben-
efits underrepresented classes.

1.4 Abusive Language Detection in Low-Resource
Settings

Abusive language is highly context-dependent and varies across cultures and
regions. Models trained on data from one cultural context may not general-
ize well to others, necessitating a deep understanding of cultural nuances to
ensure accurate detection. Detecting abusive language in low-resource set-
tings can be challenging due to the limited availability of labeled data and
resources for training robust models capable of distinguishing between abu-
sive and non-abusive content (Aluru et al., 2021; Bigoulaeva et al., 2021a).
However, different strategies can be employed to address this issue, including
multilingual model, active learning, and data augmentation (Nkemelu et al.,
2022). Multilingual models are useful in transferring knowledge between
languages with varying levels of prevalence (Ali et al., 2022; Ranasinghe
and Zampieri, 2021). More generally, transfer learning allows to leverag-
ing of pre-trained models on a related task, such as sentiment analysis or
text classification. Thus, this strategy can be useful in low-resource settings.
Bigoulaeva et al. (2021a) use cross-lingual transfer learning to leverage data
from higher-resource languages. Their results indicate that it can be a use-
ful method for achieving good performance on low-resource target languages.
Active learning is a technique that focuses on selecting and labeling the most
informative data to train a model. This allows a model to reach a certain
level of performance with fewer labeled examples, which is especially useful
when there are limited resources (Ahmed and Lin, 2022). Semi-supervised
learning can also help capture semantic information with limited data. D’Sa
et al. (2020) show that semi-supervised learning based on label propagation
helps to improve hate speech classification in very low-resource scenarios.

Data augmentation is a technique where new data is created by applying
various transformations or perturbations to existing data. Techniques such
as paraphrasing, translating text to other languages and back, or introducing
typos and variations, can help diversify the scarce data and improve the gen-
eralization of the models. Khullar et al. (2023) propose a data augmentation
approach based on machine translation and contextual entity substitution to
address the lack of data for hate speech detection. They generate synthetic
data in a target language from hate speech examples in English as a high-

8



resource language. Their findings show that a model trained on the new
synthetic data performs comparably to a model trained only on the samples
available in the target domain. Azam et al. (2022) explore different data
augmentation techniques for the improvement of hate speech detection. The
techniques include synonym replacement, random insertion, random swap-
ping, random deletion, text generation with a multilingual model, and word
replacement via multilingual BERT. The results point out the ability of these
strategies to improve performance. In this thesis, we analyze data augmen-
tation strategies based on vicinal risk minimization. This is a principle that
can be employed to ensure that the augmented data closely approximates
the true risk distribution to enhance the quality and quantity of training
data for machine learning models. We use two well-known strategies and
propose a new one to evaluate how they affect abusive language detection in
low-resource settings.

1.5 Motivation and Objectives

Recent studies in abusive language detection have paid much attention to
the issue of bias (Dixon et al., 2018; Manerba and Tonelli, 2021; Nascimento
et al., 2022; Cheng et al., 2022; Rizzi et al., 2023). Dixon et al. (2018)
show the existence of bias between texts containing identity terms and a
specific toxicity category. They attribute this issue to the disproportionate
representation of texts containing certain terms in training data. Therefore,
they use a technique of data augmentation to mitigate this bias. Mozafari
et al. (2020b) also confirm the existence of bias in trained classifiers and
introduce a bias mitigation mechanism to reduce the effect of bias during the
fine-tuning of a model for hate speech detection. More recently, Nascimento
et al. (2022) evaluate the distribution of bias-sensitive words in hateful tweets
and the entire dataset to investigate disproportionate representations. The
results show that the high disproportional distribution of the term women
usually occurs in datasets composed of tweets related to sexism or misogyny
categories. Rizzi et al. (2023) investigate a bias estimation technique to
identify specific elements of misogynous memes that could lead to unfair
models. They found that the list of terms with the highest bias score for the
misogynous class is composed of tokens that are typically associated with
some specific misogyny categories like dishwasher and chick for stereotype
and whore for objectification. Furthermore, Manerba and Tonelli (2021)
show how BERT-based classifiers can perform very poorly as regards fairness
and bias, in particular on samples involving implicit stereotypes, expressions
of hate towards minorities, and protected attributes such as race or sexual
orientation. These works reveal the presence of bias and its possible impact
on abusive language detection. We believe that this issue can increase when
data is scarce, due to the limited availability of diverse and representative
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labeled data to train robust models. Consequently, we aim to study model
bias as a major problem for the detection of abusive language in low-resource
settings.

Secondly, we have found evidence that graph-based models can have sig-
nificant potential in low-resource settings. This kind of model facilitates the
incorporation of small amounts of labeled data and a larger amount of un-
labeled data. Thus, they offer various advantages for making the most of
limited data by propagating information through a graph to make predic-
tions. Yao et al. (2019a) propose a model based on a graph neural network for
text classification. The result suggests that the improvement of graph-based
models over state-of-the-art models becomes prominent as the percentage of
training data becomes smaller.

Another observation in low-resource settings is that cross-lingual tech-
niques can be highly effective (Adams et al., 2017; Yarmohammadi et al.,
2019). These techniques allow for the transfer of knowledge and models
from resource-rich languages to low-resource languages. Moreover, they en-
able zero-shot and few-shot learning, where models can make predictions in
low-resource languages with minimal training examples. However, there are
some considerations to take into account. Casula and Tonelli (2020) present
an evaluation of hate speech detection in Italian using machine-translated
data from English and investigate how the source data should follow the
same annotation scheme and possibly class balance as the smaller data set
in the target language. Another consideration is that within low-resource
languages, there can be a significant linguistic diversity and cross-lingual
models may struggle to accommodate all language variations. Additionally,
low-resource languages may contain words that are not present in the source
language. To overcome these limitations, it is essential to carefully evaluate
the specific characteristics of low-resource languages and explore strategies
that take advantage of existing linguistic resources. As mentioned in the pre-
vious section, data augmentation is a valuable technique that can be designed
to create new data that are specifically tailored to low-resource languages.
This can simulate language diversity and variations within a low-resource
language and introduce synthetic out-of-vocabulary terms, helping models
handle words not present in the source language.

Considering what we mentioned above, our research has the following
objectives:

• To study the effects of the bias toward potential abusive keywords in
models for abusive language detection in low-resource languages.

• To develop a graph-based strategy for text representation to address
the lack of data faced by many languages in abusive language detection.

• To position the developed strategy and other graph-based models w.r.t.
state-of-the-art strategies for abusive language detection in low-resource

10



languages.

• To evaluate the performance of abusive language detection in low-
resource settings with data augmentation.

1.6 Research Questions

The above objectives can be divided into three groups according to the per-
spective from which the abusive language detection in low-resource settings is
analyzed: 1) bias toward potential abusive keywords, 2) graph-based models,
and 3) data augmentation. Considering these groups, the research questions
we aim to answer in this thesis are:

Research question about bias in the models

• RQ1: Could bias toward potential abusive keywords in the models af-
fect the performance of abusive language detection in low-resource set-
tings? We are interested in studying the bias that models tend to
learn toward abusive keywords in low-resource settings. In particular,
we evaluate how this bias affects the performance of abusive language
detection and whether bias mitigation is worthwhile. For this purpose,
we first propose methods to extract potentially abusive keywords and
then evaluate the bias toward these keywords in models.

Research question about graph-based models

• RQ2: What is the contribution of models based on graph neural net-
works for abusive language detection in low-resource settings? Aiming
to study the potential of this kind of model, we evaluate the use of
graph neural networks in two directions: 1) to detect abusive language
and 2) to generate appropriate textual representations capable of dis-
tinguishing abusive language. Then, we compare their performance
with state-of-the-art models in low-resource settings.

Research question about data augmentation

• RQ3: What is the contribution of data augmentation for abusive lan-
guage detection in low-resource settings? In this thesis, we also aim to
investigate the potential of data augmentation to improve abusive lan-
guage detection in the particular case of low-resource settings. To do
so, we employ strategies based on transformations and combinations
of the original data.
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1.7 Contributions of this Thesis

In this section, we summarize the main contributions of this thesis.
We study the performance of abusive language detection in low-

resource settings from three perspectives. We first propose and evaluate
two methods to extract potential abusive keywords from data collections.
Next, we analyze the salient words to which pre-trained transformer-based
models pay more attention for abusive detection. The results show that over
50% of these salient words are not abusive and that there is a higher number
of abusive words among our extracted keywords. However, we examine the
bias toward the keywords in models and show that the models do indeed
appear to be biased. Additionally, we prove that some mitigation strategies
can reduce this bias and improve the performance of the models.

Another contribution of this thesis is made in the field of models based
on graph neural networks. We propose an approach using graph auto-
encoders to generate embeddings from text. To do so, we represent the
texts as nodes of a graph with the hypothesis that the nodes with similar
characteristics will be close in the generated embedding space. The results
illustrate an evident separation between the embeddings of abusive and non-
abusive texts. We employ these embeddings for abusive language detection
and show that our method produces competitive results on small datasets.
On the other hand, we use a model based on convolutional graph neural
networks and show that our model is more stable than other state-of-the-art
deep learning models with limited data.

Moreover, we use data augmentation to improve cross-lingual abu-
sive language detection in low-resource settings. We employ a dataset
that contains extensive data in English and involves limited data in seven
languages typologically distinct from English. This allows us to study cross-
lingual abusive language detection for different languages in settings with lit-
tle data. We analyze two existing data augmentation methods based on the
principle of vicinal risk minimization. Furthermore, we propose a variant of
one of these methods that generates data from a novel interpolation of pairs
of instances. The results reveal that the three methods can enhance cross-
lingual abusive language detection. Specifically, we observe that our method
improves significantly in multidomain and multilingual environments.

Finally, we help build a dataset for profiling haters in Twitter, both
in English and Spanish. This dataset was used in the shared task organized
at PAN in 2021. We will briefly describe it at the end of this manuscript.

1.8 Structure of the Thesis

This PhD thesis is presented as a compendium of research articles (from
Chapter 2 to Chapter 6) that were published during the study phase of the
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PhD candidate. Since our study is conducted from various perspectives,
we split this thesis into 3 main parts, followed by a fourth part with our
findings that includes a general discussion of the results together with some
new experiments and our conclusions. Next, we briefly overview the content
of the parts:

Part I: Keyword Extraction and Bias Analysis

Chapter 2: Offensive Keyword Extraction based on The Atten-
tion Mechanism of BERT and The Eigenvector Centrality using
a Graph Representation.

Chapter 3: Systematic Keyword and Bias Analyses in Hate
Speech Detection.

In this part, we present two research papers published in the Personal
and Ubiquitous Computing and the Information Processing & Man-
agement (IPM) journals, respectively. The main focus of this part
is to extract keywords from datasets with abusive texts and investi-
gate how the bias toward these potentially abusive keywords can affect
abusive language detection. The first work proposes a method for
keyword extraction that leverages the abilities of the multi-head self-
attention mechanism of BERT to assign attention values among pairs
of words in a context. The attention values are used to represent the
edges of a graph where the nodes are the words. Then, we use the
eigenvector centrality algorithm on the generated graph to select the
high-scoring nodes as the keywords. We evaluate this method in offen-
sive language detection. The results show that our method can detect
keywords from datasets that can influence the performance of offense
detection. In the second work, we study the relationship between a set
of keywords extracted from three datasets and the salient words of two
transformer-based models pre-trained in hate speech detection. For
keyword extraction, we propose a statistics-based method to identify
very frequent keywords in hateful texts that are less frequent in other
texts. We show that this method manages to extract a large number of
hateful words, unlike other leading keyword extraction methods. We
also observe that there is little similarity between the extracted key-
words and the words that the transformer-based models pay the most
attention to. However, we show that there is a bias toward the ex-
tracted keywords in the models and that this bias can be reduced to
improve the performance of the models.

Part II: Graph-Based Exploration

Chapter 4: Unsupervised Embeddings with Graph Auto-Encoders
for Multi-Domain and Multilingual Hate Speech Detection.
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Chapter 5: Convolutional Graph Neural Networks for Hate Speech
Detection in Data-Poor Settings.

This part introduces two works published in the Language Resources
and Evaluation Conference (LREC) and the International Conference
on Applications of Natural Language to Information (NLDB), respec-
tively. These research works consider graph neural networks for hate
speech detection. In the first one, we propose a graph auto-encoder
framework to obtain a latent representation from an initial vector rep-
resentation of texts. Then, embeddings are extracted from this space.
We used this framework for hate speech detection by using the em-
beddings as input of a classifier. The analysis shows that our strategy
outperforms state-of-the-art models in hate speech detection when the
availability of data is notably scarce. In the second work, we study a
model based on convolutional graph neural networks to address hate
speech detection in scenarios with little data. Similar to the first work,
the results of this work show that this model is robust in small datasets,
outperforming state-of-the-art models in low-resource settings.

Part III: Data Augmentation

Chapter 6: Vicinal Risk Minimization for Few-Shot Cross-lingual
Transfer in Abusive Language Detection.

This part is composed of our work published in the conference on
Empirical Methods in Natural Language Processing (EMNLP). This
publication presents a study of three techniques to improve few-shot
cross-lingual transfer learning in abusive language detection. These
techniques are focused on the data-level approach to deal with the
problem of data scarcity that can lead to a high estimation error in
few-shot learning. Specifically, we use vicinal risk minimization tech-
niques to increase the data in the vicinity of the few-shot samples. We
explore two existing techniques and propose a variant of one of them.
The results show the effectiveness of these techniques to improve cross-
lingual abusive language detection in different domains and languages.
Particularly, we observe that our variant outperforms the other strate-
gies in a multidomain scenario for all target languages.

Part IV: Summary

Chapter 7: Discussion of the Results.

Chapter 8: Conclusions and Future Work.

In this part, we discuss the results obtained in the previous parts, we
answer our research questions, and we draw the main conclusions of
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this thesis. In Chapter 7, we complement our study with further ex-
periments to gain additional insights. First, we conduct further exper-
iments to compare our two methods for keyword extraction. We also
extend the analysis of the bias toward the keywords extracted with
both methods for particular low-resource settings (Part I). Later, we
extend our experiments with an ablation analysis of different types of
graphs neural networks for abusive language detection in low-resource
settings (Part II). Finally, we evaluate the EDA techniques (Wei and
Zou, 2019) and compare their influence on abusive language detection
in low-resource settings w.r.t. a method based on vicinal risk mini-
mization that we previously studied (Part III). At the end, we add
extra analyses for the study of potential spreaders of hate speech. We
present our work published in the Conference and Labs of the Evalua-
tion Forum (CLEF), where we help build a dataset for profiling haters
in Twitter, both in English and Spanish (Rangel et al., 2021). This
is an overview of the shared task we helped organize at PAN 2021.
Additionally, we present preliminary results of a study of the network
features of potential spreaders of hatred. In Chapter 8, we list our
contributions that were disseminated as publications and comment on
the open research lines for possible future works.
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Part I

Keyword Extraction and
Bias Analysis

This first part presents the study about the bias toward potential
abusive keywords in the models and how it can affect the perfor-
mance of abusive language detection. In Chapter 2, we propose a
method for potentially abusive keywords, that leverages the abil-
ity of the multi-head self-attention mechanism of BERT to cap-
ture contextual and semantic information in texts. In Chapter
3, we present a simpler method for potentially abusive keywords.
This is a statistics-based method to identify prevalent keywords
in hateful texts that are less common in other texts. We use this
method to evaluate the bias toward abusive keywords and how
it may affect the performance of abusive language detection.
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Chapter 2

Offensive Keyword Extraction
based on The Attention
Mechanism of BERT and
The Eigenvector Centrality
using a Graph Representation

Published in:

• De la Peña Sarracén, G.L. and Rosso, P. (2023). Offensive Key-
word Extraction Based on the Attention Mechanism of BERT and the
Eigenvector Centrality using a Graph Representation. Personal and
Ubiquitous Computing, 27(1), (pp. 45-57).
(Impact Factor: 3.406, Q2)
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Abstract. The proliferation of harmful content on social media affects
a large part of the user community. Therefore, several approaches have
emerged to control this phenomenon automatically. However, this is still
a quite challenging task. In this paper, we explore offensive language as
a particular case of harmful content and focus our study on the analysis
of keywords in available datasets composed of offensive tweets. Thus, we
aim to identify relevant words in those datasets and analyze how they can
affect model learning. For keyword extraction, we propose an unsupervised
hybrid approach that combines the multi-head self-attention of BERT and
reasoning on a word graph. The attention mechanism allows us to capture
relationships among words in a context, while a language model is learned.
Then, the relationships are used to generate a graph from which we identify
the most relevant words by using the eigenvector centrality. Experiments
were performed by means of two mechanisms. On the one hand, we used
an information retrieval system to evaluate the impact of the keywords in
recovering offensive tweets from a dataset. On the other hand, we evaluated
a keyword-based model for offensive language detection. Results highlight
some points to consider when training models with available datasets.

2.1 Introduction

Automatic Keyword Extraction (AKE) is a technique of text analysis that
consists of automatically extracting the most relevant words in a text. In
general, it can be used to identify topics in a text, summarize its content,
index data, or generate tag clouds with the most representative words. In
this paper, we aim to apply the idea of AKE to obtain words that best de-
scribe offensive language as a particular case of harmful content. Therefore,
in the scope of this work, we define keywords as words that are relevant to
identify offensive content. There are different approaches and available tools
for keyword extraction, but they have been designed with a general purpose.
Those methods extract keywords from texts with certain criteria, such as
frequency. In this sense, we have identified some limitations to extracting
keywords of our interest, since we cannot make a distinction between offen-
sive and non−offensive texts. This is a problem because a relevant word in
non−offensive texts should not be selected as a keyword. A shallow solu-
tion would be to analyze only offensive texts, but relevant words in offensive
texts that are also relevant in non−offensive texts should not be selected as
keywords. Therefore, we need to solve the keyword extraction problem for
our particular case, i.e. how to select words that are relevant in offensive
tweets and at the same time very little relevant in non−offensive tweets.

Our methodology consists of three stages: i) weighting pairs of words by
their relationship in the tweets, ii) building a graph where the vertices are
words and the edges are weighted with the values obtained in the previous

20



stage, and iii) reasoning on the graph to identify the most relevant words.
In the first stage, we consider the class of the tweet from which each word
pair is taken. If the tweet is non−offensive, the corresponding weight is
penalized. In that way, we address the aforementioned limitation. In order
to obtain the weights for each word pair, the method we propose is based
on the multi-head self-attention mechanism of BERT Devlin et al. (2019b).
Although other strategies can be adapted, we are motivated by the state-of-
the-art results that BERT has obtained in several tasks, including offensive
language detection and related tasks. The attention mechanism is precisely
one of the strengths of BERT. This mechanism allows capturing relationships
among words in a context, while a language model is learned.

The main contributions of our work are the following:

i. We propose a method for extracting keywords from datasets composed
of offensive and non−offensive tweets. The method distinguishes be-
tween tweets from different classes.

ii. We use an unsupervised method that does not need annotated datasets
for automatic keyword extraction, that is, datasets with gold keywords
of the texts. Instead, our method only uses a set of tweets tagged as
offensive or non−offensive.

iii. We present a way to exploit the multi-head self-attention mechanism
of BERT to weight word pairs from tweets.

iv. We use a method to represent the words and their relationships in a
graph for extracting relevant words by using the eigenvector centrality.

v. We analyze the extracted keywords and evaluate their impact on offen-
sive language identification. As results, we give insights about points
to consider when training models with available datasets.

An important advantage of our proposal lies in the facility to be adapted
to related phenomena, such as hate speech, misogyny, and sexism Basile et al.
(2019a); Fersini et al. (2018). These are similar phenomena with common
characteristics and similar datasets. There are no clear boundaries among
them, although each one has particular characteristics Poletto et al. (2021).
For instance, offensiveness includes rude or vulgar language that does not
represent hatred. However, our method can be applied to hate speech or
other related tasks by varying the type of datasets and fixing the hyper-
parameters of the model.

The rest of this paper is organized as follows. Section 2.2 summarizes the
related work and Section 2.3 presents the problem formally. Our keyword
extraction method is proposed in Section 3.5.1. Section 2.5 describes the
experiments and Section 2.6 presents a discussion of the results. Finally,
Section 2.7 concludes the paper.
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2.2 Related Work

This section presents a summary of some widely used keyword extraction
techniques. Then, we provide a brief overview of offensive language detection,
both in the sense of keyword-based strategies and in the sense of BERT-
based approaches. Finally, this section introduces a synopsis of textual graph
representation, with a focus on techniques used for keyword extraction.

2.2.1 Automatic Keyword Extraction.

AKE has been developed with different approaches Kaur and Gupta (2010);
Hasan and Ng (2014); Nasar et al. (2019). Using statistics is one of the
simplest mechanisms for selecting keywords within a text. This approach in-
cludes well-known techniques such as word frequency, term frequency-inverse
document frequency (TF-IDF), word collocations, and co-occurrences. Roughly,
they consist of listing the words according to some criterion and selecting
the top ones. For instance, the word frequency technique looks for the most
common words occurring within a collection of texts. The advantage of this
kind of approach is that they do not need training data in order to extract
keywords. However, they may ignore some relevant words that are men-
tioned only once but are indeed relevant. Linguistic approach is another
type of mechanism which considers linguistic information about texts. Some
strategies involve morphological, syntactic or semantic information about the
words, such as part-of-speech or the relations between words in a dependency
grammar. This kind of information provides an important tool for keyword
extraction Hu and Wu (2006). Moreover, AKE is also addressed by employ-
ing machine learning techniques which are usually supervised approaches.
A well-known method that transforms AKE into a binary classification task
was presented in Witten et al. (2005). Other methods include models such
as Support Vector Machines, Conditional Random Fields, and Deep Learn-
ing strategies Firoozeh et al. (2020). The authors of Sahrawat et al. (2020)
proposed a keyphrase extraction as a sequence labeling task. They used
BERT to obtain contextual embeddings, although they required manually
annotated keyphrases.

Some of the previous techniques are combined in a hybrid mechanism in
order to obtain better results. In this paper, we exploit this idea.

2.2.2 Keywords in Offensive Language Detection.

Regarding offensive language, keywords have been mainly used to build
datasets. The data collection for the construction of the Offensive Lan-
guage Identification Dataset (OLID) Zampieri et al. (2019a), used in Offen-
sEval 2019 shared task Zampieri et al. (2019c), was based on searching for
keywords and constructions that are often included in offensive messages.
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Initially, a set of words was used to collect tweets, and then some keywords
that were not frequent in offensive content were excluded during the trial
annotation. Similarly, for the dataset of the HASOC track Mandl et al.
(2019a) the data were acquired using hashtags and keywords with offensive
content. Here, we aim to use a keyword-based technique to evaluate our
keyword extraction method by analyzing how these keywords can influence
the detection of offensive language. However, it is important to consider
that keyword-based strategies have been found to be biased and problematic
for offensive language detection and related tasks. They overlook cases in
which no profane nor offensive words are used but the text actually conveys
an offense. Moreover, these strategies can cause non−offensive texts, that
contain some keywords, to be misclassified. That is why we only employ a
keyword-based strategy to evaluate the extracted keywords, not to improve
the offensive language detection.

2.2.3 BERT for Offensive Language Detection.

Most of the strategies used for offensive language detection are based on
traditional machine learning and deep learning Pitsilis et al. (2018a); Uglow
et al. (2019); Wani et al. (2019); Vashistha and Zubiaga (2021). Among them,
BERT and other transformers-based models are state-of-the-art in the latest
results, especially in shared tasks such as OffensEval 2020 Zampieri et al.
(2020a). The best team used RoBERTa-large, which was fine-tuned on the
dataset by using the masked language modeling objective Wiedemann et al.
(2020). The second team used an ensemble that combined XLM-RoBERTa-
base and XLM-RoBERTa-large Wang et al. (2020a). In general, the top
teams used BERT, RoBERTa or XLM-RoBERTa Dai et al. (2020); Casula
et al. (2020); De la Peña Sarracén et al. (2020).

2.2.4 Text Representation based on Graph.

A graph-based text representation allows the exploration of the relationships
and structural information in a text very effectively. Then, AKE is often per-
formed by selecting vertices or groups of vertices with a search on a graph.
TextRank Mihalcea and Tarau (2004) is a model widely used in this type of
approach. It is derived from PageRank Brin and Page (1998) which scores
each vertex taking into account the importance of its neighborhood. Ao et al.
(2020) recently proposed a new keyword extraction algorithm based on Tex-
tRank. However, Boudin (2013) compares various centrality measures for
graph-based AKE, and the experiments on datasets in English and French
show that the simple degree centrality achieves results comparable to Tex-
tRank. We test our proposal with different types of degree centralities to
select vertices from a word graph. Finally, we use the eigenvector centrality
as it is explained later.
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2.3 The Problem

The problem we address in this work can be formally described as follows:
Let O and N be two sets of offensive and non−offensive tweets respectively,
for which the following holds: {O ∩ N = ∅}. Let W be the set of words
from {O ∪N}. The problem is to identify a set of words K ⊂ W such that
each k ∈ K is in the top ranking of the words highly relevant in O and
little relevant in N . Modeling this problem we represent W in a graph with
weighted edges from which we rank the words. In the graph, each vertex
is a word of W and each edge (w1, w2), w1, w2 ∈ W , indicates the weight
between the words w1 and w2. We aim to calculate the weights considering
the context of the words in each tweet, as well as whether the tweet is
offensive or not. For that, BERT can be suitable since its self-attention
mechanism analyzes each word looking at other words in the context. Thus,
the research questions we address in this work are:

RQ1: How can we leverage the attention mechanism of BERT to
weight pairs of words in the context of a text?

RQ2: How can we effectively extract words that are relevant in offen-
sive tweets and little relevant in non−offensive tweets from a dataset?

2.4 Keyword Extraction based on BERT

In this section, we first introduce our methodology for keyword extraction
from a dataset. Then, we explain in detail each of the stages of the method-
ology and comment on how our method can be extended to deal with longer
texts.

Figure 2.1 illustrates the elements on which our proposal is based on.
The methodology is composed of three stages. The first stage consists of
obtaining a relationship between words in the dataset. In this sense, we
obtain a weight for each pair of words by relying on BERT and specifically
on the multi-head self-attention mechanism. In the second stage, we generate
a graph where the vertices are the words from the datasets, and the edges
are weighted according to the relationship between words. The weight of
each edge is updated every time the corresponding word pair appears in
a text. For each text, the weight calculated for each pair is added to the
weight of the corresponding edge in the graph if the text is offensive, and
is subtracted otherwise. In this way, we penalize the non−offensive texts.
Finally, we obtain a keyword list in the third stage by identifying the most
relevant vertices in the graph with the eigenvector centrality.
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Figure 2.1: Illustration of our keyword extraction model.

2.4.1 Attention from BERT

In text classification, some parts of the input can often be more relevant com-
pared to others. Attention mechanisms incorporate the notion of relevance
by allowing a model to dynamically pay attention to only certain parts of the
input. The assumption is that the higher attention weights correlate with
how relevant a specific region of input is Chaudhari et al. (2019). The fol-
lowing example shows three texts from the OffensEval 2019 dataset Zampieri
et al. (2019b). An attention mechanism can help to classify the second ex-
ample as offensive and identify fu**ing in that text as more meaningful to
determine offensive.

He is such a good ad for conservatives. ∥∥
She is fu**ing delusional. ∥∥ I quite enjoy these tweets you are
liking.

We use this idea to obtain the relationship between words in the texts of
a dataset. Concretely, we leverage the multi-head self-attention mechanism
from BERT.

The first step is fine-tuning a pre-trained BERT model for the offensive
language detection task as the first part of Figure 2.1 shows. For this, we
use a dataset with offensive and non−offensive texts (1 or 0 respectively).
Thus, while the model is trained, the parameters of the attention mechanism
in each layer of the BERT model are updated according to the data.
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In this step of fine-tuning, the input is text and a softmax is added on
the top of the last layer of BERT. We only retain non−padding tokens to
feed the softmax by multiplying the output with a mask. Cross entropy is
used as the loss function (2.1), where yi is the true classification of a text i,
and ŷi is its predicted value.

L = −Σi yi ∗ log(ŷi) (2.1)

Now, it is important to understand what happens inside BERT. With the
self-attention mechanism, each position t in the input (token) is processed
by looking at other positions to obtain a good encoding for t. Thus, this
mechanism is used to capture related and important words. Basically, self-
attention creates three vectors for each word (token) by multiplying the input
embedding by three matrices of parameters which are fitted in the training
process. The vectors are known as Query (q), Key (k) and Value (v), and
the matrices of parameters are W q,W k,W v respectively. Then, a score is
calculated for each word against each of the other words. The calculation
is done by a normalized dot product of the q vector of the current token
t and the k vector of the other tokens. As a result, a vector (Attentiont)
is obtained for each token t where each component i determines how much
focus to put on the position i of the input. Next, this vector is multiplied by
the v vector to keep the values of the original token t. Equation 2.2 recaps
this process for the matrix calculation for all words at once Vaswani et al.
(2017a)). Where dk is the dimension of q, k, v and Q, K and V are the
matrix representations respectively for the text.

Attention(Q,K) = softmax(
QKT

√
dk

)

Head(Q,K, V ) = Attention(Q,K)V

(2.2)

Figure 2.2 shows the visualization of the weights (Attention) between pairs
of words for the text “she is useless she never does anything right” using
the pre-trained BERT_base model. This is an offensive text taken from the
dataset of the OffensEval 2019 shared task. On the left (Figure 2.2a), we can
see the higher weights with a more intense color, which indicates relevant
parts of the text for each term. For example, the word “anything” seems to
be quite relevant when the word “never” is analyzed. On the right, Figure
2.2b shows the particular case of the attention values (weights) between the
word “is” and the other words in the text.

Furthermore, BERT incorporates multi-head attention which expands
the ability to focus on different positions by giving the attention layer multi-
ple representation subspaces from multiple sets of Q/K/V weight matrices.
Thus, there are L · H self-attention patterns in the model, where L is the
number of layers in the model and H is the number of heads in each layer.
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(a) All attention values (b) Attention from the word ’is’

Figure 2.2: Attention visualization for a sample text.

Figure 2.3 shows 12 patterns for the text analyzed previously. They
correspond to the three last layers of the model, which are usually the most
used layers for obtaining the output. The first row corresponds to layer
#12 (the last one of the model), the second row corresponds to layer #11
and the third row corresponds to layer #10. For each layer, we show the
first four heads from left to right. That is, the first column corresponds to
head #1. We can see interesting patterns in these layers. For example, the
fourth head in layer #12 represents a pattern where the attention for each
word is focused on the previous word in the text. This makes sense because
adjacent words are often relevant for predicting the next word. On the other
hand, the second head of the same layer matches the one shown in Figure
2.2. Other heads, like the fourth one in layer #11, represent a null pattern
where almost all the attention is focused on the token CLS. This probably
indicates that those heads did not find a linguistic phenomenon. However,
with the multi-head mechanism different strategies are combined to analyze
the relationship between words.

Once the BERT parameters are learned in the fine-tuning step, the texts
feed the model again to obtain the new vectors for each token. These vectors
are obtained by the condensation of the pattern of each head in each BERT
layer as Equation 2.3, where h is the number of heads in the layers. i.e. the
output of all heads is first concatenated and then projected to a new space
by multiplying by a matrix W , which is also fitted in the training step.

MHA = Concat(Head1, . . . ,Headh)W, i = 1, h (2.3)

For our method, we use only the attention values Attentioni of each head
i in a layer. Specifically, we use the sum of the values of all the heads as
Equation 2.4.
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Figure 2.3: Visualization of 12 heads of the attention mechanism.

A =
h∑
1

Attentioni (2.4)

As a result, we obtain a matrix A ∈ M|T |(R) with the relationship of
relevance (attention) between pairs of words. Where T is the set of the
words, | · | denotes the size of a set and Mn(R) represents the set of square
matrices of size n with inputs in the field R.

We consider a word as terms that are not stopwords and that represent
English words. The special tokens CLS and SEP are not selected into T .
They do not have a meaning in the human language, therefore they cannot
be selected as keywords. Moreover, these tokens tend to get high scores due
to the null patterns in the attention mechanisms. Furthermore, the tokens
starting with the characters ′##′ are not considered as words because they
only represent parts of words.

Earlier, we have seen how to get the matrix A for a set of text, now we
explain how to update this matrix with new texts. Let Tt = {w : w ∈ t} be
a set of words for a sample text t from the dataset, then T is modified as
T = T ∪ Tt. Moreover, let At be the attention matrix obtained given t. The
attention matrix A is updated with t by a function θ : {0, 1} ×M|Tt|(R) ×
M|T |(R) → M|Tt∪T |(R) as Equation 2.5 indicates, where yt is the label of t
and ϵ is a parameter to control the change in A given t.

A′
t = (2 · yt − 1) · ϵ ·At

θ(yt, At, A) =

{
(A)i,j + (A′

t)i,j if ∃(A)i,j
add((A′

t)i,j) if ̸ ∃(A)i,j

i, j = 1, |Tt|

(2.5)
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The function add(·) incorporates a raw and a column in A for each word in
Wt = {w : w ∈ Tt ∧ w ̸∈ T }. For each pair of words that is not in At, (a
pair (w1, w2) such that w1 ∈ Wt and w2 ∈ {w : w ∈ A ∧ w ̸∈ Wt} or vice
versa) the function puts 0 in the corresponding cell of A, otherwise the value
into A′

t for the pair is taken.
Notice that for an offensive text (label 1) the new attention value of each

word pair is added according to the magnitude of ϵ. In contrast, the new
attention values for a non−offensive text (label 0) are subtracted. In this
way we control the score of each word pair, penalizing those extracted from
non−offensive texts.

2.4.2 Graph Representation

We use a graph as a mathematical model to represent the relation among
pairs of words from the matrix A of attention values. Formally, we build a
directed graph G = (V,EA) as a set of vertices V that matches with the set
T and a set of edges EA ⊆ {(w1, w2) : (w1, w2) ∈ T × T }. Also, we define a
function val : EA → R such as val(w1, w2) = (A)w1,w2 to assign a weight to
each edge. Thus, the vertices represent words and the edges represent the
relation between pairs of words (attention values).

In the construction of the graph we define the function Φ : M|T |(R) →
EA such that Φ(A) = {(w1, w2) : (w1, w2) ∈ T ×T , val(w1, w2) > 0}. Hence,
we only represent the relationships between words with a positive attention
value. Furthermore, we use this function Φ to update the graph G once new
texts are incorporated into the analysis.

2.4.3 Keyword Extraction from Graph

The candidate keyword list Γ(G) is obtained by selecting the words associ-
ated with the most relevant vertices in the graph G. To carry it out, we rank
the vertices using a measure that assigns a score to each vertex considering
the weights of the edges in G.

The eigenvector centrality (EC) is the measure we use for the ranking
Newman (2008). EC measures the influence of a vertex in a graph scoring
each vertex as a function of the centralities of its neighbors as Equation 2.6.
Where λ is a constant called eigenvalue and N (w) = {wj : (w,wj) ∈ EA} is
the neighborhood of the vertex w.

EC(wi) =
1

λ

∑
wj∈N (wi)

val(wi, wj) · EC(wj) (2.6)

Alternatively, we use some centrality measures based on the degree of the
vertices. Unlike EC, they do not take into account the weight of the edges.
Instead, they use the information of the neighborhood of each vertex. These
measures make sense since vertices with a high degree indicate relevant
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words. However, the comparison among all the strategies allows us to ana-
lyze the importance of considering the weight of edges estimated from the
attention mechanism. We used the following alternative centrality measures:

• Degree (DC): DC(v) is calculated by dividing the amount of vertices
that v is connected to, by the maximum possible degree in G.

• In degree (IC): IC(v) is calculated by dividing the amount of incoming
edges at v, by the maximum possible degree in G.

• Out degree (OC): OC(v) is calculated by dividing the amount of out-
going edges from v, by the maximum possible degree in G.

Selection criterion based on Part-of-Speech: Once the ranking of ver-
tices is obtained, we select as keywords those candidates that are one of the
parts of speech: noun, adjective, or verb. This idea has been developed in
some approaches where usually only nouns and adjectives are taken into ac-
count Kathait et al. (2017). We consider that verbs also can express offenses,
like for instance ’fu**’.

2.4.4 Analyzing longer texts

Notice that our method is designed to work with tweets, that are small texts.
However, our proposal can be extended based on the way that BERT can
be generalized to deal with longer texts. BERT can handle input sequences
up to 512 tokens long. However, some strategies can be adopted. Among
them, the strategy presented in Pappagari et al. (2019) is a good one. The
idea is to divide each large text into segments and feed BERT with each of
them. The pooled output and the logits are used as representations for each
segment. Then, they are passed along to either an LSTM recurrent neural
network model (RoBERT variant) or a lightweight transformer (ToBERT
variant). Thus, our method can be used in the same way.

2.5 Experiments

This section presents our experiments and results. We first describe the
datasets and the evaluation methods we used. Then, we detail the experi-
mental setup and other models used to compare our proposal. Finally, we
present the results and analysis.

Datasets. We used the datasets released for the OffensEval shared task in
its two editions: OffensEval 2019 Zampieri et al. (2019c) and OffensEval 2020
Zampieri et al. (2020a). Both tasks focus on the identification of offensive
language in tweets.
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OffensEval 2019 (OFF19): This is a dataset which contains English
tweets. The labels are organized in a hierarchical tag set Zampieri et al.
(2019a). We used the tags at the level of the binary classification, such that
we worked with the two labels offensive (4640 tweets) and non−offensive
(9460 tweets).

OffensEval 2020 (OFF20): This is a multilingual dataset with tweets
in five different languages Rosenthal et al. (2021). We randomly selected
30000 tweets from the nine million of English tweets, keeping the proportion
between offensive (4782 selected) and non−offensive (25218 selected) tweets
in the original set. In this dataset, we had access to the average of the
confidence in the offensive class of several supervised models. In order to
work with binary labels, we transformed the average values by considering
any tweet with a confidence average higher than 0.5 as offensive, otherwise,
we considered it as non−offensive.

Evaluation Methods. An AKE model is usually evaluated with a set of
‘gold’ keywords that constitute the references. The idea is to compare these
references with the extracted keyword list. In this case, we do not have this
kind of labeled dataset. Therefore, we use an extrinsic evaluation method
with two relevant applications. Thus, we evaluate the keywords through
their impact on the other two tasks: Information Retrieval and Offensive
Language Detection.

Information Retrieval (IR): We evaluated the keywords by searching
tweets in a collection of index tweets. The idea is to analyze how suitable
the keywords are to extract offensive tweets. In this regard, we defined an
IR task as finding offensive tweets from a large set of tweets given a keyword
list as a query. We created a model which indexes the documents (tweets)
by concepts. Then, we use the BM25 algorithm Robertson et al. (1995) to
retrieve tweets given a set of keywords. As the evaluation measure, we use
the Precision@K (P@K) and F@K which compute the precision and F1-score
respectively over the top-K retrieved tweets Büttcher et al. (2016). Here, a
true positive is a retrieved tweet that is offensive.

Offensive Language Detection (OLD): In order to study how the key-
words can impact offensive language detection we evaluated a keyword-based
model. We have to point out that keyword-based approaches can be very
misleading for detecting offensive language since they overlook many cases in
which no offensive words are used but the text still conveys extremely offen-
sive content Wiegand et al. (2019). In this sense, our aim is not to improve
the state-of-the-art in this task but rather to analyze how relevant words in
the datasets used to train models can influence the task. We used an LSTM
recurrent neural network and its output is concatenated with a vector of sim-
ilarity values between the input (tweet) and each of the keywords. Finally,
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the classification is obtained with a softmax1. As the evaluation measure,
we used the macro-averaged F1-score (F1).

Experimental Setting. In order to obtain the keywords, we used the
pre-trained BERT_base2 model which has 12 layers and 12 heads per layer.
Moreover, we used NLTK 3 to obtain the Part-of-Speech tags of each word,
since our method only considers nouns, adjectives, and verbs, as we explained
before. We trained BERT for 4 epochs with minibatches of size 16. The
optimizer we used was Adam Kingma and Ba (2015a) and we set the learning
to 5e-5. The parameter ϵ of our proposal was fixed to 0.1 after a parameter
setting. For OLD we relied on the stratified 5-fold cross-validation technique
and the paired permutation test with p-value < 0.05 for the analysis of
statistical significance. For IR we used the t-test with p-value < 0.05 For
the reproducibility of the experiments, we set the random seed to 5.

Furthermore, in our experiments, we only used the datasets introduced
before. Both OFF19 and OFF20 are composed of tweets, but they are dif-
ferent in the sense of data collection and annotation. OFF19 was collected
by retrieving tweets with keywords that are common in offensive texts. In
contrast, OFF20 was collected by searching the 20 most common English
stopwords to ensure a variety of random tweets. Moreover, semi-supervised
labeling was used for OFF20. Thus, OFF19 can be more biased towards the
keywords used in the collection, and OFF20 towards the way it was anno-
tated. In this sense we followed the two possible cross-evaluations: i) obtain
the keywords from OFF19 and then, use OFF20 to evaluate the OLD and
IR tasks considering the keywords from OFF19 (OFF19-OFF20) and ii) vice
versa (OFF20-OFF19).

In addition, we carried out two in-domain evaluations OFF19-OFF19
and OFF20-OFF20 to study how the bias in the datasets can influence the
extraction of keywords. For example, we suppose that the keywords from
OFF19 should reflect the bias in this dataset. Therefore, the use of these
keywords should affect the detection of offenses.

Benchmarks. As part of our experiments, we used some well-known mod-
els to extract keywords. The objective is to analyze the relevance of our
proposal by comparing it with methods that are not tailored to our concern.
We adapted the term frequency – Inverse document frequency (TFIDF) by
calculating TF in the offensive tweets and IDF in the non−offensive tweets.
Moreover, we used TF, TEXTRANK (TRANK), RAKE Berry and Kogan
(2010), and YAKE4. This last method reports state-of-the-art results. For

1We also use this model without concatenating the vectors with the keyword informa-
tion. We refer to this model as the base model in this paper.

2https://tfhub.dev/google/bert_uncased_L-12_H-768_A-12/1
3https://www.nltk.org/
4https://github.com/LIAAD/yake
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each of these last five methods we only used the set of offensive tweets, since
they are not thought to discriminate between classes.

2.5.1 Results

Table 2.1 shows the performance of BERT in offense detection after fine-
tuning with each of the datasets. We evaluated different layers as output to
feed the classifier on the top of BERT, including the concatenation of some
layers. Specifically, we evaluated the last layers and their concatenation.
That is why Table 2.1 shows the results for the two last layers, as well as for
the concatenation of the four last layers. In general, the results are similar
among them. Hence, in the rest of the experiments we used the output of
the last layer (layer #12) to feed the classifier for fine-tuning. Furthermore,
in the experiments, we used lists of keywords of different sizes. However, we
only report the results taking into account 20 keywords5.

Table 2.1: F1-score with BERT. Each column corresponds to the layer(s)
used to feed the classifier in the fine-tuning.

Layers
Dataset [12] [11] [12-9]
OFF19 0.789 0.770 0.779
OFF20 0.895 0.894 0.885

A. Implication of the parameter ϵ. In this section, we present the
results obtained in the setting of the parameter ϵ. This is the parameter that
our method uses to update the weights of the word pairs in the graph. Since
one of our objectives is to discriminate between offensive and non−offensive
tweets to select the keywords, this parameter is relevant in the model. Table
2.2 illustrates the results for different values of ϵ in IR. Although there are
no relevant differences among the results, 0.1 seemed to be an appropriate
value considering F@50. That is, we obtained more suitable weighted graphs
with this value of ϵ. From these graphs, we obtained keywords that allowed
us to retrieve offensive tweets from datasets with 0.550 of F@50 in OFF19
and 0.732 in OFF20.

B. Implication of the parameters related to the attention mech-
anism. We also evaluated different parameters regarding the multi-head
self-attention mechanism of BERT that we used in our method. In each
case, we fixed ϵ to 0.1.

First, we compared the results by varying the layer of BERT from which
we leverage the attention mechanism. Table 2.3 shows the results for different

5Similar results are obtained with other numbers of keywords.
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Table 2.2: IR results for different values of ϵ. Each column corresponds to
an evaluation A-B: A is the dataset used to obtain the keywords and B is
the dataset used in the evaluation.

OFF20-OFF19 OFF19-OFF20
ϵ P@50 F@50 P@50 F@50

0.01 0.640 0.464 0.518 0.675
0.1 0.620 0.550 0.527 0.732
0.5 0.633 0.458 0.514 0.672
1.0 0.627 0.456 0.513 0.670

layers, specifically for the two last layers and the two first ones. We could
see that using a specific BERT layer to obtain the attention values (weights
of word pairs) does not seem to be significant. However, the last layer seems
to be better. That is why we used the layer #12 to study other parameters.

Table 2.3: IR results when varying the attention layer. Each column corre-
sponds to an evaluation A-B: A is the dataset used to obtain the keywords
and B is the dataset used in the evaluation.

Off20-OFF19 OFF20-Off19
Layer P@50 F@50 P@50 F@50

12 0.620 0.550 0.527 0.732
11 0.637 0.468 0.527 0.684
2 0.630 0.460 0.521 0.675
1 0.637 0.468 0.516 0.676

Then, we evaluated different heads in the attention mechanism of the
last layer. That is, we obtained the weights of the word pairs for a specific
head in that layer and compared the results with our variant of taking the
combination of all the heads. Table 2.4 shows the comparison for the second
and penultimate layers. We obtained worse results with the first and last
layers. They seemed to be null patterns. In general, we noticed that one
of the heads obtained better results than the others when they were used
individually. It can be for the type of pattern represented in each particular
head. The 11th head was the best in the experiments for both datasets.
However, our proposal uses the combination of all the heads which obtained
slightly better results according to F@50.

Moreover, we analyzed the centrality measure (CM) used to look for
relevant vertices in the graph of words. Table 2.5 shows the comparison
among the use of EC and other alternatives based on the degree of vertices.
As we expected, the best results are obtained with the keywords obtained
by using EC which takes into account the weight of edges in the graph.
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Table 2.4: IR results for different heads in the layer #12. Each column cor-
responds to an evaluation A-B: A is the dataset used to obtain the keywords
and B is the dataset used in the evaluation.

Off20-OFF19 Off19-OFF20
Head P@50 F@50 P@50 F@50
All 0.620 0.550 0.527 0.732
2 0.593 0.437 0.505 0.614
11 0.415 0.537 0.527 0.684

Table 2.5: IR results for different centrality measures (CM). Each column
corresponds to an evaluation A-B: A is the dataset used to obtain the key-
words and B is the dataset used in the evaluation.

Off20-OFF19 Off19-OFF20
CM P@50 F@50 P@50 F@50
EC 0.620 0.550 0.527 0.732
DC 0.607 0.442 0.514 0.662
IC 0.600 0.438 0.512 0.672
OC 0.597 0.436 0.516 0.677

C. Comparison with other keyword extraction methods. We fixed
the parameters of our method according to the previous results. That is, we
used the combination of all the heads in the attention mechanism of layer
#12 of BERT. Moreover, we set ϵ to 0.1 and used the EC for extracting the
keywords from the graph. With this configuration, we compare our results
with other keyword extraction methods.

On the one hand, Table 2.6 illustrates the results in IR. As we expected,
the results with our method are higher than those obtained with other meth-
ods that have shown good performance in general-purpose keyword extrac-
tion.

Table 2.6: F@50 in IR. Each column corresponds to an evaluation A-B: A
is the dataset used to obtain the keywords and B is the dataset used in the
evaluation.

Approach Off20-OFF19 Off19-OFF20
Our 0.550 0.732
TF 0.399 0.581

TFIDF 0.490 0.605
RAKE 0.541 0.440
YAKE 0.325 0.483

TRANK 0.382 0.495
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On the other hand, Table2.7 shows the results in OLD. Once again, our
proposal outperformed other general-purpose keyword extraction methods.
However, it is important to consider that the keyword-based models might
lead to skewed results according to the bias in the datasets. Therefore, we
analyze this problem later, where we compare the results with those obtained
with a method that is not based on keywords.

Table 2.7: F1-scores in OLD. Each column corresponds to an evaluation A-
B: A is the dataset used to obtain the keywords and B is the dataset used
in the evaluation.

Approach Off20-OFF19 Off19-OFF20
Our 0.5687 0.5798
TF 0.3747 0.4108

TFIDF 0.5047 0.5588
RAKE 0.4707 0.4588
YAKE 0.5327 0.5548

TRANK 0.4287 0.4718

2.5.2 Bias analysis

Along with the cross-validation, we included both evaluations OFF19-OFF19
and OFF20-OFF20 (in-validation). The idea is to illustrate how the ex-
tracted keywords can reveal the bias in the datasets. The three last rows in
Table 2.8 show the results when we used OFF20 in the evaluation. Among
these three rows, the first one corresponds to the results obtained with a
model based on the keywords extracted from OFF19. The second row corre-
sponds to the results obtained with a model based on the keywords extracted
from OFF20, while the third row shows the results obtained without consid-
ering keywords.

First, we can see that the use of keywords can improve slightly the results.
However, it depends on the characteristics of the keyword list. The base
method (LSTM) obtained 0.7958 and this result increased to 0.8071 when
the keywords from OFF20 were added. On the other hand, the results were
considerably on the decline when the keywords from OFF19 were added
instead. This makes sense since the first keyword list is from the same
domain of the dataset used for the evaluation. Nevertheless, let’s analyze
the results of the evaluation with OFF19.

The three rows corresponding to the evaluation with OFF19 show a dif-
ferent performance. In this case, the base method obtained 0.5864 and the
inclusion of keywords did not improve it, neither the keywords from OFF20
nor the keywords from OFF19. It can be explained by the bias in OFF19,
which affects not only the performance when a keyword-based method is used
but also the list of keywords extracted from this dataset. i.e. the keywords
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are biased according to the characteristics of the dataset. Thus, conforming
our results, the more skewed the dataset (from which the keywords are ex-
tracted), the worse the generalization of the keyword-based models (based
on the extracted keywords).

Table 2.8: Cross-validation and in-validation in OLD. Each row corresponds
to an evaluation A-B: A is the dataset used to obtain the keywords and B is
the dataset used in the evaluation. A is * in the method that does not use
keywords.

Evaluation with F1-score

OFF19
OFF19-OFF19 0.5651
OFF20-OFF19 0.5687

*-OFF19 0.5864

OFF20
OFF19-OFF20 0.5798
OFF20-OFF20 0.8071

*-OFF20 0.7958

2.6 Discussion

Regarding the use of the attention mechanism of BERT to weight the word
pairs (RQ1), we first fine-tuned BERT with a set of texts for the offen-
sive language detection task. Then, with the learned weights of BERT, we
captured the attention each word assigns to other words in its context to
estimate the weights of the corresponding pairs. In the experimentation, we
varied the parameters of the attention mechanism, i.e. the layer and heads.
The variation does not seem to be significant. However, the experimental
results suggest the use of the last layer of BERT and the combination of all
the heads in the selected layer.

Concerning the distinction between the offensive and non−offensive texts
(RQ2), we designed the method to update the weights between words ac-
cording to the class of each tweet. That is, for each offensive text the weight
of each word pair updates in a positive sense the corresponding edge in the
word graph, while for each non−offensive text, the update is in a negative
sense. Thus, we penalize the words that can be relevant to the non−offensive
texts. Moreover, we used a parameter ϵ to control the update. The higher
the value of ϵ, the greater the increase or decrease of the weight of the word
pairs. In the experiments, we varied the value of ϵ and saw that small varia-
tions in this parameter are not relevant. However, we verified the suitability
of our proposal for keyword extraction by the IR and OLD tasks. Besides,
we point out that the proposed method is unsupervised, in the sense that it
does not require a dataset with a set of keywords as a reference, instead it
effectively only uses a set of offensive and non−offensive texts.
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2.6.1 Error Analysis

In order to gain deeper insight into our method performance, we conducted
an error analysis. First, we manually analyzed some keywords extracted for
each of the datasets. Then, we analyzed the presence of the keywords in the
instances misclassified.

Table 2.9: List of keywords

Dataset Keywords
OFF19 ’trump’, ’hate’, ’gun’, ’anti’, ’mag’, ’liberals’,

’stupid’, ’sick’, ’black’, ’government’, ’violence’,
political’, ’wrong’, ’bad’, ’election’, ’violent’,
’woman’, ’conservatives’, ’control’, ’vote’, ’stop’,
’country’, ’people’, ’president’, ’law’, ’white’

OFF20 ’bitch’, ’hate’, ’bad’, ’ass’, ’trump’, ’girl’, ’stop’,
’black’, ’last’, ’someone’, ’real’, ’season’, ’game’,
’world’, ’little’, ’guess’, ’school’, ’hard’, ’person’,
’god’, ’old’, ’twitter’, ’sad’, ’fun’, ’white’, ’work’

Table 2.9 illustrates examples of extracted keywords per dataset6. Some
of them can be easily recognized as offensive words, like for example ‘stupid’
in OFF19 and ‘bitch’ in OFF20. However, others are non−offensive in a
general sense. For instance, the word ‘liberals’ was selected as an offensive
keyword from OFF19, but we do not consider it as an offensive word. We
checked on the original paper where the dataset was proposed and realized
that ‘liberals’ was one of the terms used to filter tweets. Nevertheless, other
terms that were also used in the filtering of tweets as ‘antifa’, were not ex-
tracted as keywords by our method. Therefore, we calculated the percentage
of occurrence of the words used to collect the dataset, discriminating between
offensive and non−offensive tweets. As we expected, these words are very
frequent in the dataset. In the case of ‘liberals’, the percentage of occurrence
in offensive tweets is higher. Thus, errors can arise from those non−offensive
words that are relevant only in the offensive tweets. On the other hand,
errors can appear due to those non−offensive tweets that contain offensive
words.

Furthermore, we conducted an error analysis on the experimental results
in OLD. We observed that most of the errors were in tweets that did not
contain keywords. i.e. tweets that do not contain at least one of the key-
words from the list we extracted. Table 2.10 illustrates a statistic related
to the tweets misclassified with both the keyword-based models and the
models that do not consider the keywords (base model). In each case, it is
shown the percentage of misclassified tweets without keywords (last column)

6Some examples can represent offensive content. They are not the views of the authors.
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and the percentage of misclassified tweets with at least one keyword. With
the keyword-based method, 74.24% of the errors came from tweets without
keywords in OFF19, and 78.7% in OFF20. These percentages increased to
75.76% and 80.28% respectively, with the base models. Thus, the probability
of error is higher in tweets that do not contain keywords.

Table 2.10: Percentage of misclassified tweets. Each row corresponds to an
evaluation A-B: A is the dataset used to obtain the keywords and B is the
dataset used in the evaluation. A is * in the method that does not use
keywords.

Evaluation % of tweets % of tweets
with keywords without keywords

OFF20-OFF19 28.8 74.2
*-OFF19 24.2 75.8

OFF19-OFF20 21.3 78.7
*-OFF20 19.7 80.3

Regarding OFF20-OFF19, 91.3% of the misclassified tweets that do not
contain keywords (74.2% of the total of misclassified tweets), correspond to
offensive tweets. This amount represents 74.7% of the total of misclassified
offensive tweets. This data suggests that a large part of the errors come
from offensive tweets that do not contain offensive keywords. The rest 8.7%
of misclassified tweets without keywords are non−offensive, which represents
58.5% of all the misclassified non−offensive tweets. Therefore, a large per-
centage (41.5%) of errors in non−offensive tweets is due to the presence of
keywords. This suggests a possible bias in the dataset concerning some key-
words. In the case of OFF19-OFF20, all the misclassified tweets without
keywords correspond to offensive tweets, which represent 80% of the total of
the misclassified offensive texts.

2.6.2 Limitations of Our Work

One limitation of our keyword extraction method is that it does not consider
the tokens starting with ##. BERT uses this symbol to identify parts of
unknown words in the tweets. We intend to include this information in
the coming works. Moreover, we attempt to extend the method for phrase
extraction. The idea is to define some patterns to identify phrases in the
tweets and extract those that contain closed keywords. One way to measure
closeness among keywords is the sum of the weights of all the edges on the
path between the words in the word graph.

Another limitation is the characteristics of the phenomenon that we aim
to address. Since offensive language can be expressed subtly, many offensive
tweets may simply not have words that are considered offensive. Thus, our
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method can extract lists of words that do not generalize offensive content.
Moreover, our method depends on the distribution of words between the
classes in the dataset. The words that are relevant in non−offensive tweets
will not be extracted as keywords, even when they are offensive. Therefore,
the quality of the extracted keywords is data-dependent. Anyway, this can
be useful, because it helps us characterize the dataset used by our method.

2.7 Conclusion and Future Work

In this paper, we proposed an unsupervised method for extracting keywords
from datasets with offensive content. The aim is to study offensive language
as a particular case of online harmful content. Our approach provides a way
to extract keywords from datasets without the need of a tagged dataset with
reference keywords. Instead, the method only uses a set of tweets tagged
as offensive or non−offensive. In this sense, the extracted keywords can
be used to explain the offensive language within a dataset, since they are
relevant words in the offensive tweets. An important contribution lies in the
exploitation of BERT. We designed the method by leveraging the abilities of
the multi-head self-attention mechanism of BERT to assign attention values
among word pairs in a context. In the proposal, we calculate a weight for each
word pair from the tweets as the attention value obtained with BERT for this
pair. Then, the weight is updated when processing each tweet containing the
pair. The proportion of the update of the weight is controlled by a parameter
ϵ, and the weight increases if the processed tweet is offensive and decreases
otherwise. Thus, we penalized the word pairs from non−offensive tweets
for distinguishing between offensive and non−offensive tweets. Then, the
weights are used to represent the edges of a graph where the vertices are
the words from all the tweets. This representation finally allows us to select
the keywords by using the eigenvector centrality. We extrinsically evaluated
the quality of the generated keyword list in two ways. On the one hand,
we tested an Information Retrieval system to extract offensive tweets taking
the keywords as queries. On the other hand, we evaluated the performance
of a model for offense detection as a classification task. Firstly, we made
experiments to find a good configuration for the parameters of our method.
Then, we evaluated the suitability of our method to extract keywords for our
particular purpose over other general-purpose AKE techniques. Moreover,
we evaluated how our method can detect some characteristics in the datasets
that can influence the performance of offense detection. In future work, we
aim to expand our method for dealing with multilingual datasets.
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Abstract. Hate speech detection refers broadly to the automatic iden-
tification of language that may be considered discriminatory against certain
groups of people. The goal is to help online platforms to identify and re-
move harmful content. Humans are usually capable of detecting hatred in
critical cases, such as when the hatred is non-explicit, but how do com-
puter models address this situation? In this work, we aim to contribute
to the understanding of ethical issues related to hate speech by analyzing
two transformer-based models trained to detect hate speech. Our study fo-
cuses on analyzing the relationship between these models and a set of hateful
keywords extracted from the three well-known datasets. For the extraction
of the keywords, we propose a metric that takes into account the division
among classes to favor the most common words in hateful contexts. In our
experiments, we first compared the overlap between the extracted keywords
with the words to which the models pay the most attention in decision-
making. On the other hand, we investigate the bias of the models towards
the extracted keywords. For the bias analysis, we characterize and use two
metrics and evaluate two strategies to try to mitigate the bias. Surprisingly,
we show that over 50% of the salient words of the models are not hateful
and that there is a higher number of hateful words among the extracted key-
words. However, we show that the models appear to be biased towards the
extracted keywords. Experimental results suggest that fitting models with
hateful texts that do not contain any of the keywords can reduce bias and
improve the performance of the models.

3.1 Introduction

In recent years, much research has been carried out to deal with the negative
impact of hate speech on online social media. There is a lot of debate about
the definition of hate speech and what can be considered a hateful message.
In most cases, hate speech is understood as a language that attacks or belit-
tles, incites violence or hatred against groups based on certain characteristics
such as physical appearance, religion, gender identity, or others, and it can
occur with different linguistic styles, even in subtle forms or when humor is
used (Fortuna and Nunes, 2018a). This definition highlights the subjective
factor in the task of identifying hatred. In subtle cases, whether a message
attacks or discriminates depends on the recipient’s perspective. While this
task can be difficult for humans, computational models face an even greater
challenge.

Hate Speech Detection (HSD) is the use of natural language processing
and machine learning techniques to automatically identify hate speech. The
goal is to detect and remove harmful content on online platforms and social
media to create a safer and more inclusive environment for all users. HSD
is usually treated as a binary classification problem between the class of
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hateful texts and the class of non-hateful texts, and, models are typically
trained on datasets of labeled texts to recognize features indicative of hate
speech. Alkomah and Ma (2022) recently provided a review of textual hate
speech detection systems and pointed out the widespread use of transformers-
based machine learning models. These are complex models that have shown
outstanding results in many natural language processing tasks (Latif et al.,
2023). The question in HSD is, what do the models learn to identify hatred?
We have a fairly intuitive hypothesis. We suppose that the models pay more
attention to potential hateful patterns that are common in hateful contexts.

Research Questions and Contributions. In this work, we examine
two transformers-based models trained on hate speech (HSD models) with
three popular collections of tweets in English to investigate our hypothesis.
Our focus is on the relationship between hateful keywords and the words to
which these models pay more attention to1. We aim to answer the following
research questions.

RQ1: Do the HSD models pay mostly attention to hateful words?

We rely on Captum, a library proposed by Kokhlikyan et al. (2020) to
interpret the results of deep learning models. This tool allows us to
obtain the weight that the models give to each element of a text in the
decision-making process. Then, we rank the words within a collection
of texts and consider that the models pay more attention to the top
words.

RQ2: Is it possible to identify the words to which the HSD models
pay more attention using simple statistics?

Comparing the highest weighted words for the HSD models with fre-
quent words in hateful contexts, we show that we can hardly predict
the words that the HSD models pay more attention to. Surprisingly,
most hateful words seem to be extracted with simple statistics. To ex-
tract this second group of words, we propose an unsupervised keyword
extraction method. The idea is to penalize words with high frequency
in the class of non-hateful texts, even though they appear frequently
in the other class. This allows us to focus only on hateful contexts.

RQ3: Should we focus on mitigating HSD model bias towards hateful
keywords?

Complementing the study of the relationship between hateful keywords
and the words that the HSD models focus on, we analyze the effect
of attempting to mitigate the bias of these models towards hateful
words. First, we calculate the bias of the HSD models with one metric

1NOTE: This paper contains examples of potentially explicit offensive content. They
do not represent the views of the authors.
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inspired by the concept of fairness and one metric introduced by Borkan
et al. (2019), which is based on the ROC-AUC score. We then use
two mechanisms to attempt to reduce the bias: forcing the models
to fine-tune with 1) non-hateful texts with hateful keywords and 2)
hateful texts without hateful keywords. Finally, we evaluate how these
mechanisms can affect the performance of the HSD models.

Two critical cases in HSD motivate our investigation of this mitigation:
1) non-hateful texts containing hateful words. For instance, “oh shit, I
accidentally blocked you. whoops”, is a non-hateful text in the popular
dataset of Waseem and Hovy (2016). However, this example may be
misclassified as hateful by associating shit with hateful content. This
association can be done by an over-generalized training of models from
datasets where this word is much more frequent in hateful contexts.
2) Hateful texts without hateful words. HSD is pretty simple in texts
with explicit hate, but we consider here the possibility of coming across
texts in which hate is expressed without hateful words (Frenda et al.,
2022; Sánchez-Junquera et al., 2021b).

The contribution of this paper is twofold: first, we propose and evaluate
an unsupervised keyword extraction method to automatically detect relevant
words for one class in a text collection. In particular, we use this method for
the HSD task in order to extract hateful keywords. Second, we analyze the
effect of bias mitigation for critical cases of hate speech detection.

The rest of this paper is organized as follows. Section 3.2 summarizes the
related work and Section 3.3 introduces the text collections that we use in
this work. Sections 3.4, 3.5 and 3.6 present our studies and findings for the
research questions respectively. In particular, the description of our proposal
to extract keywords is in Section 3.5. Finally, Section 3.7 presents limitations
and ethical concerns of our research work, and Section 3.8 concludes the
paper.

3.2 Related Work

Different strategies have been proposed for hate speech detection, which
ranges from methods based on linguistic characteristics to machine learning
techniques. Poletto et al. (2021), Velankar et al. (2022) and Alkomah and
Ma (2022) provide reviews on methods and datasets. However, most of the
systems proposed in recent years focus on transformer-based models, showing
outstanding results.

Recently, Malik et al. (2022) presented an empirical comparison of 14
shallow and deep models for hate speech detection on three benchmarks
of different data characteristics. The experimental results showed that hate
speech detectors based in transformer have promising performance, although
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pointing out that they still have some weak points. Shishah and Fajri (2022)
compared current approaches in hate speech detection in order to analyze
the influence of different approaches and their applicability in the real world.
The study was conducted on eight hate speech datasets and showed that a
transformer model approach is able to outmatch many of the previous hate
speech detection models by significant G-Means and F1 scores. In addition,
the last competitions on hate speech detection are evidence of the prestige
of transformer-based models, as the top places are generally based on these
types of models. For example, the Hate Speech Detection (HaSpeeDe 2)
shared task in 2020 (Manuela et al., 2020) was the second edition of the
shared task HaSpeeDe in 2018 (Bosco et al., 2018). In the first edition,
the best systems were fundamentally based on deep learning methods such
as Convolutional Neural Networks and Recurrent Neural Networks. While
in the second edition transformers-based models were the popular choice.
(Lavergne et al., 2020) used BERT, ALBERTo, and UmBERTo language
models to reach the first position in HaSpeeDe 2.

In this paper, we study two transformer-based models to evaluate the
relationship between the decision-making of these models and hateful key-
words. We investigate how the models are biased towards the keywords and
evaluate two strategies to mitigate the bias. The strategies that we use are
based on fine-tuning and the main effort is in filtering the data that is used
to fit the models. Following, we position our work w.r.t. other studies on
bias in hate speech detection.

Bias analysis in hate speech detection. Wiegand et al. (2019)
analyzed how high-ranking scores in biased datasets that contain mostly im-
plicit abuse, are due to bias modeling in those datasets. In our work, we
analyze this report by studying the relationship between hateful keywords
and transformers-based models. Balkir et al. (2022) presented a feature at-
tribution method for explaining text classifiers in the context of hate speech
detection. The authors showed that different values of necessity and suffi-
ciency for identity terms correspond to different kinds of false positive errors,
exposing sources of classifier bias against marginalized groups. They studied
the bias with mere mentions of identity terms that result in false positive
predictions. We also intend to evaluate how the mentions of hateful keywords
influence the models, but we characterize the bias with two well-defined met-
rics that allow us to study the bias quantitatively.

Bias mitigation. Nozza et al. (2019) analyzed the bias in misogyny
identification and evaluated the mitigation of bias by four strategies based
on terms with the most imbalanced class distributions. The experimental
results showed the ability of the bias mitigation strategy to reduce the bias of
the misogyny detection model proposed by the authors of the work. While
this is an interesting result, the impact of bias reduction for classification
needs to be investigated. In our work, together with the evaluation of the
bias reduction, we add the study of the performance variation. Xia et al.
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(2020) stated the bias in annotated training data causes text to often be
mislabeled as hate speech with a high false positive rate by current hate
speech classifiers. The authors used adversarial training to mitigate this
bias and show that the false positive rate seems to reduce while minimally
affecting the performance of hate speech classification. We not only assess
the performance of the models but also analyze how the bias varies with
strategies aimed at reducing bias. Mozafari et al. (2020b) introduced a bias
mitigation mechanism by using a regularization method to re-weight input
samples. The objective was to decrease the effects of highly correlated n-
grams of the training set with class labels. The results showed the existence
of a racial bias in trained classifiers. The authors also showed the bias was re-
duced with the bias mitigation mechanism. To evaluate this mechanism, the
authors employed a cross-domain approach in which they used the trained
classifiers on a dataset to predict the labels of two new datasets. Unlike that
way of measuring bias reduction, we rely on two metrics for a quantitative
evaluation.

3.3 Datasets

In this work we use three text collections with English tweets: HatEval
(Basile et al., 2019a), Waseem & Hovy (W&H) (Waseem and Hovy, 2016)
and Founta (Founta et al., 2018).

• HatEval: It is the dataset used for Task 5 of SemEval 2019.2 The
objective of that task was the detection of hate speech against immi-
grants and women in Spanish and English tweets. The tweets were
collected by monitoring potential victims of hatred, downloading the
history of identified haters, and filtering tweets with terms related to
hate speech. This collection is composed of 9,000 tweets for training
and 1,000 tweets for development.

• Waseem & Hovy (W&H): A popular dataset referenced in sev-
eral studies (Gröndahl et al., 2018; Arango et al., 2019; Schmidt and
Wiegand, 2017; Fortuna and Nunes, 2018a; Poletto et al., 2021). It
is composed of tweets annotated as sexist, racist, or non-hate. It is
available as a list of identifiers. It contains 16,906 tweets, of which
3,378 are labeled as sexist and 1,970 as racist. In the construction of
this dataset, some tweets were first collected with a manual search of
common terms related to religion, sex, gender, and ethnic minorities.
Then, the most frequent terms from the hateful tweets of this first set
of tweets were used to collect the rest of the tweets.

2https://competitions.codalab.org/competitions/19935
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• Founta: It is a dataset that contains tweets annotated as hateful,
abusive, spam, or normal. The data was collected by random sam-
pling and some heuristics to boost the proportion of abusive texts.
The boosted random sampling technique relies on increasing minority
classes to address the problem of bias in the entire text set. This col-
lection is composed of 3,635 tweets tagged as hateful, 10,122 tagged as
abusive, 13,404 tagged as spam, and 52,835 tagged as normal.

Table 3.1 shows the essential information of the data we used in our study.
Note that we used all tweets from Hateval, both training and development.
From W&H we could not download all the tweets, we only used those that
were accessible given their identifier. Lastly, from Founta we only used tweets
tagged as hateful or normal. We considered the ‘normal’ texts as the non-
hateful class.

Collection Focus Size # hateful texts % hateful tweets
Hateval Misogyny/Racism 10,000 4,209 42.09%
W&H Sexism/Racism 10,574 2,783 26.32%
Founta Hate Speech 56,470 3,635 6.44%

Table 3.1: Essential information of the text collections.

3.4 Transformer-based Models for Hate Speech De-
tection: Analysis of Salient Words

In this section, we will address RQ1 with the aim of gaining insights into
the behavior of the HSD models by exploring the weight that they assign to
words in the decision-making process. We face one of the most important
problems in eXplainable Artificial Intelligence (XAI) since these models are
often considered as black boxes. However, there is a branch of research on
explainability that is focused on facilitating the identification of different fea-
tures that contribute to the results of complex models for natural language
processing. Danilevsky et al. (2020) present a taxonomy with five main ex-
planation techniques: feature importance, surrogate model, example-driven,
provenance-based, and declarative induction. We focus on the importance
of the features, to investigate the scores of the different features used to gen-
erate the final prediction. We rely on Captum3, a library that offers several
attribution algorithms that allow us to understand the importance of input
features. This tool was introduced by Kokhlikyan et al. (2020) and has been
broadly used to explain transformer-based models.

We use Transformers-Interpret, a model interpretation library for Py-
Torch that wraps Captum with the Huggingface transformer package. Unlike

3https://captum.ai/
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Captum, this tool focuses solely on natural language processing, making the
interpretation of the HSD task easier. In particular, we employ the sequence
classification explainer method that allows us to compute the attribution
of the terms in a text using a model. Positive attribution numbers indicate
that a word contributes positively towards the predicted class, while negative
numbers indicate that a word contributes negatively towards the predicted
class. However, attribution explanations are not limited to the predicted
class and we force the method to obtain the attributions w.r.t the hateful
class. Thus, the method returns a list of tuples containing words and their
associated attribution scores for the hateful class.

For our experiments, we use the transformer-based models shown in Table
3.2. They are trained to detect hate speech and are accessible in HuggingFace
for English.

Model Architecture URL
BERT (Aluru et al., 2020) bert https://huggingface.co/Hate-speech-CNERG/dehatebert-mono-english

ROBERTA (Vidgen et al., 2021) roberta-base https://huggingface.co/facebook/roberta-hate-speech-dynabench-r4-target

Table 3.2: Links to the pre-trained models used in this work.

Findings. Figure 3.1 shows some examples taken randomly from the
text collections and classified with ROBERTA. Words highlighted in green
indicate a positive attribution to the hateful class, while red indicates a
negative attribution. The first four examples are well-classified hateful texts.
Note that some words with a positive attribution are not hateful, but they
are important to understand the text as hateful. For example, in the case
of text number 3, the word “Well” has a high positive attribution (dark
green). While this is not a hateful word, in the context of this text it is
used to support a hateful message. Surprisingly, the model has been able
to understand it. This suggests that the model, beyond learning hateful
words, learns to identify hateful contexts. Despite these interesting results,
we observe some cases where the model fails. Let us look at the last two
examples. Text number 5 is a case of subtle hatred where there are no
explicit hateful words and the model fails to detect the text as hateful. In
addition, example number 6 is a non-hateful text that contains a hateful
word and is also misclassified. In other words, although this model appears
to be quite robust in identifying hatred in subtle cases, it may fail in the
critical cases exemplified by Examples 5 and 6. In section 3.6 we analyze
this issue in more detail by examining the bias of the model towards a set of
hateful words.

Once we obtain a model attribution for the words in each text, we calcu-
late the general word score in a text collection. The score is the sum of the
attributions that the words receive in the texts of the collection in which they
appear. Note that the higher the attribution that the model gives to a word
in each instance, the higher its score is. Similarly, the score of the words to
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Figure 3.1: Attributions with Transformers-Interpret for randomly selected
texts from the text collections. The positive class (green) corresponds to the
class of hateful texts.

which the model gives negative attribution is small. Figure 3.2 shows the top
30 words of the ranking generated with ROBERTA in each text collection.
The way to access the analogous result for BERT is in appendix 3.8.

(a) HatEval (b) W&H

(c) Founta

Figure 3.2: Ranking of the words to which ROBERTA pays the most atten-
tion in each text collection

We observe that the number of hateful words represents less than 50%
of the salient words of the models. This suggests that the models seem to
pay equal or more attention to the target of hate (girls, immigrants, etc.)
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than to hateful words. This corresponds to what we saw in Figure 3.1, where
this behavior was relevant in one example of subtle hatred. However, we also
identify some cases where models can fail. We then evaluate the performance
of the models in each text collection and Table 3.3 shows the results in terms
of F1-score (see Powers (2015) to understand the F1 metric).

Model HateEval W&H Founta
BERT 0.8004 0.6034 0.6188
ROBERTA 0.7157 0.7236 0.7180

Table 3.3: Hate speech detection results in terms of F1-score. Numbers in
bold indicate the best significant result with a significance level of .05.

For the analysis of statistical analysis, we used McNemar’s test as Di-
etterich (1998) recommends. This is a paired non-parametric statistical hy-
pothesis test that allows us to evaluate once each model for comparison. The
default assumption of this test is that two models disagree with the same
amount. Then, if the null hypothesis is rejected, it suggests that there is ev-
idence to say that the models disagree in different ways. Table 3.3 shows the
best results per text collection in bold, indicating that there is a statistically
significant difference in the disagreements between BERT and ROBERTA.

The comparison between these models is beyond the scope of this paper,
so the comparison between models with statistic analysis becomes more im-
portant in Section 3.6. In this section, the most relevant is to note that the
results in the three datasets with ROBERTA are similar, although among
the salient words in HatEval there seems to be a higher amount of hate-
ful words. It does not seem that there is a direct relationship between the
number of hateful words the HSD models pay more attention to and their
performance.

3.5 Analysis of Hateful Keyword

Once we have analyzed the salient words of the models, we may address RQ2
from Section 3.1 extracting hateful keywords from the text collections taking
into account some statistics. We then compare the result with the words the
HSD models pay more attention to. For keyword extraction, we propose the
Harmonic Mean of Relative Frequencies (HMRF), a measure that takes into
account the frequency of words in hateful texts along with their frequency in
the rest of the texts. The idea is different from the well-known TFIDF since
we try to favor words that maximize the difference between their frequency
in the hateful texts and their frequency in the rest of the texts. HMRF is
also different from the Polarized Weirdness Index (PWI) of words used by
Poletto et al. (2021), which is based on Ahmad et al. (1999). PWI is the ratio
of the relative frequency of a word in a class against its relative frequency
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in the other class. We consider instead the distribution of words when we
calculate and combine the frequency to score each word.

3.5.1 Method for Automatic Keyword Extraction

The first step of our method is to eliminate the stopwords to consider only
words with semantic weight. Then, from the rest of the words we only take
into account the nouns, adjectives, and verbs. The next step consists of
identifying the most relevant words in each class of texts. We refer to the
relevance of a word based on its relative frequency in the class. We then
characterized the keywords as the words with the largest difference between
the relevance in the set of hateful texts and the relevance in the set of non-
hateful texts. In the third step, we expand the list of words with phrases.

We start from the idea that potentially hateful words are more likely
to appear in hateful texts. However, we have considered that if we analyze
only the relevance of words within hateful texts, we will probably select as
keywords those that are more common due to the topic in the collection of
texts and not because they are words frequently used to transmit hate.

To deal with this issue we consider not only the relevance of each word
in the set of hateful texts but also in the set of non-hateful texts. The
procedure is then to search for words that are very relevant in the hateful
texts and not very relevant in the rest of the texts at the same time. In
this sense, we use the concept of ‘little relevant words in non-hateful texts’.
That way, we propose a measure that allows ranking the words to make the
most significant ones. This strategy also helps us to discard words that may
indicate hate but are frequently used in non-hateful texts in a given context.
For example, if a text collection has been built from a thread of posts about
feminism, the word ‘feminist’ is likely to appear frequently not only in the
hateful texts but also in the rest of the texts. Therefore, we prefer not to
select that word as a relevant word and look for other more discriminating
words that indicate hate in that particular context.

Harmonic Mean of Relative Frequencies

The Harmonic Mean of Relative Frequencies (HMRF) is the measure we
propose to assign a score to each word w. Basically, we calculate the score
of w using the harmonic mean of two relative frequencies of w into a set of
texts S. The relative frequencies are 1) the frequency of w only considering
the texts of S (Equation 3.1), and 2) the frequency of w in S with respect to
its frequency in the entire collection of texts C (Equation 3.2). The variable
k identifies all possible words in the text set and the indicator 1(w)(t) defines
the number of times that the word w appears in a text t.

fS
1 (w) =

∑
t∈S 1(w)(t)∑

k

∑
t∈S 1(k)(t)

(3.1)
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fS
2 (w) =

∑
t∈S 1(w)(t)∑
t∈C 1(w)(t)

(3.2)

Then, we use the cumulative distribution function (CDF)4 on the relative
frequencies. This is a distribution function of a random variable X: FX(x) =
P (X ≤ x). So, CDF (fS

1 ) indicates the ratio of words that will take a value
of fS

1 less than or equal to fS
1 (w). Similarly, CDF (fS

2 (w)) indicates the
ratio of words with a value of fS

2 equal to or lower than fS
2 (w). Thus, by

using CDF, it is possible to see where the value of either fS
1 (w) or fS

2 (w)
lies in the distribution of the words in a cumulative way.

Finally, we use the harmonic mean (Sheldon et al., 2001) to combine both
CDF (fS

1 (w)) and CDF (fS
2 (w)). It gives the greatest weight to the smallest

item of a series, and the impact of large outliers is mitigated. Equation 3.3
specifies how the harmonic mean is used to obtain the final score for w.

HMRFS(w) =
2 ∗ CDF (fS

1 (w)) ∗ CDF (fS
2 (w))

CDF (fS
1 (w)) + CDF (fS

2 (w))
(3.3)

In text collections for HSD, we generally have the sets of hateful (H)
and non-hateful (N) texts. Thus, the set S refers to each of the sets H and
N, and the set C to {H ∪ N}. In this way, w is represented by the tuple
(HMRFN (w),HMRFH(w)).

Figure 3.3 shows word-tuple representations extracted from the HatEval
dataset (Basile et al., 2019a) as points on a plane. Figures 3.3a and 3.3b
show the points according to TFIDF and PWI respectively. While Figure
3.3c shows the points according to the HMRF measure. The words that
interest us as hateful keywords are in the circle in the upper left corner of
this last figure.

(a) TFIDF (b) PWI (c) HMRF

Figure 3.3: Representation of terms.

As we can see, PWI allows us to easily identify relevant words in hateful
texts compared to TFIDF. However, HMRF provides a clearer idea of the
distribution of words. Note that with PWI all the points with high values

4https://www.sciencedirect.com/topics/mathematics/cumulative-distribution-
function
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in the hateful axis have the same value in the other axis. With HMRF in
contrast we obtain a distribution in which we can see not just those points
that are more relevant in the hateful texts, but also which of them are less
relevant in the non-hateful texts.

In order to extract the keywords, we order the words descendingly ac-
cording to the HMRFH - HMRFN difference. For the words with the same
score, we establish a ranking, so that the most relevant word is the one with
the highest HMRFH .

Phrases Construction

In addition, we include the possibility of expanding the keywords list gen-
erated in the previous step, by adding phrases composed of more than one
word.5 We take into account the concept of collocation considering only the
words that are already in the list. i.e. the phrases are identified with two or
more hateful keywords that commonly co-occur in context. To obtain the
phrases we only use hateful texts and a strategy to analyze the co-occurrence
of words.

The strategy is based on pointwise mutual information (PMI). This mea-
sures how much more likely the words in a sequence W = (w1, . . . , wn) co-
occur than if they occur independently (Equation 3.4). Where n is the size
of the sequence and P is its probability in the text set.

PMI(W ) = log2
P (w1, . . . , wn)∏n

i=1 P (wi)
(3.4)

We consider bigrams and trigrams when generating the phrases. In the
case of bigrams we consider the structures <adjective,noun> and <noun,noun>,
while for trigram we consider the structures <adjective,ALL,noun> and
<noun,ALL,noun>. ALL refers to any word, including those out of the
hateful keyword list. Note that in these patterns we only consider adjec-
tives and nouns. This is because the connotation of an adjective can vary
depending on the noun it modifies. This dependency is usually less strong
in the case of other parts of speech such as verbs. For example, the word
‘f*ck’ is usually enough to express hate, regardless of the words with which it
co-occurs. The objective of these patterns is to limit the number of phrases.

3.5.2 Experimental Setup

Taking advantage of the study of the relationship between keywords ex-
tracted with HMRF and the salient words of the HSD models, we include
another set of keywords obtained with an alternative strategy: keywords
extracted with YAKE (Campos et al., 2020), a general-purpose method for
keyword extraction.

5In the scope of this work, we use ‘term’ to refer to a word or a phrase.
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Thus, we compare five sets of words in each text collection:

• BERT: Salient words for the BERT model.

• ROBERTA: Salient words for the ROBERTA model.

• HMRF: Keywords extracted with our method.

• YAKE: Keywords extracted with a method that does not consider
the division between classes. Experiments carried out on different
text collections report that this method outperforms state-of-the-art
methods such as TFIDF, KP-Miner, RAKE, TextRank, SingleRank,
ExpandRank, TopicRank, TopicalPageRank, PositionRank and Multi-
partiteRank (Campos et al., 2020).

3.5.3 Discussion.

Analysis of the results of our method. We first compared the be-
haviour of HMRF and YAKE taking into account two aspects that are ex-
pected from a keyword extraction strategy. We analyzed whether the ex-
tracted words reflect the focus of the source dataset. Next, we analyzed
if the extracted keywords are really potentially hateful terms (words and
phrases). Table 3.4 shows some examples of terms extracted with HMRF
and YAKE for each text collection. We set the number of hateful keywords
to 20. Note that the final size of the sets of terms increases as phrases are
added. We extract all possible phrases. Thus, the final amount of extracted
terms is not fixed.

Collection HMRF YAKE

HateEval

deportthemall, illegal, enddaca, bitch, free speech time, illegal immigrants,
suck, aliens, housegop, hoes, trump, bitch, immigrant, woman,
citizens, stoptheinvasion, borders, illegal immigration, immigrant children
sendthemback, bitch suck illegal muslim migrant

W&H

football, sports, sexist, female, woman, mkr, kat, sexist, woman, call girls,
feminist, feminism, bitch, drivers, girl, people, mkr kat, mkr kat kat,
womenagainstfeminism, girl call, mkr kat call, call me sexist,
female sports, female football mkr katie, mkr hey kat, mkr god kat,
call, rights, equal rights mkr krazy-eyes kat, mkr omg

Founta

hate, racist, liar, hated, feminist, youtube video, transponder snail, day,
bombing, refugees, disgusting, terrorists, today, people, love, time, trump, video,
retarded, bitches, bastards, bombs, gay, found a transponder, isis calls trump,
hating, evil, kill, hoes, blacks, missiles, good, make, world health day,
blacks hating, evil bastards, hate hoes, happy birthday, great, found, happy
hate bitches, feminist bitches trump loves russia,

Table 3.4: Sets of keywords extracted with HMRF and YAKE.

At first glance, we can see little overlap between both sets of keywords
(using HMRF and YAKE). However, in most cases, the keywords seem to
reflect the focus of the source text collection. In Hateval, for example, where

56



the focus is misogyny and racism, keywords like ‘bitch’, ‘deportthemall’, and
‘immigrants’ reflect what is expected. An exception is the case of W&H
with YAKE. Most of the terms are very frequent in the texts, but they
are not English words. Perhaps, it would be convenient to carry out a text
pre-processing. Alternatively, our penalization of very frequent terms in non-
hateful texts seems to deal with this problem. Note that with HMRF for the
same collection (W&H), the terms better reflect the focus of the texts.

Taking a closer look at the extracted words, we can see that most of them
are actually potentially hateful words. In the case of the Founta collection,
YAKE extracts keywords that do not express hatred at all, such as ‘love’,
‘good’, ‘happy birthday’, etc. By contrast, HMRF manages to extract more
hateful terms for the same collection. These terms mostly make more sense
to express hatred such as ‘hate’, ‘bastard’, ‘kill’, etc. Table 3.5 confirms
this, by showing the percentage of occurrence of the words of each set in
the classes of the text collections. As expected, the difference between the
occurrence of the words in each class is greater when considering the words
extracted with HMRF.

HateEval W&H Founta
Class N-HS HS N-HS HS N-HS HS

HMRF 48.41 70.28 48.30 76.67 25.36 56.95
YAKE 36.75 45.74 56.80 60.92 24.56 18.74

Table 3.5: Percentage of occurrence of keywords per class. HS refers to the
class of hateful texts and N-HS to the class of non-hateful texts. The largest
difference between the percentages of the classes is in bold.

This can suggest that the set of words extracted without taking into
account the division between classes (YAKE) is more similar to the set of
salient words of the HSD models. Remember that in Section 3.4 we saw
that the highest percentage of words to which HSD models pay the most
attention are usually not hateful words. To investigate this assumption, let
us analyze the overlap between each pair of word sets.

Overlap among keywords sets. Figure 3.4 shows the overlap be-
tween each pair of word sets. Each cell represents the percentage of overlap
calculated w.r.t to the set in columns, i.e. the size of the set of columns
is taken as the total to calculate the percentage that represents the over-
lap. Let us focus on the first and second columns of each heatmap, which
correspond to the keywords extracted with HMRF and YAKE, respectively.
Although YAKE extracts a set of keywords that seems to be more similar to
the salient words of the HSD models, we can see that the percentage of key-
words extracted with HMRF that is salient (for the HSD models) is higher.
However, the overlap of the salient words and the keywords by HMRF is
not large enough to state that with our method we can predict the words to
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which the HSD models will pay the most attention.

(a) HatEval (b) W&H (c) Founta

Figure 3.4: Heatmap of the overlap between each pair of word sets. Each
cell represents the percentage of overlap taken as the total size of the group
of words on the X-axis.

3.6 Bias Mitigation

Motivated by the low similarity between the keywords extracted with our
method and the salient words of the HSD models observed in Section 3.5,
in this section we investigate RQ3 of Section 3.1: our goal is to evaluate
the role of hateful keywords, extracted with HMRF, in hate speech detec-
tion with HSD models. We first analyze the bias of the models towards the
extracted keywords. Following the course of the analysis in the previous sec-
tion, we consider both the keywords extracted with HMRF and the keywords
extracted with YAKE. We then use two strategies to try to mitigate the bias
and assess how bias varies. The strategies are based on fine-tuning with data
in which the occurrence of the keywords is taken into account. Finally, we
investigate the relationship between the bias variation and the performance
of the HSD models.

3.6.1 Experimental Setup

Bias estimation. Various types of bias have been defined in the literature,
as well as a number of problems related to classification models Garrido-
Muñoz et al. (2021). We focus on the model bias w.r.t HSD. In our case, a
model is considered biased when it tends to make more errors toward a class
due to the presence of keywords. This phenomenon mainly occurs when
there is much more representation of the keywords in the class of hateful
texts, and models learn to classify as hateful, text with those keywords.

Let us formalize the model bias for our study, as well as the way in which
we evaluate its impact on HSD. We first follow the idea of Garrido-Muñoz
et al. (2021), which uses the ‘fairness’ concept. The authors of the paper
argue that fairness is equivalent to zero-bias systems in machine learning.
Thus, it allows us to formalize and quantify the bias in some way.
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Formalization (bias based on fairness)

Given the distribution <X,K, Y, Ŷ >, referring X to instances from a text
collection, K to one keyword, Y to the true classes of the instances, and Ŷ
to the predicted classes by a model. Here Ŷ = 1 means a classification in
the class of hateful texts, while Ŷ = 0 means a classification in the class
of non-hateful texts. For K, K = 1 means the presence of the keyword in
a text and K = 0 means the absence. Then, according to the concept of
fairness, bias can be defined as Equation 3.5.

bias = |P (Ŷ = 1|K = 1)− P (Ŷ = 1|K = 0)| (3.5)

Note that this is equivalent to equal positive probabilities for when the
keyword is present and when it is not. Thus, equal probabilities is a good
estimator of bias (fairness), such that the higher the value of this metric,
the higher the bias. Consider that this is not a cognitive bias, rather this
is related to the estimation of parameters in statistical modeling. We follow
the Equations 3.6 and 3.7 to calculate the probabilities.

P (Ŷ = 1|K = 1) =
# Texts containing K and classified as hateful

# Texts containing K
(3.6)

P (Ŷ = 1|K = 0) =
# Texts not containing K and classified as hateful

# Texts not containing K
(3.7)

Bias based on ROC-AUC metrics

Note that the bias based on fairness only takes into account the instances
classified as hateful. Alternatively, we use the metrics introduced in Borkan
et al. (2019), which was used in the competition ‘Jigsaw Unintended Bias
in Toxicity Classification’.6 This metric considers both texts classified as
hateful and texts classified as non-hateful, by using three sub-metrics based
on the ROC-AUC7 score on three specific subsets of the test for each keyword,
such that each metric captures a different aspect of bias:

• Subgroup AUC: The test set is restricted to only the examples that
contain the specific keyword. A low value in this metric means the
model does a bad job of distinguishing between hateful and non-hateful
texts that contain the keyword.

6https://www.kaggle.com/competitions/jigsaw-unintended-bias-in-toxicity-
classification/overview

7https://onlinelibrary.wiley.com/doi/10.1111/j.1466-8238.2007.00358.x
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• BPSN (Background Positive, Subgroup Negative) AUC: Test set is
restricted to the non-hateful examples that contain the keyword and
the hateful examples that do not. A low value in this metric means
that the model confuses non-hateful examples that contain the keyword
with hateful examples that do not. That is, the model predicts higher
hateful scores than it should for non-hateful examples containing the
keyword.

• BNSP (Background Negative, Subgroup Positive) AUC: Test set is
restricted to the hateful examples that contain the keyword and the
non-hateful examples that do not. A low value means that the model
confuses hateful examples that contain the keyword with non-hateful
examples that do not. That is, the model predicts lower hateful scores
than it should for hateful examples containing the keyword.

We calculate the bias per keyword and combine them with the following
generalized mean:

Mp(n) =

(
1

K

K∑
k=1

mp
k,n

) 1
p

(3.8)

mk,n is the bias metric calculated for keyword k and metric n. K is the
number of keywords (subgroups).

We set p to -5 just like in the competition, where the objective was to
encourage competitors to improve the model for the subgroups with the low-
est model performance. Finally, we combine the overall AUC (AUCoverall)
with the generalized mean to calculate the model score. AUCoverall refers
to ROC-AUC for the full test set. Here, the lower the score, the higher the
bias.

score = w0AUCoverall +
N∑

n=1

wnMp(n) (3.9)

N is the number of metrics (Subgroup, BPSN, BNSP).
wi, i = 0, N is a weight for the relative importance of each metric. We

set all four w to 0.25.
In summary, we use the following two metrics to estimate the bias in our

experiment:

• b1: Bias based on ROC-AUC metrics. The lower the value of this
metric, the higher the bias.

• b2: Bias based on fairness. The higher the value of this metric, the
higher the bias.
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Strategies for bias mitigation
In order to mitigate the bias, we rely on fine-tuning the HSD models. The

goal is to make a small fit in the parameters of the models with a very small
learning rate. We focus this fit on a specific set of keywords when choosing
the data for fine-tuning. In this sense, we follow the following strategies:

• V1: Data only contains hateful texts without keywords.

• V2: Data only contains non-hateful texts with keywords.

• V3: Data contains random texts.

The first two strategies are aligned with the critical cases that we dis-
cussed in Section 3.1. We want to fit the HSD models for those cases con-
sidering the sets of keywords that we are studying, i.e. HMRF and YAKE.
Thus, we have to analyze the behavior of the fine-tuned models in 4 variants:

• V1HMRF : Strategies V1 taking HMRF as the set of keywords.

• V1Y AKE : Strategies V1 taking YAKE as the set of keywords.

• V2HMRF : Strategies V2 taking HMRF as the set of keywords.

• V2Y AKE : Strategies V2 taking YAKE as the set of keywords.

We also include the third strategy to compare the results of the first two
strategies and assess if they are relevant to mitigate the bias in relation to
this traditional fine-tuning strategy.

Fine-tuning and evaluation details. Selecting data for fine-tuning
in one dataset, we chose 2500 instances of each of the other datasets. For
example, for the evaluation of a model fitted with V1HMRF in HatEval, we
select 2500 hateful texts with keywords of HMRF from W&H and 2500 from
Founta.

We experiment with the two models introduced in Section 3.4 (BERT
and ROBERTA). We train with batches of size 16 in 3 epochs and evaluate
the whole dataset with batches of 16 instances. We optimize all models
with Adam (Kingma and Ba, 2015) and a learning rate of 1x10−7. The
performance of the models is reported in terms of F1-score, along with the
P value of McNemar’s statistical test introduced in Section 3.4. This last
test was used to compare if each variant of a model varies significantly with
a significance level α = .05 i.e. we compare each fine-tuned variant with the
original model (where no fit is made).

3.6.2 Results and Discussion

A summary of the estimated biases, per model and dataset, is provided in
Table 3.6.

Following is a list of the most important findings when analyzing the
table:
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HateEval W&H Founta
HMRF YAKE HMRF YAKE HMRF YAKE

b1 b2 b1 b2 b1 b2 b1 b2 b1 b2 b1 b2

BERT
Original 0.712 0.344 0.754 0.219 0.548 0.186 0.583 0.136 0.469 0.207 0.578 0.016
V1HMRF 0.705 0.332 - - 0.563 0.203 - - 0.498 0.275 - -
V1Y AKE - - 0.735 0.240 - - 0.598 0.167 - - 0.616 0.020
V2HMRF 0.710 0.348 - - 0.531 0.172 - - 0.563 0.190 - -
V2Y AKE - - 0.754 0.219 - - 0.578 0.133 - - 0.575 0.015
V3 0.710 0.339 0.747 0.219 0.552 0.189 0.580 0.129 0.474 0.214 0.585 0.015
ROBERTA
Original 0.536 0.243 0.665 0.158 0.661 0.284 0.682 0.225 0.613 0.317 0.679 0.021
V1HMRF 0.541 0.239 - - 0.701 0.294 - - 0.640 0.363 - -
V1Y AKE - - 0.671 0.167 - - 0.708 0.237 - - 0.711 0.031
V2HMRF 0.534 0.244 - - 0.627 0.259 - - 0.606 0.313 - -
V2Y AKE - - 0.665 0.158 - - 0.680 0.220 - - 0.680 0.019
V3 0.536 0.245 0.661 0.166 0.674 0.289 0.690 0.228 0.629 0.333 0.696 0.028

Table 3.6: Estimated biases for the not fitted model (Original) and the fine-
tuned models (V1HMRF , V1Y AKE , V2HMRF , V2Y AKE , V3) for BERT and
ROBERTA. We report bias toward the keywords specified in the columns
(HMRF and YAKE), based on ROC-AUC metrics (b1) and fairness (b2) .

• The bias of the Original model is greater towards HMRF keywords than
towards YAKE keywords. This corroborates the finding of the previous
section, where we noticed that the percentage of overlap between the
salient words of the HSD models with the HMRF keywords is greater
than with those of YAKE.

• In general we do not observe a pattern in the variation of the bias with
V3.

• V1 seems to reduce the bias b1 (increase the value) with respect to
the Original model. We do not observe this behavior in HatEval with
BERT. This suggests that using hateful instances without keywords
makes the model fit to identify hatred in cases where those keywords
are not present.

• V2 seems to increase the bias b1 (reduce the value) with respect to
the Original model. We do not observe this behavior in Founta with
BERT.

• The bias b2 seems to have the opposite behavior: V1 tends to increase
b2 with respect to the Original model, while V2 tends to reduce it.

Once we have analyzed the variation of the bias towards the keywords
extracted with HMRF and YAKE, we need to evaluate how this influences
the variation of the performance of the HSD models. Table 3.7 summarizes
the results for all models in terms of F1-score and P value. We do the sta-
tistical analysis between each variant after the fine-tuning and the Original
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model. We observe that only in one case (V1HMRF in HatEval) the results
of the models are not significantly different. Therefore, it makes sense to
analyze the variation of F1 in relation to the variation of bias. Taking into
account the analyzed bias variation, we notice that in most cases, less bias
b1 (greater value) corresponds to a greater F1 value and that greater bias
b2 (greater value) corresponds to a greater F1 value. We have seen that
V1 tends to reduce b1 and increase b2, therefore V1 seems to be good for
improving the value of F1. Likewise, we observe that in most cases, more
bias b1 (lower value) corresponds to a lower F1 value and that lower bias b2
(lower value) corresponds to a lower F1 value. V2 tends to increase b1 and
decrease b2, therefore V2 seems to worsen the value of F1. However, note
that there are unexpected cases, where the behavior is different. Therefore,
we cannot assert that there is a correlation.

Finally, let’s remember that b2 only takes into account instances classi-
fied as hateful. With V1 this class is favored, so the number of texts classified
as hateful will tend to increase (see an example in Figure 3.5). The opposite
happens with V2, whereby disfavoring the class of hateful texts, the differ-
ence between the number of true positives and false positives will tend to be
less. This also helps us to understand how V1 can favor the values of F1 by
improving the positive class (hateful texts).

HateEval W&H Founta
F1 P value F1 P value F1 P value

BERT
Original 0.8004 - 0.6034 - 0.6188 -
V1HMRF 0.7927 P=.13 0.6161 P<.001 0.6378 P<.001
V1Y AKE 0.7890 P<.001 0.6199 P<.001 0.6375 P<.001
V2HMRF 0.7994 P<.001 0.5572 P<.001 0.6124 P<.001
V2Y AKE 0.8003 P<.001 0.5995 P<.001 0.6147 P<.001
V3 0.7975 P=.01 0.6111 P<.001 0.6213 P<.001
ROBERTA
Original 0.7157 - 0.7236 - 0.7180 -
V1HMRF 0.7170 P<.001 0.7588 P<.001 0.7157 P<.001
V1Y AKE 0.7161 P<.001 0.7560 P<.001 0.7153 P<.001
V2HMRF 0.7140 P<.001 0.6806 P<.001 0.7185 P<.001
V2Y AKE 0.7157 P<.001 0.7196 P=.02 0.7189 P<.001
V3 0.7165 P<.001 0.7346 P<.001 0.7213 P<.001

Table 3.7: Performance of the not fitted model (Original) and the fine-
tuned models (V1HMRF , V1Y AKE , V2HMRF , V2Y AKE , V3) for BERT and
ROBERTA. We consider α = .05.
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(a) Original (b) V1HMRF

(c) V2HMRF (d) V3

Figure 3.5: Confusion matrices for classification with ROBERTA in W&H.
Rows represent the actual labels and columns the predicted labels.

3.7 Limitations and Ethical Concerns

In this work, we have provided some insights regarding the relationship be-
tween keywords extracted from text collection and the salient words of two
transformers-based models trained for HSD. There are two limitations that
we want to discuss in this section. First, note that we rely on an interpretabil-
ity model to determine the salient words of the models. Therefore, our analy-
sis at this point depends on the results of this interpretability model. On the
other hand, our HMRF metric is based on penalizing very frequent words in
the negative class of the source text collection. This helps us find potential
hateful keywords, but it can also rule out words with hate content. This
phenomenon should not be very common and we are interested in hateful
words that are not used frequently in non-hate texts. However, we must bear
in mind that this can be a weak point in some tasks.

Our study may have some ethical concerns as it focuses on hate speech
detection. Note that our goal is limited to assisting in this effort to help
online platforms identify and remove hateful content.
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3.8 Conclusions

Transformer-based models have arrived to mark an important leap in differ-
ent natural language processing tasks. Among them, hate speech detection
has been favored in recent years. However, one problem we face is under-
standing what these models learn to detect hatred. In this work, we focused
on studying the relationship between a set of keywords extracted from three
text collections and the salient words of two transformers-based models pre-
trained in hate speech detection. For the extraction of the keywords, we
proposed HMRF, a metric that focuses on extracting very frequent key-
words in the class of hateful texts and at the same time less frequent in the
other class. First of all, we noted that HMRF manages to extract a large
number of hateful words, unlike other leading keyword extraction methods.
Then, we observed that there is not much similarity between the keywords
extracted with HMRF and the words that the transformer-based models pay
the most attention to. We even noticed that the set of salient words from
the models has fewer hateful words than those extracted with HMRF. Fi-
nally and most importantly, we analyzed the bias of the models towards the
HMRF keywords with two types of metrics and evaluated two strategies to
try to mitigate the bias. The experimental results suggested that the bias
towards hateful keywords can be reduced when fine-tuning the models with
hateful texts where the keywords are not present and that this reduction
may imply an improvement in the F1. This finding provides an incentive for
future research efforts to analyze the bias towards hateful keywords taken
from external resources such as HurtLex (Bassignana et al., 2018), a lexicon
that contains hateful words that are independent of a specific text collection.
In addition, we suggest a deeper analysis of the selection of data size for the
fine-tuning strategy that showed good results in reducing bias. We believe
that it can influence the variation of the bias and the performance of the
models that we observed with the size of the data that we used.
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Appendix

(a) HatEval (b) W&H

(c) Founta

Figure 3.6: Ranking of the words to which BERT pays the most attention
in each text collection
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Part II

Graph-Based Exploration

In this second part, we investigate the potential of models based
on graph neural networks for hate speech detection. In Chapter
4 we propose a graph auto-encoder framework to obtain a latent
representation from an initial text representation. We used this
framework for hate speech detection by using the embeddings
as input of a classifier. In Chapter 5 we study a model based
on convolutional graph neural networks to address hate speech
detection in scenarios with little data.
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Chapter 4

Unsupervised Embeddings
with Graph Auto-Encoders for
Multi-Domain and Multilingual
Hate Speech Detection

Published in:

• De la Peña Sarracén, G.L. and Rosso, P. (2022). Unsupervised
Embeddings with Graph Auto-Encoders for Multi-Domain and Mul-
tilingual Hate Speech Detection. Proceedings of the Thirteenth Lan-
guage Resources and Evaluation Conference, (pp. 2196-2204).
(Core B Conference)
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Abstract. Hate speech detection is a prominent and challenging task
since hate messages are often expressed in subtle ways and with character-
istics that may vary depending on the author. Hence, many models suffer
from the generalization problem. However, retrieving and monitoring hate-
ful content on social media is a current necessity. In this paper, we propose
an unsupervised approach using Graph Auto-Encoders (GAE), which al-
lows us to avoid using labeled data when training the representation of the
texts. Specifically, we represent texts as nodes of a graph and use a trans-
former layer together with a convolutional layer to encode these nodes in
a low-dimensional space. As a result, we obtain embeddings that can be
decoded into a reconstruction of the original network. Our main idea is to
learn a model with a set of texts without supervision, in order to generate
embeddings for the nodes: nodes with the same label should be close in
the embedding space, which, in turn, should allow us to distinguish among
classes. We employ this strategy to detect hate speech in multi-domain and
multilingual sets of texts, where our method shows competitive results on
small datasets.

4.1 Introduction

In this paper, we investigate an unsupervised, graph-based approach to learn-
ing embeddings for hate speech detection. According to Fortuna and Nunes
(2018b), hate speech can be defined as a language that attacks, diminishes or
incites violence against groups based on specific characteristics. Accordingly,
the aim of hate speech detection is to discriminate texts that contain hate
from those that do not. This is a widely studied task that involves a number
of challenges (Poletto et al., 2021). Specifically, we study the problem of
data-poor settings that appear in low-resource domains and languages – i.e.,
in those settings where supervised approaches are not able to generalize well.

For this, we make use of Graph neural networks (GNNs). They are
a framework based on deep learning to operate on graphs. They follow a
recursive neighborhood aggregation scheme, called message passing, where
each node aggregates feature vectors of its neighbors to compute its new
feature vector (Xu et al., 2018). After a number of iterations, a node is
represented by its transformed feature vector, which captures the structural
information within its neighborhood. Therefore, GNNs have been effective at
tasks thought to have rich relational structure since they can preserve global
structure information of a graph in embeddings. Wu et al. (2021) provide
an overview of recent studies on deep learning approaches for graphs and
discuss the applications of GNNs in several areas. Zhou et al. (2020) present
some GNN-based methods that have been applied to text classification, and
point out that representing texts as graphs can effectively capture semantics
among words. Yao et al. (2019b), for instance, use GNNs for text classi-
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fication. The authors propose a strategy to represent texts as graphs and
use a convolutional graph neural network to learn embeddings of words and
documents. As a result, they show that the improvement of their graph-
based model over state-of-the-art models becomes more prominent as the
percentage of training data is lower.

Cross-lingual transfer learning is one of the strategies used to lever-
age already existing data from higher-resource languages (Ranasinghe and
Zampieri, 2020a; Stappen et al., 2020a; Bigoulaeva et al., 2021b). However,
this approach can introduce other problems related to the variability between
different languages. Moreover, the resulting datasets are heterogeneous not
only in terms of languages but also in terms of domains, which can affect
the learning of the models.

We aim to study the performance of hate speech detection with GNNs
with the motivation of improving this task in data-poor settings without the
need of external data. For this, we propose a graph auto-encoder framework
that allows us to learn a latent representation from a set of texts in an
unsupervised way. In this representation the texts from the same class are
close, hence we can use embeddings from this space to efficiently distinguish
instances of different classes. Our framework builds a graph with the texts,
encodes the nodes in a low-dimensional space (the latent space)„ and then
reconstructs the original graph with a decoder. The encoder is composed
of a transformer layer, which introduces an attention mechanism, and a
convolutional layer for generating the embeddings.

We evaluate the embeddings for hate speech detection as a classification
task in small datasets. Moreover, we study the multi-domain and multilin-
gual settings, to experimentally analyze whether graphs can jointly represent
different types of information. Our contributions are the following ones1:

• We propose a graph auto-encoder for unsupervised representation learn-
ing on graph-structured data by reconstructing the initial graph. In
this framework, we incorporate a self-attention mechanism that allows
us to adapt the strengths of the Transformer model (Vaswani et al.,
2017b) in the generation of embeddings.

• We use the embeddings generated with this framework for hate speech
detection and show results that outperform state-of-the-art models in
data-poor settings, without using pre-trained word embeddings.

• We investigate the performance of our approach in multi-domain set-
tings, where the small amount of data once more highlights the poten-
tiality of our proposal.

• We extend the analysis for multilingual hate speech detection and use

1We will make our codes freely available by the publication date of this work.
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a strategy to aggregate prior knowledge about the language to obtain
outstanding results.

4.2 Related Work

Hate Speech Detection. Most of the works done to detect hate speech
are based on the analysis of textual instances. Other works have studied
the phenomenon at the author level (Rangel et al., 2021), where the idea
is to analyze a set of texts published by the same author to detect possi-
ble propagators of hate on the web. In general, the techniques used for hate
speech detection range from traditional machine learning models to methods
based on deep learning, such as convolutional neural networks and recurrent
neural networks, including attention mechanisms (Badjatiya et al., 2017;
Gröndahl et al., 2018; Magalhaes, 2019). Due to the nature of the task, it is
worth noting the models that take into account certain keywords that may
indicate hateful content. De la Peña Sarracén and Rosso (2021) proposed
an approach for keyword extraction based on the attention mechanism of
BERT and reasoning on a word graph. Experimental results highlighted
some points to consider when training models based on keywords. More-
over, De la Peña Sarracén and Rosso (2023) studied how models learn bias
towards relevant words in the training data. To extract the relevant words,
the authors proposed a keyword extraction method based on the harmonic
mean of relative frequencies and the discrimination between hateful and non-
hateful texts. In recent years, the bidirectional encoder representations from
Transformers (BERT) (Devlin et al., 2019c), as well as other transformer-
based models such as RoBERTa (Liu et al., 2019b) have been widely used
due to their ability to capture language phenomena (Mozafari et al., 2020b;
Samghabadi et al., 2020). In fact, they have been used in most systems with
outstanding results in shared tasks (Basile et al., 2019b; Zampieri et al.,
2020b; Mandl et al., 2019b). Moreover, Mozafari et al. (2019) investigated
the ability of BERT to detect hateful content on social media and the re-
sults showed a considerable performance in comparison to other existing
approaches. That is why we use this model to compare the results obtained
with our framework.

Graph Neural Network for Abusive Language Detection. Regarding
GNN-based models, the literature points out a number of strategies (Koncel-
Kedziorski et al., 2019; Shi et al., 2021a). Peng et al. (2018) proposed a
graph-based deep learning model to convert texts to graphs of words, and
then used graph convolution operations over the graph. Yao et al. (2019b)
represented documents and words as nodes to construct a graph and used a
convolutional graph neural network to learn embeddings of words and doc-
uments. As a result, the authors showed improvements over state-of-the-art
models for text classification. However, very little has been studied to employ
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strategies based on GNNs to address the problem of hate speech detection.
Mishra et al. (2019) proposed a convolutional graph neural network for cap-
turing the structure of online communities and the linguistic behavior of the
users. They showed that the resulting heterogeneous graph significantly ad-
vanced the state of the art in abusive language detection. Thus, to the best
of our knowledge, our method is the first proposal to learn embeddings in
an unsupervised way for the specific problem of hate speech detection.

4.3 Graph Auto-Encoders for Hate Speech Detec-
tion

In this section, we describe the preliminaries of the framework, followed by
details of our proposal.

4.3.1 Formalization

In this work, we consider hate speech detection as a classification problem
that involves the classes hate and not hate. The data comprises N sam-
ples, where each sample is given by {ti, yi}. The set {ti}Ni=1 is composed of
texts that are represented with numeric feature vectors {xi}Ni=1. In order to
generate these feature vectors we use Term Frequency - Inverse Document
Frequency (TFIDF) representation of each text in {ti}Ni=1.

TFIDF generates vectors from texts in such a way that often produces
lower scores for high frequency function words and increases scores for terms
that are more relevant in each text, it is well suited for tasks involving textual
similarity. Thus, we represent the texts as vectors with TFIDF scores, for
which we do not need external sources to train the initial vectors.

The set {yi}Ni=1 is composed of the labels 0 and 1, which indicate the
presence or not of hate in each of the texts in {ti}Ni=1. Then, hate speech
detection aims to assign one of the labels to each ti by using xi.

Our aim in the present work is to learn embeddings from xi in an un-
supervised way to improve the performance in hate speech detection when
N is small. Besides, we attempt to use this approach for multi-domain and
multilingual hate speech detection, due to the suitability of graphs to jointly
represent different types of information. In these cases {ti}Ni=1 = ∪m{tmi }Sm

i=1,
where m represents each of the M domains or languages and Sm its size, such
that N =

∑M
m=1 Sm.

We address the problem by using a graph auto-encoder framework. Fol-
lowing, we describe our framework in detail.

4.3.2 Background: Graph Auto-Encoders

Graph neural networks (GNNs) are models based on deep learning to op-
erate on the graph domain. In particular, Graph Auto-Encoders (GAEs)
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are unsupervised learning frameworks which encode nodes or graphs into a
latent vector space. Therefore, they can be used to learn embeddings. In
general, they are trained with the aim of reconstructing their original graph
input. First, an encoder takes a graph as its input and compresses it into a
low-dimensional vector. Then, a decoder takes this vector representation and
attempts to generate a reconstruction of the original input. Encoder-decoder
pair is designed to minimize the loss of information between the input graph
and the output graph (Wu et al., 2021).

Formally, let G = (V,E) be a graph, where V and E represent the set of
nodes and edges respectively. Let X ∈ R|V |×d be a matrix containing the fea-
tures of the nodes, such that the i−th row is a d-dimensional feature vector of
the i− th node. Moreover, let A ∈ R|V |×|V | be a matrix representation with
a representative description of the graph structure, such as the adjacency
matrix. A GAE takes as input the matrices X and A to learn a function
Z = enc(X,A) and produces a latent representation Z ∈ R|V |×d′ (embed-
dings), where d′ < d is the number of features of the nodes in the latent
representation. Then, Z is used to produce an approximate reconstruction
output Â = dec(Z) such that the error between A and Â is minimized for
preserving the global graph structure. Both functions enc(·, ·) and dec(·) are
often defined through stacked layers.
Graph convolutional layer (GCL) re-defines the notion of convolution for
graph data and is widely used as propagation operators for GNNs in general.
The main idea is to operate directly on a graph and induce the embedding
vectors of nodes based on the properties of their neighbors. A GCL takes as
input the matrices X and A and generates a representation H = f(X,A),
where f(·, ·) is a propagation rule. Kipf and Welling (2017a) introduced the
propagation rule (4.1), where W is a weight matrix and σ(·) is an activation
function. The matrix Ã = A + I (I is the identity matrix) contains self-
connections to aggregate, for each node, not only the information from its
neighbors but also the node itself. Moreover, the matrix D is the diagonal
node degree matrix of Ã, which is used for a symmetric normalization to
deal with the problem of changing the scale of the feature vectors.

f(X,A) = σ(D− 1
2 ÃD− 1

2XW ) (4.1)

Graph transformer layer (GTL) adapts the multi-head attention of
Transformer (Vaswani et al., 2017b) for graph learning. This was introduced
for Shi et al. (2021c) considering the case of edge features. Given the fea-
tures vectors X = {xi}Ni=1, they generate new features vectors X̂ = {x̂i}Ni=1

by calculating multi-head attention for each node i with its neighbors N (i):

qc,i = Wc,qxi , kc,j = Wc,kxj , vc,j = Wc,vxj

ec,ij = Wc,eeij

αc,ij = softmax(
qc,i(kc,j + ec,ij)√

dc
)
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ri = Wrxi

x̂i = ri +
1

C

C∑
c=1

[
∑

j∈N (i)

αc,ij(vc,j + ec,ij)]

where c represents each head, dc its hidden size and C the total number of
heads. The vectors qc,i, kc,j and vc,j correspond to the ’query’, ’key’, and
’value’ vectors respectively, and ec,ij is a representation for the edge between
i and j. Wc,q, Wc,k, Wc,v and Wc,e are the parameters in the head c. Notice
that a term ri is calculated to add a gated residual connection between layers.

4.3.3 Auto-Encoder Architecture

Figure 4.1 illustrates our auto-encoder. In order to generate the input for
the model, we build the matrix X with the set of numeric feature vectors
{xi}Ni=1, such that each vector is a row in X. On the other hand, we build the
edges among nodes, to generate the matrix A, based on the inner product
of the feature vectors. Then, the weight of each edge is defined by the inner
product between the original vectors. We only consider edges between node
pairs with values higher than a threshold (positive edges). The rest of the
node pairs are considered as non-existent edges (negative edges).

Figure 4.1: Auto-encoder architecture.

The encoder in our model stacks two layers. The first one is a GTL and
the second one is a GCL. In particular, we use a GTL to enrich the node
embeddings with attentive information propagation between nodes. Thus,
the encoder uses a GTL as the first layer to determine the relevance between
nodes and their neighbors by leveraging the advantages of the attention
mechanism among nodes. In this sense, we adopt the proposal of Shi et al.
(2021c) by considering only nodes and using a unique head. Hence, we
transform the input X matrix as (4.2).

αij = softmax(
(Wqxi)

TWkxj√
d

)

x̂i = Wrxi +
∑

j∈N (i)

αij(Wvxj)
(4.2)
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The second and final layer is based on the propagation rule (4.1) and the
ReLU as the activation function. The input of this layer is composed of the
new matrix X̂ and the matrix A. Thus, we obtain the output of the encoder
as (4.3), where Wc is a parameter matrix.

Z = enc(X,A) = ReLU(D− 1
2 ÃD− 1

2 X̂Wc)

Encoder
(4.3)

The decoder implements the idea of the GAE of Kipf and Welling (2016).
Thus, we base on the inner product of the embeddings to generate Â. The
aim is to decode node relational information from the embeddings by re-
constructing A as (4.4) defines. Then, the auto-encoder (4.5) is trained
by minimizing the negative cross entropy given the real matrix A and the
reconstructed matrix Â.

Â = dec(Z) = sigmoid(ZZT )

Decoder
(4.4)

Â = GAE(X,A) = dec(enc(X,A))

Auto− Encoder
(4.5)

4.4 Experimental Design

In this section, we present our methodology for the empirical evaluation of
the capability of our framework for unsupervised learning of embeddings.
We also present the used dataset and details for the reproduction of the
experiments.

4.4.1 Dataset

We evaluate our proposed auto-encoder framework on the XHate-999 dataset
(Glavaš et al., 2020), which was built for abusive language detection. This
dataset is composed of large training and validation sets of English texts,
and a small multi-domain and multilingual test set. The test set contains
text of six typologically diverse languages: English (EN), German (DE),
Russian (RU), Turkish (TR), Croatian (HR), and Albanian (SQ). For each
language, there are three distinct domains: Fox News (GAO) with 99 sam-
ples, Twitter/Facebook (TRAC) with 300 samples, and Wikipedia (WUL)
with 600 samples, for a total of 999 samples per language. We only rely on
the test set since our purpose is to study the data-poor settings as well as
the multi-domain and multilingual perspective.
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4.4.2 Experimental Setup

For each experiment, we set the size of the vectors generated with the GTL
in the encoder to 32 and the size of the output of the GCL to 16. The auto-
encoder was trained using batches of 32 instances and the Adam optimizer
with a learning rate of 0.01, in 200 epochs with the strategy of early stopping
with patience of 10. For the threshold used in the generation of the matrix A,
we searched in {0.01, 0.1, 0.5}, but realized that a value close to the average
of the weights calculated for the pairs of vectors fitted in a better way, hence
we set this value to 0.07.

In the evaluation, we first visualize the embeddings in the latent repre-
sentation, generated with the encoder of our graph auto-encoder. We also
visualize the initial vectors (TFIDF) to visually compare both representa-
tions.

Secondly, we evaluate the capacity of the embeddings on the task of
node classification to study the performance of hate speech detection. In
this sense, we use a classifier of two fully connected layers of 32 neurons with
the ReLU activation function and the softmax function in the last layer to
generate the predictions. This classifier was used to obtain prediction for
the texts with the initial representation and on the other hand, with the
embeddings obtained with our encoder. Hence, we can compare the results
of classification between them. In both cases, the classifier was trained with a
size of batch 32, using the Adam optimizer with a learning rate of 0.01, in 10
epochs. For the test we separated the 30% of the data and the rest was used
to train. That is, we used 30% from the test set of the XHate-999 dataset
for testing and the other 70% for training. We ran all the experiments five
times and report the average scores.

4.5 Embeddings Evaluation

In this section, we analyze the mono-domain and mono-lingual evaluation.
Therefore, we focus on each domain and each language separately.

4.5.1 Analysis of Latent Representation

In order to better analyze the generated embeddings by our encoder, we use
t-SNE (Pezzotti et al., 2017a) to visualize the initial and the latent repre-
sentation of the vectors, corresponding to the hateful and non-hateful texts.
As an illustration, Figure 4.2 shows the results for the texts in English in
each of the domains GAO, TRAC, and WUL. In each case, the represen-
tation for the initial vectors (with TFIDF) is visualized on the left, and on
the right there is the latent representation (embeddings). We can see that
our model can be used to distinguish both classes since the separation be-
tween hateful texts (red points) and non-hateful texts (green points) is more
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evident. Then, with this representation, a simple algorithm can be used to
separate both types of texts. Similar behavior was observed for the rest of
the languages.

(a) GAO - Initial (b) GAO - Embeddings

(c) TRAC - Initial (d) TRAC - Embeddings

(e) WUL - Initial (f) WUL - Embeddings

Figure 4.2: Representation for English texts with t-SNE.

4.5.2 Evaluation for Hate Speech Detection

The results for hate speech detection, using both the initial vectors and
the embeddings, are summarized in Figure 4.3. In general, we observe an
improvement by using the embeddings as the input in the classifier. Thus, we
can verify the suitability of the embeddings to discriminate among classes.
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(a) GAO (b) TRAC

(c) WUL

Figure 4.3: F1 in Hate Speech Detection.

Notice that the results between both variants were similar only for the
case of Russian texts in the TRAC domain. Figure 4.4 illustrates the initial
and latent representation for Russian, where we can see that in the TRAC
domain, it is more difficult to learn embeddings that allow discriminating
between classes. This suggests that in this domain and language, the hate-
ful and non-hateful texts are more similar. In future work, we will try to
increase the number of convolutional layers in the encoder to make a deeper
propagation and analyze if this case improves. Anyway, for GAO and WUL
in this same language, we observe better performance for the embeddings.

4.6 Multi-domain Evaluation

Besides the mono-domain evaluation, we focus on the multi-domain setting.
In this case, the set of texts for the input of the auto-encoder is composed
of three different types of data per language i.e. {ti}Ni=1 = {tGAO

i }99i=1 ∪
{tTRAC

i }300i=1 ∪ {tWUL
i }600i=1.

In order to compare our classification results with a state-of-the-art model
we use the multilingual BERT (mBERT) (Devlin et al., 2019c) and XLM-R
(Conneau et al., 2020a). We used the HuggingFace Transformers framework2

2https://github.com/huggingface/transformers
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(a) GAO - Initial (b) GAO - Embeddings

(c) TRAC - Initial (d) TRAC - Embeddings

(e) WUL - Initial (f) WUL - Embeddings

Figure 4.4: Representation for Russian texts with t-SNE.

with the pre-trained models bert-base-multilingual-cased and xlm-roberta-
base. For these models, the input is composed of the texts {ti}Ni=1 instead
of the vectors {xi}Ni=1. For fine-tuning we used the same setup that we
presented above for the classifier that we use to evaluate our embeddings.
The only difference is that we set the learning rate to 2e-5.

Note that Glavaš et al. (2020) reported the results on the entire test set.
In our experiments, we used a part of the test set 3 times. That is why we
reproduced the experiments of that paper with mBERT and XLM-R using
the same data that we used to evaluate our framework. Anyway, we observed
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GAE
GAO TRAC WUL

EN 0.9714.018 0.8301.025 0.9424.007
DE 0.9565.022 0.9900.017 0.9569.011
RU 0.6667.014 0.7238.010 0.8453.014
TR 0.7826.008 0.7567.030 0.8936.021
HR 0.8799.030 0.8214.023 0.8958.017
SQ 0.9565.011 0.9600.011 0.9673.026

XLM-R
GAO TRAC WUL

EN 0.5909.041 0.7245.022 0.8538.034
DE 0.6857.031 0.7272.014 0.8635.049
RU 0.5754.009 0.7070.005 0.8384.041
TR 0.5171.011 0.7371.017 0.8199.036
HR 0.5050.047 0.6377.041 0.8384.047
SQ 0.5642.041 0.7148.016 0.8231.041

Table 4.1: F1 in Multi-domain Hate Speech Detection.

All
GAE XLM-R mBERT

EN 0.8333.010 0.5642.047 0.5111.053
DE 0.9565.014 0.4545.038 0.4850.045
RU 0.8333.001 0.4923.061 0.4527.031
TR 0.8799.004 0.6192.043 0.3864.057
HR 0.8461.012 0.6459.039 0.4545.044
SQ 0.9565.002 0.4978.021 0.4457.046

Table 4.2: F1 in Multi-domain Hate Speech Detection for all domains.

that the reported results in that paper do not exceed 0.90 of F1.

Results and Discussion. Tables 4.1 and 4.2 summarizes the results of
these experiments. The results obtained by using our embeddings are iden-
tified with the acronym GAE. In particular, Table 4.2 illustrates the results
in the multi-domain setting per language. While Table 4.1 corresponds to
the results obtained for each domain separately.

We observe two interesting points. First, GAE seems to be more stable
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in data-poor settings. We verify outstanding results even in GAO, which
is the domain with the least amount of data. In contrast, the smaller the
dataset, the worse the results obtained with XLM-R. Notice that for all
the languages, the best results of XLM-R were in the WUL domain, which
is the larger one. This confirms the findings of Yao et al. (2019b), where
the authors use a model based on a convolutional graph neural network for
text classification, and point out that the improvement over state-of-the-art
models becomes more prominent as the percentage of training data is lower.

On the other hand, we note that XLM-R and mBERT obtain the worst
results in the multi-domain setting. This suggests that heterogeneous data
can affect the performance of these models. The behavior is different for
GAE. Although we do not see any gains moving from the mono-domain,
we do not observe a considerable decrease. This suggests the suitability
of our framework to deal not only with data-poor settings but also with
heterogeneous data.

4.7 Multilingual Evaluation

In order to evaluate the multilingual perspective, we consider the com-
bination of all the languages. Therefore, the set of texts for the input
of the auto-encoder is composed of six different languages per domain i.e
{ti}Ni=1 = ∪m∈L{tmi }6×S

i=1 , where S is the number of samples in the specific
domain and L = {EN,DE,RU, TR,HR, SQ}. Then, we use three datasets,
one per domain. The size of the dataset in GAO is 594 (6*99), in TRAC is
1800 (6*300), and in WUL is 3600 (6*600).

For comparison, we use mBERT and XLM-R as in the multi-domain
evaluation.

Results and Discussion Table 4.3 illustrates the results of the multilingual
evaluation. We observe that mBERT and XLM-R outperform the classifier
that uses our embeddings. In fact, the results obtained with our frame-
work decrease considerably. This makes sense since no knowledge about the
difference between the languages has been added to the learning of our em-
beddings. Whereas mBERT and XLM-R have been trained with large data
collections that include the languages of the datasets.

For this reason, we use a strategy to incorporate language knowledge in
the input of our graph auto-encoder with the embeddings from the Univer-
sal Sentences Encoder (USE)3 (Cer et al., 2018a). The results of this new
variant (GAE-USE) are also shown in Table 4.3. In this way, the use of
the embeddings once again improves the results obtained with mBERT and
XLM-R.

3https://tfhub.dev/google/universal-sentence-encoder/4
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Domain GAO TRAC WUL
GAE 0.3972.090 0.6858.062 0.6255.058
GAE-USE 0.9308.011 0.9598.005 0.9491.021

mBERT 0.7047.054 0.7952.080 0.8939.072
XLM-R 0.7349.015 0.8585.012 0.9303.008

Table 4.3: F1 in Multilingual Hate Speech Detection.

Adding Language Knowledge. In order to add information about the
languages, we change the strategy to represent {ti}Ni=1 as {xi}Ni=1. In this
case, instead of using TFIDF, we use the multilingual model of the universal
sentences encoder (USE)4. This model was trained on several data sources
and tasks to dynamically adapt a wide variety of natural language under-
standing tasks. The input is a text of variable length and the output is a
512 dimensional vector.

(a) USE - Initial (b) USE - Embeddings

(c) TFIDF - Initial (d) TFIDF - Embeddings

Figure 4.5: Multilingual Representation with t-SNE for the TRAC domain.

Figure 4.5 illustrates the representation of the initial vectors on the left
and the latent representation (embeddings) on the right. This only corre-
sponds to the case of TRAC, but we observed similar behavior in the other

4https://tfhub.dev/google/universal-sentence-encoder-multilingual-large/3
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two domains. The two first Figures 4.5a and 4.5b show the representation
when we add knowledge about languages with USE. In the initial represen-
tation, we observe six groups (marked with red circles) that suggest the six
different languages that the input contains. In the latent representation, we
observe a division among classes, similar to the ones obtained in the mono-
lingual evaluation. Therefore, it seems that our framework can be useful to
deal with multilingual datasets by adding prior knowledge of the languages.

On the other hand, Figures 4.5c and 4.5d show the representations ob-
tained by using TFIDF. That is the case where no knowledge about languages
is added. An interesting phenomenon in the embeddings generated with our
encoder is that separated groups of points with both types of points (red and
green) can be identified. It seems that the encoder has learned the difference
among languages instead of the difference between the classes hate and not
hate. In this sense, we note that this representation is somewhat similar
to the initial representation obtained with USE. Therefore, the embeddings
learned with our framework could improve by adding more layers to the en-
coder. Therefore, we attempt to adapt the proposal of Li et al. (2019) as
future work. In that paper, the authors present a way to successfully train
a very deep convolutional graph neural network.

4.8 Conclusion and Future Work

In this work, we proposed a graph auto-encoder framework to learn embed-
dings of a set of texts in an unsupervised way. The auto-encoder receives an
initial vector representation of the texts and the relation among them in the
form of a graph, to generate a low-dimensional representation. Then, the
embeddings are extracted from this latent representation. In this sense, we
built the encoder with a sequence of a transformer layer and a convolutional
layer to consider the information of the graph structure in the learning of
the embeddings. We used this framework for hate speech detection by using
the embeddings as input of a classifier. In the evaluation, we considered
multi-domain and multilingual settings with small datasets. We observed
promising results by outperforming mBERT and XLM-R, one of the state-
of-the-art models in hate speech detection. We noticed that the improvement
by using the embeddings generated with our auto-encoder became more no-
table in small data, suggesting the suitability of our proposal to deal with
data-poor settings. Moreover, we observed that the use of our embeddings
was more stable in multi-domain settings. In the case of multilingual set-
tings, we had to add prior knowledge about languages to avoid a decrease in
performance.

As future work, we will extend our analysis by building a deeper encoder.
The idea is to investigate if it is possible to learn the embeddings for a
multilingual setting without the need of prior knowledge about the languages.
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Moreover, we will adapt our graph auto-encoder to encode not only text but
also visual information. Thus, we will be able to deal with multimodal hate
speech detection.

Acknowledgements

This research work was partially funded by the Spanish Ministry of Science
and Innovation under the research project MISMIS-FAKEnHATE on Misin-
formation and Miscommunication in social media: FAKE news and HATE
speech (PGC2018-096212-B-C31). The first author gratefully acknowledges
the support of the Pro2Haters - Proactive Profiling of Hate Speech Spread-
ers (CDTi IDI-20210776) and XAI-DisInfodemics: eXplainable AI for disin-
formation and conspiracy detection during infodemics (MICIN PLEC2021-
007681) R&D grants. The work of the first author was also partially funded
by the Centre for the Development of Industrial Technology (CDTI) of the
Spanish Ministry of Science and Innovation under the research project IDI-
20210776 on Proactive Profiling of Hate Speech Spreaders - PROHATER
(Perfilador Proactivo de Difusores de Mensajes de Odio). Moreover, the
work of the second author was partially funded by the Generalitat Valen-
ciana under DeepPattern (PROMETEO/2019/121).

85



86



Chapter 5

Convolutional Graph Neural
Networks for Hate Speech
Detection in Data-Poor
Settings
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Graph Neural Networks for Hate Speech Detection in Data-Poor Set-
tings. International Conference on Applications of Natural Language
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Abstract. Hate speech detection has received a lot of attention in recent
years. However, there are still a number of challenges to monitoring hateful
content on social media, especially in scenarios with little data. In this paper,
we propose HaGNN, a convolutional graph neural network that is capable
of performing an accurate text classification in a supervised way with a
small amount of labeled data. Moreover, we propose Similarity Penalty, a
novel loss function that considers the similarity among nodes in the graph
to improve the final classification. Particularly, our goal is to overcome hate
speech detection in data-poor settings. As a result, we found that our model
is more stable than other state-of-the-art deep learning models with little
data in the considered datasets.

5.1 Introduction

Hate speech detection is a prominent task in Natural Language Processing
and other disciplines. According to Fortuna and Nunes (2018b), which is a
reference survey in the area, hate speech can be defined as a language that
attacks or diminishes, that incites violence or hate against groups, based on
specific characteristics such as physical appearance, religion, gender identity
or other, and it can occur with different linguistic styles, even in subtle
forms or when humor is used. Due to its negative real-life implications, a
number of proposals to face the problem have emerged in the last few years.
Among them, deep learning has gained significant traction, highlighting the
state-of-the-art performance of the transformer-based models (Isaksen and
Gambäck, 2020). However, hate speech is a complex phenomenon and human
annotation is not straightforward, since there is no uniformity across all
demographics. Then, expert-based datasets are usually small, especially in
low-resource languages.

In order to deal with this limitation, we use a strategy based on graph
neural networks (GNNs) which have been effective at tasks thought to have
a rich relational structure, since they can preserve global structure informa-
tion of a graph in embeddings (Zhou et al., 2020). In this sense, our idea is
to represent the texts from a dataset as nodes in a graph and learn embed-
dings in terms of neighborhood aggregation. Thus, we do not need a large
amount of data, such that we make use of limited labeled data by allowing
information propagation through our automatically constructed graph.

The motivation derives from the strong representation learning capabil-
ity of GNNs, which have gained practical significance in several applications.
In general, GNNs generalize the deep neural network models to graph struc-
tured data, providing a way to effectively learn representations for graph-
structured data either from the node level or the graph level. Wu et al.
(2021) provide a practical overview of the different types of GNNs by pre-
senting a taxonomy that divides them into four categories: recurrent graph

88



neural networks, convolutional graph neural networks, graph auto-encoders,
and spatial-temporal graph neural networks. We focus on convolutional
graph neural networks (CGNNs) which redefine the notion of convolution
for graph data (Kipf and Welling, 2017a). The main idea is to generate a
representation for each node by aggregating its features and the features of
its neighbors. Then, high-level node representations are extracted by stack-
ing multiple graph convolutional layers. The use of this type of GNN is
inspired by Yao et al. (2019b) that proposed a graph representation of docu-
ments and words together, and showed an improvement of GNNs over other
methods with small training sets.

Our Contributions: The novelty of this work is three-fold. First, we
propose a model based on CGNNs for text classification in a data-poor set-
ting. Particularly, we study the case of hate speech detection where it is
often difficult to obtain an expert-based large dataset due to the complexity
of the task. Secondly, we propose a loss function to improve the final em-
beddings of the nodes in the graph by penalizing the closeness among nodes
of different classes. Finally, we provide a comparison of HaGNN and other
models. We show that our model is robust with a small amount of data,
outperforming state-of-the-art models in these few data scenarios1.

5.2 HaGNN Model

In this section, we formalize CGNNs and describe the way we use them in
our system, followed by other details of our proposed loss function.

5.2.1 Hate Speech Detection

In this work, we formalize hate speech detection as a binary classification,
such that the task involves the classes hate and not hate. The data com-
prises N samples, where each sample is given by {ti, yi}. The set {ti}Ni=1 is
composed of texts that are represented with numeric feature vectors {xi}Ni=1.
In order to generate these feature vectors we use the universal sentences en-
coder (USE)2 (Cer et al., 2018b), which encodes text into high-dimensional
vectors. The model was optimized for greater-than-word length texts, such
as sentences or short paragraphs. It was trained on several data sources and
tasks to dynamically adapt a wide variety of natural language understanding
tasks. The input is an English text of variable length and the output is a
512 dimensional vector. The set {yi}Ni=1 is composed of the labels 0 and 1,
which indicate the presence or not of hate in each of the texts in {ti}Ni=1.
Then, the aim of the task is to detect hateful content by assigning one of the
labels to each ti by using xi.

1We will make our codes freely available by the publication date of this work
2https://tfhub.dev/google/universal-sentence-encoder/4
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Our goal is to obtain an accurate performance in hate speech detection
when N is small. We address the issue by adapting CGNNs from a node
level classification. Following, we describe the CGNN model and the loss
function used.

5.2.2 Background: Convolutional Graph Neural Networks

Graph neural networks are models based on deep learning for graph-related
tasks in an end-to-end manner. In particular, a CGNN redefines the notion
of convolution for graph data. This is a multi-layer neural network that
operates directly on a graph and induces the embedding vectors of nodes
based on the properties of their neighbors. Formally, let G = (V,E) be a
graph, where V and E represent the set of nodes and edges respectively. Let
X ∈ R|V |×d be a matrix containing the features of the nodes, such that the
i− th row is a d-dimensional feature vector of the i− th node. Moreover, let
A ∈ R|V |×|V | be a matrix representation with a representative description of
the graph structure, such as the adjacency matrix.

Then, CGNN takes as input the matrices X and A to learn a function of
features on G and produces a node-level output ϕ. That is a |V |×d′ feature
matrix, where d′ is the number of output features per node. A hidden layer
in a CGNN can be defined as a function Hi = f(Hi−1, A)), where H0 = X,
HL = ϕ, L is the number of layers, and f(·, ·) is a propagation rule. Thus,
the feature vectors become more abstract at each consecutive layer.

Kipf and Welling (2017a) introduced the propagation rule (5.1). Where
Wi is the weight matrix for the i−th layer and σ(·) is an activation function.
The matrix Â contains self-connections to aggregate, for each node, not only
the information from its neighbors but also the node itself. It is done by
adding the identity matrix I, that is Â = A + I. Furthermore, the matrix
D is the diagonal node degree matrix of Â, which is used for a symmetric
normalization to deal with the problem of changing the scale of the feature
vectors.

f(Hi−1, A) = σ(D− 1
2 ÂD− 1

2HiWi) (5.1)

5.2.3 Our Model

In order to generate the input for the model, we build the matrix X with the
set of numeric feature vectors {xi}Ni=1, such that each vector is a row in X.
On the other hand, we build the edges among nodes, to generate the matrix
A, based on the inner product of the feature vectors. Then, the weight of
each edge is defined by the inner product between the original vectors. We
only add edges between node pairs with values higher than a threshold.

Once the matrices are generated, we feed our model. This consists of 2
convolutional layers with the propagation rule (5.1) and the ReLU as the
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activation function. Moreover, we add a normalization layer after each con-
volutional layer. Finally, we add two linear transformation layers and a soft-
max to obtain the nodes classification, as Equations (5.2), (5.3) and (5.4),
where A∗ = D− 1

2 ÂD− 1
2 .

H1 = ReLU(A∗XW0) (5.2)

H2 = ReLU(A∗H1W1)W
L
1 (5.3)

Z = softmax(H2W
L
2 ) (5.4)

In each case Wi corresponds to the parameters of the convolutional layers
and WL

i are the parameters of the linear layers.

5.2.4 Proposed Loss: Similarity Penalty

The loss function is defined using the binary cross-entropy CE over the labeled
samples. In addition, we introduce a novel loss function which is a combina-
tion of the CE and a function DP that considers the closeness among nodes
in the graph. Equation (5.5) presents this combination, where θ represents
the set of all the parameters of the model. The idea with DP is to penalize
each pair of nodes from different classes with a high similarity between their
generated embeddings. We use as the generated embedding ϕ the output of
the last convolutional layer, and the cosine function to calculate the similar-
ity between vectors. As Equation (5.8) illustrates, we rely on the function
g(x) = 1− log(x+ 1) which is positive and decreasing in the interval of the
similarity values. The term |yi − yj | ensures only penalization for the pair
of nodes from different classes by multiplying by zero the cases of pairs of
vectors from the same class.

L(θ) = m_CE +m_DP (5.5)

m_CE =
1

N

∑
n

CE(θ, xn, yn) (5.6)

m_DP =
2

N(N − 1)

∑
i

∑
j>i

|yi − yj |log_dist(xi, xj) (5.7)

log_dist(xi, xj) = 1− log(dist(ϕ(xi), ϕ(xj)) + 1) (5.8)
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5.2.5 Training the Model

The training is also based on Kipf and Welling (2017a) which describes a
semi-supervised classification. In this sense, we divide the data into labeled
(90%) and unlabeled (10%) texts. The aim is to make use of both labeled
and unlabeled examples. That is, the training knows all the nodes, but not
all the labels. Then, CGNN produces a latent feature representation of each
node by aggregating both the labeled and unlabeled neighbors of each node
during convolution, and the weights shared across all nodes are updated by
propagating backward the loss calculated from the labeled examples.

5.3 Experiments

We illustrate the performance of our HaGNN model with two datasets built
for hate speech detection: HatEval (Basile et al., 2019b) and CONAN (Chung
et al., 2019). The second one has the characteristic that non-hateful texts
are counter-narrative to hate speech, which makes it interesting to discover
how CGNNs can separate both types of texts.
HatEval was Task 5 in SemEval 2019 about the detection of hate speech
against immigrants and women in Spanish and English tweets. The corpus
is composed of 10,000 tweets in English. The tweets were collected by three
strategies: monitoring potential victims of hate accounts, downloading the
history of identified haters, and filtering tweets with three groups of terms:
neutral keywords, derogatory words against the targets, and highly polarized
hashtags. The first task was to detect hate speech and then to identify further
features in hateful content such as whether each text was aggressive or not.
CONAN is a large-scale and multilingual corpus of hate speech/ counter-
speech pairs. This corpus contains texts in English, French, and Italian,
and the pairs were collected through nichesourcing to three different non-
governmental organizations. Both the hate speech and the responses are
expert-based. We only use the 3864 pairs in English that we downloaded
from the web.3

For the hyperparameters setting we searched in the set {16, 32, 64} for the
size of both convolutional and linear layers, in {0.3, 0.5, 0.7} for the thresh-
old used in the generation of the matrix A, and in {0.0001, 0.001, 0.01, 0.1}
for the learning rate. Finally, we set the threshold to 0.5, the size of the
hidden layers to 32, and we use the Adam optimizer with a learning rate
of 0.01. We trained the model with 200 epochs and the strategy of early
stopping with patience 10. We report the results obtained with this last
configuration of hyperparameters, using the cross-validation strategy with 3
partitions. Moreover, we evaluated different number of convolutional layers
and observed an improvement by using two layers instead of only one. How-

3https://github.com/marcoguerini/CONAN
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Figure 5.1: Varying number of layers

ever, we observed that the results remained similar for a number of layers
greater than two as Figure 5.1 shows.

In order to compare with other models we evaluated other classifiers. The
first one is based on BERT (Devlin et al., 2019c) and the other one is based
on ALBERT (Lan et al., 2020). These are transformer-based models with
state-of-the-art results, not only in text classification but also in many other
tasks. Furthermore, we evaluated a feedforward neural network (FFNN) of 2
layers with the same input that we use for HaGNN. We aim to analyze if the
performance improvement is attributed to the proposal beyond the sentence
embedding.

5.4 Results

In order to analyze the embeddings generated with the CGNN, Figures 5.2a
and 5.2b illustrate a visualization of CONAN, and 5.2c and 5.2d for Hat-
Eval with t-SNE (Pezzotti et al., 2017a,b). We observe the effectiveness
of the convolutions since in the last layer (2nd) the embeddings are more
distinguishable between classes than between the original vectors. Similar
variations in embedding representations are obtained for HatEval. On the
other hand, Table 5.1 shows the average of F1 and standard deviation ob-
tained with our model. The results of classification are slightly higher, but
not significant for CONAN by using our loss function. However, for HatEval,
we can see an important improvement. Moreover, we observe an improve-
ment in comparison to FFNN, where we use the same sentence embedding
but change the model. This shows the suitability of our proposal.

Furthermore, Figures 5.3a and 5.3b show a comparison among HaGNN,
BERT, and ALBERT for HatEval and CONAN respectively. We note that
HaGNN obtains a better F1 with few data. Such that, with only 100 samples,
it achieves 0.8148 in CONAN, while the other models obtain less than 0.62.
In HatEval, the results obtained by HaGNN with 100 samples are not so high,
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(a) Original vectors of CONAN (b) Last layer of CONAN

(c) Original vectors of HatEval (d) Last layer of HatEval

Figure 5.2: Embeddings

model HatEval CONAN
HaGNN 0.73200.0165 0.94070.0302
HaGNN + DP 0.75000.0170 0.94990.0231
FFNN 0.70940.0204 0.89250.0319
BERT 0.72000.0189 0.93540.0204
ALBERT 0.72080.0248 0.9310.02505

Table 5.1: F1 and standard deviation of HaGNN.

although are higher than the results of the other models. Moreover, we can
see that as the data size increases, Bert and Albert have better performance.
Such that, around the size 500 the approaches are closer.

5.5 Conclusions and Future Work

In this work, we propose the HaGNN model to address hate speech detection
in scenarios with few data. The model is based on convolutional graph
neural networks and we proposed a new loss function to penalize nodes from
different classes with close generated embeddings. We show that HaGNN
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(a) HatEval (b) CONAN

Figure 5.3: F1 score for different sizes of data

is robust in small datasets, outperforming state-of-the-art models in these
scenarios. In future work, we attempt to extend this model for handling
multimodal datasets.
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Part III

Data Augmentation

In this third part, we address the problem few-shot cross-lingual
transfer learning in abusive language detection. We explore data
augmentation techniques to deal with the problem of data scarcity
that can lead to a high estimation error in few-shot learning.
These techniques are based on the principle of vicinal risk min-
imization that aims to increase the data in the vicinity of the
few-shot samples. We explore two existing techniques and pro-
pose a variant of one of them.
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Chapter 6

Vicinal Risk Minimization for
Few-Shot Cross-lingual
Transfer in Abusive Language
Detection
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Abstract. Cross-lingual transfer learning from high-resource to medium
and low-resource languages has shown encouraging results. However, the
scarcity of resources in target languages remains a challenge. In this work,
we resort to data augmentation and continual pre-training for domain adap-
tation to improve cross-lingual abusive language detection. For data augmen-
tation, we analyze two existing techniques based on vicinal risk minimization
and propose MIXAG, a novel data augmentation method that interpolates
pairs of instances based on the angle of their representations. Our experi-
ments involve seven languages typologically distinct from English and three
different domains. The results reveal that the data augmentation strategies
can enhance few-shot cross-lingual abusive language detection. Specifically,
we observe that consistently in all target languages, MIXAG improves sig-
nificantly in multidomain and multilingual environments. Finally, we show
through an error analysis how the domain adaptation can favor the class of
abusive texts (reducing false negatives), but at the same time, declines the
precision of the abusive language detection model.

6.1 Introduction

Few-shot learning (FSL) is a machine learning paradigm that allows models
to generalize from a small set of examples (Wang et al., 2020b, 2023). Unlike
traditional methods, FSL does not require training a model from scratch.
Instead, pre-trained models are extended with just a little information, which
is useful when training examples are scarce or data annotation is expensive.

Transfer learning is popularly used in few-shot learning, where the prior
knowledge from a source task is transferred to the few-shot task (Pan and
Yang, 2010; Pan et al., 2019). Usually, training data is abundant in the source
task, while training data is low in the target task. In natural language pro-
cessing, few-shot cross-lingual transfer learning (Glavaš et al., 2020; Schmidt
et al., 2022; Winata et al., 2022) is the type of few-shot transfer learning in
which the source/target tasks are the same but the source/target languages
are different. A pre-trained multilingual model is first fine-tuned in a high-
resource language and then fine-tuned on a few data in a target language
(Zhao et al., 2021).

Due to the limited availability of examples in the target language, naive
fine-tuning can lead to overfitting and thus poor generalization performance
on the few-shot task (Parnami and Lee, 2022). A strategy usually used to
alleviate this problem, not just in the few-shot cross-lingual transfer but in
FSL in general, is to increase the number of samples of the few-shot task
from prior knowledge. This is the data-level approach (Chen et al., 2023),
which can be divided into two categories: 1) transforming samples from the
few existing examples (Arthaud et al., 2021; Zhou et al., 2022; Zhang et al.,
2022) and 2) transforming samples from external datasets (Antoniou and
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Storkey, 2019; Rosenbaum et al., 2022; Pana et al., 2023).
Contributions. In this work, we explore abusive language detection

in seven topologically diverse languages via few-shot cross-lingual transfer
learning at the data-level. Although a number of studies have examined
abusive language, we aim to take advantage of resources available for English
in other less explored and low-resource languages. We focus on two aspects:
1) considering languages that are typologically distinct from English and
2) with little effort. Previous works focus on languages that are similar to
English, such as European languages (Stappen et al., 2020b; Nozza, 2021;
Rodríguez et al., 2021; Firmino et al., 2021; Zia et al., 2022; Castillo-López
et al., 2023). In contrast, we analyze languages that are more different from
English. ‘Little effort’ refers to a consistent strategy across all languages,
without requiring external resources or ad hoc processing for each particu-
lar language. The main contributions of this paper can be summarized as
follows:

- Dataset extension: We rely on a multidomain and multilingual dataset
for abusive language detection (Glavaš et al., 2020). This dataset contains
texts in 5 languages which have been obtained by translating original English
texts. To facilitate a more comprehensive evaluation, we extend the dataset
by manually translating it into Spanish.

- Few-shot cross-lingual transfer learning improvement at data-level: We
rely on Vicinal Risk Minimization (VRM) (Chapelle et al., 2000) to generate
synthetic samples in the vicinity of the examples to increase the amount of
information to fine-tune the model in the target language. In this work we
use three VRM-based techniques: 1) SSMBA (Ng et al., 2020), which uses
two functions to move randomly through a variety of data, 2) MIXUP (Zhang
et al., 2018), which linearly combines pairs of examples to obtain new samples
and 3) MIXAG, our variant of MIXUP, which controls the angle between an
example and the synthetic data generated in its neighborhood.

- Unsupervised language adaptation: We also simulate a fully unsuper-
vised setup, removing the label information from the target languages. In
that setup, we examine a strategy to address the lack of information that
zero-shot transfer (no example to fine-tune the model) faces. The general
idea is to make a domain adaption for abusive terms via masked language
modeling (MLM) in the target language before the zero-shot transfer.
We aim to answer the following research questions:
RQ1: What is the role of VRM-based techniques in few-shot cross-lingual
abusive language detection?
RQ2: What is the impact of different languages on few-shot cross-lingual
abusive language detection?
RQ3: How do VRM-based techniques fare against domain specialization for
cross-lingual transfer of abusive language detection models?
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6.2 Background and Related Work

In this section, we discuss the main issue of few-shot learning and how data-
based approaches can alleviate it. We take the definitions from Wang et al.
(2020b), where more details can be found. Then, we provide a brief overview
of abusive language and align our work with recent studies focused on few-
shot cross-lingual transfer approaches.

Few-Shot Learning. Few-shot learning deals with a small training set
Dtrain = {(xi, yi)} to approximate the optimal function f∗ that maps input
x to output y, given a joint probability distribution p(x, y). Thus, an FSL
algorithm is an optimization strategy that searches in a functions space F to
find the set of parameters that determine the best f ′ ∈ F . The performance
is measured by a loss function l(f(x), y) which defines the expected risk with
respect to p(x, y). However, p(x, y) is unknown, hence the empirical risk is
used instead (Fernandes de Mello et al., 2018). This is the average of sample
losses over Dtrain and can be reduced with a larger number of examples.
One major challenge for FSL is then the small size of Dtrain, which can
lead to the empirical risk not being a good approximation of the expected
risk. To alleviate this problem, an approach that exploits prior knowledge
can be used (Wang et al., 2023). Data-level approach involves methods that
augment Dtrain with prior knowledge (Feng et al., 2021; Bayer et al., 2022;
Dai et al., 2023).

Vicinal Risk Minimization formalizes the data augmentation as an
extension of Dtrain by drawing samples from a neighbourhood of the existing
samples (Chapelle et al., 2000). The distribution p(x, y) is approximated by
a vicinity distribution Dv = {(x̂i, ŷi)}Nv

i=1, whose instances are a function
of the instances of Dtrain. Vicinal risk (Rv) is then calculated on Dv as
Equation 6.1.

Rv =
1

Nv

Nv∑
i=1

l(f(x̂i), ŷi) (6.1)

In this work, we study three VRM-based techniques that use different strate-
gies to generate the vicinity distribution (see §6.4).

Abusive Language. Typically, abusive language refers to a wide range
of concepts (Balayn et al., 2021; Poletto et al., 2021), including hate speech
(Yin and Zubiaga, 2021; Alkomah and Ma, 2022; Jain and Sharma, 2022),
profanity (Soykan et al., 2022), aggressive language (Muti et al., 2022; Kan-
clerz et al., 2021), offensive language (Pradhan et al., 2020; Kogilavani et al.,
2023), cyberbullying (Rosa et al., 2019) and misogyny (Shushkevich and
Cardiff, 2019). Pamungkas et al. (2023) overview recent research across
domains and languages. They identify that English is still the most widely
studied language, but abusive language datasets have been extended to other
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languages, including Italian, Spanish and German (Corazza et al., 2020b;
Mamani-Condori and Ochoa-Luna, 2021; Risch et al., 2021). In addition,
we have found studies for other languages such as Arabic (Khairy et al.,
2021), Danish (Sigurbergsson and Derczynski, 2020), Dutch (Caselli et al.,
2021b), Hindi (Das et al., 2022), Polish (Ptaszynski et al., 2019) and Por-
tuguese (Leite et al., 2020). Regardless, some works like (Stappen et al.,
2020b) state that there is a need to extend the resources for diverse and low-
resource languages. To cover this problem, Glavaš et al. (2020) propose a
multidomain and multilingual evaluation dataset. They show that language-
adaptive additional pre-training of general-purpose multilingual models can
improve the performance in transfer experiments. These are promising re-
sults, and although there are works like (Pamungkas et al., 2023) that cite
this dataset, we have not found works that exploit it. In this work, we ex-
tend the study of the original work (Glavaš et al., 2020) to assess strategies
for enhancing the performance of abusive language detection in low-resource
languages.

Cross-Lingual Abusive Language Detection. In recent years, cross-
lingual abusive language detection has gained increasing attention in zero-
shot (Eronen et al., 2022) and few-shot (Mozafari et al., 2022) transfer.
Pamungkas and Patti (2019) propose a hybrid approach with deep learn-
ing and a multilingual lexicon for cross-lingual abusive content detection.
Ranasinghe and Zampieri (2020b) use English data for cross-lingual con-
textual word embeddings and transfer learning to make predictions in lan-
guages with fewer resources. More recently, Mozafari et al. (2022) propose
an approach based on meta-learning for few-shot hate speech and offensive
language detection in low-resource languages. They show that meta-learning
models can quickly generalize and adapt to new languages with only a few
labeled data points to identify hateful or offensive content. Their meta-
learning models are based on optimization-level and metric-level. These are
two approaches to improve the problem of poor data availability in few-shot
learning. In contrast, we focus on the data-level approach. Unlike other
works that are also based on increasing data (Shi et al., 2022), we explore
VRM-based strategies for abusive language detection.

6.3 Dataset and Experimental Setup

XHate-999 (Glavaš et al., 2020) is an available dataset intended to ex-
plore several variants of abusive language detection. This dataset includes
three different domains: Fox News (GAO), Twitter/Facebook (TRAC), and
Wikipedia (WUL). In our work, we define ALL as the set of instances result-
ing from the union of all three domains. Each domain comprises different
amounts of annotated data (abusive/non-abusive) in English for training,
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validation, and testing (see Appendix 6.7). English test instances are trans-
lated into five target languages: Albanian (SQ), Croatian (HR), German
(DE), Russian (RU), and Turkish (TR).

We extended this dataset with texts in Spanish. To generate the texts,
we rely on machine translation and post-editing, following the monitored
translation-based approach described in the dataset paper. Thus, slight mod-
ifications were made in the Spanish translation to reflect and maintain the
level of abuse in the original English instances.

Models. We rely on mBERT (Devlin et al., 2019a) base cased with L =
12 transformer layers, hidden state size of H = 768, and A = 12 self-
attention heads (see Appendix 6.7 for more details). First, we retrain the
model with the XHate-999 training and validation sets, to obtain the model
(model_base) that we use in all our experiments. We search the following
hyper-parameter grid: training epochs in the set {2, 3, 4} and learning rate
in {10−4, 10−5, 10−6}. We train and evaluate in batches of 2 texts, with a
maximal length of 512 tokens, and optimize the models with Adam (Kingma
and Ba, 2015b). We set the random seeds to 7 to facilitate the reproducibility
of experiments.

Fine-tuning and Evaluation Details. For each language, we draw 90%
of instances from the test set to evaluate model_base. In few-shot cross-
lingual transfer experiments, we use the remaining 10% of instances to fine-
tune model_base before the evaluation. i.e. we use 10 instances to fine-
tune model_base in GAO (and 89 to evaluate), while the respective num-
bers are 30 (270) for TRAC, 60 (540) for WUL, and 100 (899) for ALL
(GAO+TRAC+WUL). Notice that for each language, the test set used by
Glavaš et al. (2020) is different from the one we use. However, we do not
observe a significant difference between the use of the full test set and the
use of the subset we rely on (see Appendix 6.7 to examine the results).

Statistical Analysis. In our experiments, we used McNemar’s test as Di-
etterich (1998) recommends. This is a paired non-parametric statistical hy-
pothesis test where the rejection of the null hypothesis suggests that there is
evidence to say that the models disagree in different ways. We set the signif-
icance level to 0.05 and use αaltered, obtained with the Bonferroni correction
(Napierala, 2012).

6.4 Few-Shot Cross-lingual Transfer

We first examine the ability of three VRM-based techniques in few-shot cross-
lingual transfer learning for abusive language detection to address RQ1.
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6.4.1 SSMBA

Ng et al. (2020) propose SSMBA, a data augmentation method for generating
synthetic examples with a pair of corruption and reconstruction functions to
move randomly on a data manifold. In the corruption function, we use two
strategies: 1) masking a word in each text in a random way (default) or 2)
masking the salient abusive words in each text. To identify abusive words, we
use HurtLex (Bassignana et al., 2018), a multilingual lexicon with harmful
words. For texts that do not contain words in the lexicon, we follow strategy
1. In the reconstruction functions, we use mBERT.

6.4.2 MIXUP

(Zhang et al., 2018; Sun et al., 2020) is a VRM-based technique that con-
structs a synthetic example (x̂i, ŷi) (in the vicinity distribution) from the
linear combination of two pairs (xi, yi) and (xj , yj), drawn at random from
the training set Dtrain as Equation 6.2, with λ ∼ β(α, α) where α is a hyper-
parameter1.

x̂i = λxi + (1− λ)xj
ŷi = λyi + (1− λ)yj

(6.2)

We rely on a multilingual GPT model (Shliazhko et al., 2022) (see
Appendix 6.7) for the linear combination of the texts representations
(Equation 6.3): we obtain the embedding Ew of each word of a text xi and
concatenate them to generate the vector representation E(xi). Then, we
combine two texts xi and xj as the linear combination of their representations
E(xi) and E(xj). Note that Ew is a single step of an auto-regressive model.
The obtained vector is split into vectors of the same size as the original word
embeddings Ew. Finally, we decode those vectors to obtain a sequence T of
words, that we use as the new syntectic text x̂i. The linear combination of
the labels y ∈ {0, 1}, when yi and yj are different depends on the value of
λ. We assign 1 to ŷi when the combination is greater than or equal to 0.5.
Otherwise, we assign 0.

x̂i = T (λE(xi) + (1− λ)E(xj)) (6.3)

Procedure. This VRM-based technique is an iterative process. In each
iteration, the few-shot set Dtrain is divided into pairs of samples to combine.
Thus, the number of instances generated in each iteration is equal to N

2 ,
where N is the number of samples in Dtrain. We make sure not to take the
same pairs of examples in different iterations.

1We tried some values different from 1 for α and MIXUP was not sensitive to variation,
so we set it to 0.2.
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6.4.3 MIXAG

Motivated by the idea of MIXUP, we propose the variant MIXAG: mix
vectors with a focus on the AnGle between them. We hypothesize
that the distance between an example and the new synthetic examples may
be relevant to generating an effective vicinity. As this aspect cannot be
easily controlled in the original MIXUP, we propose a particular case that
interpolates pairs of instances based on the angle of their representation.

The idea is to define a linear combination (Equation 6.4) with the pa-
rameter λ as a function of the angle α between the original vectors xi and
xj , as well as the angle θ between the new vector x̂ and one of the original
vectors (Figure 6.1).

x̂ = λxi + xj (6.4)

Figure 6.1: MIXAG description.

Using the Law of Sines we express λ as a function (Equation 6.5) of the
cosine of α, which can be obtained with Equation 6.6, and the cosine of θ,
which is the parameter of MIXAG. || · || denotes the norm of a vector. We
refer readers to Appendix 6.7 for more details.

λ =
||xj ||(cos(θ)

√
1−cos(α)2−cos(α)

√
1−cos(θ)2)

||xi||
√

1−cos(θ)2
(6.5)

cos(α) =
xixj

||xi||||xj || (6.6)

For MIXAG, we define the combination of texts by Equation 6.7, fol-
lowing the same representation and processing of texts as in MIXUP. The
difference is basically in the parameter λ.

x̂i = T (λE(xi) + E(xj)) (6.7)

In this work, we set θ = α
2 , thus the parameter of MIXAG is defined by

Equation 6.8. We suggest extending this study to analyze how the parameter
cos(θ) can influence the results.

cos(θ) =

√
1 + cos(α)

2
(6.8)
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Procedure. This VRM-based technique is also an iterative process. In
this case, we randomly select a sample xi from Dtrain and create the pairs
with xi and each of the rest of the samples of Dtrain. Therefore, the number
of instances generated in each iteration is N − 1, where N is the number of
samples in Dtrain.

6.4.4 Multilingual MIXUP/MIXAG

By default, in MIXUP and MIXAG we use the few-shot set Dtrain of each
language to generate new instances for that particular language. Alterna-
tively, we use the union of the Dtrain of all languages. For each pair of
original texts xi and xj , we make sure that xi is from the language in the
analysis, while xj is a text from any language.

6.4.5 Multidomain MIXUP/MIXAG

We rely on training data for GAO, TRAC, and WUL, as well as ALL (WUL+
TRAC+GAO) in all monolingual and multilingual experiments. In short,
we analyze performance when training and testing 1) only on a particular
domain (for example, when testing on GAO we train only on GAO training
data) and 2) on all available data from all three data sets (multidomain
setup).

6.4.6 Results and Analysis

A summary of cross-lingual transfer results for the variants - few-shot and
few-shot with SSMBA, MIXUP, and MIXAG - is provided in Figure 6.2.

As expected, we observed that VRM-based techniques improve the per-
formance of few-shot cross-lingual transfer in most cases. There is no clear
difference between the VRM-based techniques, but we can see interesting
results that vary depending on the domain. In the GAO domain, all three
techniques seem to have similar results across languages. In TRAC, MIXUP
seems to be slightly better than MIXAG in most languages. However, the
critical result in this domain is that SSMBA fails to improve the few-shot
cross-lingual transfer. In contrast, SSMBA seems to be the best technique in
WUL. We believe that these results are due to the nature of the texts in each
domain. TRAC contains texts from Twitter and Facebook. We speculate
that the reconstruction function of SSMBA affects the quality of the vicinity
generated for each text by introducing terms that differ from common terms
in this domain. On the other hand, WUL contains text from Wikipedia,
which supports our assumption.

Multidomain. Table 6.1 shows the results for all the variants of the VRM-
based techniques. We illustrate and analyze the results for the combination
of all domains.
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Figure 6.2: Performance with mBERT of few-shot (FS) cross-lingual transfer
and the variants: SSMBA (SS), MIXUP (MU), and MIXAG (MA). Upper
Figure: GAO domain, Middle Figure: TRAC domain and Lower Fig-
ure: WUL domian

All languages except German seem to benefit from few-shot cross-lingual
transfer w.r.t. zero-shot cross-lingual transfer. Likewise, the few-shot cross-
lingual transfer is improved with VRM-based techniques as in the results by
domain.

SSMBA improves few-shot cross-lingual transfer in all languages except
English. In this heterogeneous domain, we do not observe the problem that
SSMBA has in TRAC. On the other hand, the use of HurtLex does not seem
to be a relevant strategy, since the results are similar to those obtained with
the default strategy (random selection). This is an encouraging result, which
suggests that we can use SSMBA to improve few-shot cross-lingual transfer
learning without relying on external resources.

MIXUP seems to be better than SSMBA and MIXAG for most languages.
However, multilingual MIXAG is significantly the best strategy. This is a
good indicator of the benefits of our variant for multidomain and multilin-
gual environments. Note that the multilingual strategies outperform the rest
of the variants and that particularly, multilingual MIXAG consistently per-
forms better than multilingual MIXUP. This suggests that our hypothesis
about the implication of controlling the angle between the original texts and
the new synthetic texts seems to be relevant in multilingual data.

Finally, we combine MIXUP/MIXAG with SSMBA: First, we augment
the data with SSMBA and then augment the vicinity with MIXUP/MIXAG.
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ALL EN DE RU TR HR SQ ES
ZS 0.8085 0.7156 0.6308 0.3627 0.6214 0.6127 0.6008
FS 0.8112 0.7141 0.6329 0.4063 0.6316 0.6238 0.6130
SS 0.8077 0.7253 0.7071 0.6568 0.6965 0.6990 0.6838
SS-HL 0.8097 0.7273 0.6987 0.6689 0.6725 0.6909 0.6973
MU 0.8102 0.7404 0.7013 0.6740 0.7116 0.7001 0.6878
MMU 0.8284 0.7500 0.7312 0.7113 0.7371 0.7128 0.7250
MU-SS 0.8176 0.7531 0.7233 0.6839 0.7186 0.6881 0.7087
MA 0.8083 0.7245 0.6757 0.5616 0.6710 0.6788 0.6508
MMA 0.8237 0.7585 0.7392 0.7224 0.7523 0.7344 0.7476
MA-SS 0.8096 0.7229 0.7193 0.6369 0.6759 0.6734 0.6713

Table 6.1: Zero-shot (ZS) and few-shot (FS) cross-lingual transfer perfor-
mance with mBERT on the union of all domains. We also show 8 variants
for FS: 1) SSMBA (SS) and 2) SSMBA with HurtLex (SS-HL), 3) MIXUP
(MU), 4) multilingual MIXUP (MMU), 5) MIXUP with SSMBA (MU-SS),
6) MIXAG (MA), 7) multilingual MIXAG (MMA), 8) MIXAG with SSMBA
(MA-SS). The results (αaltered = .005) are reported in terms of F1 and signif-
icantly better results are underlined for each language and domain. Numbers
in bold indicate the best results.

The results are also shown in Table 6.1. This strategy offers some improve-
ment over MIXUP/MIXAG in most cases.

Correlation Analysis. Thus far, we have observed that the behavior of
the strategies seems quite similar across languages. For instance, the few-
shot cross-lingual transfer is outperformed with the VRM-based techniques.
This motivates us to investigate RQ2, i.e. we examine if there is a high
correlation between the performance of few-shot cross-lingual transfer (and
its variants with VRM-based techniques) and the linguistic proximity scores
of each language to English.

We analyze the correlation between the performance of the strategies
that we use for cross-lingual transfer learning and the distance between each
language and English. We rely on the tool LANG2VEC2 which proves lan-
guage vectors that encode linguistic features from the URIEL database (Lit-
tell et al., 2017). We obtain the vector representation of the languages with
4 features: 1) SYN: encodes syntactic properties, 2) FAM: encodes member-
ships in language families, 3) INV: denotes the presence of natural classes of
sounds, and 4) PHO: encodes phonological properties.

Then, with the vectors from each linguistic feature, we calculate the co-
sine similarity between each language and English. Finally, we calculate the
Pearson correlation coefficients (Sedgwick, 2012) between the cosine similar-

2https://github.com/antonisa/lang2vec
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ity and the performance of each cross-lingual strategy across languages and
domains.

SYN FAM INV PHO
FS 0.664 0.661 0.607 0.516
SS 0.527 0.627 0.608 0.486
MU 0.405 0.628 0.633 0.463
MA 0.571 0.721 0.686 0.529

Table 6.2: Pearson correlation coefficients between linguistic proximity
scores (features SYN, FAM, INV, PHO) and few-shot (FS), few-shot with
SSMBA (SS), few-shot with MIXUP (MU) and few-shot with MIXAG (MA)
cross-lingual transfer performance with mBERT across all languages and do-
mains.

Table 6.2 shows the correlation coefficients for the significant linguistic
features with a significance level of 0.05 (Appendix 6.7 shows the correlation
coefficients for all metrics and the similarity scores between each language
and English). Coefficients whose magnitude is between 0.5 and 0.7 indicate
a moderate correlation, while coefficients between 0.3 and 0.5 indicate a low
correlation.

We only observe a moderate correlation between the performance of each
strategy and the distance between the target languages and English. We
consider these results encouraging because they suggest that the strategies
are possibly consistent across languages.

6.4.7 Ablation Studies

MIXAG is a data augmentation method that randomly combines inputs and
accordingly combines one-hot-label encodings. This is a variant of MIXUP
where the new data is obtained by defining the angle between the inputs and
the new instance.

In our strategy, we randomly select pairs of inputs and set the angle
between the new instance and one of the inputs as θ = α

2 , where α is the angle
between the original inputs. However, there are other strategies that could
be used. For example, selecting data pairs whose latent representations are
close neighbors, as well as defining other values for θ. To compare MIXAG
with these alternative possibilities, we run a set of ablation study experiments
using not only mBERT but also the XLM-R model (Conneau et al., 2020b).
We focus on multilingual and multimodal MIXAG (MMA in ALL) as it is the
best data augmentation method that we observed in the first experiments.

On the one hand, we compare the combination of random pairs of inputs
with the combination of nearest neighbors (NN). On the other hand, we set
the angle θ = α

3 to evaluate the impact of varying this parameter on the
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performance of the method. Finally, we use an alternative model for the
text representation. Specifically, we used the multilingual generative model
mT0 (Muennighoff et al., 2023), instead of mGPT.

From the results of the ablation study in Table 6.3, we have the following
observations. First, there are no significant differences with α = .05 between
the variants studied, although experiments with XLM-R seem to have shown
some improvement. Secondly, we note that the variation of the angle between
the inputs and the generated instances does not seem to represent a relevant
factor.

model variant EN DE RU TR HR SQ ES

mBERT

MMA 0.8237 0.7585 0.7392 0.7224 0.7523 0.7344 0.7476
MMA-NN 0.8233 0.7585 0.7201 0.6473 0.7523 0.7273 0.7466
MMA-ANG 0.8233 0.7475 0.7169 0.6774 0.7415 0.7273 0.7466
MMA-MT0 0.8238 0.7585 0.7392 0.7224 0.7523 0.7344 0.7476
MMA-MT0-NN 0.8254 0.7687 0.7314 0.6696 0.7477 0.7314 0.7528

XLM-R

MMA 0.8236 0.7927 0.7561 0.7258 0.7180 0.7780 0.7670
MMA-NN 0.8251 0.7942 0.7328 0.7267 0.7180 0.7797 0.7650
MMA-ANG 0.8251 0.7940 0.7521 0.7267 0.7216 0.7797 0.7650
MMA-MT0 0.8245 0.7952 0.7503 0.7281 0.7243 0.7798 0.7658
MMA-MT0-NN 0.8245 0.7940 0.7503 0.7297 0.7180 0.7803 0.7658

Table 6.3: Results of the ablation studies for 4 variants of multilingual
MIXAG (MMA): 1) interpolation only between nearest neighbors (MMA-
NN), 2) set θ = α

3 (MMA-ANG), 3) text representation with mT0 (MMA-
MT0) and 4) text representation with mT0 and interpolation between near-
est neighbors(MMA-MT0-NN). The results (αaltered = .005) are reported in
terms of F1 for each of the model mBERT and XLM-R.

All five variants obtain very similar results with mBERT. The variation
of the factors that we analyze does not seem to influence the performance
of the method. However, with XLM-R we observe some interesting findings.
Spanish and Russian are the only languages where MMA method is not
surpassed by the other variants. In the rest of the languages, we observe
the opposite behavior, where text representation with the alternative model
mT0 seems to be the best strategy. Notice that in Albanian the use of mT0
for text representation together with the strategy of selecting the nearest
neighbor for interpolation seems to be the best variant.

6.5 Unsupervised Language Adaptation

In this section, we investigate the scenarios in which there is no information
about the target language for the few-shot cross-lingual transfer. In § 6.4
we used a small amount of supervised data Dtrain in the target language to
fine-tune the pre-trained model. This allowed us to adapt the model to the
abusive language of each particular language. In contrast, now we assume
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that the labels of Dtrain are not available. This is a simulated experiment
where we only have an unlabelled set of texts and the set Dtest in which
we want to detect abusive language. Previous works have examined this
scenario by adjusting a model with unlabelled external data. In this work,
we use only a few unlabelled instances from Dtrain.

Basically, this strategy is a zero-shot cross-lingual transfer learning in
which the model is adapted to the abusive terms of the target language.
As mBERT is pre-trained on general-purpose and multilingual corpora, it is
familiar with the target languages. However, it has not been adjusted to the
particular case of abusive language. We follow then a two-step methodology:
1) continual pre-taining for domain adaptation via masked language model-
ing (MLM) to make it familiar to the particular abusive terms, and then 2)
employ zero-shot learning to detect abusive language.

6.5.1 Results and Analysis

Table 6.4 illustrates the results obtained with the methodology across do-
mains and languages. In most cases, the strategy of prior adaptation to the
abusive terms seems to outperform zero-shot cross-lingual transfer learning.
English is the only language in which the MLM adaptation worsens the re-
sults in all domains. Moreover, TRAC also shows no improvement, similar
to the behavior observed with SSMBA in few-shot cross-lingual transfer.

GAO EN DE RU TR HR SQ ES
ZS 0.6747 0.5067 0.5205 0.5116 0.6234 0.5405 0.5263
ZS_MLM 0.6050 0.6364 0.6261 0.6341 0.6290 0.6016 0.6154
TRAC
ZS 0.7642 0.7582 0.6815 0.6777 0.6892 0.7235 0.7000
ZS_MLM 0.6821 0.6480 0.6718 0.6785 0.6785 0.6995 0.6118

WUL
ZS 0.8800 0.6698 0.5561 0.2945 0.5469 0.5556 0.4960
ZS_MLM 0.6093 0.6765 0.6708 0.6765 0.6732 0.6675 0.6765
ALL
ZS 0.8085 0.7156 0.6308 0.3627 0.6214 0.6127 0.6008
ZS_MLM 0.6662 0.6711 0.6637 0.6716 0.6716 0.6721 0.6419

Table 6.4: Zero-shot (ZS) and adapted zero-shot (ZS_MLM) cross-lingual
transfer performance with mBERT on domains (GAO, TRAC, WUL) and
the union of all domains (ALL). Results are reported in terms of F1 and
numbers in bold indicate those that are significantly better for each language
and domain (α = .05).

These results allow us to answer RQ3: although domain adaptation can
improve zero-shot cross-lingual transfer, VRM-based techniques seem to be
more robust in few-shot cross-lingual transfer.

112



Error Analysis. In order to deepen the analysis of what happens in the
model with the zero-shot cross-lingual transfer adaptation, we also analyze
two metrics: Recall and Precision. Recall refers to the true positive rate and
is the number of true positives divided by the total number of positive texts.
Precision refers to the positive predictive value and is the number of true
positives divided by the total number of positive predictions. In this work,
positive refers to the class of abusive texts.

Results across domains and languages are in Appendix 6.7. In all cases
we observe an increase in Recall, indicating that adapting the model could
improve the proportion of the class of abusive texts that is correctly classified.
At first glance, it seems to be a good result, since it is desirable to reduce
the number of false negatives in abusive language detection. However, we
observe that precision is reduced, suggesting that this strategy favors the
positive class: while false negatives are reduced, false positives are increased.

Critical cases are negative texts that can be incorrectly detected as abu-
sive. In order to study this phenomenon, we examine the percentage of texts
that are non-abusive and are well-classified with zero-shot transfer learning
and misclassified with the MLM adaptation. We investigate two statistics
across languages and domains: 1) the percentage of non-abusive texts that
are well- classified with zero-shot transfer and misclassified with the MLM
adaptation and 2) the percentage of abusive texts that are misclassified with
zero-shot transfer and well-classified with the MLM adaptation.

Table 6.5 illustrates the statistics across domains and languages. Con-
sistent with the previous results we observe a detriment in the class of non-
abusive texts. The number of negative texts well-classified with zero-shot
transfer learning and misclassified with the MLM adaptation is large (reach-
ing 100% in a case). However, that amount is surpassed in most cases by the
gain in the class of abusive texts. We observe that the number of positive
texts that are misclassified with zero-shot transfer learning and well-classified
with adaptation via MLM is high (reaching 100% in four cases).

GAO EN DE RU TR HR SQ ES
%P %N %P %N %P %N %P %N %P %N %P %N %P %N

GAO 83.3 60 76.1 61.7 85.7 77.7 100 80.7 81.2 86.4 85.0 88.8 100 97.1
TRAC 81.2 74.6 82.3 83.8 91.8 88.8 88.1 92.9 87.5 80.7 100 90.5 69.2 89.3
WUL 85.7 83.8 62.2 78.0 56.8 63.8 74.5 89.3 88.3 96.1 99.3 98.8 96.7 98.8
ALL 87.2 83.9 76.6 84.1 100 100 100 88.4 88.9 94.5 99.5 99.4 83.9 93.3

Table 6.5: Percentage of non-abusive texts that are well-classified with
zero-shot transfer and misclassified with the MLM adaptation (%N), and
percentage of abusive texts that are misclassified with zero-shot transfer and
well-classified with the MLM adaptation (%P).
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6.6 Conclusions and Future Work

In this work, we studied three techniques to improve few-shot cross-
lingual transfer learning in abusive language detection. These tech-
niques are concentrated on data-level approach to deal with the problem of
data scarcity that can lead to a high estimation error in few-shot learning.
Specifically, we focused on vicinal risk minimization techniques to
increase the data in the vicinity of the few-shot samples. First, we explored
two existing techniques: 1) SSMBA, which is based on a pair of functions to
corrupt and reconstruct texts, and 2) MIXUP, which generates new samples
from a linear combination of original instances pairs. Then, we proposed
MIXAG, a variant of MIXUP, to parameterize the combination of
instances with the angle between them. Our experiments were based
on the multidomain and multilingual dataset XHATE-999, which allowed us
to explore low-resource languages as target languages and English as the base
language. This dataset contains six different languages, and we extended it
to Spanish, following the same methodology that was used to generate the
texts of the other languages. The results showed the effectiveness of VRM-
based techniques to improve few-shot cross-lingual transfer learning in most
domains and languages. Particularly, we observed that multilingual MIXAG
outperforms the other strategies in the heterogeneous set (multidomain) for
all target languages. At the same time, we observed that structural language
similarity does not seem to be highly correlated with cross-lingual transfer
success in none of the strategies. These results are encouraging for abusive
language detection in low-resource settings, as the strategies that we have
examined appear to be consistent across languages.

Finally, we evaluated a scenario where it is not possible to perform a
few-shot cross-lingual transfer due to the lack of supervised information. We
used a strategy based on masked language modeling and saw a degradation
in the class of non-abusive texts, but a gain in the class of abusive texts,
reducing false negatives.

In future work, we aim to further examine our proposed VRM-based
technique for data augmentation. MIXAG uses as a parameter the angle
between the new instance and one of the original instances being combined.
In our experiments, we fixed the angle as half the angle between the original
instances, but we consider that the flexibility of varying that parameter must
be exploited.

6.7 Limitations and Ethical Concerns

Our experiments relied on a dataset that only contains English texts in the
training and development sets. Only the test set is multilingual. Therefore,
we were forced to partition the test set in order to perform the few-shot
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cross-lingual transfer and domain adaptation experiments. We compared the
results obtained in zero-shot cross-lingual transfer with the original test set
and with the subset used in our experiments. We did not observe statistical
differences. However, this may be a limitation in comparing our results with
the original results reported in the dataset paper. Moreover, we observed a
limitation in the strategy of domain adaptation. As we discussed in the error
analysis, although the class of abusive texts is favored with this strategy, we
observed a detriment in the negative class.

This work aims to improve abusive language detection in low-resource
languages. While this can be useful for many languages, there are certain
ethical implications. Therefore, we strongly recommend not using the pro-
posed strategies as the sole basis for decision-making in abusive language
detection. Regarding the issue of privacy, all the data we use in our ex-
periments, both the original dataset and the new texts in Spanish that we
generated, are publicly available. It should be noted that the scope of this
work is strictly limited to the evaluation of models that are also publicly
available, and it is not used to promote abusive language with the informa-
tion obtained.
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Appendices

Reproducibility

Table 6.6 provides features and links to the pre-trained models that we use,
and Table 6.7 illustrates details of the dataset.

Model: mBERT
Vocab size: 120k
#Params: 177M
Link: https://huggingface.co/bert-base-multilingual-cased
Use in this work: SSMBA

Experiments (zero-shot and few-shot cross-lingual transfer)
Model: mGPT
Vocab size: 100k
#Params: 1417M
Link: https://huggingface.co/ai-forever/mGPT
Use in this work: MIXUP & MIXAG

Model: XLM-R
Vocab size: 250k
#Params: 270M
Link: https://huggingface.co/xlm-roberta-base
Use in this work: Ablation studies

Model: mT0
Vocab size: 250k
#Params: 550M
Link: https://huggingface.co/bigscience/mt0-base
Use in this work: Ablation studies

Table 6.6: Features of the models used in this work. We built our models
directly on top of the HuggingFace Transformers library.

Domain Train (EN) Validation (EN) Test (LANG)
GAO 919 218 99
TRAC 10,341 2,593 300
WUL 71,754 24,130 600
ALL 83,014 26,941 999

Table 6.7: Number of texts in each set of the XHate-999 dataset. LANG
stands for each language in {EN, SQ, HR, DE, RU, TR, ES}.

MIXAG Details

MIXAG is a particular case of MIXUP where the parameter λ of the linear
combination (Equation 6.9) is determined by the angle α between the original
vectors xi and xj , as well as the angle θ between the new vector x̂ and one of
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the original vectors. We take xi without loss of generality (see Figure 6.3).
We rely on the cosine of α, calculated as Equation 6.10, where || · || denotes
the norm of a vector. Notice that we only parameterize one of the original
vectors, since α and θ are sufficient to determine x̂.

x̂ = λxi + xj (6.9)

cos(α) =
xixj

||xi||||xj || (6.10)

Figure 6.3: MIXAG explanation.

The objective is to express the parameter λ as a function of θ, hence
we take advantage of the Law of Sines (Equation 6.11) that allows relating
vectors and angles. Then, λ can be expressed in function of θ as Equation
6.12. Finally, using the known identities in Equations 6.13, we can define
λ from the cosine of α, which can be obtained with Equation 6.10, and the
cosine of θ, which is the parameter of MIXAG (Equation 6.14).

λ||xi||
sin(α−θ) =

||xj ||
sin(θ)

(6.11)

λ =
||xj ||sin(α−θ)
||xi||sin(θ) (6.12)

sin(α−θ)=sin(α)cos(θ)−cos(α)sin(θ)

sin(θ)=
√

1−cos(θ)2, sin(α)=
√

1−cos(α)2

sin(α−θ)=
√

1−cos(α)2cos(θ)−cos(α)
√

1−cos(θ)2

(6.13)

λ=
||xj ||(cos(θ)

√
1−cos(α)2−cos(α)

√
1−cos(θ)2)

||xi||
√

1−cos(θ)2
(6.14)

Results by Language and Domain

We show complete results in this section. Table 6.8 illustrates that there is
no significant difference between using the full test set and using a subset of
texts from the test set (the subset that we used in our experiment).

Table 6.9 illustrates the cosine similarity between each language and En-
glish for five linguistic features. We obtain these features as language vectors
from LANG2VEC (Littell et al., 2017).
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GAO EN DE RU TR HR SQ ES
FZS 0.6742 0.5185 0.5063 0.5217 0.6098 0.5432 0.5060
ZS 0.6747 0.5067 0.5205 0.5116 0.6234 0.5405 0.5263

TRAC
FZS 0.7594 0.7527 0.6859 0.6806 0.6925 0.7177 0.7045
ZS 0.7642 0.7582 0.6815 0.6777 0.6892 0.7235 0.7000

WUL
FZS 0.8812 0.6739 0.5581 0.2969 0.5476 0.5675 0.5049
ZS 0.8800 0.6698 0.5561 0.2945 0.5469 0.5556 0.4960

ALL
FZS 0.8053 0.7146 0.6322 0.3565 0.6231 0.6088 0.6028
ZS 0.8085 0.7156 0.6308 0.3627 0.6214 0.6127 0.6008

Table 6.8: Cross-lingual transfer performance with mBERT on each domain
(GAO, TRAC, WUL) and the union of all domains (ALL). FZS refers to
zero-shot cross-lingual transfer with the full test set, which corresponds to the
results reported in XHATE-999: Analyzing and Detecting Abusive Language
Across Domains and Languages. ZS refers to zero-shot cross-lingual transfer
with 90% of the test set of each language, which corresponds to the results
discussed in this paper. Results are reported in terms of F1.

Table 6.10 shows the correlation coefficient and p-value for these linguistic
features.

• SYN: vectors encode syntactic properties, e.g., if a subject appears
before or after a verb.

• FAM: vectors encode memberships in language families.

• INV: vectors denote the presence or absence of natural classes of
sounds.

• PHO: vectors encode phonological properties such as the consonant-
vowel ratio.

• GEO: vectors express orthodromic distances for languages w.r.t. fixed
points on the Earth’s surface.

Table 6.11 shows the Precision and Recall results across domains and
languages for the error analysis of the unsupervised language adaptation.
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EN DE RU TR HR SQ ES
SYN 1.0 0.9025 0.8118 0.5067 0.8318 0.7959 0.8216
FAM 1.0 0.5443 0.1667 0.0 0.1260 0.3333 0.0962
INV 1.0 0.7628 0.6475 0.6658 0.6967 0.7249 0.6382
PHO 1.0 0.8058 0.8581 0.8181 0.8581 0.8704 0.8581
GEO 1.0 0.9976 0.9681 0.9825 0.9950 0.9919 0.9959

Table 6.9: Cosine similarity between each language vector and English vector
for LANG2VEC-based language vectors (SYN, FAM, INV) considering all
domains.

SYN FAM INV PHO GEO
Pearson P-value Pearson P-value Pearson P-value Pearson P-value Pearson P-value

ZS 0.672 <.001 0.647 <.001 0.599 <.001 0.529 .003 0.302 .119
FS 0.664 <.001 0.661 <.001 0.607 <.001 0.516 .004 0.289 .136
SS 0.527 .004 0.627 <.001 0.608 <.001 0.486 .008 0.261 .180
MU 0.405 .033 0.628 <.001 0.633 <.001 0.463 .013 0.315 .210
MA 0.571 .001 0.721 <.001 0.686 <.001 0.529 .004 0.245 .209

Table 6.10: Complete table of correlations between zero-shot (ZS), few-shot
(FS), few-shot with SSMBA (SS), few-shot with MIXUP (MU) and few-shot
with MIXAG (MA) cross-lingual transfer performance with mBERT across
all languages and domains, with linguistic proximity scores (features SYN,
FAM, INV, PHO, GEO). Correlations that are not statistically significant
are underlined (α=.05).

GAO EN DE RU TR HR SQ ES
R P R P R P R P R P R P R P

ZS 0.70 0.65 0.48 0.54 0.48 0.58 0.55 0.48 0.60 0.65 0.50 0.59 0.50 0.55
ZS_MLM 0.80 0.47 0.88 0.50 0.78 0.50 0.98 0.47 0.98 0.46 0.93 0.45 0.98 0.44
TRAC
ZS 0.89 0.67 0.88 0.66 0.74 0.63 0.71 0.65 0.78 0.62 0.85 0.63 0.73 0.67
ZS_MLM 0.92 0.54 0.81 0.54 0.92 0.53 0.93 0.53 0.93 0.53 0.98 0.54 0.72 0.53
WUL
ZS 0.80 0.98 0.51 0.97 0.39 0.94 0.17 0.96 0.38 0.97 0.40 0.92 0.33 0.97
ZS_MLM 0.83 0.48 0.89 0.49 0.99 0.51 0.98 0.51 0.99 0.51 0.97 0.51 0.99 0.51
ALL
ZS 0.79 0.82 0.71 0.72 0.57 0.71 0.24 0.75 0.56 0.69 0.54 0.71 0.51 0.74
ZS_MLM 0.99 0.50 0.99 0.51 0.98 0.50 0.96 0.50 0.99 0.51 0.99 0.51 0.89 0.50

Table 6.11: Precision (P) and Recall (R) in cross-lingual transfer with
mBERT on each domain (GAO, TRAC, WUL) and the union of all do-
mains (ALL). ZS_MLM refers to adapted zero-shot cross-lingual transfer,
while ZS refers to zero-shot cross-lingual transfer.
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Part IV

Summary
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Chapter 7

Discussion of the Results

In this chapter, we discuss in detail the results obtained in this thesis. We
first analyze the results of the publications presented in Parts I, II, and
III concerning the objectives of our research. We also include some further
results to complete the picture of abusive language detection in low-resource
settings. This should allow us to better answer the three research questions.
First, in Section 7.1, we analyze the characteristics of the keywords obtained
with the two abusive keyword extraction methods that we presented in Part
I. Then, we present new experiments to compare these sets of keywords.
Moreover, we investigate the bias of Transformer-based models with respect
to the extracted keywords and evaluate how the performance of these models
can be affected by altering the bias. Our analysis focuses on cases of low-
resource settings.

In Section 7.2, we summarize our findings on the use of strategies based
on graph neural networks (GNN) proposed in Part II. Then, we present
additional experiments to analyze the performance of this type of strategy
in low-resource settings cases. In this study, we compare: i) the use of
GNN-based models and Transformer-based models, both ii) in low-resource
settings and in settings where there is no insufficiency of data. In addition,
we conducted an ablation analysis to investigate how GNN-based strategies
can be modified to further improve abuse language detection results.

In Section 7.3, we extend the experiments conducted in Part III. We focus
on evaluating how the performance of other Transformer-based models varies
with data augmentation techniques in low-resource settings. Moreover, we
compare this variation in settings where data is not scarce.

Finally, in Section 7.4 we introduce an approach that goes beyond nat-
ural language processing for hate speech detection in social networks. This
research focuses on analyzing hate from the perspective of Twitter users. The
studies were conducted in parallel to the research presented in the previous
chapters. The main objective is to present preliminary findings on the char-
acteristics of users who tend to post hate messages. This can help to obtain
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a more comprehensive view of the phenomenon of abusive language on social
networks. Firstly, we provide an overview of the Author Profiling shared task
that we organized as part of PAN 2021.1 This task was about determining
whether or not the author of a Twitter feed is likely to spread hatred. In
this section, we present the main strategies and the results obtained. Then,
we present further experiments that we conduct to analyze networks of users
prone to publish hate messages. We study these networks as graphs in which
the users represent the nodes and the connections between them represent
the edges. In this way, we characterize the relationships between the users
and provide a framework for future research.

7.1 Keyword Extraction and Bias Analysis

In Part I, we present two methods for abusive keyword extraction. Table 7.1
lists the main aspects of both methods.

MBERT (Chapter 2) MHMRF (Chapter 3)
Based on Attention mechanism of BERT Harmonic mean of the relative

to assign a relevance value to each frequencies: i) frequency (F) of
pair of words in a text. This value each word w in the set of abusive
is used as the weight of the edges texts and ii) F with respect to
of a word graph from which the the frequency of w in the entire
keywords are extracted using the collection of texts.
eigenvector centrality.

Paper focus Offensive language Hate speech
Input Dataset of abusive (offensive/hateful) and non-abusive texts.
Main contribution Exploitation of the multi-head Simple strategy.

self-attention mechanism. Note: Results of Chapter 3 show little
overlap between the keywords extracted
with this method and the salient words
of BERT (words to which BERT pays
more attention to detecting hatred).

Limitation Extraction of words that are not abusive as keywords. It is due to the frequent
presence of these words in abusive texts and their absence in the rest of the texts.

Table 7.1: Overview of keyword extraction methods.

A point in favor of both keyword extraction methods is their ability
to characterize the abusive language present in the datasets. In Part I, we
observed that the extracted keywords are closely related to the target against
which the abuse is directed. However, our methods can discard words that
may indicate abuse but are frequently used in non-abusive texts. In Chapter
3, we comment on the example of a thread of posts about feminism. In
this case, the word ‘feminist’ is likely to appear frequently not only in the
abusive texts but also in the rest of the texts. Therefore, our methods do
not select that word as a keyword and look for other more discriminating
words that indicate abuse in that particular context. Besides, in Chapter
3 we analyzed the bias of transformer-based models toward the keywords

1https://pan.webis.de/clef21/pan21-web/
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extracted by MHMRF with two different metrics and evaluated two strategies
to mitigate the bias. The results suggested that the bias toward hateful
keywords can be reduced when fine-tuning the models with hateful texts
without the keywords. Likewise, we observed that this bias reduction may
imply an improvement in the performance of abusive language detection.

Following, we present some additional experiments we carried out for
further investigating these aspects in low-resource settings.

7.1.1 Experimental Setup

Dataset. Unlike the experiments in Part I, in this section we use the
XHate-999 dataset (Glavaš et al., 2020). This is a dataset intended to
explore abusive language detection and that we used in Chapters 4 and
6. This dataset includes three different domains: Fox News (GAO), Twit-
ter/Facebook (TRAC), and Wikipedia (WUL). We also define ALL as the
set of instances resulting from the union of all three domains. Each do-
main comprises different amounts of annotated data (abusive/non-abusive)
in English for training, validation, and testing. GAO is the domain with the
least amount of data and WUL is the one with the greatest amount. The
test set is small: 99 instances in GAO, 300 instances in TRAC, and 600 in
WUL. The English test instances are translated into five target languages:
Albanian (SQ), Croatian (HR), German (DE), Russian (RU) and Turkish
(TR), and we also include Spanish (ES). In this section, we focus on the set
of texts in English. In order to simulate a low-resource setting, we ignore
the training and validation sets. We only use the test set in our experi-
ments: 90% of the instances from the test set is used for evaluation and the
remaining 10% of the instances is used for fine-tuning the models, i.e. we
use 10 instances for fine-tuning in GAO (and 89 for evaluation), while the
corresponding numbers are 30 (270) for TRAC, 60 (540) for WUL and 100
(899) for ALL (GAO+TRAC+WUL).

External resource. As we suggested in Chapter 3 we use HurtLex (Bassig-
nana et al., 2018), a lexicon that contains hateful words that are independent
of a specific text collection. This allows us to compare the keywords extracted
with our methods against hateful words taken from an external resource.

Models. Table 7.2 summarizes the transformer-based models that we use
for the analysis of bias toward the keywords, and how bias can affect the
performance of abusive language detection.

7.1.2 Analysis of Abusive Keywords

A characteristic that we observe in relation to MHMRF is that the set of ex-
tracted keywords differs from the salient words of BERT. It is therefore to be
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Models Architecture Link
BERT bert-base-uncased https://huggingface.co/bert-base-uncased
ROBERTA roberta-base https://huggingface.co/roberta-base

Table 7.2: Links to the pre-trained models used in bias analysis.

expected that this set of keywords differs from the set of keywords extracted
using our MBERT method (based on the BERT attention mechanism). In
our experiments, we use the test set of each domain of XHate-999 as the
input of MHMRF and MBERT . Table 7.3 illustrates the overlap between the
obtained sets in terms of the keywords extracted by the methods and the
percentage of overlap (the percentages were calculated taking into account
that 50 keywords were extracted by each method). In addition, the overlap
between each of these keyword sets and the words from HurtLex is shown.

MHMRF -MBERT MHMRF -HurtLex MBERT -HurtLex
keywords % keywords % keywords %

GAO good, black, work, person 8 jews, decent, terrorist, black, 10 problem, minister, stupid, people, 16
abuses poor, coward, army, black

TRAC country, citizen, thought, stupid, 18 stupid, mouth, dumb, god, kill, 16 problem, minister, stupid, people, 16
anyone, army, black, singh, person army, black, cow poor, coward, army, black

WUL

time, want, stupid, real, people, 14 moron, cock, idiot, stupid, dumb, 38 problem, minister, stupid, people, 16
stop, poor bitch, shit, gay, die, wtf, asshole, poor, coward, army, black

cunt, poor, bastard, people, dick,
fuck, penis, ass

ALL

country, time, want, stupid, stop, 18 moron, idiot, stupid, dumb, army, 38 problem, minister, stupid, people, 16
poor, army, black, person bitch, shit, gay, die, asshole, kill, poor, coward, army, black

cunt, poor, bastard, idiotic,
dick, fuck, black, ass

Table 7.3: Overlap between the abusive keywords extracted with MBERT ,
MHMRF , and terms from HurtLex.

Indeed, we note that the percentage of overlap between MHMRF and
MBERT is low, generally less than 15%. However, we observe that in most
cases the keywords extracted by both methods represent abusive words that
characterize the content of the dataset. We also found an overlap of almost
50% with the words from HurtLex in the keywords extracted from WUL
and ALL using MHMRF . This can be an indication that with the simple
statistics used in MHMRF , it is possible to encounter abusive words in the
datasets even if they do not match the salient words of BERT.

7.1.3 Bias and Performance Analysis

In Chapter 3, we evaluate two strategies to mitigate the bias of a model
toward a set of keywords. These strategies are based on fine-tuning a model
to make a small fit in its parameters with a very small learning rate (1x10−7).
The particularity of each strategy lies in the data used for the fit:

• V1: Data only contains abusive texts without keywords.

• V2: Data only contains non-abusive texts with keywords.
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Since we are interested in investigating the bias of the models toward the
keywords extracted with MHMRF and MBERT , in the following experiments
we analyze each of the four Vim models (i = {1, 2} and m = {MHMRF ,
MBERT }), where i denotes the bias mitigation strategy and m denotes the
set of keywords considered.

Evaluation details. In each domain of the dataset, we use only 10% of
the test set to fine-tune a transformer-based model and obtain an initial
model. To obtain the models Vim, we then select from the validation set of
the corresponding domain, the texts that satisfy Vi. We train with batches of
size 2 in 3 epochs and evaluate with batches of 2 instances. The performance
of the models is reported in terms of F1-score and we rely on McNemar’s
statistical test (Dietterich, 1998) to analyze if each variant of the initial model
varies significantly with a significance level α = .05, i.e. we compare each
model Vim with the initial model. To estimate bias, we use the metric based
on AUC-ROC described in Chapter 3, which balances overall performance
with various aspects of bias.2 The lower the value of this metric, the higher
the bias.

7.1.3.1 Results and Discussion

Table 7.4 illustrates the estimated bias for each model in each domain. In
these low-resource settings, we observe different results than in Chapter 3. In
those previous experiments, an important finding was that the bias toward
abusive keywords could be reduced when the models were fine-tuned with
abusive texts in which the keywords did not appear (V1).

GAO TRAC WUL ALL
MHMRF MBERT MHMRF MBERT MHMRF MBERT MHMRF MBERT

BERT
Initial model 0.989 0.996 0.579 0.575 0.766 0.751 0.830 0.605
V1MHMRF

0.595 - 0.549 - 0.958↓ - 0.785 -
V1MBERT

- 0.588 - 0.548 - 0.869↓ - 0.575
V2MHMRF

0.652 - 0.644↓ - 0.886↓ - 0.625 -
V2MBERT

- 0.637 - 0.656↓ - 0.953↓ - 0.953↓

ROBERTA
Initial model 0.556 0.577 0.559 0.550 0.975 0.893 0.785 0.600
V1MHMRF

0.581↓ - 0.541 - 0.935 - 0.937↓ -
V1MBERT

- 0.577 - 0.609↓ - 0.814 - 0.588
V2MHMRF

0.730↓ - 0.456 - 0.992↓ - 0.615 -
V2MBERT

- 0.542 - 0.559↓ - 0.582 - 0.665↓

Table 7.4: Estimated bias for the initial model (no bias mitigation) and the
models fitted for bias mitigation (V1MHMRF

, V1MBERT
, V2MHMRF

, V2MBERT
).

The symbol ↓ identifies the cases in which the bias is mitigated.

In these new experiments, however, the analyzed strategies only succeed
in mitigating the bias in a few cases. In the smallest domain (GAO), the

2https://www.kaggle.com/competitions/jigsaw-unintended-bias-in-toxicity-
classification/overview
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bias even increases in most cases. This suggests that to minimize the bias
with V1, a larger amount of data is probably required to correctly adjust the
models to detect abusive language in texts without keywords. Note that we
used very few instances: we start from a very small set from which only the
instances that satisfy V1 in each mitigation strategy are selected.

Table 7.5 shows the results of abusive language detection for each domain
with the two transformer-based models. The Vim techniques seem to improve
the performance of the model in a few cases, mainly in the smaller domain.
However, this improvement does not seem to be associated with the mitiga-
tion of bias. We only observed correspondences between the improvement in
model performance and the reduction in bias in four cases.

GAO TRAC WUL ALL

BERT
Initial model 0.4871 0.7961 0.8712 0.7403
V1MHMRF

0.5348↑ 0.7500 0.8821↑ 0.7735↑
V1MBERT

0.5444↑ 0.7928 0.8832↑ 0.7877↑
V2MHMRF

0.5348↑ 0.7129 0.8176 0.7101
V2MBERT

0.5000↑ 0.6809 0.8428 0.6769

ROBERTA
Initial model 0.5455 0.7525 0.9171 0.7677
V1MHMRF

0.7200↑ 0.7179 0.9016 0.7967↑
V1MBERT

0.5455 0.7143 0.9005 0.8144↑
V2MHMRF

0.4762 0.7500 0.8675 0.7445
V2MBERT

0.5217 0.6809 0.8994 0.7203

Table 7.5: Performance for the initial model (no bias mitigation) and the
models fitted for bias mitigation (V1MHMRF

, V1MBERT
, V2MHMRF

, V2MBERT
).

The symbol ↑ identifies the cases of significant improvement (α = .05). Un-
derlined values indicate an increase in F1 related to a decrease in bias.

As we noted in Chapter 3, the selection of data size for the bias mitigation
strategy appears to be an important factor in achieving effective results. For
the low-resource settings that we examine in this section, we did not find
the expected pattern of bias reduction and consequently did not observe
a correlation between the mitigation of the bias and improvement in the
performance of the models. Therefore, for future work, we suggest a more
in-depth analysis to determine the optimal amount of data for mitigation
strategies. Moreover, we consider it interesting to extend the analysis related
to abusive keywords to other languages in future research, as we outlined in
Chapter 2. Our experiments focus on English but note that both strategies
can also be used for other languages. In the case of MBERT , a BERT model
trained for the respective language would have to be used.

7.2 Graph-Based Exploration

Graph neural networks have become a great alternative in various appli-
cations. Their ability to capture intrinsic patterns and dependencies, deal
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with noisy data, and draw inductive reasoning makes them a powerful tool
for analyzing graph-structured data. To exploit these advantages, in this
dissertation, we evaluate their ability in abusive language detection.

In Part II, we presented our findings. First, we proposed a graph auto-
encoder (GAE) framework for generating text embeddings. The primary
idea is to start from a basic initial representation and use a GAE to trans-
form these representations into a low-dimensional space in which texts of
the same class are closer to each other. From this space, we extract a new
representation (embeddings) that should allow a better distinction between
the classes used to learn the representation space. In Chapter 4, we illustrate
how embeddings achieve a better separation between abusive texts and the
rest of the texts, than an original representation based on TFIDF. We verify
these results with a fully connected neural network (FCNN). As input for
the classifier, we use the original representation on the one hand and the em-
beddings obtained with our framework on the other hand. The classification
results show the superiority of the embeddings. We explain this framework
and the results obtained in Chapter 4. We also observed interesting results
in comparison to the MBERT and XLM-R models. We found that classifi-
cation based on the embeddings we generated performs significantly better
on small datasets.

These results motivated us to evaluate the suitability of models based on
graph neural networks in abusive language detection. Thus, we investigate
the particular case of convolutional graph neural network (CGNN) for hate
speech detection in Chapter 5. Again, we found that the GNN-based model
outperforms the transformer-based models.

In this section, we extend the experiments to get an overview of the
performance of GNN-based models in low-resource settings.

7.2.1 Experimental Setup

Dataset. In this section, we use the same dataset as in the previous section
(see Section 7.1.1). In this section, we evaluate the seven languages for
analysis in low-resource settings, using 10% of the test set for fine-tuning
the models and the rest for testing. We also analyzed an environment where
there is no data limitation (high-resource settings) for English, for which we
added the XHate-999 training set to the partition used for fine-tuning the
models.

Models. Table 7.6 summarizes the multilingual models that we use in this
section. These models are used to compare the performance of GNN-based
models with transformer-based models in low-resource settings.

Evaluation details. In this section, we use the architecture of the mul-
tilayer convolutional graph neural network studied in Chapter 5. We con-
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Models Architecture Link
BERT-M bert-base-multilingual-cased https://huggingface.co/bert-base-multilingual-cased
MBERT M-CLIP/M-BERT-Distil-40 https://huggingface.co/M-CLIP/M-BERT-Distil-40
XLM-R xlm-roberta-base https://huggingface.co/xlm-roberta-base

Table 7.6: Links to the pre-trained models used in graph-based exploration.

ducted empirical experiments to find out that two layers are sufficient to
achieve optimal results with the model. In all evaluation domains, we ob-
served a significant jump in results when we used two layers instead of a
single layer. However, we observed that the results remained similar with a
larger number of layers. We set the size of the convolutional layers to 32 and
trained the model with batches of size 32 in 200 epochs. The performance of
the models is reported in terms of F1-score and we rely on McNemar’s test
for analyzing statistical significance with a significance level α = .05. The
GNN-based model takes as input a matrix X in which each row corresponds
to the representation of a text and a matrix A with a representative of the
graph structure (adjacency matrix). We obtained the representation of the
texts (vectors) based on TFIDF to generate X, and the inner product of
these vectors to generate A.

7.2.2 Results and Discussion

Resource Settings
High Low
EN EN DE RU TR HR SQ ES

GAO
BERT-M 0.6107 0.4171 0.6703 0.5694 0.4712 0.4276 0.4444 0.4222
MBERT 0.6735 0.4222 0.5249 0.6703 0.4276 0.6411 0.5333 0.5764
XLM-R 0.6314 0.5238 0.5828 0.6411 0.4667 0.4712 0.6122 0.3750

GNNCGNN 0.6824 0.8696 0.9600 0.7692 0.8000 0.9231 0.8000 0.9600

TRAC
BERT-M 0.6450 0.5601 0.5296 0.5249 0.5276 0.5536 0.5553 0.5072
MBERT 0.6736 0.5640 0.5375 0.5445 0.4825 0.5101 0.5193 0.5296
XLM-R 0.6477 0.6627 0.6936 0.6559 0.5801 0.6558 0.5725 0.5558

GNNCGNN 0.6915 0.8302 0.7500 0.7344 0.7931 0.8654 0.7234 0.7234

WUL
BERT-M 0.8200 0.7697 0.7221 0.7466 0.7233 0.7599 0.7221 0.6790
MBERT 0.8256 0.8374 0.8103 0.8103 0.7882 0.7887 0.7556 0.7278
XLM-R 0.8792 0.8768 0.8547 0.8942 0.8262 0.8599 0.8055 0.7991

GNNCGNN 0.8823 0.9000 0.7888 0.9072 0.8901 0.8879 0.9898 0.8876

ALL
BERT-M 0.7567 0.6664 0.7095 0.6360 0.6795 0.6261 0.6432 0.6167
MBERT 0.7717 0.7267 0.7108 0.6998 0.7044 0.6796 0.6832 0.6811
XLM-R 0.7988 0.7547 0.7792 0.7920 0.7226 0.7600 0.7627 0.6654

GNNCGNN 0.7801 0.7013 0.7178 0.7013 0.7013 0.7467 0.7013 0.7013

Table 7.7: Abusive language detection with the convolutional graph neural
network and transformer-based models. Results are reported in terms of F1
and numbers in bold indicate the best significant (α = .05) results for each
language and domain.

Table 7.7 shows the results for abusive language detection in each do-
main and language. We find that the GNN-based model outperforms the
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remaining models in most cases for the GAO, TRAC, and WUL domains.
However, the XLM-R model seems to perform better in the domain with
the largest amount of data (ALL). Also note that the improvement of the
GNN-based model becomes smaller as the amount of data increases, i.e., the
difference between the results of CGNN and the transformer-based models
is larger for GAO and smaller for WUL.

Similarly, we observe that for English in high-resource settings, the dif-
ference between the results obtained with CGNN and the transformer-based
models is smaller than for English in low-resource settings. These results
confirm that GNN-based models may be the best choice when data is scarce.

7.2.2.1 Ablation Analysis

In the previous experiments, we used a graph convolutional operator (Kipf
and Welling, 2017b) to create the CGNN model. This operator aggregates
information from neighboring nodes, i.e., in each layer of the model, each
node of the graph aggregates information from the neighbors of the node
and updates its representation. Table 7.8 shows the results of an ablation
analysis in which we tested variations of the GNN-based model concerning
different types of layers (operators) used in the model design. The types of
layers differ in their approaches to aggregating information from neighboring
nodes. We evaluate two additional operators:

• Graph transformer operator (Shi et al., 2021b) (TCGNN):

It uses self-attention mechanisms to weigh the importance of different
nodes in the graph when updating a particular node’s representation.
The self-attention mechanism allows nodes to attend to other nodes
with varying degrees of importance, capturing complex relationships
in the graph.

• GraphSAGE (Graph Sample and Aggregation) operator (Hamilton
et al., 2017) (SAGE):

It employs a sampling and aggregation strategy. Instead of consider-
ing all neighbors of a node, it samples a fixed-size neighborhood and
aggregates information from these sampled neighbors. In our case, the
sampled node representations are aggregated using the mean function.

Figure 7.1 illustrates the representation space of the texts for the English
example in a low-resource setting. We note that in the initial representation
(TFIDF) in Figure 7.1a it is difficult to distinguish between instances of
different classes. On the other hand, Figures 7.1b, 7.1c and 7.1d show a large
separation after transforming this initial representation with the operators
of the GNN-based models. Figures 7.2 to 7.7 show similar behavior for the
rest of the languages.
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Resource Settings
High Low
EN EN DE RU TR HR SQ ES

GAO
CGNN 0.6824 0.8696 0.9600 0.7692 0.8000 0.9231 0.8000 0.9600

TCGNN 0.8315 0.8462 0.9565 0.6923 0.7333 0.8571 0.9231 0.9091
SAGE 0.6824 0.8148 0.9091 0.6677 0.6897 0.8462 0.8148 0.9167

TRAC
CGNN 0.6915 0.8302 0.7500 0.7344 0.7931 0.8654 0.7234 0.7234

TCGNN 0.9620 0.9231 0.8713 0.7500 0.8350 0.7963 0.9804 0.9307
SAGE 0.9874 0.8687 0.8868 0.7579 0.8000 0.8033 0.9000 0.8713

WUL
CGNN 0.8823 0.9000 0.7888 0.9072 0.8901 0.8879 0.9898 0.8876

TCGNN 0.8906 0.9744 0.9899 0.8242 0.8287 0.9263 0.9899 0.9691
SAGE 0.8894 0.9000 0.9314 0.8400 0.8343 0.8774 0.8796 0.8770

ALL
CGNN 0.7801 0.7013 0.7178 0.7013 0.7013 0.7467 0.7013 0.7013

TCGNN 0.7890 0.9565 0.9408 0.8389 0.8202 0.8882 0.9908 0.9876
SAGE 0.7856 0.8712 0.8780 0.8182 0.7419 0.8800 0.8758 0.9527

Table 7.8: Ablation analysis for the convolutional graph neural network.
Results are reported in terms of F1 and numbers in bold indicate the best
significant (α = .05) results for each language and domain.

(a) TFIDF (b) CGNN

(c) TCGNN (d) SAGE

Figure 7.1: Representation of English texts in the low-resource setting with
t-SNE (Pezzotti et al., 2017a).

In many cases, the type of layer used has a significant impact on the
results. Note, that in the ALL domain, TCGNN is better than CGNN in all
languages. It even improves the results of XLM-R, which was superior to the
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GNN-based model in previous experiments. These are important results that
complement the findings from the previous experiments. Not only do GNN-
based models appear to be a superior alternative for low-resource settings,
but different architectures can improve abusive language detection depending
on the used data.

(a) TFIDF (b) CGNN (c) TCGNN (d) SAGE

Figure 7.2: Representation of German texts in the low-resource setting

(a) TFIDF (b) CGNN (c) TCGNN (d) SAGE

Figure 7.3: Representation of Russian texts in the low-resource setting

(a) TFIDF (b) CGNN (c) TCGNN (d) SAGE

Figure 7.4: Representation of Turkish texts in the low-resource setting

(a) TFIDF (b) CGNN (c) TCGNN (d) SAGE

Figure 7.5: Representation of Croatian texts in the low-resource setting
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(a) TFIDF (b) CGNN (c) TCGNN (d) SAGE

Figure 7.6: Representation of Albanian texts in the low-resource setting

(a) TFIDF (b) CGNN (c) TCGNN (d) SAGE

Figure 7.7: Representation of Spanish texts in the low-resource setting.

7.3 Data Augmentation

In Part III we found that data augmentation techniques tend to improve the
results of few-shot learning and that this improvement is more pronounced
with a smaller amount of data to fine-tune the models. This suggests that
data augmentation may be particularly beneficial in low-resource settings.
In this section, we analyze this aspect in more detail. We evaluate how the
amount of newly generated data affects the performance of abusive language
detection when there is only a small collection of training data.

7.3.1 Experimental Setup

Dataset. In this section, we use the same dataset as in the previous section
(see Section 7.1.1). In the experiments of this section, we focus on the set of
English texts. For the low-resource setting, we use the test set (999 instances
considering the three domains), of which we use 660 for training and 339 for
testing. For the high-resource setting, we use the XHate-999 training set.
From this large set of texts, we employ 6600 instances for training, while for
testing, we use the same 339 instances as for the low-resource setting.

Models. Table 7.9 shows the models we use in our experiments. These are
the models employed in the original paper of the XHate-999 dataset.
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Models Architecture Link
MBERT M-CLIP/M-BERT-Distil-40 https://huggingface.co/M-CLIP/M-BERT-Distil-40
XLM-R xlm-roberta-base https://huggingface.co/xlm-roberta-base

Table 7.9: Links to the pre-trained models used in data augmentation.

7.3.2 Data Augmentation

In Part III, we investigate strategies based on the Vicinal Risk Minimization
principle and observe how the performance of MBERT improves especially
when the amount of training data is small. This may be because overfitting is
more likely in low-resource settings, so using new data to solve this problem
can improve classification performance. In the following experiments, we
study the Easy Data Augmentation (EDA) strategy Wei and Zou (2019).
This strategy consists of four simple operations: i) synonym replacement, ii)
random insertion, iii) random swapping, and iv) random deletion. Previous
experimental results in the literature have shown that EDA can improve
classification performance and in particular provide strong results for smaller
datasets. To extend the analysis, we also use the SSMBA strategy (Ng
et al., 2020), which was studied in Chapter 6. This strategy uses a pair of
corruption and reconstruction functions to move randomly through a large
amount of data.

Our experiments are based on examining the performance gain of the
models when they are fine-tuned with an augmented text set compared to
the performance when the original text set is used. To this end, we use
the data augmentation strategies (EDA and SSMBA) to generate a certain
number n of new instances for each text of the original text set. Our study
focuses on analyzing how the performance of the models varies as a function
of the value of n.

7.3.3 Results and Discussion

Table 7.10 shows the results in the low-resource setting for the MBERT and
XLM-R models, respectively. In general, the use of a large amount of new
data led to an increase in performance. Based on the results, generating 16
instances for each text in the training set seems to be an optimal amount.
The best performance gains are achieved with this value of n and drop when
a larger number of instances are added. Note that we start from a training
set with 660 instances. For other datasets with a larger amount of data, it
may be necessary to add fewer new instances per original text, as the models
tend to generalize correctly with large amounts of data.

Figures 7.8a and 7.8b show the average of the performance gains with
EDA and SSMBA in both low-resource setting and high-resource setting. We
found that the gain is much larger when the initial text amount is small and
that the largest gain is achieved in the high-resource setting with an n value
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MBERT XLM-R
n EDA SSMBA EDA SSMBA
2 1.26 0.02 1.86 1.46
4 0.68 0.67 2.01 1.30
8 2.00 2.27 2.20 1.51
16 2.66 2.35 2.68 1.67
32 1.33 0.32 0.36 1.40
64 0.23 0.20 0.62 1.02

Table 7.10: Performance gain (%) for data augmentation (EDA and
SSMBA) in abusive language detection. The value n indicates the num-
ber of new instances generated for each training instance. Numbers in bold
indicate the best performance gain.

of 4. This suggests that data augmentation is particularly beneficial when the
amount of data is limited and that in cases where there is a sufficient amount
of data, generating a large number of new instances may be unproductive.

(a) MBERT (b) XLM-R

Figure 7.8: Average performance gain in data augmentation (EDA and
SSMBA) for various training set sizes. n is the number of generated aug-
mented texts per original text.

7.4 Hate Speech Spreaders

In the previous sections, we discussed the three fundamental aspects that
we focused on during the development of this doctoral thesis for abusive
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language detection in low-resource settings. In this section, we introduce
further experiments to study the presence of abusive content on social net-
works. In particular, we examine the characteristics of users who tend to
spread this type of content on Twitter (Hate Speech Spreaders - HSS). We
develop this research in two ways: i) analyzing whether a user is HSS based
on the analysis of their publications and ii) analyzing the characteristics of
the HSS network to study how they tend to connect and how a hateful mes-
sage can be spread through this network. For the first point, we organized a
shared task that allowed us to look at and compare different strategies and
outcomes. For the second point, we conduct experiments based on graph
analysis.

The rest of this section summarizes the experiments performed and our
findings. This study aims to provide a more comprehensive view of the
spread of hatred in a social network by going beyond the analysis of textual
information. The aim is to provide tools to help combat the abusive language
phenomenon.

7.4.1 Author Profiling Shared Task

The main objective of the Profiling Hate Speech Spreaders on Twitter Task
at PAN 2021 3 task is to determine whether the author of a Twitter feed is
a HSS or not (Rangel et al., 2021). In this task, a user is considered a HSS
if they have at least 10 hateful messages among their last posts.

Corpus. We build a corpus for English and Spanish. In each language, the
corpus consists of 300 users from which their last 200 tweets were selected.
These users are distributed in a balanced way, i.e. there are 150 users per
class (HSS and non-HSS). The division of the corpus into training and test
sets was based on a ratio of 2/3 for training and the rest for testing.

Main Methods. Most of the proposed strategies used traditional machine
learning models such as SVM, Random Forest, Logistic Regression, and Ad-
aboost. Only a few participants used methods based on deep learning such
as Fully Connected Neural Networks, Recurrent Neural Networks, Convolu-
tional Neural Networks, and BERT. The most notable characteristic of the
proposals is that most participants used a transformer-based approach to
represent the texts, with BERT being the most commonly used transformer.

Results. In order to analyze and compare the approaches, we calculate
the individual accuracy for the distinction between the two classes. Then
we averaged the accuracy values per language to obtain the final ranking.
The best result in English was obtained with BERT and Logistic Regression

3https:/ /pan.webis.de/clef21/pan21-web/author-profiling.html
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(Dukic and Krzic, 2021). The best result in Spanish was obtained using
a 100-dimensional word embedding representation to feed a Convolutional
Neural Network (Siino et al., 2021). Other top participants used transformer-
based architectures such as BERT, BERTTWEET, ROBERTa, BETO, and
one team used a meta-classifier fed with combinations of n-grams. The gen-
eral results show that it is possible to automatically identify HSS with high
accuracy using only textual elements. However, we point out that false pos-
itives need to be taken into account as they are almost twice as frequent
as false negatives, especially in Spanish, which could have ethical or legal
implications.

7.4.2 Users Networks Analysis

Although the results of the task in the PAN 2021 gave us a vision of the
possibility of characterizing possible HSS through their post, we are also
interested in evaluating how these users tend to interact on Twitter. In
the following experiments, we focus on investigating user networks through
graph analysis.

7.4.2.1 User Network Construction

Datasets We use two datasets for hate speech detection, which we used in
Chapter 3: FOUNTA (Founta et al., 2018) and W&H (W&H) (Waseem and
Hovy, 2016). We chose these datasets because they contain the identifier
of each tweet, which allowed us to obtain all the data needed for network
construction. We use the Twitter API to download the information from
each dataset. In this way, we obtain the author of each tweet and the list of
retweets of each tweet.

Settings. After downloading the tweets for each dataset, we extracted the
following data for each tweet t:

• Author Ut of t (Twitter user).

• Retweets list of t. In turn, we obtained the author of each retweet to
generate the list of users RUt who have retweeted a tweet from Ut at
least once.

Using this information, we created a graph for each dataset with the following
characteristics:

• Nodes: Users. The matrix representation of the nodes is X = Inxn
where n is the number of users in the graph, i.e. we use the identity
matrix whose dimension is determined by n.
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• Edges: Relation based on retweets. An edge euv exists if the user v is
in the list of Ru. The weight of this edge is the number of times that v
has retweeted a tweet from u. We then created the adjacency matrix
Anxn with this information.

• Node classes: We label users in one of the HSS or non-HSS classes.
We consider a user to be HSS if they have at least one tweet labeled
as hateful in the original dataset.

7.4.2.2 Network Characteristics

Table 7.11 gives an overview of the characteristics of the graphs generated
for each dataset. Looking at these characteristics, we notice that the graphs
do not turn out to be fully connected. There is a large number of isolated
nodes so only 19% (2646) and 51.8% (1143) of the nodes have at least one
connection to other nodes in FOUNTA and W&H respectively. Moreover,
the power law exponent is less than 2, which is not sufficient to say that the
graph degree distribution follows the power law distribution.

Caracteristics FOUNTA W&H
Nodes 13884 2208
# HSS nodes/# non-HSS nodes 4814/9070 819/1389
Edges 1589 1090
Isolated nodes 11238 1065
Loops 22 3
Density 0.0000082 0.0002237
Minimum degree 0 0
Maximum degree 28 343
Average degree 0.23 0.9873
Assortative coefficiente -0.013661 -0.373988
# of connected component 12317 1162
Size of giant component 29 572
Power law exponent 1.525 1.614

Table 7.11: User network characteristics.

In order to verify this finding, we visualize in Figure 7.9 the cumulative
distribution function of the degree distribution of the graphs, together with
the cumulative distribution function of the power law distribution and the
exponential distribution. For both FOUNTA and W&H, we observe a strong
similarity between the real graph data and the power law distribution. This
indicates that the degree distribution of the graphs follows the power law
distribution. We also validate this result in Table 7.12, which shows the result
of comparing two distributions.4 If the value of the likelihood coefficient is

4To compare distributions we use the distribution_compare method from the
powerlaw python library.
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greater than zero, distribution 1 is preferable. In both graphs, the values are
large, which confirms the comment about Figure 7.9.

(a) FOUNTA (b) W&H

Figure 7.9: Comparison between distributions.

Likelihood coefficient
Distribution 1 Distribution 2 FOUNTA W&H

Power law Exponential 76.8423 48.35

Table 7.12: Distribution comparison.

7.4.2.3 Influence Maximization

The presence of a power law distribution indicates that a few nodes, known
as hubs, play a crucial role in connecting different parts of the network.
Removing a random node is less likely to disrupt the network than removing
a hub. This is an important conclusion that directs the investigation toward
the search for hubs that are HSS to control the spread of hatred on Twitter.

Note that a hateful tweet originated from an isolated node or a node with
few connections (no hub) does not easily spread throughout the network. To
study this phenomenon, we rely on the field of influence maximization in
graphs. Influence maximization is a concept in network theory and social
network analysis that involves identifying a small set of nodes in a graph,
called seeds, that when targeted with certain information, can maximize the
spread of information throughout the network (Li et al., 2018; Patwardhan
et al., 2023).

We use the Independent Cascade Model (Chen et al., 2009), a diffusion
model for modeling the diffusion of information (influence). This model de-
scribes how information spreads from activated nodes to their neighbors over
time. Our goal is to determine the amount of seeds necessary to disseminate
information to a certain percentage of the network. To determine the seed
set, we first select a random node as an active node and add more nodes at
each stage of an iterative process. In one stage of the process, the highest
degree node that is not active is selected among the neighboring nodes of
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the active nodes. Then this node is activated with a probability p = 0.01.
The set of seeds (active node) is used to simulate information propagation
and determine the number of nodes to which the information reaches. The
process is completed when this quantity is the desired one.

Table 7.13 shows the number of seeds needed to reach different percent-
ages of the networks. In the networks of both datasets, the percentage of
seeds is very close to the percentage of the network to be reached. This
result refers to seed sets of non-hub nodes and confirms that what matters
most is to find the HSS hubs because the HSS users that are not hubs do
not seem to disseminate information significantly.

% of seeds
% of graph to reach FOUNTA W&H

10% 3.4% 8.7%
30% 24.1% 28.8%
50% 44.8% 49.1%
75% 68.9% 74.4%

Table 7.13: Percentage of needed seeds in Influence Maximization.

7.4.2.4 Comparison of Real Networks with Random Graphs

Another way to characterize real graphs is to compare them with random
graphs. Random graphs are mathematical models for graphs in which the
edges between nodes are added based on a random process. They are well-
known models that are often used in graph theory to study the properties
of graphs that result from random connections between nodes. There are
different models of random graphs and we use four of them in our research:

• Erdős-Rényi (Erdős and Renyi, 1959): In a graph with n nodes, every
node in it is connected to another node with a probability p. We
determined p as the ratio between the number of edges in our real
network divided by the number of edges of the complete graph with
the same number of nodes.

• Barabási-Albert (Barabási and Albert, 1999): A graph of nodes is
grown by attaching new nodes, each with m edges that are preferen-
tially attached to existing nodes with a high degree.

• Chung-Lu (Chung and Lu, 2002): Given a sequence of expected node
degrees W = {w0, w1, ..., wn−1} of length n this algorithm assigns an
edge between node u and node v with probability p = wuwv∑

k wk
.

• Watts–Strogatz (Watts and Strogatz, 1998): This model has been used
to explain the observed small-world phenomenon in various real-world
networks, including social networks.
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Graph representation. For each graph, we create a set of subgraphs.
Then we represent each subgraph as a vector of the features listed in Table
7.11. In this way, we have a collection of data consisting of the feature vectors
whose label is the original graph from which the corresponding subgraph was
extracted.

Comparison strategy. We rely on the classification task to distinguish
between two sets of feature vectors (subgraphs) extracted from random
graphs. We train a fully connected neural network for each pair of random
graphs. Then, with each of these classifiers, we compute the probability that
the subgraphs of a real graph belong to each of the random graphs used to
train the classifier. If the classifier discriminates for one of the classes, then
the underlying random graph generation model is better in the sense that it
generates graphs with certain properties.

Tables 7.14 and 7.15 show the average of the probabilities calculated
for each pair of random graphs for FOUNTA and W&H, respectively. The
results show that it is not possible to characterize the graphs constructed
from real data with any of the random graphs examined.

Erdős-Rényi Barabási-Albert Chung-Lu Watts–Strogatz
Erdős-Rényi - 0.4487 0.4357 0.4384
Barabási-Albert 0.5513 - 0.4400 0.4337
Chung-Lu 0.5643 0.5600 - 0.5000
Watts–Strogatz 0.5616 0.5663 0.5000 -

Table 7.14: Pairwise model comparison for FOUNTA.

Erdős-Rényi Barabási-Albert Chung-Lu Watts–Strogatz
Erdős-Rényi - 0.5515 0.4655 0.6226
Barabási-Albert 0.4485 - 0.4731 0.6307
Chung-Lu 0.5345 0.5269 - 0.6814
Watts–Strogatz 0.3774 0.3693 0.3186 -

Table 7.15: Pairwise model comparison for W&H.

7.4.2.5 Node Classification

Node classification is a task in which the labels of neighboring nodes are
used to predict missing node labels in a graph. Our latest analysis of user
networks focuses on this task to investigate how GNN-based models can
help identify HSS users from a graph of users and their relationships. We
use a GNN-based model with two convolutional layers (CGNN). We first
consider the user graphs described above (see Section 7.4.2.1) to obtain user-
level classification results (CGNNUsers). Then we add the information about
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the texts of each user (CGNNUsers&Texts). In this second experiment, we
transform the matrix with the information of the nodes X. We replace the
identity matrix Inxn (n is the number of nodes) with a text representation
matrix. In row i, which corresponds to the user ui, we place the vector
obtained with TFIDF from the concatenation of all texts of ui. In both
experiments, we used 70% of the users to train the model and the rest for
evaluation.

FOUNTA W&H
CGNNUsers 0.6379 0.7004
CGNNUsers&Texts 0.8952 0.7871

Table 7.16: Graph neural networks for user classification as hate speech
spreader.

Table 7.16 shows the results for each dataset. The results show that the
CGNN is able to classify HSS users based on the relationships in the graph.
Furthermore, we find that the performance can be improved by including
other information such as user texts.

7.4.2.6 Conclusions and Future Work

In this section, we examine different aspects of the abusive language phe-
nomenon considering the users of the social network Twitter. On the one
hand, we find that it is possible to automatically identify HSS users based
on a stream of publications. On the other hand, we investigate different
features of two datasets extracted from Twitter. The results suggest that
user networks are characterized by a few users who play a crucial role in
connecting different parts of the network. They are the most important to
identify, as nodes with few connections do not seem to achieve widespread
dissemination of information. These are interesting results that serve as a
starting point for future research, in which various aspects must be taken
into account. Regarding the construction of the graph, the follower-followee
relationship can be investigated, as well as other user information can be
considered for its representation. Instead of the identity matrix, we can use
a matrix where each row, corresponding to a user u, contains a vector of fea-
tures of u extracted with the Twitter API, such as the number of followers,
the number of posts, etc. Furthermore, other criteria can also be evaluated
to define a user as HSS. Finally, it should be noted that GNN-based models
offer the possibility to consider other tasks besides node classification, such
as link prediction, which can help predict the connection between a pair of
users in the graph with an incomplete adjacency matrix.
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7.5 Ethical Discussion

Our work may have some ethical concerns. First, we must point out that the
goal of our research is solely to minimize the harm that the abusive language
phenomenon can cause on social networks. Our tools should only be used for
the benefit of users. For example, our findings can help develop systems to
detect and prevent the spread of abusive language in environments with low
information availability. There are also some ethical concerns regarding the
collection and dissemination of data for the creation of the dataset proposed
in the shared task at PAN 2021. Likewise, there may be concerns about user
privacy when investigating Section 7.4. We must clarify that the identity of
the users used throughout the research of this PhD has been kept completely
anonymous, both in our experiments and in the publication of the results.
It is in no way our intention to stigmatize the users we used for our study.
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Chapter 8

Conclusions and Future Work

8.1 Conclusions

Abusive language detection is crucial to fostering a safe, inclusive, and pos-
itive online environment. While significant progress has been made in this
task thanks to advances in natural language processing and artificial intelli-
gence, these advances also bring with them a number of challenges. Detecting
abusive language in an environment with limited data is a major challenge.
The models may not have enough examples to understand the nuances of
the language. Translating models from languages with many resources to
languages with few resources is not trivial and may result in lower accuracy.

The work presented in this thesis has focused on the study of abusive
language detection considering different aspects. In Part I, we investigated
how models can reflect existing biases in the training data that can lead
to unfair detection of abusive language. The first step in this investigation
was to find a set of terms where abusive detection might be biased. To this
end, we proposed two methods to extract potentially abusive keywords from
datasets. One of the methods is based on the BERT attention mechanism
and the other on statistics computed from word frequencies related to the
class of abusive texts. Although the keywords extracted by the two methods
do not overlap much, we found that both methods mainly extract abusive
words. Once the keywords were extracted, the second step of our research
was to investigate: 1) the bias of the models toward these keywords, 2) how
this bias can be mitigated, and 3) how the performance of the models is af-
fected by mitigating the bias. The experimental results showed that the bias
can be reduced when fine-tuning the models with abusive texts in which the
keywords are not present and that this reduction can mean a performance
improvement. In Part II, we investigated the role of models based on graph
neural networks for abusive language detection. On the one hand, we pro-
posed a text representation framework designed to discriminate abusive texts
from other texts. On the other hand, we evaluated the use of models based
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on convolutional graph neural networks for classifying texts as abusive or
non-abusive. In general, we found that this type of models has the poten-
tial to outperform transformer-based models for detecting abusive language.
Next, in Part III, we used data augmentation techniques to increase the size
of the training dataset for the detection of abusive language. We considered
two well-known techniques based on the principle of vicinal risk minimiza-
tion and proposed a variant for one of these techniques. In the experiments,
we evaluated how the results of few-shot learning (the use of very little data
to fine-tune a pre-trained transformer-based model) are improved by increas-
ing the size of the available data using those data augmentation techniques.
Finally, in Part IV we further analyzed the results that were obtained in the
parts mentioned above, and we described further experiments we have done.

In particular, in the framework of our PhD thesis, we explored abusive
language detection in low-resource settings. The results we observed in the
course of our study allow us to answer the research questions posed in the
introduction of this thesis:

Research question about bias in the models

• RQ1: Could bias toward potential abusive keywords in the models affect
the performance of abusive language detection in low-resource settings?

The result of our research showed that modifying the bias toward po-
tential abusive keywords in the models generally varies the performance
of abusive language detection. However, in low-resource settings, it was
not possible to determine how the bias needs to be varied in order to
improve the performance. In Chapter 3, we observed how the bias
toward abusive keywords in a model can be mitigated by adjusting
the model accordingly using texts with certain features. Specifically,
we noticed that the bias can be mitigated by using abusive texts in
which the abusive keywords do not appear. We verified the mitigation
of bias using two different metrics to measure bias (a fairness-based
metric and a metric based on ROC-AUC) and found a correspondence
between this reduction and an increase in the performance of the model.
While this is a promising result, we did not observe the same behavior
in low-resource settings. We verified it by extending the experiments of
Chapter 3 to small datasets in Part IV. On the one hand, we found that
bias was only reduced in a few cases. The reason may lie in the lack of
texts of the environment where we reproduced the experiments, which
prevented a good fit of the model to appropriately mitigate the bias.
Consequently, although the bias modification affected the performance
of the models in low-resource settings, the results are not conclusive
enough to establish a correspondence between the decrease/increase in
bias and the variation in performance.
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Research question about graph-based models

• RQ2: What is the contribution of models based on graph neural net-
works for abusive language detection in low-resource settings?

According to our investigation, graph neural network models are promis-
ing for abusive language detection, especially in low-resource settings.
In Part II, we evaluated the suitability of graph auto-encoders to obtain
a discriminatory representation between abusive and non-abusive texts.
We also evaluated a convolutional graph neural network for the detec-
tion of abusive language. Under conditions of scarce data, graph-based
models showed better performance than transformer-based models. In
order to verify these results, we conducted further experiments in Part
IV to evaluate the performance of graph-based models in low-resource
settings. First, we verified the superiority of graph neural networks
over transformer-based models in this type of setting. On the other
hand, we found that different types of operators in graph neural net-
works can improve the results of classical convolutional graph neural
networks.

Research question about data augmentation

• RQ3: What is the contribution of data augmentation for abusive lan-
guage detection in low-resource settings?

Our study revealed that data augmentation can be an effective strat-
egy to improve abusive language detection in low-resource settings. In
Part III, we evaluated how the cross-lingual few-shot learning task can
be enhanced with three techniques based on the principle of vicinal risk
minimization (SSMBA, MIXUP, and MIXAG). To do this, we consider
a model trained to detect abuse in English and fine-tune it with some
examples for another target language. Then, the number of examples in
the target language was augmented with vicinal risk minimization tech-
niques. An improvement in results was observed after using a model
fine-tuned with this number of new samples. Later, in Part IV we ex-
tend the experiments using the well-known Easy Data Augmentation
(EDA) strategy. First, we found that the performance of abusive lan-
guage detection enhanced as the amount of data increased and noted
that this improvement is particularly beneficial in low-resource set-
tings. Second, we examined the number of new examples that should
be generated per initial instance and found that for smaller training
sets, generating many augmented instances leads to large performance
improvements. In contrast, for larger training sets, adding more than
four augmented instances per original text was unhelpful. We believe
that this is because models tend to generalize properly when large
amounts of real data are available.
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To sum up, we believe that the answers to the research questions show
that both the use of models based on graph neural networks as well as data
augmentation techniques can lead to the improvement of abusive language
detection in low-resource settings. Besides, we noted that bias mitigation
strategies can fail when the data is limited and that it is, therefore, necessary
to resort to other strategies in these settings.

Additionally, we introduced a study on abusive language detection from
the user’s perspective. We found that it is possible to automatically identify
potential haters based on a stream of publications. Furthermore, we noted
that important insights can be gained from analyzing the graph of relation-
ships between users. In particular, we observed that a few users who play
a crucial role in connecting different parts of the network may be the most
important to identify to prevent the spread of abusive messages on Twitter.

8.2 Future Work

In the framework of this PhD thesis, we addressed the task of abusive lan-
guage detection and identified future research directions that we intend to
explore in order to extend the study conducted. One of these directions is to
investigate further strategies to mitigate bias with limited data. We found
that one way to mitigate the bias toward abusive keywords in a model is to fit
it with a set of abusive texts without the presence of any of these keywords.
We verified that this strategy fails when the number of texts is very small
since the model seems to be unable to adapt to reduce the bias. Therefore,
we want to study in future research more sophisticated strategies to miti-
gate bias when there is not enough data. We believe that this will allow us
to establish a correspondence between variation in bias and performance in
low-resource settings.

Another direction we want to investigate concerns models based on graph
neural networks. We acknowledged their potential for abusive language de-
tection and believe that the study should be extended to explore the flexi-
bility of this type of models in representing different types of data. For ex-
ample, we can represent not only texts but also abusive keywords or phrases
as graph nodes and also represent a different type of relationship between
the graph nodes. In addition, we are interested in the task of multimodal
abusive language detection, where we will combine images and texts. In the
framework of our PhD, we did some preliminary work to investigate abusive
language detection from a multimodal perspective. In (De la Peña Sarracén
et al., 2020), we proposed a multimodal model that combines BERT for text
analysis and VGG191 for images.

Finally, we are interested in extending the study on abusive language
detection from the perspective of the users. In Part IV, we found attractive

1https://pytorch.org/vision/main/models/generated/torchvision.models.vgg19.html
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results that serve as a starting point for future research. We noticed that by
creating a graph where nodes represent users and edges represent the number
of retweets between users, we can analyze features that help us understand
the possible behaviors in the network. For example, we found that there are
some important nodes known as hubs. They are the most important ones
to locate to prevent abusive messages from spreading through the network.
We also observed that with this graph representation and with models based
on convolutional graph neural networks, it is possible to classify users as
hate speech spreaders with reasonable performance. In this direction, we
intend to investigate different representations for the graphs in terms of i) the
properties of the users for the nodes and ii) the relationship between the users
for the edges. Furthermore, we want to extend our study to a larger dataset.
Finally, we believe that it is worth investigating other social networks besides
Twitter where abusive comments can also affect the relationship between
users.

8.3 Publications

The different contributions of this thesis have been materialized in several
publications. Below we sum up the different scientific contributions high-
lighting their quality using the reference scoring system, i.e. the Core Con-
ference Ranking and the journal impact factor.

1. De la Peña Sarracén, G.L. and Rosso, P. (2023). Systematic Key-
word and Bias Analyses in Hate Speech Detection. Information Pro-
cessing & Management, 60(5), pp. 103433.
(Impact Factor: 7.466, Q1).

2. De la Peña Sarracén, G.L. and Rosso, P. (2023). Offensive Key-
word Extraction Based on the Attention Mechanism of BERT and the
Eigenvector Centrality using a Graph Representation. Personal and
Ubiquitous Computing, 27(1), pp. 45-57.
(Impact Factor: 3.406, Q2).

3. De la Peña Sarracén, G.L., Rosso, P., Litschko, R., Glavas, G.,
and Ponzetto, S. P. (2023). Vicinal Risk Minimization for Few-Shot
Cross-lingual Transfer in Abusive Language Detection. Proceedings
of the 2023 Conference on Empirical Methods in Natural Language
Processing (EMNLP), pp. 4069-4085. (Core A*).

4. Bevendorff J., Chulvi B., De la Peña Sarracén, G.L., Kestemont
M., Manjavacas E., Markov I., Mayerl M., Potthast M., Rangel F.,
Rosso P., Stamatatos E., Stein B., Wiegmann M., Wolska M., Zangerle
E. (2021). Overview of PAN 2021: Authorship Verification, Profiling
Hate Speech Spreaders on Twitter, and Style Change Detection (2021).
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In: Proc. 43rd European Conf. on Information Retrieval, ECIR-2021,
Springer-Verlag, LNCS(12657), pp. 567-573. (Core A).

5. De la Peña Sarracén, G.L. and Rosso, P. (2022). Unsupervised
Embeddings with Graph Auto-Encoders for Multi-Domain and Mul-
tilingual Hate Speech Detection. Proceedings of the Thirteenth Lan-
guage Resources and Evaluation Conference, pp. 2196-2204.
(Core B).

6. De la Peña Sarracén, G.L. and Rosso, P. (2022). Convolutional
Graph Neural Networks for Hate Speech Detection in Data-Poor Set-
tings. International Conference on Applications of Natural Language
to Information Systems, pp. 16-24. Springer International Publishing.
(Core C).

7. Chinea Rios, M., Müller, T., De la Peña Sarracén, G.L., Rangel, F.,
and Franco Salvador, M. (2022). Zero and Few-shot Learning for Au-
thor Profiling. In International Conference on Applications of Natural
Language to Information Systems, pp. 333-344. Springer International
Publishing. (Core C).

8. Rangel, F., De la Peña Sarracén, G.L., Chulvi, B., Fersini, E., and
Rosso, P. (2021). Profiling Hate Speech Spreaders on Twitter Task
at PAN 2021. In Proceedings of the Working Notes of CLEF 2021,
Conference and Labs of the Evaluation Forum, pp. 1772-1789.

9. Bevendorff J., Chulvi B., De la Peña Sarracén, G.L., Kestemont M.,
Manjavacas E., Markov I., Mayerl M., Potthast M., Rangel F., Rosso
P., Stamatatos E., Stein B., Wiegmann M., Wolska M., Zangerle E.
(2021). Overview of PAN 2021: Authorship Verification, Profiling Hate
Speech Spreaders on Twitter, and Style Change Detection. (extended
version). In: Proc. 12th Int. Conf. of the CLEF Association, CLEF
2021, Virtual Event, September 21–24, CLEF-2021, Springer-Verlag,
LNCS(12880), pp. 419-431.

10. De la Peña Sarracén, G.L. and Rosso, P. (2021). Multi-task Learn-
ing to Analyze the Influence of Offensive Language in Hate Speech
Detection. In Multimodal Hate Speech Workshop 2021, pp. 13-18.

11. Korenčić, D., Grubišić, I., De la Peña Sarracén, G.L., Toselli, A.H.,
Chulvi, B., and Rosso, P. (2022). Tackling Covid-19 Conspiracies on
Twitter using BERT Ensembles, GPT-3 Augmentation, and Graph
NNs. In: Working Notes Proceedings of the MediaEval 2022 Workshop
Bergen, Norway and Online, 12-13 January. Vol-3583.
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12. De la Peña Sarracén, G.L., Rosso, P., and Giachanou, A. (2020).
PRHLT-UPV at SemEval-2020 Task 8: Study of Multimodal Tech-
niques for Memes Analysis. In Proceedings of the Fourteenth Work-
shop on Semantic Evaluation, pp. 908-915: Barcelona, Spain, collo-
cated with The 28th International Conference on Computational Lin-
gustics (COLING-2020).

13. De la Peña Sarracén, G.L. and Rosso, P. (2020). PRHLT-UPV
at Semeval-2020 task 12: Bert for Multilingual Offensive Language
Detection. In Proceedings of the Fourteenth Workshop on Semantic
Evaluation, pp. 1605-1614: Barcelona, Spain, collocated with The
28th International Conference on Computational Lingustics (COLING-
2020).
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