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Abstract
In this article, we present and solve the multi-purpose K-drones general routing

problem (MP K-DGRP). In this optimization problem, a fleet of multi-purpose

drones, aerial vehicles that can both make deliveries and conduct sensing activities

(e.g., imaging), have to jointly visit a set of nodes to make deliveries and map one

or more continuous areas. This problem is motivated by global healthcare applica-

tions that deploy multipurpose drones that combine delivery trips with collection of

aerial imaging data for use in emergency preparedness and resilience planning. The

continuous areas that have to be mapped may correspond to terrain surfaces (e.g.,

flooded areas or regions with a disease outbreak) or to infrastructure networks to be

inspected. The continuous areas can be modeled as a set of lines so that each area

is completely serviced if all the lines covering it are traversed. Thus, given a set

of nodes and a set of lines, the problem is to design drone routes of shortest total

duration traversing the lines and visiting the nodes, while not exceeding the range

limit (flight time) and capacity (loading) of the drones. Unlike ground vehicles in

classical routing problems, drones can enter a line through any of its points, service

only a part of that line and then exit through another of its points. The possibility

of flying directly between any two points of the network offered by drones can lead

to reduced costs, but it increases the difficulty of the problem. To deal with this

problem, the lines are discretized, allowing drones to enter and exit each line only

at a finite set of points, thus obtaining an instance of the K-vehicles general routing

problem (K-GRP). We present in this article an integer programming formulation

for the K-GRP and propose a matheuristic algorithm and a branch-and-cut proce-

dure for its solution. Results are provided for problems with up to 20 deliveries and

up to 28 continuous areas.

KEYWORDS

branch and cut, capacity constraints, drones, general routing problem, logistics,

matheuristic, max-time constraints

1 INTRODUCTION

Drones or UAVs (unmanned aerial vehicles) are unmanned flying vehicles that can be flown autonomously or controlled

remotely. Commercial drones are deployed for a wide variety of missions, with two broad categories being delivery and sensing.

Delivery drones can be used to deliver items to discrete locations, such as for packages, medical items (including blood, organs,

defibrillators, medicines, vaccines, etc.) and disaster relief supplies. Another type of drone delivery in agricultural applications

involves delivery of liquid chemicals (e.g., herbicides, fertilizers) or seeds and seedlings to a field or region [10]. Note that this
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type of agricultural delivery operation has more in common with agricultural drone sensing operations, as in both a continuous

region of earth is involved (e.g., a farm field) rather than the discrete delivery points for package delivery. Drones for sens-

ing operations such as mapping, surveillance, inspection, and search activities are equipped with environmental sensors (such

as optical cameras, multispectral cameras, thermal sensors, LIDAR, radars of various types, magnetometers, etc.) to collect

data about ground, underground or infrastructure conditions (e.g., plant health, buried objects, wild fires, flooding, road traffic,

bridge conditions, etc.). Drones are also used in sensing operations to collect data on the air and weather conditions through

which they fly, such as pollution, temperature, humidity, particulates, volatile organic compounds and so forth. Drone sensing

operations are accomplished by flying the drone over a region of the earth or an item of infrastructure in a path that provides

coverage of the area of interest. The region to be covered may be a 2- or 3-dimensional surface (e.g., a bounded terrain area or

a bridge) or a network defined by infrastructure (e.g., roads, power transmission lines, or pipelines). Drones have several ben-

efits for sensing and delivery missions compared to “manned” operations, including cost reduction and time savings, ability to

access difficult-to-reach areas, and ability to operate in settings that are too dangerous for a person, or that require a level of

accuracy that only technology achieves.

Drone flights have typically been designed for a single purpose (e.g., either mapping or delivery), though some drones can

be reconfigured to accomplish different purposes on different trips (e.g., [1, 14]). Thus, it is important to distinguish between

a drone that can be (re)configured to perform different tasks (delivery, mapping, etc.) on separate trips, and a drone that can

perform multiple tasks (e.g., both delivery and mapping) on the same trip. In this article “multi-purpose drones” refers to the

latter case. In a typical drone delivery, the drone makes an empty return trip after the last delivery (assuming all deliveries are

successful) and this deadheading seems inherently wasteful. If such a drone could be used for other activities such as mapping

or sensing, then the return trips would be less wasteful. Similarly, if a drone being used for sensing was able to make a delivery

near the flight path needed for sensing, then efficiencies might be gained. Optimizing the routing of drones for flights that

combine delivery and sensing in one trip is the key issue addressed in our research.

As drone capabilities expand, multipurpose drone trips have become a possibility. Our research was originally motivated

by a UNICEF project in Malawi for multi-purpose drones that could both make deliveries of healthcare items, and perform

imaging as well ([32, 33]). The imaging may be for mapping a flooded area, an area with a disease outbreak or any other type

of continuous area, while the delivery would be to one or more discrete nodes. The continuous area to be imaged (mapped or

photographed) is covered by a series of drone flights so that images are obtained that cover the entire region of interest. In many

settings, repeated imaging of a region is required to assess the changing conditions, whether the application area is for plant

health, fire spread or flooding.

There are some reported applications of multipurpose drone trips in global healthcare settings. Drone provider Swoop Aero,

in association with the UK Department for International Development and UNICEF Malawi, studied the benefits of using

multi-purpose drones in Malawi to improve access to healthcare for remote communities and improve disaster preparedness

through aerial mapping [39]. In 2020, they undertook a 10-month sustained multi-purpose air medical logistics and disas-

ter relief operation in two districts of Malawi to combine daily long-range drone deliveries with flood mapping and disaster

response. A report on this project [29] says that “Swoop Aero successfully proved the multifunctionality of the technology-based

platform to conduct simultaneous aerial mapping tasks as well as routine medical commodity deliveries within the south of

the country”. Another example of multipurpose drone trips in global health is [40] which notes that a drone delivering medi-

cal supplies could also be equipped with a sensor to obtain agricultural data from farms the drone passes on the way, serving

two different users at once. Another project in Malawi is described in [41] in which a single UAV performs three separate

public services: medical supply, soil mapping for UNICEF (inspection and imaging that could be used for agriculture, infras-

tructure and development projects), and aerial surveillance for the Malawi Ranger Service to monitor endangered species and

detect poaching. A very different example of multipurpose drone trips that includes sensing and collection (instead of delivery)

is [12] which describes using a drone for sensing near erupting volcanoes. Here the drone has sensors to measure concentra-

tions of various molecules and environmental conditions in the volcanic plume, and it also collects physical samples of the

volcanic plume.

There are also applications for multipurpose drones that focus on communication of the data acquired in the sensing opera-

tions. In these cases, the delivery component is downloading (or uploading) information, which is accomplished by having the

drone travel to close proximity to a base station or other drone. Reference [17] considers a system with one drone route that con-

ducts video surveillance over a rectangular region using repeated parallel passes of the drone, followed by travel to a delivery

location to communicate the information collected to a base station. This research focuses on specifics of the communication

channels and communication protocols, rather than the drone routing. Reference [9] considers a similar problem with surveil-

lance using a camera of a “long strip” as for linear infrastructure (e.g., power transmission line, roadway or pipeline), followed

by delivery of the captured images to a base station. This includes problems where a single drone can surveille the width of

the strip in one pass, and an extension where multiple drones fly together down the length of the strip (as each drone’s camera

can cover only part of the width of the strip). Routing for the sensing component is simplified by following one linear feature,
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and the research focuses on the data transmission to the base station node with data transmission rate constraints. Combining

sensing and delivery of information (communication) to a base station is a growing area of research as “there is huge interest

to perform joint communications and sensing now” [21].

Multipurpose drones trips are also used in some other settings including avalanche scenarios, drowning, and search and

rescue. Reference [19] describes using drones for sensing to detect an area likely to be avalanched over a road, and then having

the drone accurately drop explosive charges (delivery) to trigger controlled avalanches. In [28] a drone is used to thermally

detect a body buried in an avalanche and then to drop an avalanche beacon nearby. A similar use of drones is reported in [6] for

search and rescue in the Canadian Arctic, where the drone can drop a communication device to a lost party once located. Finally,

drones for rescue of swimmers in distress is reported in [27], where there is testing of drones that first search for drowning

swimmers and then deliver a flotation device. All of these applications involve sensing to find something or someone, and then

delivery (dropping) of an item. These are different than the global health and communications applications described above

in that the delivery is made to a location within the search area, and the delivery location is not known at the outset of the

drone flight.

There is very limited analytical research on routing in multi-purpose drone problems that combine delivery with sensing

activities in the same drone trip. In [16], the authors study a problem in which the aim is to design drone trajectories that perform

a transportation operation such as package delivery, while also providing uniform coverage (over time) of a neighborhood area.

They investigate the use of multi-purpose drones in a simplified scenario where the neighborhood area is a circular region,

and in another scenario where the area is an arbitrarily shaped region. The authors propose an algorithm for each scenario for

uniform coverage and last-mile delivery applications.

In this article we address the multipurpose drone general routing problem where K drone routes are to be determined to both

provide sensing over a defined region and make a set of deliveries to discrete points. The region needing sensing coverage may

be a two-dimensional surface (e.g., a flooded region) or a network of linear features (e.g., rods or power transmission lines).

Sensing by a single drone covers a linear swath as the drone flies with the width of the swath (and the resolution) determined by

the sensor and the altitude of the drone. In our research linear features to be covered by sensing are modeled as line segments

which are covered by a single drone traversal along the line segment. To cover two dimensional regions by the drone, we replace

the region by a set of parallel lines to be flown by the drone that provide complete coverage over the region of interest (i.e., the

swaths from the drone flights cover the region). Typically the parallel lines are oriented to minimize the number of turns by the

drone, as turns interrupt the data collection and increase the drone flight distance and time (and battery usage) [30]. Because

we allow a region to be covered on several different drone trips, the optimal orientation of the flights might be different for

different parts of the region. We adopt the reasonable strategy for covering a region to have the drones fly parallel lines oriented

with the longer axis of the region (thus minimizing the turns needed by the drones), where the spacing of the lines reflects the

characteristics of the sensor being used by the drones. Although finding the optimal way of designing these parallel lines is an

interesting and difficult problem itself, in this work we will assume that the line segments that the drones have to follow in order

to provide sensing over the areas are parallel, straight and already given. However, our drone routing methodology will work

for any set of given lines.

Thus, given a set of lines, whether a network or lines covering a two-dimensional region, and a set of delivery points with a

known demand, the problem addressed here consists of designing drone routes of lowest total duration, jointly traversing all the

lines and visiting all the points (to make deliveries). The duration of each route should not exceed a time limit and the demand

delivered by each route should not exceed the capacity of the drone.

Other articles have studied the routing of drones to provide sensing (i.e., cover) over one or several areas, but without includ-

ing any drone deliveries. Xie et al. [37] study a path planning problem consisting of finding the optimal tour for a single drone

that has to cover multiple separated convex polygonal regions. The authors provide a mixed integer programming formulation

and propose a procedure for covering a single convex polygonal region. Based on this method, they develop two approaches

to solve the complete problem, a dynamic programming-based exact algorithm and a heuristic to generate high-quality tours.

Puerto and Valverde [26] address the problem of designing routes for drones that must visit a number of geographical ele-

ments to deliver some good or service. They present two formulations that are tested on a set of instances with different shapes

of elements, second order cone (SOC) representable and polyhedral neighborhoods and polygonal chains. Yang et al. [38]

studied the construction of a route for a drone that has to map an area while minimizing the total distance. The authors split

the area into squares and present an ant colony metaheuristic to design the route that visits them. Wang et al. [36] consider

the routing of drones that must “supervise” disjoint areas over a given time horizon. The areas are divided into cells which

must be visited several times within a time period. A multiobjective evolutionary algorithm to solve the problem is proposed.

Vasquez-Gomez et al. [34] propose a method for finding a path for a drone covering several disjoint areas consisting of two

steps: first determining the visiting order of the areas and then the optimization of the flight lines orientation. In Vasquez-Gomez

et al. [35], the authors address the same problem with only one region but taking into account the starting and ending points of

the drone.
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440 CAMPBELL ET AL.

FIGURE 1 Single-purpose drones versus multi-purpose drones. (A) Delivery routes, (B) imaging routes, (C) multi-purpose routes.

In this work, we address a routing problem for multi-purpose drones that both make deliveries and also do some sensing on

the same drone trip. Thus, rather than have one trip for deliveries and a second trip for sensing (using a reconfigured or different

drone), a single drone trip might perform both deliveries and sensing. Using multi-purpose drones instead of single-purpose

ones can lead to considerable improvements in the total duration of the trips, as can be seen in the example illustrated in Figure 1.

This example includes six delivery points and four regions represented by four sets of parallel lines that provide coverage of four

regions. Figure 1A shows the optimal routes for three delivery-only drone trips delivering packages to the six customers, with

a total duration of 3234.65. Figure 1B presents the optimal routes of three sensing-drone trips covering the four areas, whose

total duration is 4361.63. However, using three multi-purpose drone trips, as can be seen in Figure 1C, the delivery and sensing

can be carried out with a total duration of 5574.07, which is 26.6% lower than for the six drone trips using single-purpose

drones.

The contributions of this research are: (1) introducing and solving a new drone routing problem for multipurpose drone trips

motivated by several applications, including in global healthcare and sensing/surveillance; (ii) development of a general solution

methodology for multiple drones that allows an area to be covered by several different drone trips, (iii) computational results

to document performance of the method and benefits over use of two kinds of single purpose drones. Note that our approach

allows sensing coverage of two-dimensional areas covered by any linear features (whether parallel line segments or not), as well

as coverage of networks and linear features themselves, as for infrastructure (transmission lines, pipeline, roadways, etc.).

In Section 2, we formally describe the multi-purpose K-drones general routing problem, propose a formulation for its dis-

crete version, the K-vehicles general routing problem (K-GRP), and present several valid inequalities for this problem. In

Section 3, a branch-and-cut algorithm for the solution of the K-GRP is proposed, while Section 4 is devoted to the description

of a matheuristic for the MP K-DGRP. The computational experiments are presented in Section 5 and some conclusions and

future research lines are discussed in Section 6.

2 THE MULTI-PURPOSE K-DRONES GENERAL ROUTING PROBLEM

Let us consider a finite family of separated continuous areas, a set  of isolated locations and a fleet of multipurpose drones

located at a depot v0 (see left image in Figure 2). Multipurpose drones have both imaging and delivery capability, and they have

to provide sensing over the continuous regions in and also make a certain delivery at each location in  , without running out

of battery and without exceeding their load capacity. We assume that each region or area A ∈  is described (covered) by a set

of virtual parallel straight lines so that, by traversing these lines, drones cover the whole area (see right image in Figure 2). The

separation distance between the parallel lines depends on technical aspects of the drone and its sensing equipment (such as the

size of the camera footprint, the altitude of the flight of the drones, etc.). Moreover, drones are capable of delivering goods to

the locations of  , assuming that the load they can transport is limited and the demand of each location must be delivered by

the same vehicle at one time.

The MP K-DGRP can be defined as follows. Let us consider a set of lines, each one with an associated service (traversing)

time, a depot v0, and a set of locations with an associated positive demand and a service (visiting) time, and assume that the
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CAMPBELL ET AL. 441

FIGURE 2 A multi-purpose drone framework with || = 3 and || = 5.

time of deadheading between any two points is the Euclidean distance. Given two constants L and , the problem consists of

finding a set of drone routes starting and ending at the depot, with duration no greater than L and load not exceeding , such

that they jointly traverse all the given lines and satisfy the demand of all the locations with minimum total duration. In this

problem, we consider that a drone can travel in a straight line between any two points, and not necessarily following the links

of the given network as happens in classical routing problems with ground vehicles. Thus, a drone can enter a line that requires

service through any of its points, traverse and service part of it, exit the line through another of its points, then travel directly to

another line or to make a delivery at a required location, and continue its route while the time limit L is not exceeded.

The ability of drones to enter or leave each line at any of its points allows better solutions (lower cost routes) than those

obtained with traditional vehicles that cannot travel off of a network, but it makes the optimization problem continuous and

very difficult to address. To deal with this issue, as is done in [4] and [5], we select for each instance a finite number of points

on each line, so that drones can enter and leave each line only at these points. In other words, each original line is divided into

small edges that must be traversed by the drones. In this way, for example, a single edge with two endpoints may have four added

intermediate points that transform the one original edge into five edges, each with time of traversal equal to the proportional

part of the time of traversal of the corresponding original edge. Thus, the continuous problem is reduced to a discrete problem,

the K-vehicles General Routing Problem (K-GRP).

Obviously, the more intermediate points selected on each line, the better is the approximation of the original continu-

ous problem, and thus better solutions might be obtained. However, if the number of intermediate points is very large, the

size of the instance increases so much that it cannot be addressed, and even heuristic algorithms can fail to provide good

solutions in reasonable computing time. Thus, it is necessary to devise sophisticated strategies to generate instances of the

K-GRP with a reduced but significant number of intermediate points that can be solved to produce good solutions for the

MP K-DGRP.

In what follows, we formally define the K-GRP and propose a formulation for it.

2.1 A formulation for the K-vehicles general routing problem
Given an undirected and connected graph G = (V ,E), a subset ER ⊆ E of required edges and a subset VR ⊆ V of required

vertices, the General Routing Problem (GRP, Orloff [22]) consists of finding a minimum cost tour (closed walk) on G traversing

each edge e ∈ ER and visiting each vertex v ∈ VR at least once.

In the K-vehicles General Routing Problem (K-GRP), the required edges ER ⊆ E correspond to the segments into which

we have split the straight lines that have to be traversed in order to completely cover the continuous areas. Since these lines

are isolated straight lines, that is, there are no lines adjacent to each other, when they are discretized we obtain isolated chains

of required edges. Therefore, the vertices incident with edges in ER are incident with either one required edge (we call this set

of vertices VO) or with two required edges (we call this set of vertices VE). We denote by ENR the set of nonrequired edges,

which form a complete graph with the node set V . There is a time cs
e ≥ 0 associated with the traversal and service of each

required edge e ∈ ER, and a deadheading time ce ≥ 0 associated with the traversal of each nonrequired edge e ∈ ENR. The

deadheading times satisfy the triangular inequality. The set of required vertices VR ⊆ V is formed by all the nodes in V where

a drone should make a delivery. We will assume that these vertices are only incident with nonrequired edges and have to be
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serviced by exactly one drone. Otherwise, a simple transformation can be applied to meet this condition. Each node i ∈ VR
has an associated positive integer demand 𝑑i > 0 and a service time ci ≥ 0. Furthermore, the drone routes start and end at a

vertex (the depot, vertex v0) that, for the sake of simplicity, we will assume is not incident with required edges. Hence, we have

V = {v0} ∪ VR ∪ VO ∪ VE.

There is a fleet of K drones, each with a load capacity  and a time limit L. The objective of the K-GRP is to find K routes

with minimum total duration, starting and ending at the depot, that jointly traverse all the required edges and visit the required

vertices exactly once, so that the duration and the load of each route does not exceed the values L and , respectively. We will

call a K-GRP solution any set of K tours that meet all the constraints of the problem.

The K-GRP can be formulated using a binary variable xk
e for each edge e ∈ ER and for each drone k ∈ {1, … K}, and

two binary variables xk
e and yk

e for each edge e ∈ ENR and for each drone k. Variable xk
e takes the value 1 if the required edge

e is traversed (and serviced) by drone k and 0 otherwise, while variables xk
e and yk

e take the value 1 if the nonrequired edge e
is traversed once or twice by drone k, respectively, and 0 otherwise. In other words, variables xk

e and yk
e represent the first and

second traversal of nonrequired edge e by drone k. Additionally, a binary variable zk
i is introduced for each vertex i ∈ VR and

each drone k, taking the value 1 if the vertex i is serviced by drone k and 0 otherwise.

We use the following notation. Given two subsets of vertices S, S′ ⊆ V , (S ∶ S′) denotes the edge set with one endpoint in

S and the other in S′. Given a subset S ⊆ V , let us denote 𝛿(S) = (S ∶ V ⧵ S) and let E(S) = {e = (i, j) ∈ E ∶ i, j ∈ S} be the

set of edges with both endpoints in S. For any subset F ⊆ E, we denote FR = F ∩ ER, FNR = F ∩ ENR, xk(F) =
∑

e∈F xk
e and

(xk + yk)(F) =
∑

e=(i,j)∈F(xk
e + yk

e).
We propose the following formulation for the K-GRP:

Minimize

K∑

k=1

∑

e∈ENR

ce
(
xk

e + yk
e
)
+

K∑

k=1

∑

e∈ER

cs
exk

e +
K∑

k=1

∑

i∈VR

cizk
i , (1)

s.t.

∑

e∈𝛿R(i)
xk

e +
∑

e∈𝛿NR(i)

(
xk

e + yk
e
)
≡ 0 (mod 2), ∀i ∈ V ⧵ VR, ∀k, (2)

∑

e∈𝛿(i)
(xk

e + yk
e) = 2 zk

i , ∀i ∈ VR, ∀k, (3)

K∑

k=1

xk
e = 1, ∀e ∈ ER, (4)

K∑

k=1

zk
i = 1,∀i ∈ VR, (5)

xk
e ≥ yk

e, ∀e ∈ ENR, ∀k, (6)

∑

e∈𝛿R(S)
xk

e +
∑

e∈𝛿NR(S)

(
xk

e + yk
e
)
≥ 2xk

f , ∀S ⊆ V ⧵ {v0},∀f ∈ E(S),∀k, (7)

∑

e∈ER

cs
exk

e +
∑

e∈ENR

ce
(
xk

e + yk
e
)
+
∑

i∈VR

cizk
i ≤ L, ∀k, (8)

∑

i∈VR

𝑑izk
i ≤ , ∀k, (9)

zk
i ∈ {0, 1}, ∀i ∈ VR, ∀k, (10)

xk
e ∈ {0, 1}, ∀e ∈ ER, ∀k, (11)

xk
e, yk

e ∈ {0, 1}, ∀e ∈ ENR, ∀k. (12)

The objective function (1) minimizes the total duration of the routes. The first term represents the deadheading time from

traveling on nonrequired edges. The second and third terms represent, respectively, the time of servicing the required edges

and the time of visiting the required nodes (for delivery). Due to constraints (4) and (5), both these last two terms are con-

stant and could be removed from the objective. Constraints (2) force that the number of times a drone visits a nonrequired

vertex is even, possibly zero, and equalities (3) ensure that a drone traverses two nonrequired edges incident with a required

vertex i if it is serviced by this drone (and traverses no incident edges if it is not serviced). Equations (4) force each required

edge to be serviced exactly once, and the visit of each required vertex by exactly one drone is ensured by constraints (5).

Constraints (6) guarantee that a second traversal of a nonrequired edge by a drone can only occur when it has been traversed

previously by this drone. Inequalities (7) avoid subtours and ensure that each single route is connected and connected to the

depot. Constraints (8) guarantee that the duration of each route does not exceed L, while constraints (9) ensure that the demand
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CAMPBELL ET AL. 443

serviced on each route is not greater than the drone capacity . Constraints (10), (11) and (12) are the binary conditions for

the variables.

The following results allow us to remove some variables from the formulation, taking into account the structure of the

optimal K-GRP solutions.

Theorem 1. There is an optimal K-GRP solution in which each route satisfies:

(a) It does not deadhead two edges (i, j), (j, k) consecutively, except if j ∈ VR and it is serviced by the route.

(b) It does not visit the vertices in {v0} ∪ VR ∪ VO more than once.

(c) It does not visit the vertices in VE more than twice.

Proof. (a) Let us suppose a tour deadheads two edges (i, j), (j, k) consecutively with j ∉ VR. Each one of these

two edges is either a nonrequired one or a required edge that had already been serviced in a previous traversal.

Recall that the nonrequired edge (i, k) exists because ENR induces a complete graph, and that cik ≤ cij + cjk due to

the triangle inequality. The tour obtained after replacing the traversal of (i, j), (j, k) with the traversal of (i, k) has a

lower or equal duration and services the same required edges and the same required vertices as the former tour. By

iterating this argument we obtain (a).

(b) The drone tours start and end at v0. If a tour visits v0 again, it deadheads two edges without servicing v0,

which contradicts (a). Let us suppose a tour visits a given vertex j ∈ VR∪VO more than once. Note that there is only

one service associated with vertex j: the service of j, if j ∈ VR or the service of the unique required edge incident

with j, if j ∈ VO. Therefore, all visits to the vertex j, except one of them, are performed by deadheading two edges

without servicing j, which contradicts (a).

(c) Let us suppose a tour visits a given vertex j ∈ VE more than twice. Note that there are only two services

associated with vertex j: the service of the two required edges incident with j ∈ VE. Therefore, all visits to the

vertex j, except two of them, are performed by deadheading two edges without servicing j, which contradicts (a).▪

Corollary 1. For each drone k, variables yk
e for the following nonrequired edges e can be removed from the

formulation:

• e = (u, v) with u ∈ VO (or v ∈ VO), and
• e = (u, v) with u, v ∈ VR.

and the following inequalities can be added to the formulation:

xk(𝛿(i)) = 2xk
ij, ∀(i, j) ∈ ER, with i ∈ VO,∀k, (13)

xk(𝛿(i)) ≤ 2xk
ij + 2xk

li, ∀(i, j), (l, i) ∈ ER (i ∈ VE), ∀k. (14)

Note: Consider the special case of the K-GRP in which the lines are not split, that is, VE = ∅. From Corollary 1, this case

can be formulated using variables yk
e only for those edges joining the depot and vertices in VR (all the other yk

e variables can be

removed). Moreover, from Theorem 1, there is an optimal solution that does not use any nonrequired edge parallel to a required

one (otherwise, two consecutive edges would be deadheaded), so no variable xk
e is needed for these edges.

2.2 Other valid inequalities for the K-GRP
In this section we present four families of valid inequalities that reinforce the formulation. They are based on the capacity and

autonomy constraints of drones or on known families of valid inequalities proposed in [7] for the Maximum Benefit Chinese

Postman Problem (MBCPP).

Parity inequalities are obtained from those proposed in [7] for the MBCPP, which generalize the well known co-circuit

inequalities [2]. They rely on the fact that each drone tour traverses any edge cut-set an even (or zero) number of times:

xk(𝛿R(S) ⧵ FR) + (xk − yk)(𝛿NR(S) ⧵ FNR) ≥ xk(FR) + (xk − yk)(FNR) − |F| + 1, (15)

for each drone k ∈ {1, … K}, for all S ⊂ V , and for all F ⊆ 𝛿(S) with |F| odd.

In order to see that inequalities (15) are valid for the K-GRP on G, note that xk(FR)+ (xk− yk)(FNR) ≤ |F|. For a drone k, the

tours that satisfy xk(FR)+ (xk−yk)(FNR) = |F| traverse each edge in F once, and, since |F| is odd, they traverse at least one edge

in 𝛿(S)⧵F once, thus satisfying xk(𝛿R(S)⧵FR)+(xk−yk)(𝛿NR(S)⧵FNR) ≥ 1. For the drone tours satisfying xk(FR)+(xk−yk)(FNR) ≤
|F| − 1, inequality (15) reduces to xk(𝛿R(S) ⧵ FR) + (xk − yk)(𝛿NR(S) ⧵ FNR) ≥ 0, which is obviously satisfied.

p-connectivity inequalities are based on those with the same name proposed for the MBCPP in [7] and are generalized here

to also consider the existence of required vertices. Let {S0, … , Sp} be a partition of V . Assume that v0 ∈ S
𝑑

, 𝑑 ∈ {0, … , p},
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444 CAMPBELL ET AL.

and select either an edge ej ∈ ER(Sj) or a vertex vj ∈ Sj ∩VR for each j ∈ {0, … , p}⧵ {𝑑}. Let I1 and I2 be the sets of indices in

{0, … , p} ⧵ {𝑑} in which a required edge or a required vertex has been selected, respectively. For each drone k, the following

inequality is valid.

xk(𝛿R(S0)) + (xk + yk)(𝛿NR(S0)) + 2

∑

1≤r<t≤p
xk(Sr ∶ St) ≥ 2

∑

j∈I
1

xk
ej + 2

∑

j∈I
2

zk
vj . (16)

Let us assume that the depot belongs to S0 and let (x, y, z) be a K-GRP tour.

Given a drone k, if there is an edge ej, j ∈ I1, or a vertex vj, j ∈ I2, such that xk
ej = 0 or zk

vj = 0, we can consider another

p-connectivity inequality with p − 1 subsets by merging sets Sj and Sj+1 (or Sj−1). If the new (p − 1)-connectivity inequality is

satisfied by the solution, the original one will also be. Therefore, we can assume that xk
ei = 1 for all i ∈ I1 and zk

VO
= 1 for all

i ∈ I2.

Moreover, if xk(Sr ∶ St) ≥ 1, we can also merge Sr and St, obtaining a new (p− 1)-connectivity inequality. As before, if this

inequalty is satisfied, so is the original one. Therefore we can also assume that xk(Sr ∶ St) = 0 for any pair of sets Sr, St.

Since each set Si, i > 0, must be connected to the depot and xk(Sr ∶ St) = 0, xk(𝛿R(S0)) + (xk + yk)(𝛿NR(S0)) ≥ 2(|I1|+ |I2|),
and the inequality holds.

Capacity inequalities are widely used in node and arc routing problems when there is a limit to the demand a vehicle can

service. Given a vertex set S ⊆ V ⧵ {v0}, the edge cut-set 𝛿(S) has to be traversed at least twice the number of vehicles needed

to service the demand of the required vertices in S, and, therefore, the following inequality is valid:

K∑

k=1

xk(𝛿R(S)) +
K∑

k=1

(xk + yk)(𝛿NR(S)) ≥ 2

⌈
∑

i∈VR∩S
𝑑i∕Q

⌉

, ∀S ⊆ V ⧵ {v0}. (17)

Max-time inequalities are based on the limit L to the duration of a drone tour. Consider two sets F ⊆ ER and S ⊆ VR such

that the duration of the optimal tour (or a lower bound to it) starting and ending at v0, traversing all the edges in F, and visiting

all the vertices in S, is greater than L. On the one hand, we have that a single drone k cannot service all the arcs in F and all the

vertices in S and, hence, inequalities

xk(F) + zk(S) ≤ |F| + |S| − 1, ∀k ∈ {1, … K}, (18)

are valid for the K-GRP on G. On the other hand, under the same circumstances, at least two different drones must enter any

subgraph of G that contains all edges in F and all vertices in S but does not contain the depot. Hence, if W ⊂ V ⧵ {v0} is a set

of vertices containing S and the vertices incident with the edges in F, the following inequalities

∑

k∈K

(
xk(𝛿R(W)) + (xk + yk)(𝛿NR(W))

)
≥ 4, (19)

and
∑

k′∈K⧵{k}

(
xk′ (𝛿R(W)) + (xk′ + yk′ )(𝛿NR(W))

)
≥ 2, ∀k ∈ {1, … K} (20)

are also valid for the K-GRP on G. Inequalities (18), (19), and (20) can be easily generalized to the case when the number of

drones needed to service the edges in a given set F and the vertices in a given set S is greater than two.

3 A BRANCH-AND-CUT ALGORITHM FOR THE K-GRP

We have implemented a branch-and-cut algorithm (B&C) for the K-GRP based on the formulation proposed in Section 2.1. The

fundamental component of the B&C is a cutting-plane algorithm that incorporates separation procedures for the inequalities

presented in this article.

3.1 Separation algorithms
At each iteration of the cutting-plane procedure we use some separation algorithms to identify valid inequalities that are violated

by the current LP fractional solution. Let (xk
, yk
, zk), for k = 1, … ,K, denote this fractional solution, and let 𝜀 > 0 be a given

parameter. In what follows we describe the separation procedures used for each family of valid inequalities.

Connectivity inequalities
Although connectivity inequalities (7) can be exactly separated in polynomial time by means of max-flow computations, the

procedure is very time consuming and may produce many similar violated inequalities. Therefore, we decided to use heuristic

algorithms for separating them. The first one is a well-known method based on the computation of the connected components

 10970037, 2023, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/net.22176 by U

niversitat Politecnica D
e V

alencia, W
iley O

nline L
ibrary on [08/11/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



CAMPBELL ET AL. 445

of the graph induced by the edges e ∈ E such that xk(e) + yk(e) > 𝜀, plus the depot, if necessary. Inequality (7), associated with

each connected component and with the edge f in it with maximum xk(f ), is checked for violation.

The second heuristic works in a smaller graph in which the connected components of the graph induced by edges with

xk(e) ≥ 1− 𝜀 are shrunk into a single vertex each. Then, all minimum cuts between the vertex corresponding to the component

containing the depot and the remaining ones are calculated and their corresponding connectivity inequalities are checked for

violation.

Parity inequalities
Parity inequalities can be exactly separated in polynomial time with an algorithm based on the Padberg-Rao procedure [23]

for the computation of odd minimum cuts (see also Letchford et al. [18] for a more efficient procedure). For the special case

where S = {v}, the exact procedure described in Ghiani and Laporte [13] gives the set F ⊆ 𝛿(v) associated with the most

violated parity inequality.

We also use a simple and fast algorithm based on the computation of the connected components of the graph induced by

the edges e ∈ E with xk(e) − yk(e) > 𝜀, plus the depot, if necessary. The same procedure as for the case S = {v} is used here to

obtain the set F corresponding to the cutset associated with each component.

p-connectivity inequalities
To separate these inequalities, we first look for tight connectivity inequalities by searching among the cutsets obtained with

the connectivity separation procedures. Let S be a set of vertices associated with such a cutset and assume that v0 ∈ S0 = V ⧵ S.

If the connectivity inequality is tight for drone k, we compute the connected components in the subgraph induced in G(S) by

the edges e ∈ E(S) with xk(e) ≥ 1 − 𝜀. For each pair Ci,Cj of such components, sij = 2xk(VO,Vj) − 2 min{wk(𝛼i),wk(𝛼j)} is

calculated, where Vt denotes the set of vertices in Ct and 𝛼t is the edge e in Ct (or the vertex v in Vt ∩VR) with the highest value

of xk(e) (or of zk(v)). The components that maximize sij are iteratively shrunk while sij is positive. In this way, we obtain sets

S1, … , Sp and the associated inequality (16) is checked for violation.

Capacity inequalities
Capacity inequalities (17) can be separated heuristically by using the following simple procedure. First, we build the support

graph G = (V ,ER ∪ ENR), where ENR is defined by those nonrequired edges with ce =
∑

k∈K
(xk

e + yk
e) > 0. Required edges have

unit capacity and edges in ENR have capacity ce. For each required vertex i ∈ VR, we compute the max flow in G from the depot

to i. Let (S ∶ V ⧵ S) be the associated minimum cut, with i ∈ S, and nv =
⌈∑

j∈VR∩S 𝑑j∕Q
⌉

. If the max flow is less than 2nv, this

cutset defines a violated capacity inequality (17). Whether the inequality is violated or not, we define as the set of vehicles k
such that xk(𝛿R(S)) + (xk + yk)(𝛿NR(S)) < 2. Then, the inequality

∑

k∈
xk(𝛿R(S)) +

∑

k∈
(xk + yk)(𝛿NR(S)) ≥ 2(nv − K + ||), ∀S ⊆ V ⧵ {v0} (21)

is valid for the K-GRP and can be more violated than the initial one.

Max-time inequalities
We separate max-time inequalities (18), (19), and (20) by using two heuristic procedures based on the ones presented in [5]

for the Length Constrained K-Drones Rural Postman Problem.

The first one looks for violated inequalities (18). Let {e1, e2, … , em} be a set of required edges such that xk
e

1
≥ xk

e
2
≥ … ≥

xk
em ≥ 0.5, and let F = {e1, e2, … , ef }, where f is the maximal number such that xk(F) > |F| − 0.5. Then we define S as the

set of vertices with zk
i = 1. Now we solve the GRP with the set of required edges F and the set of required vertices S ∪ {v0}

with the branch-and-cut algorithm described in [8], and let C(F, S) be its optimal value or a lower bound. If C(F, S) > L the

corresponding inequality (18) is violated. Otherwise, for each edge e ∈ {ef+1, … , em}, we consider the set F = F ∪ {e} and

check if C(F, S) is greater than L. For each pair (F, S) (or (F, S)) whose corresponding inequality (18) is violated, we look for

the cutset of minimum weight between the depot and the edges in F and vertices in S in the support graph G = (V ,ER ∪ ENR)
defined above for the separation of capacity inequalities. For this cutset, we check the corresponding max-time inequalities (19)

and (20) for violation.

The second heuristic looks for inequalities (19). The procedure starts by defining S = {i}, where i is the vertex farthest from

the depot such that the maximum flow from v0 to i in G is less than 2K. Then we iteratively add vertices to S in such a way that
∑K

k=1
xk(𝛿R(S))+

∑K
k=1
(xk+yk)(𝛿NR(S)) is minimum. For each S, we compute the minimum number of vehicles needed to service

all the edges in ER(S) and all the required vertices in S by solving the associated GRP. The corresponding inequality (19) is

checked for violation. If a violated constraint (19) is found, at least one of the inequalities (20) is also violated and it is added.

3.2 The cutting-plane algorithm
The initial LP relaxation contains inequalities (3), (4), (5), (6), (8), (9), and the bounds on the variables. Moreover, as is usual

in routing problems with several vehicles, some symmetry-breaking inequalities are added to avoid equivalent solutions.
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446 CAMPBELL ET AL.

At each iteration, the cutting-plane algorithm applies the first heuristic algorithm for connectivity inequalities with 𝜀 =
0, 0.25, 0.5, where the value of 𝜀 is increased only if no violated inequalities are found with the previous value. If this heuristic

fails in finding violated cuts, the second connectivity heuristic is applied for 𝜀 = 0, 0.1, 0.2, 0.3, 0.4. All the tight cut-sets

obtained with the connectivity separation procedures are stored and used by the p-connectivity heuristic to check the violation

of their associated inequalities with 𝜀 = 0, 0.15, 0.3.

Moreover, at each iteration we apply the heuristic for identifying violated capacity inequalities, the exact parity separation

procedure for single vertices, and the heuristic procedure for parity inequalities with values 0,0.25, and 0.5 for 𝜀. A value of 𝜀

is used only if the previous one results in no violated inequalities.

Max-time separation algorithms are called only at the root node. Furthermore the exact procedure for parity inequalities is

applied only at the root node if no violated connectivity, p-connectivity, nor parity inequalities have been found so far.

4 A MATHEURISTIC FOR THE MULTI-PURPOSE K-DRONES GENERAL
ROUTING PROBLEM

In this section we present a matheuristic algorithm for the MP K-DGRP that consists of two parts. The first part aims to find

solutions for the K-GRP considering that each original line of an instance is represented by a single required edge (without

intermediate points). Let us call this instance K-GRP(0). In this part, we use an order-first split-second method (see [25]) that

initially generates a “giant tour” traversing all the required edges and visiting all the required nodes of G without considering

the max-time and capacity constraints. Then, K feasible drone routes for the K-GRP(0) instance are obtained from it. This is

described in Section 4.1. Several different giant tours are generated and partitioned into K routes to obtain a set of K-GRP(0)

feasible solutions. These initial solutions are improved by applying a variable neighborhood descent (VND) algorithm, described

in Section 4.2, that combines four local search procedures and a route optimization phase.

The second part of the matheuristic is focused on improving the n best K-GRP(0) solutions obtained in the previous part

by adding some intermediate points to the required edges, thus allowing drones to enter (or to exit) the lines not only at its

endpoints, but also at a subset of intermediate points. First we consider the new instance K-GRP(1) resulting from adding one

intermediate vertex to each required edge, so that each line is approximated by a polygonal chain with two segments (edges) with

the same traversal (and service) time. Each one of the n K-GRP(0) solutions previously obtained is trivially transformed into a

K-GRP(1) solution. We call this procedure “1-splitting”. We then apply again the VND algorithm and the route optimization

procedure to each K-GRP(1) solution. Some of these solutions may have been now improved due to drones entering or leaving

some required edges through its middle point. The most “promising” edges of each solution, those whose two halves are now

serviced by different drones (or by the same drone but not consecutively), are split again by adding p equidistant intermediate

vertices. We then try to improve the solution by using these new vertices. This is detailed in Section 4.3.

Throughout this section, we will use K-GRP solution to refer to a set  = (T1,T2, … ,TK) of K routes, each one starting

and ending at the depot, each with duration no greater than L and total demand not exceeding the drone capacity , such that

each required edge is traversed and each required node is visited. We will use task ti = (ti1, ti2) to refer either to a required edge

(ti1, ti2) serviced by traversing it from ti1 to ti2 or to a required vertex ti1 = ti2. Then, a route associated with drone k can be

represented by a sequence of tasks Tk = {tk
i , … , tk

j }, where it is assumed that the deadheading from the depot to the first task,

from the end of a task to the beginning of the following one, and from the last task back to the depot, is done by traversing the

corresponding nonrequired edge. We will denote by 𝑑(tk
𝓁) the demand of task tk

𝓁 , t
k
𝓁 ∈ VR ∩ Tk. A route will be feasible if its

duration is not greater than L and if its total demand does not exceed .

4.1 Solutions for K-GRP(0)
As mentioned above, this first part of the matheuristic focuses on finding solutions for the K-GRP(0) instance. The algorithm

starts by finding an optimal tour on G = (V ,E) traversing all the required edges and visiting all the required nodes of G. This

tour, commonly called a giant tour in the literature, is generated by relaxing drone capacity and time limit, and solving the GRP

instance optimally with the branch-and-cut algorithm described in [8]. The tour returned by this procedure has an associated

sequence of tasks TG.

The giant tour is optimally partitioned into K feasible drone routes by solving a shortest path problem over an auxiliary

directed graph G∗ = (V∗
,A∗) (see [3, 31]). This procedure was already used in [5] and has been extended to consider required

vertices as follows:

The set V∗
contains |VR| + |ER| + 1 nodes, where v0 denotes the depot and the remaining nodes v𝓁 represent the tasks t𝓁 .

The nodes are arranged from left to right following the order in which their associated tasks are performed in the giant tour.

Each arc in A∗ represents a feasible drone route on G. An arc from node vi to node vj is added if the route starting from the
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CAMPBELL ET AL. 447

Algorithm 1. Splitting procedure for a giant tour TG

Require: G,TG
1: initialize G∗ = (V∗

,A∗): V∗ ← {0, 1,… , n}; A∗ ← ∅
2: for i ← 1 to n do
3: j ← i
4: arctime ← 0

5: 𝑑eman𝑑 ← 𝑑(tj)
6: while (j ≤ n) and (𝑑eman𝑑 ≤ ) and (arctime ≤ L) do
7: arctime ← 𝛾(i − 1, j)
8: if arctime ≤ L then
9: add arc (i − 1, j) to A∗ with traversal time arctime

10: j ← j + 1

11: 𝑑eman𝑑 ← 𝑑eman𝑑 + 𝑑(tj)
12: end if
13: end while
14: end for
15: compute the shortest path P from 0 to n in G∗

16: transform each arc of P into a sequence of ordered tasks

17: return a K-GRP(0) solution (a set of K drone routes)

FIGURE 3 Example of an auxiliary graph used in the Split with Flips procedure.

depot, performing tasks ti+1, … , tj in that order, and going back to the depot, is feasible. The time associated with these arcs,

denoted 𝛾(i, j), is the duration of the corresponding route.

In graph G∗
we compute a shortest path from node v0 to node v|VR|+|ER|, whose set of arcs, as proved in Ulusoy [31], defines

a partition of the giant tour into K feasible tours that is optimal regarding the ordering of the traversal of the tasks. Algorithm 1

summarizes this procedure. However, this method does not take into account that required edges can be traversed in two possible

directions. Prins et al. [24] propose a procedure called Split with Flips that is a generalization of the previous method considering

the two directions in which each edge can be traversed. The main difference consists of the way the times 𝛾(i, j) associated with

the arcs in G∗
are calculated.

We have adapted this algorithm to consider required vertices as follows. For each arc in a ∈ A∗ representing a route, a new

auxiliary directed graph G∗
a is created in order to calculate its associated duration. Each task corresponding to a required edge

in G is represented now with two arcs, one for each possible direction of traversal, with times equal to its original service time.

For each task associated with a required vertex, one vertex is created with a (visiting) time equal to its original service time in

G. Then an arc is added from the end vertex of each arc (or vertex) representing a task to the initial vertex of the following arc

(or vertex), whose time is that of the corresponding shortest path in G. Two additional vertices representing the depot are added

and connected with the first and last task of the route, respectively, with times equal to those of the corresponding shortest paths

in G. In this graph, a shortest path between the two copies of the depot is calculated. This shortest path determines the optimal

direction of traversal of each task and its time will be the one assigned to arc a ∈ A∗.
Figure 3 illustrates the graph generated for a subsequence T = {t1, t2, t3, t4, t5} of tasks, where arc t𝓁 represents task t𝓁

traversed in the direction given by the route and arc t−1

𝓁 corresponds to the opposite direction of traversal. The numbers next to

the nodes and edges represent their service times. Dashed lines represent the nonrequired edges corresponding to the shortest

paths joining the tasks. In this example, the shortest path {t1, t2, t−1

3
, t4, t5} has value 52, while the directions given by the giant

tour have a value of 58.

In order to obtain a larger set of initial solutions, we apply the above algorithm with other initial giant tours on G defined

by different Eulerian circuits obtained from the optimal GRP solution. Note that a GRP solution is an Eulerian graph that
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448 CAMPBELL ET AL.

Algorithm 2. Pseudocode of the VND algorithm

1: for each K-GRP(0) solution  ∈ ̄ do
2: 𝜌 ← 1

3: while 𝜌 ≤ 4 do
4: obtain  ′ ∈

𝜌

( ) by applying the 𝜌-th local search method to 

5: if f ( ′) < f ( ) then
6:  ←  ′ and 𝜌← 1

7: else
8: 𝜌 ← 𝜌 + 1

9: end if
10: end while
11: end for

can be traversed in different ways. We try to generate different Eulerian circuits by applying the Hierholzer algorithm [15]

|ER| + |VR| times, starting each time with a different task. We thus obtain a set  of different initial K-GRP(0) solutions, with

| | ≤ |ER| + |VR|.

4.2 A variable neighborhood descent algorithm for the K-GRP(0)
Once the initial set of K-GRP(0) feasible solutions is generated, a variable neighborhood descent algorithm (VND) [11, 20] is

applied to each solution  ∈  to try to improve it. A VND is a metaheuristic that explores a sequence = (N1, … ,N
𝜌

max
)

of neighborhood structures in a deterministic way. Starting from an initial solution  and 𝜌 = 1, each iteration of the VND

explores the neighborhood N
𝜌

( ) to try finding a better solution. If one improving move is detected, it is executed and 𝜌 is

reset to 1; otherwise, 𝜌 is incremented to browse the next neighborhood. The algorithm stops when the exploration of the last

neighborhood N
𝜌

max
( ) brings no improvement, that is, when the current solution  is a local optimum over all the considered

neighborhoods. The VND algorithm proposed here explores 𝜌max = 4 different neighborhood structures (see Algorithm 2).

The first neighborhood structure N1 is defined by the intra-route move and consists of all the permutations resulting from

moving a task to another position within the route that performs it. For each route Tk of a solution  , the intra-route procedure

removes a task t𝓁 ∈ Tk at each step and inserts it in the position of Tk that minimizes the duration of the route.

The second neighborhood structure N2 is defined by the destroy and repair move. Each iteration of the associated

local-search procedure randomly chooses r tasks, with 2 ≤ r ≤ 8, and removes them from their corresponding routes. Then, the

algorithm tries to relocate each task one by one in the route and position that minimizes the total time, satisfying the time limit

and the capacity constraints. Note that it is possible that a required edge can not be placed in its original position because another

edge has been previously added to its route. If an edge cannot be inserted in any route, a new route servicing it is created. If the

total time of the new solution is not better than the time of the original one, the changes made in this iteration are discarded.

This procedure is repeated until one improving move is detected or until imax consecutive iterations without any improvement

are performed, with imax a given parameter.

The third neighborhood structure N3 is defined by the 0 to 𝓁-exchange move. Each iteration of this local-search procedure

removes 𝓁 consecutive tasks from the route servicing them and inserts all of them between two consecutive tasks of another

route. The algorithm considers the removal of all the possible sets of 𝓁 consecutive tasks and their insertion in all the possible

positions of other routes such that the duration and the total demand of the resulting route do not exceed L and , respectively.

The algorithm starts with 𝓁 = 1, and if no exchange improves the original solution, 𝓁 is incremented by 1 and the process is

repeated. The procedure stops when an improving move is executed, or when 𝓁 = 𝓁max and there are no moves that improve

the total time, with 𝓁max a given parameter.

The last neighborhood structure N4 is defined by the 𝓁1 to 𝓁2-exchange move and contains all the solutions obtained by

interchanging a chain of 𝓁1 consecutive tasks from one route with a chain of 𝓁2 consecutive tasks from another route, with

𝓁1 ≤ 𝓁2. The local-search procedure starts with 𝓁1 = 𝓁2 = 1, and tries to interchange the tasks between the two routes in order

to find an improving move. If no exchange move reduces the total time satisfying the route capacity and time limit constraints,

𝓁2 is incremented by one unit and the process is repeated. If 𝓁2 reaches 𝓁max and no improving exchanges are found, then 𝓁1

increases by one unit and 𝓁2 is set equal to 𝓁1. The procedure stops when an improving move is found, or if 𝓁1 = 𝓁2 = 𝓁max

and there are no exchange moves that produce a better solution.

Once the VND algorithm is terminated, a route-optimization procedure is applied to each solution  ∈  . For each drone

route T of a solution  , this procedure defines a GRP instance on graph G formed by the required edges and the required nodes
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CAMPBELL ET AL. 449

FIGURE 4 Illustration of p-splitting. (A) Adding p new intermediate points, (B) selecting the best intermediate point.

corresponding to the tasks performed on T . This GRP instance is then optimally solved with the branch-and-cut algorithm

proposed in [8]. The resulting routes will have a total time less than or equal to that of the original ones.

4.3 Adding intermediate points to obtain better K-GRP solutions
Let  b be the subset of the n best K-GRP(0) solutions obtained in the first part of the matheuristic. We add an intermediate

vertex i1 (equidistant from both endpoints) to each required edge (i, j) of G to obtain a new instance called K-GRP(1) with two

edges (i, i1), (i1, j) for each original required edge (i, j). Given a solution  ∈  b of K-GRP(0), it is easy to transform it into a

solution  ′ of K-GRP(1) with the same total duration that traverses edges (i, i1), (i1, j) consecutively.

Let  1 be the set of all the K-GRP(1) solutions obtained in this way. The VND algorithm and the route optimization

procedure are applied to each  ′ ∈  1 to try to improve their overall duration. Observe that drones can now enter and leave

any line through its middle point, which may lead to a better solution where the service of some original lines can be shared by

two drones.

Let E ′
1

be the set of original lines whose middle point is incident to nonrequired edges in solution  ′. Note that an edge in

E ′
1

is serviced by two drones (or by the same drone but not servicing both halves consecutively). It may be possible to improve

this solution by “moving” this middle point closer to the extreme points of the edge. To do this, we consider p, with p odd,

intermediate vertices evenly spaced in the line. Note that the middle point is one of them. Then, we study the improvement

obtained by changing the entry/leaving point for this edge to each one of the p− 1 other new points. This procedure, which we

call “p-splitting”, is applied to all the edges in E ′
1

.

Figure 4A illustrates how the “p-splitting” procedure improves a solution where two (not necessarily different) routes, Ti
(in orange) and Tj (in green), are involved in servicing an original required line joining vertices i and j. Note that these routes

enter or leave the line at its middle point i1 and, thus, i1 is incident with two nonrequired edges (dashed lines) in the solution.

After analyzing the total duration of the routes obtained by replacing vertex i1 by all the p intermediate points, the best solution

is the one that uses vertex sbest, which is depicted in Figure 4B.

This p-splitting procedure is applied with p = 15 to each solution  ′ ∈  1 and the best solution obtained is selected as the

final solution of the matheuristic.

Figure 5A,B illustrates an example of a solution before and after applying the procedure described in this subsection. For

this instance, the deadheading time is reduced by 5.2% due to drones entering and leaving six of the original required edges

through some of their intermediate points.

5 COMPUTATIONAL EXPERIMENTS

In this section, we present the instances we have generated to analyze the behavior of the proposed matheuristic and

branch-and-cut algorithms, as well as the computational study performed. The algorithms have been implemented in C++ and

all the tests have been run on an Intel Core i7 at 2.8 GHz with 16 GB RAM. The B&C uses CPLEX 12.10 MIP Solver with

a single thread. CPLEX heuristic algorithms were turned off, and CPLEX’s own cuts were activated in automatic mode. The

optimality gap tolerance was set to zero and best bound strategy was selected. The branch-and-cut algorithm used for obtaining

the initial optimal giant tour and for optimizing the routes after each VND improvement phase was also coded in C++ and uses

CPLEX 12.10 MIP Solver too.

5.1 Instances
As defined above, a multi-purpose K-Drones GRP instance is given by several sets of parallel lines (each set covering a contin-

uous area), some isolated vertices for delivery (those required nodes with positive demand), and a depot. In order to evaluate
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450 CAMPBELL ET AL.

FIGURE 5 Two solutions of instance MPDGRP882 before and after applying the splitting part of the matheuristic. Deadheading time: (A) 4341.9 and

(B) 4116.27.

the behavior of the branch and cut and the matheuristic algorithm, we have randomly generated two different types of instances,

both differing in the way they are built, classified as Type I or Type II instances.

First, we select values for n and m, and generate a GRP instance on a grid with n×m points whose coordinates are multiples

of 100. The graph initially contains all the vertical and horizontal edges, as well as some random diagonals. For type I instances

generation, we divide the grid into a number of regions computed by nareas = ⌈
n
3
⌉ ⋅ ⌈ n

3
⌉ and we randomly declare required an

edge in each region. Each one of these required edges gives rise to a required area later. This procedure ensures that areas are

disjoint and homogeneously distributed throughout the grid.

For type II instances generation, each edge of the original grid is considered required (and therefore included on the instance)

with probability p, thus obtaining several connected components of required edges. As some of these components may contain

more than one edge, we iteratively remove required edges that are incident to vertices with degree greater than one (at random)

until we only have isolated required edges. The idea behind this second type is to generate larger instances with a set of required

areas that are closer to each other. These type of instances can also be more difficult for our algorithms.

Once a representative required line from each area is generated, the following steps are identical for both types of instance.

We randomly select the depot and a number nvreq of isolated required nodes among those vertices of the grid that are not

incident with the selected required edges. The vertices, except for the depot, that are not required nor incident with required

edges are removed, and the coordinates of all the vertices of the instance are randomly perturbed by adding a value in [−20, 20]
to each coordinate, avoiding completely horizontal and vertical edges and also slightly changing the length of the edges. Each

required area is completely defined by adding a set of npar(e) parallel lines to each initial required edge e (separated by a

distance distpar to each other). The length and position of these new edges are then slightly perturbed in a random way so that

the represented area has a more irregular shape. The demand of each required node v is given by a value dem(v) and the service

time of each required edge is the Euclidean distance multiplied by a parameter timefactor.

We have generated MP K-DGRP instances with different values for n,m ∈ {6, 7, 8, 9, 10, 12}, npar(e) ∈ {1, 2, 3} for

each initial required edge e, distpar = 20 and timefactor = 1.5. For type I instances, we have generated two sets with nvreq
∈ [n − 4, n + 4]: one with dem(v) ∈ {1, 2, 3} for each required node v (version 1), and another with unit demands (version 2).

Since the demands of the vertices represent the weight of the delivery, and given that it seems reasonable that the total weight

that can be carried by a drone is not very large, we have not considered demands greater than 3. For type II instances, we have

also generated two different sets with unit demands: one with p = 0.4 and nvreq ∈ [n − 1, n + 1] (version 1), and another with

p = 0.3 and nvreq ∈ [2n − 1, 2n + 1] (version 2).

The characteristics of all the MP K-DGRP instances generated are shown in Table 1 and can be found in http://www.uv.es/

plani/instancias.htm. Table 1a shows, for each MP K-GRP instance of type I, the number of vertices, the number of required

vertices and its total demand, the number of required lines, and the number of areas. Table 1b shows the type II instances

characteristics and presents the same structure except for the total demand, which is not included because its value matches the

number of required vertices. The digits in the name of each instance indicate the values of m, n and if this is the first or the

second version generated from the same grid. Examples of a type I instance, a type II instance (version 1), and a type II instance

(version 2) on a grid with n = m = 9 are shown in Figure 6A–C.
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CAMPBELL ET AL. 451

TABLE 1 Characteristics of the MP K-DGRP instances

(a) Type I instances

Instance name |V| |VR| D |ER| ♯ areas

MPDGRP661 31 6 14 12 4

MPDGRP662 37 6 6 15 4

MPDGRP681 48 7 16 20 6

MPDGRP682 50 7 7 21 6

MPDGRP771 32 5 10 13 4

MPDGRP772 34 5 5 14 4

MPDGRP861 50 7 15 21 6

MPDGRP862 55 8 8 23 6

MPDGRP881 32 5 10 13 4

MPDGRP882 39 6 6 16 4

MPDGRP8101 79 12 24 33 12

MPDGRP8102 93 10 10 41 12

MPDGRP991 61 10 22 25 9

MPDGRP992 69 10 10 29 9

MPDGRP1081 83 12 24 35 12

MPDGRP1082 85 12 12 36 12

MPDGRP10101 61 10 22 25 9

MPDGRP10102 66 11 11 27 9

MPDGRP12121 103 10 22 46 16

MPDGRP12122 111 12 12 49 16

(b) Type II instances

Instance name |V| |VR| |ER| ♯ areas

MPDGRP661 60 7 26 8

MPDGRP662 54 13 20 6

MPDGRP681 83 6 38 11

MPDGRP682 70 13 28 9

MPDGRP6101 114 7 53 17

MPDGRP6102 85 12 36 14

MPDGRP771 105 8 48 14

MPDGRP772 71 14 28 9

MPDGRP791 134 7 63 20

MPDGRP792 81 14 33 11

MPDGRP881 118 9 54 18

MPDGRP882 103 16 43 15

MPDGRP8101 150 9 70 24

MPDGRP8102 97 16 40 12

MPDGRP991 157 10 73 25

MPDGRP992 74 19 27 11

MPDGRP9101 163 10 76 23

MPDGRP9102 94 19 37 14

MPDGRP10101 179 10 84 28

MPDGRP10102 143 20 61 19

In order to choose the values for L, each instance has been executed several times with different L values to guarantee that

the solutions will use a number of drones ranging from 2 to 6. The capacity Q of the drones has been chosen so that all the

demand of the required vertices can be serviced while keeping the number of packages carried by each drone as low as possible.

5.2 Computational results
We present here the results obtained with the branch-and-cut and the matheuristic algorithms on the MP K-DGRP instances.

First we have applied the B&C algorithm on the K-GRP(0) instances, that is, on the instances without adding any additional
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452 CAMPBELL ET AL.

FIGURE 6 MP K-DGRP instances on a grid 9 × 9. (A) Type I, (B) Type II (Version 1), (C) (B) Type II (Version 2).

TABLE 2 Computational results with the B&C for K-GRP(0) and the matheuristic on the instances of Type I.

Branch-and-Cut Matheuristic

|V| K ♯ opt Gap0 (%) Gap (%) Nodes Time ♯ opt ♯ best Gap (%) Imp (%) Time

General Demands ≤ 60 2 5 3.86 0.00 57.0 3.9 5/5 5 0.00 0.19 3.4

3 5 5.82 0.00 178.2 16.3 4/5 4 0.13 0.02 3.9

4 5 8.78 0.00 237.2 24.8 5/5 5 0.00 0.11 2.9

5 5 12.72 0.00 654.6 98.5 4/5 4 0.00 0.67 3.7

6 5 17.02 0.00 2590.8 427.0 3/4 3 0.13 0.65 4.4

> 60 2 5 3.00 0.00 199.0 49.1 4/5 4 0.00 0.15 30.1

3 5 5.22 0.00 705.6 349.9 2/5 2 0.09 0.02 19.9

4 3 8.80 0.82 5498.6 3828.4 2/3 4 0.98 0.26 19.9

5 2 10.07 2.46 4224.0 5501.0 1/2 3 2.67 0.57 17.8

6 0 11.24 4.50 5042.6 7200.0 0/0 3 4.97 0.20 17.4

Unit Demands ≤ 60 2 5 3.17 0.00 46.2 6.3 4/5 4 0.01 0.01 4.8

3 5 6.47 0.00 206.4 25.5 5/5 5 0.00 0.01 4.1

4 5 10.75 0.00 348.8 60.2 3/5 3 1.28 0.10 4.2

5 5 15.17 0.00 1991.4 1511.9 5/5 5 0.00 0.26 4.5

6 5 17.74 0.00 4065.2 1736.5 4/5 4 0.02 0.83 4.4

> 60 2 5 3.95 0.00 608.8 112.7 3/5 3 0.28 0.11 43.7

3 5 5.11 0.00 381.0 148.7 3/5 3 0.21 0.02 34.4

4 3 8.34 1.02 2899.4 3211.5 1/3 3 1.04 0.08 28.0

5 1 12.01 2.73 4659.8 5692.9 1/1 4 2.83 0.28 26.9

6 0 13.18 5.03 4196.2 7200.0 0/0 5 5.03 0.24 27.5

Total 79 59/79 76

intermediate vertices. Later, we will study the behavior of the B&C in the Type I instances to whose required edges we will add

an additional intermediate vertex to get their K-GRP(1) associated instances. Each of these 40 instances, 20 of type I and 20 of

type II, is solved with 2, 3, 4, 5 and 6 drones, and, hence, a total of 200 instances have been run.

Tables 2 and 3 summarize the computational results obtained with both algorithms for all the instances of type I and type II,

respectively. Both tables present the same structure. The results for each type of instance are separated in two blocks by a double

horizontal line according to the instance generation characteristics (general or unit demands in type I instances, and version 1

or version 2 in type II instances). Each of these blocks is also separated according to the number of vertices. The number of

drones used by the solution is shown in Column 2. Each row refers to the data of 5 instances.

The results obtained with the B&C algorithm for the corresponding K-GRP(0) instances with a time limit of 7200 seconds

are reported in columns 3 to 7. Column 3 shows the number of instances out of five solved to optimality. Columns 4 and 5 show

the average percentage gaps between the value of the optimal solution (or the best upper bound found) and the lower bound at

the end of the root node (“Gap0”) and the final lower bound (“Gap”), respectively. Column 6 reports the average number of

nodes of the branching tree and Column 7 shows the average total time, in seconds, used by the B&C.
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CAMPBELL ET AL. 453

TABLE 3 Computational results with the B&C for K-GRP(0) and the matheuristic on the instances of Type II.

Branch-and-Cut Matheuristic

|V| K ♯ opt Gap0 (%) Gap (%) Nodes Time ♯ opt ♯ best Gap (%) Imp (%) Time

Version 1 ≤ 120 2 5 2.69 0.00 2775.2 761.6 5/5 5 0.00 0.30 68.2

3 4 4.08 0.07 5702.8 4240.7 1/4 2 0.15 0.38 58.0

4 2 5.00 1.48 4610.2 5792.5 2/2 5 1.48 0.48 46.0

5 0 7.35 4.56 3594.0 7200.0 0/0 5 4.56 0.69 44.3

6 0 8.58 6.02 2892.4 7200.0 0/0 5 6.02 0.66 39.7

> 120 2 2 2.01 0.33 3746.2 4750.6 1/2 2 0.51 0.26 285.0

3 0 3.03 1.66 2535.4 7200.0 0/0 2 1.83 0.41 215.4

4 0 4.02 2.80 1303.2 7200.0 0/0 5 2.80 0.18 170.0

5 0 5.45 4.51 814.2 7200.0 0/0 4 4.51 0.25 162.0

6 0 7.46 6.77 499.0 7200.0 0/0 5 6.77 0.45 154.3

Version 2 ≤ 84 2 5 2.86 0.00 491.2 44.8 2/5 2 0.04 0.38 24.5

3 5 4.71 0.00 2947.2 1521.3 2/5 2 0.23 0.39 19.3

4 3 5.99 0.90 4334.0 4362.8 1/3 3 1.19 0.84 19.2

5 1 9.21 3.70 3694.6 7200.0 1/1 5 3.70 0.84 18.6

6 0 10.67 6.07 2545.0 7200.0 0/0 5 6.07 0.71 19.0

> 84 2 5 2.29 0.00 1144.6 283.9 1/5 1 0.40 0.44 130.9

3 3 4.13 0.44 4166.2 4446.0 1/3 3 0.57 0.43 82.6

4 0 6.28 3.47 2591.8 7200.0 0/0 4 3.55 0.40 89.3

5 0 9.41 6.99 1504.0 7200.0 0/0 5 6.99 0.52 71.9

6 0 11.04 8.94 1017.2 7200.0 0/0 5 8.94 0.20 70.3

Total 35 17/35 75

From Table 2 we observe that the B&C is capable of solving all type I instances with up to 60 vertices and 2, 3, 4, 5, and

6 drones in less than 30 minutes on average of computing time. Regarding the instances with more than 60 vertices, it can be

seen that most of the instances with 2, 3, and 4 drones (26 out of 30) have been solved in less than one hour of computing time.

However, the B&C has only been able to solve 3 out of 20 instances with 5 and 6 drones. On the other hand, comparing the

values of “Gap0”, “Gap”, and “Time” obtained for the instances with general demands and unitary demands, we can observe

that the latter seem a bit more difficult for the B&C than those with general demands. This apparently small increase in difficulty

could be explained by the use of CPLEX cover inequalities in the case of general demands.

Table 3 reports the results obtained by the B&C and the matheuristic in Type II instances, which are associated with larger

graphs. It can be seen that only a small number of instances have been solved to optimality. Specifically, 17 instances out of 20

with 2 drones, 12 out of 20 with 3 drones, and 6 with 4, 5, and 6 drones out of 60 instances. Note, however, that except for the

largest instances with 6 drones, the final gaps obtained are very good, showing that the inequalities in the formulation and the

proposed valid inequalities provide a good description of the convex hull of the solutions of the problem. These results reflect

the great difficulty of the problem when the instance is large and encourage the development of heuristic algorithms for solving

the multi-purpose K-drones general routing problem.

The results obtained with the matheuristic on all the instances of type I and II are reported in columns 8 to 12 of

Tables 2 and 3. To analyze its performance, we have compared the results of the first part of the matheuristic (without adding

intermediate points) with those of the branch and cut on the K-GRP(0) instances. Note that the final solutions of the matheuris-

tic (provided after the second part of the algorithm) are not feasible solutions of the K-GRP(0) instance, but we compare them

with the solutions obtained in the first part to be able to analyze the improvement of allowing drones to use some intermediate

vertices.

Column 8 shows the number of optimal solutions of the K-GRP(0) instances found with the matheuristic, and column 9

reports the number of times the matheuristic reaches the optimal solution or provides the best upper bound. The “Gap” column

shows the average percentage gap between the value of the solution provided by the first part of the matheuristic and the lower

bound given by the branch-and-cut algorithm in two hours of computing time. Column “Imp” gives the average percentage

improvement after applying the second part of the matheuristic algorithm with respect to the solution provided in the first part.

The last column reports the average total computing time, in seconds, used by the matheuristic.

We can see that in 151 out of the 200 instances considered, the matheuristic provides a K-GRP(0) solution equal to or

better than the one obtained with the B&C in a much more reasonable computing time. Nearly 67 % of the K-GRP(0) instances

optimally solved by the B&C are also optimally solved by the matheuristic.
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TABLE 4 Results for the instances with known optimal solutions.

Type K ♯ opt B&C ♯ opt M Gap (%) Gap-p (%) Time

I 2 20 16 0.07 −0.04 20.5

II 17 9 0.15 −0.23 95.9

I 3 20 14 0.11 0.09 15.6

II 12 4 0.18 −0.27 51.1

I 4 16 11 0.47 0.33 9.8

II 5 3 0.29 −0.55 24.4

I 5 13 11 0.00 −0.37 6.0

II 1 1 0.00 −0.56 9.0

I 6 10 7 0.08 −0.69 4.4

II 0 - - - -

Total 114 76

TABLE 5 Results with the B&C on the instances of Type I for K-GRP(1).

|V| K ♯ opt Gap0 (%) Gap (%) Nodes Time Imp (%)

General Demands ≤ 60 2 5 4.62 0.00 54.0 9.9 0.09

3 5 6.94 0.00 360.4 102.5 0.01

4 5 8.48 0.00 1512.6 627.5 0.18

5 4 12.62 1.07 1600.6 1827.9 1.27

6 3 16.85 1.79 4774.8 3571.3 1.29

> 60 2 5 3.24 0.00 508.6 237.8 0.08

3 4 5.35 0.19 1003.8 1857.7 0.00

4 1 9.00 3.07 2252.4 5985.3 0.07

5 0 10.34 4.39 1826.4 7200.0 0.53

6 0 12.15 8.09 1099.2 7200.0 0.11

Unit Demands ≤ 60 2 5 3.85 0.00 67.8 14.2 0.00

3 5 6.00 0.00 305.0 41.1 1.32

4 5 10.78 0.00 1892.8 447.7 0.02

5 3 15.63 3.25 2430.2 3210.3 0.26

6 1 18.16 5.58 7215.6 6244.4 0.68

> 60 2 5 3.82 0.00 867.8 675.2 0.05

3 5 5.20 0.00 713.8 749.5 0.00

4 2 8.97 3.25 1213.4 4908.2 0.24

5 0 12.67 7.86 925.8 7200.0 0.16

6 0 14.69 11.47 604.2 7200.0 0.17

Total 63

Table 4 summarizes the results obtained by the matheuristic on the 114 instances for which an optimal solution is known

for the corresponding K-GRP(0) instance. Columns 1 and 2 contain the instance type and the number of drones. Column 3

reports the number of K-GRP(0) instances with known optimal value, and Column 4 the number among them for which the

first part of the matheuristic provides the optimal solution. The “Gap” column shows the average percentage gap between the

value of the solution of the first part of the matheuristic and the optimal solution, while “Gap-p” represents the same gap for

the solution obtained by the matheuristic after the p-splitting phase. Note that some of these latter gaps may be negative, since the

solutions provided by the matheuristic for the instance with intermediate vertices may be better than the optimal solution of the

K-GRP(0) instance. The “Time” column reports the average computing time in seconds.

As mentioned above, the first part of the matheuristic is able to optimally solve 76 out of the 114 instances for which the

optimal solution is known. For the remaining 38, the solutions obtained are very close to the optimal ones. In addition, the

p-splitting procedure allows us to improve them even more, obtaining solutions in many cases better than the optimal solutions

without splits in very short computing times. This confirms that considering intermediate vertices when solving the problem

can lead to better solutions.

So far we have presented the results obtained with the B&C in the K-GRP(0) instances and compared these to results

provided by the matheuristic. To explore the largest instance size that the B&C was capable of optimally solving (or finding
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TABLE 6 Comparison of results with single-purpose versus multi-purpose drones.

Cost

Single purpose

K ♯ inst Nodes Edges Nodes + Edges Multipurpose Imp (%)

General 2 5 3331.2 4377.4 7708.6 6146.1 20.35

3 5 3916.4 4608.9 8525.3 6764.3 20.79

4 5 4372.1 4901.2 9273.3 7362.2 20.70

5 5 4711.8 5424.9 10136.7 8269.4 18.28

6 5 4907.5 6092.0 10999.5 9203.1 15.71

Unit 2 5 3066.0 4359.3 7425.3 5830.9 21.63

3 5 3239.5 4667.9 7907.4 6306.9 20.24

4 5 3819.6 5022.1 8841.7 7009.1 20.47

5 5 3819.6 5512.5 9332.0 7954.6 14.41

6 5 4225.1 6130.6 10355.7 8777.8 14.87

FIGURE 7 Solutions for two MP K-DGRP instances with 3 continuous areas and 5 locations. (A) A set L1
of lines covering the required areas, (B) solution

of the instance with ER = L1
, (A) A set L1

of lines covering the required areas, (B) solution of the instance with ER = L1
, (C) A set L2

of lines covering the

required areas, (D) solution of the instance with ER = L2
.
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good upper and lower bounds), we have also run it on all K-GRP(1) instances. As we suspected, the exact algorithm was not

able to optimally solve most instances with more than 60 vertices. In particular, in Type II instances, it was only able to find

3 optima out of 50 Version 1 instances and 10 out of 50 Version 2 instances. It was also unable to find a feasible solution for

most of those instances. Then, we report only the results obtained on the Type I instances. They are shown in Table 5.

Table 5 shows the same figures as in Tables 2 and 3, except the column “Imp (%)” that reports the average percent-

age improvement of the solutions obtained in the K-GRP(1) instances with respect to those obtained for their corresponding

K-GRP(0) instances. The results provided by the B&C in the instances with |V| ≤ 60 are very good, since it is capable of

solving 22 instances with general demands and 19 with unitary demands out of 25 of each type and the final average per-

centage gaps in the unsolved instances are small (less than 1.8% and 5.6% for instances with general and unitary demands,

respectively). The results with more than 60 vertices are quite good for the instances with up to 4 vehicles, but the gaps

for instances with 5 and 6 vehicles can be up to 11.5%. This shows the difficulty of these large instances, and that the dif-

ficulty increases with the number of vehicles. We also observe that the improvement found when intermediate vertices are

added at the edges is not great, particularly in the instances with fewer vehicles. The reason for this behavior may be the spe-

cific spatial distribution of the required lines in the instances considered here, which does not favor that several drones share

its service.

Finally, to get an idea of how much the cost of the solutions is improved by using multi-purpose drones versus using

single-purpose drones (to service nodes or edges), we have applied our B&C on all the K-GRP(0) instances of Type I with

|V| ≤ 60, first considering only the required vertices of the instances and then only the required edges. We assume that two

fleets of drones (K drones with delivery capability and K with inspection capability) are available to perform each type of task

(it may be the same K drones that are reconfigured for missions of different type). The results obtained in these 50 instances

are summarized in Table 6. Each row of this table reports the average data for the 5 solved instances. Columns 3 and 4 provide

the total cost (on average) of the solutions if we consider drones that only service the required nodes (delivery only) and drones

that only traverse all the required edges (sensing only), respectively. The sum of both of these costs for single purpose drones

is shown in Column 5. The average costs of the solutions obtained with multi-purpose are shown in Column 6, and the last

column gives the average percentage improvement that these costs represent with respect to the sum of the costs provided by

single-purpose drones. It can be seen that the use of a fleet of multi-purpose drones improves the total cost between 14% and

21% (on average) compared to the use of two fleets of single-purpose drones.

5.3 Extensions
In this work, we have assumed that the areas to be mapped were already described by means of a given set of parallel lines.

However, there may be multiple possible orientations of these lines, which can greatly influence the quality of the resulting

solutions. For example, consider the case illustrated in Figure 7. Figure 7A,B is the solutions obtained with the matheuristic for

FIGURE 8 Solution of an instance with 8 required vertices and 6 connected components induced by 37 required edges corresponding to a real network.
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CAMPBELL ET AL. 457

the MP K-DGRP instances represented in Figure 7A,B, which correspond to the same areas, but with different orientations of

the sets of lines that cover them. The value of the second solution is 6.2% shorter than the first one. Studying the optimal way

of covering the areas is therefore an interesting problem that we would like to investigate in the future.

The solution methods described in this article, the branch and cut and the matheuristic, can be adapted to deal with general

networks associated with required vertices and connected components induced by the required edges (rather than sets of parallel

required lines). An example of such a network and a solution to it with three multi-purpose drones can be seen in Figure 8. This

includes a connected component with 20 required edges serviced by the three drones. We also plan to extend the current work

by developing versions of both methods that exploit the particularities of these general networks.

6 CONCLUSIONS AND FUTURE WORK

In this article, we have addressed the multi-purpose K-drones general routing problem, where a fleet of multi-purpose drones are

used to jointly provide sensing over a region or network along with deliveries to discrete nodes. The continuous areas for sensing

coverage can be modeled as a set of parallel lines so that each area is completely serviced if all its lines are traversed. For this

problem, we have proposed a formulation of its discretized version and presented a matheuristic algorithm and a branch-and-cut

procedure for its solution. The results obtained with the branch-and-cut show that the formulation and the valid inequalities are

useful for optimally solving small and medium-size instances and provide good lower bounds for larger instances that allow us

to measure the quality of the feasible solutions provided by the matheuristic. This matheuristic algorithm is capable of finding

very good solutions in short computing times.

Future research could consider a variety of practical extensions for multi-purpose drones. One area that applies for some

delivery settings is to prioritize either deliveries or sensing. Thus one could enforce a requirement to complete deliveries first

(before sensing activities) or vice versa. One might also enforce a time constraint on the last delivery, as can be important for

medical supplies or perishable products. Another extension could be to allow drone recharging, so the drone need not return to

the base, but could be recharged (or reloaded for more deliveries) in the field. A related area of future research could model the

drone battery consumption as depending on the different activities (flying loaded, flying empty, and sensing). Research could

also explore the optimal orientation of lines to cover a region, or explore other drone flight paths for covering a region. From an

algorithmic perspective, future research can address other ways of identifying intermediate points where drones can enter and

exit lines, and other heuristic solution approaches for very large problems.
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