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A B S T R A C T

In this paper we present a generalization of the Graphical Traveling Salesman Problem (GTSP). Given a
communication graph in which not all direct connections are necessarily possible, the Graphical Traveling
Salesman Problem consists of finding the shortest tour that visits each node at least once. In this work, we
assume the availability of a budget that allows to upgrade, i.e. reduce their traversal cost, some of the current
connections and we propose the problem of designing the minimum cost tour using this budget. We propose and
study a formulation for the problem, verifying that the polyhedron associated with the set of feasible solutions
of a relaxed version of the problem is a full-dimensional polytope. We present families of valid inequalities that
reinforce the model and pre-processing techniques to reduce the number of variables of the formulation. To
solve the problem, we propose a branch-and-cut algorithm that uses the introduced valid inequalities, as well as
a heuristic to obtain good upper bounds and a tailor-made branching strategy. Comprehensive computational
experiments on a new set of benchmark instances are presented to assess the performance of this exact method.
1. Introduction

Many of the paths in transportation networks are maintained in time
as long as the external conditions do not change. New scenarios such
as the acquisition of vehicles, the modification of the demand or the
creation of new communication channels lead to the design of new
routes that can coexist or replace existing ones. Upgrading connections
is a hot topic in network problems. The efficient management of
telecommunications networks implies costs associated with the nodes
of the network and also costs associated with the edges of the network.
The concern to improve the efficiency of the network by investing
in modifying the costs of the nodes and/or the edges is not new.
Numerous works have been published that deal with the influence of
the modification of node and/or edge costs in the solutions of different
network problems. These modifications may be motivated both by an
additional budget allocation and by the need to improve the current
network.

The upgrading of edges and nodes has been studied in many routing
problems. In 1977, in the paper Fulkerson and Harding (1977), the
problem of investing a budget for upgrading connections in several
shortest path problems was introduced. Since then, interest in this topic
has not ceased. Different challenging network upgrading problems were
modeled and analyzed in 1995 (Paik and Sahni, 1995). In Krumke
et al. (1997), it was assumed that each edge has an associated function
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(J.M. Sanchis).

that specifies the cost of shortening it, and the problem of finding a
spanning tree of smallest total length is approached by means of a
polynomial time approximation algorithm, while Hambrusch and Tu
(1997) considers edge weight reduction problems in directed acyclic
graphs. Drangmeister et al. (1998) shows that, in general the problem
of finding an optimal reduction strategy for modifying the network is
NP-hard, even for simple classes of graphs and linear cost functions.
In Fredericksont and Solis-Oba (1999) the problem of determining the
maximum increase in the weight of the minimum spanning trees of
a graph caused by the removal of a given number of edges, or by
finite increases in the weights of the edges, is studied. The problem
of improving spanning trees when the cost of the edges can be reduced
by upgrading its endpoints is presented in Krumke et al. (1999). The
interest in analyzing the effect of the upgrading of connections in
communications networks has been maintained over the last 20 years.
The effect of reducing the flow cost on arcs by upgrading the arcs
has also been studied in Demgensky et al. (2002), as well as some
series of problems that involve finding the best 𝑞 arcs in a network to
upgrade (Campbell et al., 2006). Upgrading actions to minimize the
shortest delay paths between demand pairs of terminals in the net-
work are analyzed in Dilkina et al. (2011). Approximation algorithms
for budget constrained network upgradeable problems are introduced
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in Saharoy and Sen (2014). More recently, more trees and path up-
grading problems have appeared in the literature (Alvarez-Miranda and
Sinnl, 2017, Sepasian and Monabbati, 2017 and Zhang et al., 2021).

Routing and location problems are both common in telecommuni-
cations networks, and usually the decision made when dealing with a
location problem depends on the decision previously made in a routing
problem and vice versa. Although this paper belongs to the routing
group, it is interesting to note that upgrading problems are also cur-
rently present in the location research community. As an example we
can mention some recent upgrading location papers: Sepasian (2018)
for the 1-center problem, Afrashteh et al. (2020) for the obnoxious
𝑝-median location problem, Baldomero-Naranjo et al. (2022) for the
maximal covering location problem, Blanco and Marín (2019) for the
hub location problem and Espejo and Marín (2020) for the network
𝑝-median problem.

In this work, we address the design of routes when the traversal cost
f part of the network can be changed by paying a price. We assume
hat we have a budget to improve/upgrade the current connections
nd we want to decide how to invest that budget to upgrade the
onnections in order to visit all the nodes of the network with total
inimum cost. We consider that for each edge different investments

llow different levels of improvements. The problem is to decide which
dges of the network to upgrade without exceeding the budget in order
o obtain the shortest tour in the upgraded network. We assume that
he communications network does not need to form a complete graph.
hus, we introduce an extension of Graphical Traveling Salesman
roblem (GTSP) in which each edge cost can be reduced by investing.
he GTSP consists of finding the shortest tour on a graph visiting,
t least once, each vertex. The GTSP can be solved on a complete
raph obtained by adding edges representing shortest paths and then
olving a Traveling Salesman Problem (TSP). This is not possible in
ur case, since we do not know the final traversal cost of the edges
n advance and therefore cannot compute such shortest paths. The
TSP, which may be considered a relaxation of the TSP, was introduced

n Fleischmann (1985) and Cornuéjols et al. (1985), and further studied
n Naddef and Rinaldi (1991), Naddef and Rinaldi (1992), Naddef and
inaldi (2007), Oswald et al. (2007), and it still deserves researchers
ttention (Carr et al., 2023). The research gap covered by the content
f this paper is the mathematical optimization of the edge upgrading
n the GTSP.

Applications for the problem of upgrading edges in the GTSP are the
ame as applications of the GTSP, which have been widely discussed in
he literature . Improving a connection in a communication network
an translate into improving the paving, or paying a toll or even hiring
ore vehicles for the connection in question. The improvement can

e measured in units of cost or in units of time. For instance, a road
amaged after an earthquake could be improved by simply removing
he debris, by repairing the possible holes and cracks that may have
ppeared, or by constructing a whole new road. Also, the movement
ime of maintenance operators on a ski slope can be improved by
eplacing belts with hangers. The travel time of a truck traveling
hrough a conventional road can be improved by using a toll motorway
r, in some cases, by riding the truck on a ferry. Depending on what
ction we decide to take, a different amount of money will have to be
pent and also a different improvement in the traversal time of the road
an be achieved.

The remainder of the paper is organized as follows. In Section 2,
e present the notation and the new model. In Section 3, we prove
ecessary and sufficient conditions for the polytope of solutions of
relaxation of the problem to be a full-dimensional polytope and

lso that part of the new model constraints are facet-inducing of
his polytope. We also introduce some families of inequalities that
ave been adapted from other existing problems: parity inequalities,
-connectivity inequalities, and cover inequalities. In Section 4, we
ntroduce more families of valid inequalities for the model which are
2

ased on the traversing costs and upgrading prices, while in Section 5
it is proved that our problem can be expressed as a cost-constrained
GTSP, which allows the design of a pre-processing algorithm. Section 6
describes the branch-and-cut algorithm, while results for the compu-
tational experiments are summarized in Section 7 and our concluding
remarks are presented in Section 8.

2. The problem

In the problem we address in this work, we consider a connected
undirected graph 𝐺 = (𝑉 ,𝐸) with |𝑉 | vertices and |𝐸| edges represent-
ng a network. Each edge 𝑒 ∈ 𝐸 has 𝐾 associated non-negative costs,
𝑐1𝑒 ≥ 𝑐2𝑒 ≥ ⋯ ≥ 𝑐𝐾𝑒 ≥ 0, corresponding to its traversal at each one of the

upgrading levels. Furthermore, each edge 𝑒 ∈ 𝐸 has 𝐾 associated
alues, 0 ≤𝛼1𝑒 ≤ 𝛼2𝑒 ≤ ⋯ ≤ 𝛼𝐾𝑒 , representing the price that must be
aid to upgrade the edge to each level (surely 𝛼1𝑒 = 0, since 1 is the
urrent level, 𝛼2𝑒 is the price to upgrade the edge 𝑒 up to level 2, and
o on). 𝑇 is the total budget available to improve the edges. In the
ase of considering the possibility of investing in the construction of a
on-existing connection 𝑒, the notation would be maintained and the ∞

value would be assigned to 𝑐1𝑒 . In this case, the price of this investment
would probably be significantly higher than the rest of the prices.

In the Upgrading Graphical Traveling Salesman Problem, U-GTSP, the
aim is to decide to what level each edge should be upgraded by
spending a total amount not greater than 𝑇 , so that the cost of the
optimal GTSP tour in the upgraded graph is minimal. We will call U-
GTSP tour to a GTSP tour in 𝐺 and a selection of a level upgrade for
each edge traversed. It is easy to see that any optimal U-GTSP tour
traverses at most twice any edge.

We use the following notation. Given two subsets of vertices 𝑆, 𝑆′ ⊆
𝑉 , (𝑆 ∶𝑆′) denotes the edge set with one endpoint in 𝑆 and the other
one in 𝑆′. Let us denote 𝛿(𝑆) = (𝑆 ∶ 𝑉⧵𝑆) the edge set with one endpoint
in 𝑆 and the other outside of 𝑆, 𝐸(𝑆) = (𝑆 ∶ 𝑆) the edge set with both
endpoints in 𝑆, and 𝐺(𝑆) = (𝑆,𝐸(𝑆)) the subgraph of 𝐺 induced by the
vertices in 𝑆. For simplicity, when 𝑆 = {𝑖}, 𝑖 ∈ 𝑉 , we write 𝛿(𝑖) instead
of 𝛿({𝑖}). Given a vector 𝑞 indexed on the edges set 𝐸 and a subset of
edges 𝐹 ⊆ 𝐸, 𝑞(𝐹 ) denotes ∑

𝑒∈𝐹 𝑞𝑒. For simplicity, we write 𝑥(𝑆 ∶𝑆′)
nstead of 𝑥((𝑆 ∶𝑆′)).

The problem can be formulated by using the following binary
variables: For each edge 𝑒 ∈ 𝐸, and for each upgrade level 𝑘 = 1,… , 𝐾,
let 𝑥𝑘𝑒 = 1 if edge 𝑒 is traversed exactly once after being upgraded to
level 𝑘, 𝑥𝑘𝑒 = 0 otherwise, and let 𝑦𝑘𝑒 = 1 if edge 𝑒 is traversed exactly
twice after being upgraded to level 𝑘, 𝑦𝑘𝑒 = 0 otherwise. In particular,
the U-GTSP can be formulated as follows:

(U-GTSP(𝐺)) Minimize
𝐾
∑

𝑘=1

∑

𝑒∈𝐸

(

𝑐𝑘𝑒 𝑥
𝑘
𝑒 + 2𝑐𝑘𝑒 𝑦

𝑘
𝑒
)

s.t.
𝐾
∑

𝑘=1

(

(𝑥𝑘 + 2𝑦𝑘)(𝛿(𝑖))
)

≡ 0 (mod 2), ∀ 𝑖∈𝑉 , (1)

𝐾
∑

𝑘=1

(

(𝑥𝑘 + 2𝑦𝑘)(𝛿(𝑆))
)

≥ 2, ∀ 𝑆 ⊂ 𝑉 , (2)

𝐾
∑

𝑘=1

∑

𝑒∈𝐸

(

𝛼𝑘𝑒 𝑥
𝑘
𝑒 + 𝛼𝑘𝑒 𝑦

𝑘
𝑒
)

≤ 𝑇 , (3)

𝐾
∑

𝑘=1

(

𝑥𝑘𝑒 + 𝑦𝑘𝑒
)

≤ 1, ∀ 𝑒 ∈ 𝐸 (4)

𝑥𝑘𝑒 , 𝑦
𝑘
𝑒 ∈ {0, 1}, ∀ 𝑒∈𝐸, ∀ 𝑘 = 1,… , 𝐾. (5)

Constraints (1) force the tour to visit each vertex an even number
of times, while conditions (2) ensure the route is connected. These two
conditions, together with the binary conditions for the variables (5),
ensure that the vector (𝑥𝑘𝑒 , 𝑦

𝑘
𝑒 ) is a GTSP tour (see, for example, Cor-

nuéjols et al., 1985). Constraint (3) guarantees that the total cost does

not exceed the budget 𝑇 . Inequalities (4) prevent the solutions from
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traversing an edge with several different upgrade levels. This condition
is partly ensured by the fact that any optimal U-GTSP tour traverses any
edge at most twice, and this traversal is done with the lowest possible
cost level. However, there is an infrequent exception. If an edge 𝑒 has
wo equal costs, say 𝑐2𝑒 = 𝑐3𝑒 , the above formulation without inequalities
4) could have an optimal solution in which 𝑥2𝑒 = 𝑥3𝑒 = 1, which is not
feasible U-GTSP solution. Note that, if in such a solution we replace
2
𝑒 = 𝑥3𝑒 = 1 by 𝑦3𝑒 = 1, we obtain an equivalent feasible U-GTSP tour, so
nequalities (4) are not really necessary. However, we keep them so that
here are no solutions of the formulation that are not feasible U-GTSP
ours, and because they are helpful for strengthening the formulation.

emark 1. Let 𝐻 be a GTSP tour on 𝐺. Then, the problem of finding
he optimal level of the edges in 𝐻 without exceeding the budget

is a Multiple-Choice Knapsack Problem (MCKP). The MCKP is a
eneralization of the well-known knapsack problem, in which the set
f items is partitioned into classes and we have to choose exactly one
tem of each class. In our problem, each edge of 𝐻 represents a class
f items. Then, if we define 𝐻1, 𝐻2 as the sets of edges traversed once
r twice by 𝐻 , respectively, we can formulate an MCKP to obtain the
ptimal levels of the edges in 𝐻 as follows:

MCKP(𝐻)) Minimize
∑

𝑒∈𝐻1

𝑐𝑘𝑒 𝑥
𝑘
𝑒 +

∑

𝑒∈𝐻2

2𝑐𝑘𝑒 𝑦
𝑘
𝑒

.t.
𝐾
∑

=1

∑

𝑒∈𝐻1

𝛼𝑘𝑒 𝑥
𝑘
𝑒 +

𝐾
∑

𝑘=1

∑

𝑒∈𝐻2

𝛼𝑘𝑒 𝑦
𝑘
𝑒 ≤ 𝑇 (6)

𝐾
∑

𝑘=1
𝑥𝑘𝑒 = 1, ∀𝑒 ∈ 𝐻1 (7)

𝐾
∑

𝑘=1
𝑦𝑘𝑒 = 1, ∀𝑒 ∈ 𝐻2 (8)

𝑥𝑘𝑒 ∈ {0, 1}, ∀ 𝑒∈𝐻1, ∀ 𝑘 = 1,… , 𝐾 (9)

𝑦𝑘𝑒 ∈ {0, 1}, ∀ 𝑒∈𝐻2, ∀ 𝑘 = 1,… , 𝐾, (10)

here variables 𝑥𝑘𝑒 (𝑦𝑘𝑒 ) take value 1 if edge 𝑒∈𝐻1 (𝑒∈𝐻2) is upgraded
o level 𝑘 (that is, if object number 𝑘 of the class of objects associated
ith edge 𝑒 is chosen in the MCKP) and 0 otherwise.

emark 2. A feasible U-GTSP solution can be obtained by solving
GTSP on 𝐺 using the cost associated with level 1 (or any other

evel, for that matter) and then solving a MCKP to find the upgrade
evels of the edges that appear in the tour. However, this solution may
ot be optimal and there is no bound on how far the cost of such
solution may be from the optimal one. Consider, for example, the
-GTSP instance with two upgrade levels depicted in Fig. 1, where

he numbers in brackets next to each edge represent the costs 𝑐𝑘𝑒 of
evels 1 and 2, respectively, and 𝑀 is a big number. Let the upgrade
osts be 𝛼1𝑒 = 0 and 𝛼2𝑒 = 1 for all the edges and consider a budget
= 1. If we solve the GTSP using the costs of the edges for level 1, an

ptimal GTSP tour is the sequence (1, 2, 4, 3, 1). By solving the associated
CKP to obtain the optimal levels for this tour, we obtain that we can

pgrade any edge of the tour we want to level 2, but only one of them,
hus resulting in a U-GTSP solution with cost 2𝑀 + 3. However, the
ptimal U-GTSP solution consists of upgrading edge (1, 4) to level 2
nd then traversing the sequence (4, 3, 4, 1, 4, 2, 4), with total cost 10.
evertheless, this idea of obtaining GTSP tours and finding the upgrade

evels solving a MCKP will later be used to develop a primal heuristic
hat can provide good upper bounds.

. The polytope of solutions

The feasible U-GTSP solutions without considering the budget limi-
ation (constraint (3)) define a polytope that is studied in this section.
3

Fig. 1. U-GTSP instance.

We find its dimension, show that some of the constraints of the for-
mulation define facets, and present some other valid inequalities that
reinforce the formulation.

For a polyhedral study it is necessary to describe many feasible
solutions that are affinely independent. This procedure, however, is
particularly complicated in problems in which some constraints limit
the length or ‘cost’ of the routes, because the feasibility of a route
depends on the specific limits imposed by these constraints (the pa-
rameters 𝛼𝑘𝑒 and 𝑇 in the case of the U-GTSP). In these cases, even
determining the dimension of the polytope defined as the convex hull
of the feasible solutions is a very difficult task. However, if we remove
the total budget constraint (3) of our problem, we obtain a relaxed
problem, that we will call Relaxed U-GTSP, RU-GTSP, whose polytope
can indeed be studied. This study is interesting because some of the
facets found could also be facets of the original polyhedron, and it is a
way to ensure the goodness of the inequalities used.

Hence, in this section, let a RU-GTSP solution denote any GTSP tour
n graph 𝐺 with a level 𝑘 ∈ {1,… , 𝐾} assigned to each traversed edge,
hether or not it satisfies the total budget constraint (3). Associated
ith each RU-GTSP solution we consider an incidence vector

(𝑥1, 𝑦1), (𝑥2, 𝑦2),… , (𝑥𝐾 , 𝑦𝐾 )
)

∈ Z2𝐾|𝐸|,

here each vector 𝑥𝑘 and 𝑦𝑘 is indexed on the set of edges 𝑒 ∈ 𝐸 and
ariables 𝑥𝑘𝑒 , 𝑦𝑘𝑒 are defined as above. Note that the sum ∑𝐾

𝑘=1(𝑥
𝑘, 𝑦𝑘) is

GTSP tour on 𝐺.
Let RU-GTSP(𝐺) be the convex hull of all the incidence vectors of

U-GTSP solutions in 𝐺. It is a polytope in the R2𝐾|𝐸| space. To study
his polytope, we first need to study the polytope associated with the
TSP using a formulation similar to the one we propose in this paper

or the U-GTSP.
Let GTSP(𝐺) be the convex hull of all incidence vectors (𝑥, 𝑦) of

TSP tours on 𝐺, where, for each edge 𝑒 ∈ 𝐸, 𝑥𝑒 takes the value 1
f edge 𝑒 is traversed exactly once (and zero otherwise) and 𝑦𝑒 takes
he value 1 if edge 𝑒 is traversed exactly twice (and zero otherwise),
.e., the vectors (𝑥, 𝑦) ∈ Z2|𝐸| satisfying:

𝑥 + 2𝑦)
(

𝛿(𝑖)
)

≡ 0 (mod 2), ∀ 𝑖∈𝑉 , (11)

(𝑥 + 2𝑦)
(

𝛿(𝑆)
)

≥ 2, ∀ 𝑆 ⊂ 𝑉 , (12)

𝑥𝑒 + 𝑦𝑒 ≤ 1, ∀ 𝑒 ∈ 𝐸 (13)
𝑥𝑒, 𝑦𝑒 ∈ {0, 1}, ∀ 𝑒∈𝐸. (14)

or the sake of simplicity we will call GTSP tour both the closed walk
nd its incidence vector.

heorem 1. dim(GTSP(𝐺)) = 2|𝐸| (GTSP(G) is a full-dimensional
olytope) if, and only if, 𝐺 is a 3-edge connected graph.

roof. Let us suppose that 𝐺 is not a 3-edge connected graph. Then,
here is a cut-set 𝛿(𝑆) that contains at most two edges. If 𝛿(𝑆) = {𝑒} then
ll the GTSP tours satisfy the equations 𝑥𝑒 = 0 and 𝑦𝑒 = 1. Moreover,

If 𝛿(𝑆) = {𝑒, 𝑓} then all the GTSP tours satisfy 𝑥𝑒 = 𝑥𝑓 . Therefore, the
polytope is not full-dimensional.
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Let us now suppose that 𝐺 is a 3-edge connected graph and prove
that we have a full-dimensional polytope. Let 𝑎𝑥+𝑏𝑦 = 𝑐 be an equation
satisfied by all the GTSP tours and let us prove that 𝑎 = 𝑏 = 𝑐 = 0.

Consider the tour with 𝑥𝑒 = 0, 𝑦𝑒 = 1 for every edge 𝑒 ∈ 𝐸. It is a
GTSP tour because it is connected, all the vertices have even degree,
and it visits all the vertices of 𝐺. Hence, it must satisfy 𝑎𝑥+ 𝑏𝑦 = 𝑐 and

e obtain

(𝐸) = 𝑐. (15)

et 𝑒 ∈ 𝐸 be any edge. Making 𝑦𝑒 = 0 in the previous GTSP tour, and
given that 𝐺 is a 3-edge connected graph, we get another GTSP tour,
which also satisfies 𝑎𝑥 + 𝑏𝑦 = 𝑐 and we obtain

𝑏
(

𝐸⧵{𝑒}
)

= 𝑐. (16)

By subtracting (15) and (16) we obtain 𝑏𝑒 = 0, for all 𝑒 ∈ 𝐸.
Furthermore, after substituting 𝑏𝑒 = 0, for all 𝑒 ∈ 𝐸, in (15), we obtain
hat 𝑐 = 0.

Let  be any cycle in graph 𝐺. The tour with all the variables taking
he values 𝑥𝑒 = 0, 𝑦𝑒 = 1 except for the edges 𝑒 ∈ , which take the

values 𝑥𝑒 = 1, 𝑦𝑒 = 0, is a GTSP tour which must therefore satisfy
𝑎𝑥 + 𝑏𝑦 = 𝑐, and we obtain that

𝑎() = 𝑐 (= 0). (17)

Let 𝑒 = (𝑖, 𝑗) ∈ 𝐸 be any edge. Given that 𝐺 is a 3-edge connected
graph, there are two edge-disjoint paths 1 and 2 connecting vertices
𝑖, 𝑗 that do not traverse edge 𝑒. Then, by applying (17) to the three
cycles 1 ∪ {𝑒}, 2 ∪ {𝑒}, and 1 ∪ 2, we have

𝑒 + 𝑎
(

1
)

= 0, 𝑎𝑒 + 𝑎
(

2
)

= 0, 𝑎
(

1
)

+ 𝑎
(

2
)

= 0

from where we obtain that 𝑎𝑒 = 0, for all 𝑒 ∈ 𝐸. Hence, we have
that 𝑎 = 𝑏 = 𝑐 = 0 and we are done. ⧫

Theorem 2. dim(RU-GTSP(𝐺)) = 2𝐾|𝐸| (RU-GTSP(G) is a full-
dimensional polytope) if, and only if, 𝐺 is a 3-edge connected graph.

Proof. If 𝐺 is not a 3-edge connected graph, a reasoning similar
to that of the previous theorem concludes that the polytope is not
full-dimensional.

On the other hand, if 𝐺 is a 3-edge connected graph, from Theo-
em 1 the dimension of GTSP(𝐺) is 2|𝐸|. Then, there exist 2|𝐸| + 1

affinely independent, and also 2|𝐸| linearly independent GTSP tours
on graph 𝐺.

Let �̄� be the incidence matrix of the corresponding 2|𝐸|+1 affinely
independent GTSP tours expressed as rows indexed by the variables
𝑥𝑒, 𝑦𝑒 as columns. This matrix �̄� has 2|𝐸|+ 1 rows and we can assume,
w.l.o.g., that,

• after removing the first row we obtain a matrix, say 𝐴, with rank
2|𝐸| and

• after subtracting the first row of �̄� from the rows of 𝐴 we obtain
a matrix, say 𝑀 , also with rank 2|𝐸|.

Given any of the above GTSP tours (𝑥, 𝑦) and a given upgrade level
𝑘 ∈ {1,… , 𝐾}, if we define (𝑥𝑘, 𝑦𝑘) = (𝑥, 𝑦) and (𝑥𝑘′ , 𝑦𝑘′ ) = (0⃗, 0⃗) for any
𝑘′ ≠ 𝑘, where 0⃗ represents a vector with zeros indexed on the edges
𝑒 ∈ 𝐸, we obtain a RU-GTSP solution. By expressing these solutions as
rows, we can build a matrix similar to that shown in Fig. 2a for 𝐾=3.

This matrix has 2𝐾|𝐸| + 1 rows representing RU-GTSP solutions. If
we subtract the first row from all the others and remove the first row
we obtain the matrix in Fig. 2b, where 𝑟1 is the first row of matrix �̄�.
The rank of this matrix is 2𝐾|𝐸| and, hence, we have 2𝐾|𝐸|+1 affinely
independent RU-GTSP solutions and the dimension of the polyhedron
is 2𝐾|𝐸|. ⧫

In what follows, we will assume that 𝐺 is a 3-edge connected
graph and thus both GTSP(𝐺) and RU-GTSP(𝐺) are full-dimensional
polytopes. In this case, each facet is induced by a unique inequality
(except scalar multiples).
4

a

Theorem 3. Inequality 𝑦𝑒 ≥ 0, for each edge 𝑒 ∈ 𝐸, is facet-inducing of
GTSP(𝐺).

Proof. Let 𝑎𝑥 + 𝑏𝑦 ≥ 𝑐 be a valid inequality such that

{(𝑥, 𝑦) ∈ GTSP(𝐺) ∶ 𝑦𝑒 = 0} ⊆ {(𝑥, 𝑦) ∈ GTSP(𝐺) ∶ 𝑎𝑥 + 𝑏𝑦 = 𝑐}.

We have to prove that 𝑎𝑥 + 𝑏𝑦 ≥ 𝑐 is a scalar multiple of 𝑦𝑒 ≥ 0.
Consider the GTSP tour having all the variables 𝑥𝑒′ = 0, 𝑦𝑒′ = 1 for

every edge 𝑒′ ∈ 𝐸 ⧵ {𝑒}, and 𝑥𝑒 = 𝑦𝑒 = 0 (it is connected, it is even,
and it visits all the vertices of 𝐺). Given that it satisfies 𝑦𝑒 = 0, it also
satisfies 𝑎𝑥 + 𝑏𝑦 = 𝑐 and

𝑏
(

𝐸⧵{𝑒}
)

= 𝑐 (18)

holds. Consider any edge 𝑓 ∈ 𝐸 ⧵ {𝑒}. Since 𝐺 is 3-edge connected,
making 𝑥𝑓 = 𝑦𝑓 = 0 in the previous tour, we obtain another GTSP tour
satisfying 𝑦𝑒 = 0, which also satisfies 𝑎𝑥 + 𝑏𝑦 = 𝑐 and we have

𝑏
(

𝐸⧵{𝑒, 𝑓}
)

= 𝑐. (19)

By subtracting the two previous equations, we obtain that 𝑏𝑓 = 0. This
is true for all 𝑓 ∈ 𝐸⧵{𝑒} and, after substituting in (18), we obtain 𝑐 = 0.

Let  be any cycle in graph 𝐺 that does not traverses edge 𝑒. The
TSP tour with variables 𝑥𝑒′ = 1, 𝑦𝑒′ = 0 for the edges in , 𝑥𝑒 = 𝑦𝑒 = 0,
nd 𝑥𝑒′ = 0, 𝑦𝑒′ = 1 for all the other edges, satisfies 𝑦𝑒 = 0 and, then,

() + 𝑏
(

𝐸⧵( ∪ {𝑒})
)

= 𝑐 = 0 ⟹ 𝑎() = 0 (20)

olds for any cycle  not traversing 𝑒.
Let  be any cycle in graph 𝐺 that traverses the edge 𝑒. The GTSP

tour with variables 𝑥𝑒′ = 1, 𝑦𝑒′ = 0 for the edges in , and 𝑥𝑒′ = 0,
𝑒′ = 1 for all the other edges, satisfies 𝑦𝑒 = 0 and, then,

() + 𝑏
(

𝐸⧵
)

= 𝑐 = 0 ⟹ 𝑎() = 0 (21)

olds also for the cycles  in 𝐺 traversing the edge 𝑒.
Let 𝑓 = (𝑖, 𝑗) ∈ 𝐸 be an arbitrary edge. Since 𝐺 is 3-edge connected,

here are two edge-disjoint paths 1, 2 joining vertices 𝑖 and 𝑗 that
o not contain edge 𝑓 . Then, considering the three cycles 1 ∪ {𝑓},
2 ∪ {𝑓}, and 1 ∪ 2, for which 𝑎

(


)

= 0 holds, we have

𝑓 + 𝑎
(

1
)

= 0, 𝑎𝑓 + 𝑎
(

2
)

= 0, 𝑎
(

1
)

+ 𝑎
(

2
)

= 0,

from where we obtain that 𝑎𝑓 = 0, and this is true for every 𝑓 ∈ 𝐸.
By substituting all the previous values for 𝑎, 𝑏 and 𝑐 in 𝑎𝑥 + 𝑏𝑦 ≥ 𝑐 we
btain 𝑏𝑒𝑦𝑒 ≥ 0, which is a scalar multiple of 𝑦𝑒 ≥ 0. ⧫

heorem 4. Inequality 𝑦𝑘𝑒 ≥ 0, for each edge 𝑒 ∈ 𝐸 and for each level 𝑘,
s facet-inducing of RU-GTSP(𝐺).

roof. W.l.o.g., let us suppose that 𝑘 = 1. If 𝐺 is a 3-edge connected
graph, from Theorem 3 the inequality 𝑦𝑒 ≥ 0 induces a facet of GTSP(𝐺)
nd there are 2|𝐸| − 1 linearly independent GTSP tours on graph 𝐺
atisfying 𝑦𝑒 = 0.

Let 𝐵 be the incidence matrix of these 2|𝐸| − 1 GTSP linearly
ndependent tours as rows indexed by the variables 𝑥, 𝑦 as columns.
urthermore, let 𝐴 be the matrix of the proof of Theorem 2, with rank
|𝐸|.

If we assign the level 𝑘 = 1 to all the GTSP tours in matrix 𝐵 and the
vector zero to the remaining levels 𝑘 > 1 we obtain RU-GTSP solutions
on 𝐺 satisfying 𝑦1𝑒 = 0. On the other hand, if we assign a given level
𝑘 > 1 to all the GTSP tours in matrix 𝐴 and the vector zero to all the
remaining levels, we obtain a RU-GTSP solution on 𝐺 satisfying also
𝑦1𝑒 = 0. Hence, we can build a matrix similar to the matrix in Fig. 3,
which has been written for the case 𝐾 = 3 for the sake of simplicity.

This matrix has 2𝐾|𝐸|−1 rows representing RU-GTSP solutions that
atisfy 𝑦1𝑒 = 0. The rank of this matrix is 2|𝐸|𝐾 − 1 and, therefore, we
ave 2|𝐸|𝐾−1 linearly independent RU-GTSP solutions satisfying 𝑦1𝑒 = 0

𝑘
nd the inequality 𝑦𝑒 ≥ 0 is facet-inducing of RU-GTSP(𝐺). ⧫
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Fig. 3. Matrix appearing in the proof of Theorem 4.

heorem 5. Inequality 𝑥𝑒 ≥ 0, for each edge 𝑒 ∈ 𝐸, is facet-inducing of
GTSP(𝐺) if, and only if, graph 𝐺 ⧵ {𝑒} is 3-edge connected.

Proof. If graph 𝐺 ⧵ {𝑒} is not 3-edge connected (but 𝐺 is), there is
at least one cut-set with three edges, 𝛿(𝑆) = {𝑒, 𝑓 , 𝑔}. In this case,
inequality 𝑥𝑒 ≥ 0 is not facet-inducing because it can be obtained as
the sum of the following two ‘‘parity inequalities’’ (28) that will be
introduced later:

𝑥𝑒 + 𝑥𝑔 ≥ 𝑥𝑓 , 𝑥𝑒 + 𝑥𝑓 ≥ 𝑥𝑔

Let us suppose that 𝐺 ⧵ {𝑒} is a 3-edge connected graph and let
𝑎𝑥 + 𝑏𝑦 ≥ 𝑐 be a valid inequality such that

{(𝑥, 𝑦) ∈ GTSP(𝐺) ∶ 𝑥𝑒 = 0} ⊆ {(𝑥, 𝑦) ∈ GTSP(𝐺) ∶ 𝑎𝑥 + 𝑏𝑦 = 𝑐}.

We will show that 𝑎𝑥 + 𝑏𝑦 ≥ 𝑐 is a scalar multiple of 𝑥𝑒 ≥ 0.
Consider the GTSP tour having all the variables 𝑥𝑒′ = 0, 𝑦𝑒′ = 1

for every edge 𝑒′ ∈ 𝐸 (it is connected, it is even, and it visits all the
vertices of 𝐺). Given that it satisfies 𝑥𝑒 = 0, it also satisfies 𝑎𝑥 + 𝑏𝑦 = 𝑐
and 𝑏(𝐸) = 𝑐 holds. Consider any edge 𝑓 ∈ 𝐸 and the GTSP tour having
all the variables 𝑥𝑒′ = 0, 𝑦𝑒′ = 1 for every edge 𝑒′ ≠ 𝑓 , and 𝑥𝑓 = 𝑦𝑓 = 0,
which satisfies 𝑥𝑒 = 0 and, hence, it also satisfies 𝑎𝑥 + 𝑏𝑦 = 𝑐 and
𝑏(𝐸⧵{𝑓}) = 𝑐 holds. By subtracting from 𝑏(𝐸) = 𝑐 we obtain that 𝑏𝑓 = 0.
This is true for all 𝑓 ∈ 𝐸 and, hence, we obtain also that also 𝑐 = 0.

Let  be any cycle in graph 𝐺 not traversing the edge 𝑒. The tour
with all the variables 𝑥 = 0, 𝑦 = 1 except those 𝑥 = 1, 𝑦 = 0 for
5

𝑒′ 𝑒′ 𝑒′ 𝑒′
the edges 𝑒′ ∈  is a GTSP tour (is even, connected and visits all the
vertices of 𝐺) satisfying 𝑥𝑒 = 0 and, then,

𝑎() + 𝑏(𝐸⧵) = 𝑐 = 0 ⟹ 𝑎() = 0 (22)

holds for any cycle  in 𝐺 not traversing edge 𝑒.
Consider any edge 𝑓 = (𝑖, 𝑗) ∈ 𝐸 ⧵ {𝑒}. Given that 𝐺 ⧵ {𝑒} is a 3-

edge connected graph, we can consider two edge-disjoint paths 1, 2
connecting 𝑖, 𝑗 and not traversing edge 𝑓 (nor 𝑒, obviously). Then, for
the three cycles 1 ∪ {𝑓}, 2 ∪ {𝑓}, and 1 ∪ 2 we have

𝑎𝑓 + 𝑎
(

1
)

= 0, 𝑎𝑓 + 𝑎
(

2
)

= 0, 𝑎
(

1
)

+ 𝑎
(

2
)

= 0

and we obtain that 𝑎𝑓 = 0, for all 𝑓 ≠ 𝑒. By substituting in 𝑎𝑥 + 𝑏𝑦 ≤ 𝑐
we obtain 𝑎𝑒𝑥𝑒 ≥ 0, which is a scalar multiple of 𝑥𝑒 ≥ 0. ⧫

Theorem 6. Inequality 𝑥𝑘𝑒 ≥ 0, for each edge 𝑒 ∈ 𝐸 and for each level 𝑘,
is facet-inducing of RU-GTSP(𝐺) (if graph 𝐺 ⧵ {𝑒} is 3-edge connected).

Proof. The proof is similar to that of Theorem 4 and is omitted here
for the sake of brevity. ⧫

Note that trivial inequalities 𝑥𝑘𝑒 ≤ 1 and 𝑦𝑘𝑒 ≤ 1, for each edge
𝑒 ∈ 𝐸, are dominated by inequalities ∑𝐾

𝑘=1
(

𝑥𝑘𝑒 + 𝑦𝑘𝑒
)

≤ 1, which are
valid for the RU-GTSP, and, therefore, they cannot induce a facet of
RU-GTSP(𝐺).

The following theorem establishes some conditions for a facet-
inducing inequality of GTSP(𝐺) to provide a facet-inducing inequality
of RU-GTSP(𝐺):

Theorem 7. Let 𝑓 (𝑥, 𝑦) ≥ 𝛼, with 𝛼 ≠ 0, be a facet-inducing inequality
of GTSP(𝐺). Then, inequality ∑𝐾

𝑘=1 𝑓 (𝑥
𝑘, 𝑦𝑘) ≥ 𝛼 is facet-inducing of

RU-GTSP(𝐺).

Proof. If the inequality 𝑓 (𝑥, 𝑦) ≥ 𝛼 induces a facet of GTSP(𝐺) and
𝛼 ≠ 0, then the vector zero is not in the affine hull of the points
of the polytope that satisfy 𝑓 (𝑥, 𝑦) = 𝛼, and there exist 2|𝐸| linearly
independent GTSP tours on graph 𝐺 satisfying 𝑓 (𝑥, 𝑦) = 𝛼. Let 𝐵 be the
incidence matrix of these 2|𝐸| GTSP tours expressed as rows indexed
by the variables 𝑥, 𝑦 as columns.

If we assign a given level 𝑘 to all the above GTSP tours in matrix 𝐵
and the vector zero to all the other levels, we obtain a RU-GTSP solution
on 𝐺 satisfying ∑𝐾

𝑘=1 𝑓 (𝑥
𝑘, 𝑦𝑘) = 𝛼. Hence, we can build a matrix similar

o that in Fig. 4.
This matrix has 2𝐾|𝐸| rows representing RU-GTSP solutions satisfy-

ng ∑𝐾
𝑘=1 𝑓 (𝑥

𝑘, 𝑦𝑘) = 𝛼. The rank of this matrix is 2𝐾|𝐸| and, hence, the
𝐾|𝐸| RU-GTSP solutions are linearly independent and the inequality
𝐾 𝑘 𝑘

𝑘=1 𝑓 (𝑥 , 𝑦 ) ≥ 𝛼 is facet-inducing of RU-GTSP(𝐺). ⧫
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Fig. 4. Matrix appearing in the proof of Theorem 7.

We will use Theorem 7 to show that some families of valid inequali-
ies are facet-inducing of RU-GTSP(𝐺). Note that this theorem does not
pply to inequalities 𝑥𝑒 ≥ 0 (or 𝑦𝑒 ≥ 0) because, since the zero vector is
bviously in the affine hull of the points that satisfy 𝑥𝑒 = 0, there are
nly 2|𝐸|−1 linearly independent GTSP tours satisfying 𝑥𝑒 ≥ 0. Indeed,
𝐾
𝑘=1 𝑥

𝑘
𝑒 ≥ 0 does not induce a facet of RU-GTSP(𝐺).

heorem 8. Inequality 𝑥𝑒+𝑦𝑒 ≤ 1, for each edge 𝑒 ∈ 𝐸, is facet-inducing
f GTSP(𝐺).

roof. Let us suppose there is another valid inequality 𝑎𝑥+ 𝑏𝑦 ≤ 𝑐 such
hat

(𝑥, 𝑦) ∈ GTSP(𝐺) ∶ 𝑥𝑒 + 𝑦𝑒 = 1} ⊆ {(𝑥, 𝑦) ∈ GTSP(𝐺) ∶ 𝑎𝑥+ 𝑏𝑦 = 𝑐}.

e will prove that inequality 𝑎𝑥 + 𝑏𝑦 ≤ 𝑐 is a scalar multiple of
𝑒 + 𝑦𝑒 ≤ 1.

Consider the GTSP tour having all the variables 𝑥𝑒′ = 0, 𝑦𝑒′ = 1 for
very edge 𝑒′ ∈ 𝐸 (it is connected, it is even, and it visits all the vertices
f 𝐺). Given that it satisfies 𝑥𝑒 + 𝑦𝑒 = 1, it also satisfies 𝑎𝑥+ 𝑏𝑦 = 𝑐 and

(𝐸) = 𝑐 (23)

olds. Consider any edge 𝑓 ∈ 𝐸 ⧵ {𝑒}. Since 𝐺 is 3-connected, making
𝑓 = 0 in the previous tour, we obtain another feasible GTSP tour
atisfying 𝑥𝑒 + 𝑦𝑒 = 1, which also satisfies 𝑎𝑥 + 𝑏𝑦 = 𝑐 and
(

𝐸⧵{𝑓}
)

= 𝑐 (24)

olds. By subtracting (23) from (24), we obtain that 𝑏𝑓 = 0. This is true
or all 𝑓 ∈ 𝐸 ⧵ {𝑒} and, from (23), 𝑏𝑒 = 𝑐.

Let  be any cycle in graph 𝐺. The tour with all the variables 𝑥𝑒′ = 1,
𝑒′ = 0 for the edges in , and 𝑥𝑒′ = 0, 𝑦𝑒′ = 1 for the edges not in , is
GTSP tour satisfying 𝑥𝑒 + 𝑦𝑒 = 1 and, then,

() + 𝑏
(

𝐸⧵
)

= 𝑐 (25)

olds. Then, if 𝑒 ∈  we obtain that 𝑎
(


)

= 𝑐 while if 𝑒 ∉  we obtain
hat 𝑎

(


)

+ 𝑏𝑒 = 𝑐, i.e., 𝑎
(


)

= 0.
Let 𝑓 = (𝑖, 𝑗) ≠ 𝑒 be an arbitrary edge. Since 𝐺 is 3-edge connected,

here are two edge-disjoint paths 1, 2 joining vertices 𝑖 and 𝑗 that
o not contain edge 𝑓 . Then, considering the three cycles 1 ∪ {(𝑖, 𝑗)},
2 ∪ {(𝑖, 𝑗)}, and 1 ∪ 2, we have

𝑓 + 𝑎
(

1
)

= 0, 𝑎𝑓 + 𝑎
(

2
)

= 0, 𝑎
(

1
)

+ 𝑎
(

2
)

= 0, if 𝑒 ∉ 1 ∪2, and

𝑎𝑓 + 𝑎
(

1
)

= 𝑐, 𝑎𝑓 + 𝑎
(

2
)

= 0, 𝑎
(

1
)

+ 𝑎
(

2
)

= 𝑐, if 𝑒 ∈ 1, for example.

In both cases we obtain 𝑎𝑓 = 0, and this is true for every 𝑓 ≠ 𝑒. On
the other hand, for the edge 𝑒, by considering its corresponding two
edge-disjoint paths 1, 2, we have

( ) ( ) ( ) ( )
6

𝑎𝑒 + 𝑎 1 = 𝑐, 𝑎𝑒 + 𝑎 2 = 𝑐, 𝑎 1 + 𝑎 2 = 0,
and we obtain that 𝑎𝑒 = 𝑐. By substituting in 𝑎𝑥 + 𝑏𝑦 ≤ 𝑐 we obtain
𝑐𝑥𝑒 + 𝑐𝑦𝑒 ≤ 𝑐, which is a scalar multiple of 𝑥𝑒 + 𝑦𝑒 ≤ 1. ⧫

Theorem 9. Inequality (4),
𝑘
∑

𝑘=1
(𝑥𝑘𝑒 + 𝑦𝑘𝑒 ) ≤ 1, for each edge 𝑒 ∈ 𝐸, is

facet-inducing of RU-GTSP(𝐺).

Proof. It is an immediate consequence of Theorems 7 and 8. ⧫

Theorem 10. Connectivity inequality (12), (𝑥 + 2𝑦)(𝛿(𝑆)) ≥ 2, for each
𝑆 ⊂ 𝑉 , is facet-inducing of GTSP(𝐺) if graph 𝐺 is 3-edge connected and
graphs 𝐺(𝑆) and 𝐺(𝑉 ⧵𝑆) are 2-edge connected.

Proof. Let 𝑎𝑥 + 𝑏𝑦 ≥ 𝑐 be a valid inequality such that

{(𝑥, 𝑦) ∈ GTSP(𝐺) ∶ (𝑥 + 2𝑦)(𝛿(𝑆)) = 2}

⊆ {(𝑥, 𝑦) ∈ GTSP(𝐺) ∶ 𝑎𝑥 + 𝑏𝑦 = 𝑐}.

We have to prove that the 𝑎𝑥 + 𝑏𝑦 ≥ 𝑐 is a scalar multiple of (𝑥 +
2𝑦)(𝛿(𝑆)) ≥ 2.

Consider an arbitrarious edge 𝑓 ∈ 𝛿(𝑆) and the GTSP tour having
all the variables 𝑥𝑒′ = 0, 𝑦𝑒′ = 1 for every edge 𝑒′ in 𝐺(𝑆) and 𝐺(𝑉 ⧵𝑆),
𝑥𝑓 = 0, 𝑦𝑓 = 1, and 𝑥𝑒′ = 𝑦𝑒′ = 0 for every edge in 𝛿(𝑆) ⧵ {𝑓} (it is
connected, it is even, and it visits all the vertices of 𝐺). Given that it
satisfies (𝑥 + 2𝑦)(𝛿(𝑆)) = 2, it also satisfies 𝑎𝑥 + 𝑏𝑦 = 𝑐 and

𝑏(𝐸⧵𝛿(𝑆)) + 𝑏𝑓 = 𝑐 (26)

holds. Consider any edge 𝑒 ∈ 𝐸 ⧵ 𝛿(𝑆). Since 𝐺 is 3-edge connected and
graphs 𝐺(𝑆) and 𝐺(𝑉 ⧵𝑆) are 2-edge connected, making 𝑦𝑒 = 0 in the
previous tour, we obtain another GTSP tour satisfying (𝑥+2𝑦)(𝛿(𝑆)) = 2.
Therefore, it also satisfies 𝑎𝑥 + 𝑏𝑦 = 𝑐 and

𝑏(𝐸⧵(𝛿(𝑆) ∪ {𝑒})) + 𝑏𝑓 = 𝑐 (27)

holds. By subtracting the two previous equation we obtain that 𝑏𝑒 = 0.
This is true for all 𝑒 ∈ 𝐸 ⧵ 𝛿(𝑆). Therefore, from (26) we have 𝑏𝑓 = 𝑐,
and this holds for every 𝑓 ∈ 𝛿(𝑆).

Let  be any cycle in graph 𝐺(𝑆). The first tour described in this
proof except for the variables 𝑥𝑒′ = 1, 𝑦𝑒′ = 0 for every edge 𝑒′ ∈ 
is a GTSP tour satisfying (𝑥 + 2𝑦)(𝛿(𝑆)) = 2 and, by subtracting the
corresponding two equations we obtain 𝑎() = 0. The same reasoning
is valid for any cycle in graph 𝐺(𝑉 ⧵𝑆).

Let 𝑓 = (𝑖, 𝑗) ∈ 𝐸(𝑆) be any edge. Given that 𝐺 is a 3-edge connected
graph, we can consider two edge-disjoint paths 1, 2 connecting
vertices 𝑖, 𝑗 and not traversing edge 𝑓 . We consider several cases:

(a) 1, 2 are in 𝐺(𝑆). Then, by considering the three cycles 1∪{𝑓},
2 ∪ {𝑓}, and 1 ∪ 2, for which

𝑎𝑓 + 𝑎
(

1
)

= 0, 𝑎𝑓 + 𝑎
(

2
)

= 0, 𝑎
(

1
)

+ 𝑎
(

2
)

= 0,

holds, we obtain that 𝑎𝑓 = 0.
(b) 1 is in 𝐺(𝑆) and 2 traverses 𝛿(𝑆) exactly twice (if 2 does not

meet this condition, it can be transformed into another path that
does, simply by short-circuiting 2 in the connected subgraph
𝐺(𝑉 ⧵𝑆)). Let (𝑥1, 𝑦1) be the GTSP tour that traverses the edge 𝑓
and 2 once, the path 1 twice, and the remaining edges in 𝐺(𝑆)
and 𝐺(𝑉 ⧵𝑆) twice. Let (𝑥2, 𝑦2) be the tour obtained from (𝑥1, 𝑦1)
after removing the edge 𝑓 and one of the two copies of the edges
in the path 1. Both GTSP tours satisfy the connectivity inequality
as an equality and, from them, we have 𝑎𝑓 + 𝑏(1) = 𝑎(1). Given
that 𝑏(1) = 0 and 𝑎𝑓 + 𝑎(1) = 0 because 1 ∪ 𝑓 is a cycle, we
obtain that 𝑎𝑓 = 0.

(c) Both 1 and 2 traverse the cut-set 𝛿(𝑆) (exactly twice). We can
construct two edge-disjoint paths joining 𝑖 and 𝑗, where one of
them is in 𝐺(𝑆), and so we are in the same situation as in (b).
If path 1 (or 2) has any edge incident with 𝑖 or 𝑗 inside 𝐺(𝑆),

then 1 can be short-circuited to obtain a new path in 𝐺(𝑆) and
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we are done. Otherwise, both paths 1 and 2 traverse the cut-set
𝛿(𝑆) directly from 𝑖 and 𝑗. Since graph 𝐺(𝑆) is 2-edge connected,
there is a path 3 in 𝐺(𝑆) also joining 𝑖 and 𝑗 and not containing
(𝑖, 𝑗). By construction, 3 and 1 (or 2) are edge-disjoint paths,
and we are done.

The previous reasoning is also valid for any edge 𝑓 = (𝑖, 𝑗) ∈ 𝐸(𝑉⧵𝑆).
Hence, we have 𝑎𝑒 = 𝑏𝑒 = 0, for all 𝑒 ∈ 𝐸 ⧵ 𝛿(𝑆).

Let us suppose that 𝛿(𝑆) = {𝑒1, 𝑒2,… , 𝑒𝑞}, with 𝑞 ≥ 3 because 𝐺 is
a 3-edge connected graph. Given 𝑒1, 𝑒2 ∈ 𝛿(𝑆), let (𝑥1, 𝑦1) be the GTSP
tour having all the variables 𝑥𝑒′ = 0, 𝑦𝑒′ = 1 for every edge in 𝐺(𝑆)
and 𝐺(𝑉 ⧵𝑆) and 𝑥𝑒1 = 0, 𝑦𝑒1 = 1, and let (𝑥2, 𝑦2) be the GTSP tour
obtained from (𝑥1, 𝑦1) after replacing the second traversal of 𝑒1 with the
traversals of the edges in a path joining the endpoints of 𝑒1, using 𝑒2 (if
any edge appears three times, we would remove two copies of them).
By subtracting 𝑎𝑥1+𝑏𝑦1 = 𝑐 from 𝑎𝑥2+𝑏𝑦2 = 𝑐, we obtain 𝑏𝑒1 = 𝑎𝑒1 +𝑎𝑒2 .
If we exchange the roles of 𝑒1 and 𝑒2, we obtain that 𝑏𝑒2 = 𝑎𝑒1 + 𝑎𝑒2 .
Repeating this argument with all the pairs of edges in 𝛿(𝑆) (recall that
𝑏𝑒𝑖 = 𝑐), we obtain 𝑎𝑒𝑖 = 𝑎𝑒𝑗 =

𝑐
2 for all 𝑖 ≠ 𝑗 ∈ {1,… , 𝑞} (because 𝑞 ≥ 3

olds). By substituting in 𝑎𝑥 + 𝑏𝑦 ≥ 𝑐, we obtain ( 𝑐2𝑥 + 𝑐𝑦)(𝛿(𝑆)) ≥ 𝑐,
which is a scalar multiple of (𝑥 + 2𝑦)(𝛿(𝑆)) ≥ 2. ⧫

Theorem 11. Connectivity inequality (2), ∑𝐾
𝑘=1(𝑥

𝑘 + 2𝑦𝑘)(𝛿(𝑆)) ≥ 2,
for each 𝑆 ⊂ 𝑉 , is facet-inducing of RU-GTSP(𝐺) if graph 𝐺 is 3-edge
connected and graphs 𝐺(𝑆) and 𝐺(𝑉 ⧵𝑆) are 2-edge connected.

Proof. It is an immediate consequence of Theorems 7 and 10. ⧫

3.1. Parity inequalities

Constraints (1) for the U-GTSP, and constraints (11) for the GTSP
with the formulation we propose, are not linear inequalities. To make
the solution even at all the vertices of the graph, and also at all the cut-
sets, we use some linear inequalities inspired by the parity inequalities
proposed in Corberán et al. (2013) for the MBCPP. They are based on
the co-circuit inequalities presented in Barahona and Grötschel (1986)
and are defined as follows. Given a cut-set 𝛿(𝑆) defined by a vertex set
𝑆 ⊂ 𝑉 , and an edge set 𝐹 ⊆ 𝛿(𝑆) with |𝐹 | odd, we will call

• parity inequalities for the GTSP on 𝐺 to

𝑥
(

𝛿(𝑆) ⧵ 𝐹
)

≥ 𝑥(𝐹 ) − |𝐹 | + 1 (28)

• and the corresponding parity inequalities for the U-GTSP on 𝐺 to
𝐾
∑

𝑘=1
𝑥𝑘

(

𝛿(𝑆) ⧵ 𝐹
)

≥
𝐾
∑

𝑘=1
𝑥𝑘(𝐹 ) − |𝐹 | + 1. (29)

Theorem 12. Parity inequalities (28) and (29) are valid for the GTSP
and the U-GTSP, respectively.

Proof. (a) Consider an arbitrarious GTSP tour (�̄�, �̄�) on 𝐺 and let us
prove that �̄�

(

𝛿(𝑆) ⧵ 𝐹
)

≥ �̄�(𝐹 ) − |𝐹 | + 1 holds. If (�̄�, �̄�) satisfies �̄�(𝐹 ) ≤
|𝐹 |−1, then the inequality becomes �̄�

(

𝛿(𝑆)⧵𝐹
)

≥ 0, which is obviously
satisfied. If (�̄�, �̄�) satisfies �̄�(𝐹 ) = |𝐹 |, then �̄�𝑒 = 1 for each 𝑒 ∈ 𝐹 , and
this implies that �̄�𝑒 = 0 for each 𝑒 ∈ 𝐹 . Therefore, (�̄�, �̄�) traverses each
edge in 𝐹 exactly once and the inequality reduces to �̄�

(

𝛿(𝑆) ⧵ 𝐹
)

≥ 1.
Since (�̄�, �̄�) must traverse the cut-set 𝛿(𝑆) an even number of times and
|𝐹 | is odd, it must traverse 𝛿(𝑆) ⧵ 𝐹 an odd number of times, so �̄�𝑒 = 1
must hold for at least one edge 𝑒 ∈ 𝛿(𝑆) ⧵ 𝐹 .

(b) Consider an arbitrarious U-GTSP solution
(

(�̄�1, �̄�1), (�̄�2, �̄�2),… ,
(�̄�𝐾 , �̄�𝐾 )

)

. If we add all the levels,
(
∑𝐾

𝑘=1 �̄�
𝑘,
∑𝐾

𝑘=1 �̄�
𝑘) is a GTSP tour

on 𝐺 and, from (a), it satisfies
𝐾
∑

𝑘=1
�̄�𝑘

(

𝛿(𝑆) ⧵ 𝐹
)

≥
𝐾
∑

𝑘=1
�̄�𝑘(𝐹 ) − |𝐹 | + 1.

⧫

7
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Remark 3. In order to prove that parity inequalities (28) induce facets
of GTSP(𝐺) in Theorem 13, we have to build several GTSP tours on 𝐺
satisfying (28) with equality. Recall that, given a subset 𝑇 ⊂ 𝑉 , with |𝑇 |
even, a T-join is a subset of edges 𝐸′ ⊂ 𝐸 such that, in the subgraph
𝐺′ = (𝑉 ,𝐸′), the degree of 𝑣 is odd if and only if 𝑣 ∈ 𝑇 , and that
a connected graph 𝐺 has a T-join for each set 𝑇 ⊂ 𝑉 with |𝑇 | even.
Suppose we choose either to traverse exactly once all the edges in 𝐹
but one, and zero or two times the other edges in 𝛿(𝑆), or to traverse
exactly once all the edges in 𝐹 plus one more edge in 𝛿(𝑆), and zero or
two times the remaining edges in 𝛿(𝑆). Note that if we can add edges
in 𝐺(𝑆) and 𝐺(𝑉 ⧵𝑆) to obtain a GTSP tour, this GTSP tour will satisfy
(28) with equality. This can be done as follows:

Assume that 𝐺(𝑆) and 𝐺(𝑉 ⧵𝑆) are connected. Let 𝑇 ⊂ 𝑆 be the set
of vertices incident with an odd number of the edges in 𝛿(𝑆) selected to
be traversed exactly once. Given that |𝑇 | is even, there is a T-join 𝐸′ in
𝐺(𝑆). This same process is done in 𝐺(𝑉 ⧵𝑆) and we have a T-join 𝐸′′ in
𝐺(𝑉 ⧵𝑆). Then, by adding two copies of all the remaining edges in 𝐺(𝑆)
and 𝐺(𝑉 ⧵𝑆) not in the T-joins, we obtain a GTSP tour (even, connected
and visiting all the vertices in 𝑉 ) that satisfies (28) with equality.

Theorem 13. Parity inequality (28) is facet-inducing of GTSP(𝐺) if graph
𝐺 is 3-edge connected and graphs 𝐺(𝑆) and 𝐺(𝑉 ⧵𝑆) are 2-edge connected.

Proof. Parity inequality (28) can be written as 𝑥(𝐹 ) − 𝑥
(

𝛿(𝑆) ⧵ 𝐹
)

≤
|𝐹 | − 1. Let 𝑎𝑥 + 𝑏𝑦 ≤ 𝑐 be a valid inequality such that

{(𝑥, 𝑦) ∈ GTSP(𝐺) ∶ 𝑥(𝐹 ) − 𝑥
(

𝛿(𝑆) ⧵ 𝐹
)

= |𝐹 | − 1}

⊆ {(𝑥, 𝑦) ∈ GTSP(𝐺) ∶ 𝑎𝑥 + 𝑏𝑦 = 𝑐}.

We will prove that 𝑎𝑥+𝑏𝑦≤𝑐 is a scalar multiple of 𝑥(𝐹 )−𝑥
(

𝛿(𝑆)⧵𝐹
)

≤
|𝐹 | − 1.

Let 𝑒 ∈ 𝐸(𝑆) ∪ 𝐸(𝑉 ⧵ 𝑆). Since 𝐺(𝑆) and 𝐺(𝑉 ⧵ 𝑆) are 2-edge
connected, they would remain connected after removing edge 𝑒 and, as
in Remark 3, we can build a GTSP tour satisfying 𝑥(𝐹 ) − 𝑥

(

𝛿(𝑆) ⧵ 𝐹
)

=
|𝐹 |−1 that does not traverse 𝑒. Consider the same tour but adding two
traversals of 𝑒. By comparing the two tours we obtain that 𝑏𝑒 = 0.

Let 𝑒 = (𝑖, 𝑗) ∈ 𝐸(𝑆) be any edge. Given that 𝐺 is a 3-edge connected
graph and 𝐺(𝑆) is a 2-edge connected graph, we can construct two
edge-disjoint paths 1, 2 connecting vertices 𝑖, 𝑗 and not traversing
edge 𝑒, such that at least one of them is in 𝐺(𝑆).

If both paths 1 and 2 are in 𝐺(𝑆), we can build a GTSP tour (𝑥1, 𝑦1)
in 𝐺 satisfying 𝑥(𝐹 ) − 𝑥

(

𝛿(𝑆) ⧵ 𝐹
)

= |𝐹 | − 1 such that it traverses edge
𝑒 = (𝑖, 𝑗) exactly once. To do that, the ‘‘parity’’ label of vertices 𝑖 and 𝑗
is switched before the T-join is computed and then the edge 𝑒 = (𝑖, 𝑗) is
added. We define three more GTSP tours in the following way:

The tour (𝑥2, 𝑦2) is obtained from (𝑥1, 𝑦1) by adding to it one traver-
al of each edge in paths 1 and 2 and then removing two traversals of
ach of these edges traversed three times. The tour (𝑥3, 𝑦3) is obtained

from (𝑥1, 𝑦1) by removing the traversal of edge 𝑒, adding one traversal
of each edge in path 1, and then removing two traversals of each one
of these edges traversed three times. The tour (𝑥4, 𝑦4) is obtained from
𝑥1, 𝑦1) by removing the traversal of edge 𝑒, adding one traversal of each
dge in path 2, and then removing two traversals of each one of these
dges traversed three times. All these tours are GTSP tours that satisfy
(𝐹 ) − 𝑥

(

𝛿(𝑆) ⧵ 𝐹
)

= |𝐹 | − 1 and then also satisfy 𝑎𝑥 + 𝑏𝑦 = 𝑐.
Let us define 𝛼(𝑖) =

∑

𝑒∈1
𝑖
𝑎𝑒 +

∑

𝑒∈2
𝑖
𝑏𝑒, where 1

𝑖 is the set of
dges in path 𝑖 that are traversed only once in (𝑥1, 𝑦1) and 2

𝑖 the set
f edges in path 𝑖 that are not traversed at all or are traversed twice
n (𝑥1, 𝑦1). If we subtract the expression 𝑎𝑥1+𝑏𝑦1 = 𝑐 from 𝑎𝑥2+𝑏𝑦2 = 𝑐,
e obtain 𝛼(1) + 𝛼(2) = 0. In the same way, with the tours 3 and 4
bove, we obtain 𝛼(1) = 𝛼(2) and then 𝛼(1) = 𝛼(2) = 0. Finally,
ith the tours 1 and 3, we obtain 𝑎𝑒 = 𝛼(𝑃 1) and then 𝑎𝑒 = 0.

Let us now suppose that path 2 is not in 𝐺(𝑉 ⧵𝑆), i.e. it leaves the
raph 𝐺(𝑉 ⧵𝑆) and traverses the cut-set 𝛿(𝑆). Given that graph 𝐺(𝑆)
s connected, we can assume that path 2 traverses the cut-set 𝛿(𝑆)
xactly once in each direction through two edges, say 𝑒1 and 𝑒2. We

onsider three cases:
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(1) 𝑒1, 𝑒2 ∈ 𝐹 . As in Remark 3, we can build a GTSP tour (𝑥1, 𝑦1)
atisfying 𝑥(𝐹 )−𝑥

(

𝛿(𝑆)⧵𝐹
)

= |𝐹 |−1 that traverses 𝑒 = (𝑖, 𝑗) and all the
dges in 𝐹⧵{𝑒2} once and does not traverse 𝑒2. It can be seen that three
TSP tours (𝑥2, 𝑦3), (𝑥3, 𝑦3) and (𝑥4, 𝑦4) as defined above also satisfy
(𝐹 ) − 𝑥

(

𝛿(𝑆) ⧵ 𝐹
)

= |𝐹 | − 1. Note that when we add one traversal of
ach edge in path 2, we obtain an GTSP tour that traverses each edge
n 𝐹 ⧵{𝑒1} exactly once and edge 𝑒1 twice.

(2) 𝑒1, 𝑒2 ∉ 𝐹 . As in Remark 3, we can build a GTSP tour (𝑥1, 𝑦1)
atisfying 𝑥(𝐹 )−𝑥

(

𝛿(𝑆)⧵𝐹
)

= |𝐹 |−1 that traverses 𝑒 = (𝑖, 𝑗) and all the
dges in 𝐹⧵{𝑒1} once and does not traverse 𝑒2. Again, three tours (𝑥2, 𝑦3),
𝑥3, 𝑦3) and (𝑥4, 𝑦4) as defined above satisfy 𝑥(𝐹 )−𝑥

(

𝛿(𝑆)⧵𝐹
)

= |𝐹 |−1.
Note that when we add one traversal of each edge in path 2, we obtain
an GTSP tour of that traverses each edge in 𝐹 ∪ {𝑒2} exactly once and
the edge 𝑒1 twice.

(3) 𝑒1 ∈ 𝐹 , 𝑒2 ∉ 𝐹 . As in Remark 3, we can build a GTSP tour
(𝑥1, 𝑦1) satisfying 𝑥(𝐹 ) − 𝑥

(

𝛿(𝑆) ⧵ 𝐹
)

= |𝐹 | − 1 that traverses 𝑒 = (𝑖, 𝑗)
and all the edges in 𝐹 ⧵ {𝑒1} once and not traversing 𝑒2. Again, the
three GTSP tours (𝑥2, 𝑦3), (𝑥3, 𝑦3) and (𝑥4, 𝑦4) as defined above satisfy
𝑥(𝐹 ) − 𝑥

(

𝛿(𝑆) ⧵ 𝐹
)

= |𝐹 | − 1. Note that when we add one traversal of
each edge in path 2, we obtain an GTSP tour that traverses each edge
in 𝐹 ∪ {𝑒2} exactly once.

In any of the three cases above, following a similar reasoning to
that of the case in which path 2 is in 𝐺(𝑉 ⧵𝑆), we obtain 𝑎𝑒 = 0. The
same result can be proved for any edge 𝑒 ∈ 𝐸(𝑉 ⧵𝑆). Hence, we have
𝑎𝑒 = 𝑏𝑒 = 0 for all 𝑒 ∈ 𝐸(𝑆) ∪ 𝐸(𝑉 ⧵𝑆).

Let 𝑒 ∈ 𝛿(𝑆). There is a GTSP tour satisfying 𝑥(𝐹 ) − 𝑥
(

𝛿(𝑆) ⧵ 𝐹
)

=
|𝐹 |−1 that does not traverse 𝑒. Consider the same tour but adding two
traversals of 𝑒. By comparing the two tours we obtain that 𝑏𝑒 = 0, and
this holds for all 𝑒 ∈ 𝛿(𝑆).

Consider 𝑒1, 𝑒2 ∈ 𝐹 . There is a GTSP tour satisfying 𝑥(𝐹 ) − 𝑥
(

𝛿(𝑆) ⧵
𝐹
)

= |𝐹 | − 1 that traverses exactly once the edges in 𝐹 ⧵ {𝑒1}, and
another one that traverses those in 𝐹 ⧵ {𝑒2}. By comparing the two
tours we obtain that 𝑎𝑒1 = 𝑎𝑒2 (recall that 𝑎𝑒 = 𝑏𝑒 = 0 for all 𝑒 ∈
𝐸(𝑆) ∪ 𝐸(𝑉 ⧵ 𝑆)). Since this is true for any pair of edges 𝑒1, 𝑒2 ∈ 𝐹 ,
we have that 𝑎𝑒 = 𝜆, for a given parameter 𝜆, for all 𝑒 ∈ 𝐹 .

Consider 𝑒 ∈ 𝛿(𝑆) ⧵ 𝐹 , 𝑒1 ∈ 𝐹 . There is a GTSP tour satisfying
𝑥(𝐹 ) − 𝑥

(

𝛿(𝑆) ⧵ 𝐹
)

= |𝐹 | − 1 that traverses exactly once the edges in
𝐹 ∪ {𝑒}, and another GTSP tour satisfying 𝑥(𝐹 ) − 𝑥

(

𝛿(𝑆) ⧵ 𝐹
)

= |𝐹 | − 1
that traverses exactly once the edges in 𝐹 ⧵{𝑒1}. By comparing the two
tours we obtain that 𝑎𝑒+𝑎𝑒1 = 0 and, hence, 𝑎𝑒 = −𝜆 for all 𝑒 ∈ 𝛿(𝑆)⧵𝐹 .

By substituting all the previously computed coefficients 𝑎𝑒, 𝑏𝑒 in
inequality 𝑎𝑥 + 𝑏𝑦 ≤ 𝑐 we obtain 𝜆𝑥(𝐹 ) − 𝜆𝑥

(

𝛿(𝑆) ⧵ 𝐹
)

≤ 𝑐. Given that
any of the GTSP tours above satisfies the inequality as an equality, we
obtain that 𝑐 = 𝜆|𝐹 | − 𝜆 and inequality 𝑎𝑥 + 𝑏𝑦 ≤ 𝑐 is a scalar multiple
of 𝑥(𝐹 ) − 𝑥

(

𝛿(𝑆) ⧵ 𝐹
)

≤|𝐹 | − 1. ⧫

Theorem 14. Parity inequality (29) is facet-inducing of RU-GTSP(𝐺)
if graph 𝐺 is 3-edge connected and graphs 𝐺(𝑆) and 𝐺(𝑉 ⧵𝑆) are 2-edge
connected.

Proof. It is an immediate consequence of Theorems 7 and 13. ⧫

3.2. p-connectivity inequalities

These constraints are based on those introduced in Corberán et al.
(2013) to cut off some fractional solutions in which several variables
take value 0.5. Consider a U-GTSP instance with the vertex set 𝑉
divided into three subsets 𝑆0, 𝑆1 and 𝑆2 as shown in Fig. 5(a), and
a fractional solution where ∑𝐾

𝑘=1 𝑥
𝑘
𝑒 = 0 and ∑𝐾

𝑘=1 𝑦
𝑘
𝑒 = 0.5 for the

three edges plotted. Note that this solution satisfies all the previously
described valid inequalities. Specifically, it satisfies as an equality the
connectivity inequalities (2) associated with sets 𝑆0, 𝑆1 and 𝑆2. It can
be seen that the following inequality is valid for the U-GTSP and cuts
the previous fractional solution:
𝐾
∑

(

(𝑥𝑘 + 2𝑦𝑘)(𝛿(𝑆0))
)

+ 2
𝐾
∑

(

(𝑥𝑘 + 𝑦𝑘)(𝑆1 ∶ 𝑆2)
)

≥ 4.
8

𝑘=1 𝑘=1
Note that the fractional solution (�̄�, �̄�) in Fig. 5(a) is cut by the previous
inequality 𝐹 (𝑥, 𝑦) ≥ 4, since 𝐹 (�̄�, �̄�) = 3 ≱ 4.

In general, given a partition {𝑆0,… , 𝑆𝑝} of vertex set 𝑉
(see Fig. 5(b)), we will call

• 𝑝-connectivity inequality for the GTSP on 𝐺 to

(𝑥 + 2𝑦)(𝛿(𝑆0)) + 2
∑

1≤𝑟<𝑡≤𝑝
(𝑥 + 𝑦)(𝑆𝑟 ∶ 𝑆𝑡) ≥ 2𝑝, (30)

• and the corresponding 𝑝-connectivity inequality for the U-GTSP on
𝐺 to
𝐾
∑

𝑘=1

(

(𝑥𝑘 + 2𝑦𝑘)(𝛿(𝑆0))
)

+ 2
∑

1≤𝑟<𝑡≤𝑝

𝐾
∑

𝑘=1

(

(𝑥𝑘 + 𝑦𝑘)(𝑆𝑟 ∶ 𝑆𝑡)
)

≥ 2𝑝.

(31)

These 𝑝-connectivity inequalities generalize the double degree con-
straints presented in Carr et al. (2023).

Theorem 15. 𝑝-connectivity inequalities (30) and (31) are valid for the
GTSP and the U-GTSP, respectively.

Proof. (a) Consider an arbitrarious GTSP tour (�̄�, �̄�) and an upgrade
level for each edge it traverses. It can be seen that if ∑𝐾

𝑘=1(�̄�
𝑘
𝑒 + �̄�𝑘𝑒 ) = 1

for some edge 𝑒 ∈ (𝑆𝑟 ∶ 𝑆𝑡) with 1 ≤ 𝑟 < 𝑡 ≤ 𝑝, we can define a
new partition with 𝑝−1 subsets where 𝑆𝑟 and 𝑆𝑡 have been merged into
𝑆′
𝑟 = 𝑆𝑟∪𝑆𝑡 and, if its associated (𝑝−1)-connectivity inequality is satisfied

by (�̄�, �̄�), then the original 𝑝-connectivity inequality is also satisfied by
(�̄�, �̄�). Hence, we can assume that ∑𝐾

𝑘=1
(

(�̄�𝑘 + �̄�𝑘)(𝑆𝑟 ∶ 𝑆𝑡)
)

= 0 for any
1 ≤ 𝑟 < 𝑡 ≤ 𝑝. In this case, set 𝑆0 has to be directly connected to each
one of the sets 𝑆𝑖, 𝑖 = 1,… , 𝑝. Therefore, ∑𝐾

𝑘=1
(

(�̄�𝑘 + 2�̄�𝑘)(𝑆0 ∶ 𝑆𝑖)
)

≥ 2
for each 𝑖 = 1,… , 𝑝 and the inequality holds.

(b) For the U-GTSP the proof is similar to that in Theorem 12. ⧫

It is possible that |𝑆𝑖| = 1 for each 𝑖 = 1,… , 𝑝. In that case, if we
call 𝑆 = ∪𝑝

𝑖=1𝑆𝑖, the 𝑝-connectivity inequality (31) can be written as:

𝐾
∑

𝑘=1

(

(𝑥𝑘 + 2𝑦𝑘)(𝛿(𝑆))
)

≥ 2

(

|𝑆| −
𝐾
∑

𝑘=1

(

(𝑥𝑘 + 𝑦𝑘)(𝐸(𝑆))
)

)

. (32)

Theorem 16. 𝑝-connectivity inequalities (31) are facet-inducing for U-
GTSP(𝐺) if graph 𝐺 is 3-edge connected, subgraphs 𝐺(𝑆𝑖), 𝑖 = 1,… , 𝑝, are
3-edge connected, |(𝑆0 ∶ 𝑆𝑖)| ≥ 2, ∀ 𝑖 = 1,… , 𝑝, and the graph induced by
𝑉 ⧵ 𝑆0 is connected.

Proof. From Theorem 7 it suffices to show that the 𝑝-connectivity
inequalities (30) for the GTSP on 𝐺 are facet-inducing of GTSP(𝐺). Let
𝑎𝑥 + 𝑏𝑦 ≥ 𝑐 be a valid inequality such that

{(𝑥, 𝑦) ∈ GTSP(𝐺) ∶ (𝑥 + 2𝑦)(𝛿(𝑆0)) + 2
∑

1≤𝑟<𝑡≤𝑝
(𝑥 + 𝑦)(𝑆𝑟 ∶ 𝑆𝑡) = 2𝑝} ⊆

⊆ {(𝑥, 𝑦) ∈ GTSP(𝐺) ∶ 𝑎𝑥 + 𝑏𝑦 = 𝑐}.

We have to prove that inequality 𝑎𝑥+𝑏𝑦 ≥ 𝑐 is a scalar multiple of (30).
In the GTSP tours used in this proof we will not describe how the edges
in each set 𝐸(𝑆𝑖) are traversed. It can be seen that all these tours can
be completed by traversing once the edges in certain T-joins and then
adding two traversals of the remaining edges in 𝐸(𝑆𝑖), as described in
Remark 3 for the parity inequalities.

For each 𝑖 = 0, 1,… , 𝑝, similar arguments to those used in the
proof of Theorem 13, lead to prove that 𝑏𝑒 = 0, for each 𝑒 ∈ 𝐸(𝑆𝑖).
Furthermore, using the 3-edge connectivity of graph 𝐺(𝑆𝑖) we obtain
that also 𝑎𝑒 = 0. Hence, we have 𝑎𝑒 = 𝑏𝑒 = 0 for all 𝑒 ∈ 𝐸(𝑆𝑖),
𝑖 = 0, 1,… , 𝑝.

Let 𝑆𝑖 and 𝑆𝑗 , 𝑖, 𝑗 ≠ 0 be two sets such that there is an edge 𝑒 ∈ (𝑆𝑖 ∶
𝑆𝑗 ). Since all the sets (𝑆0 ∶ 𝑆𝑘) are non-empty, and subgraphs 𝐺(𝑆𝑘)
are 3-edge connected, we can build a GTSP tour that traverses twice
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Fig. 5. 𝑝-connectivity inequalities.
Fig. 6. GTSP tours satisfying (30) with equality.
an edge 𝑓 ∈ (𝑆0 ∶𝑆𝑘) and visits all the sets 𝑆𝑘 (see Fig. 6(a)). This tour
satisfies inequality (30) as an equality. We define two more GTSP tours
satisfying (30) with equality such as those depicted in Fig. 6(b) and
6(c). By comparing (a) and (b), we obtain 𝑏0𝑗 = 𝑏𝑖𝑗 , and by comparing
(a) and (c) we obtain 𝑏0𝑖 = 𝑏𝑖𝑗 , where 𝑏𝑘𝑙 represents the coefficient of
the 𝑦 variable corresponding to any edge in (𝑆𝑘 ∶ 𝑆𝑙). Given that the
graph induced by 𝑉 ⧵𝑆0 is connected, we can iterate this argument to
conclude that 𝑏𝑒 = 2𝜆 for every edge 𝑒 ∈ (𝑆𝑖 ∶𝑆𝑗 ) (including (𝑆0 ∶𝑆𝑖)).

For each 𝑖 ∈ {1, 2,… , 𝑝}, let 𝑒1, 𝑒2 be two edges in (𝑆0 ∶ 𝑆𝑖) (recall
that |(𝑆0 ∶𝑆𝑖)| ≥ 2 holds). We have already proved that 𝑏𝑒1 = 𝑏𝑒2 = 2𝜆.
We can build four GTSP tours satisfying inequality (30) as an equality
as follows. One tour traverses 𝑒1 once and does not traverses 𝑒2. Another
tour traverses 𝑒2 once and does not traverses 𝑒1. By comparing these
tours we obtain 𝑎𝑒1 = 𝑎𝑒2 . The third tour traverses both 𝑒1 and 𝑒2 once,
and the fourth one traverses 𝑒1 twice and does not traverses 𝑒2. By
comparing them, we obtain 𝑎𝑒1+𝑎𝑒2 = 𝑏𝑒1 = 2𝜆. Therefore, 𝑎𝑒1 = 𝑎𝑒2 = 𝜆,
and we have 𝑎𝑒 = 𝜆 and 𝑏𝑒 = 2𝜆 for each edge 𝑒 ∈ (𝑆0 ∶𝑆𝑖), 𝑖 = 1,… , 𝑝.

As above, let 𝑆𝑖 and 𝑆𝑗 , 𝑖, 𝑗 ≠ 0 be two sets such that there is an edge
𝑒 = (𝑢, 𝑣) ∈ (𝑆𝑖 ∶ 𝑆𝑗 ). There is a GTSP tour that traverses once edge 𝑒,
an edge 𝑒𝑖 ∈ (𝑆0 ∶𝑆𝑖), and an edge 𝑒𝑗 ∈ (𝑆0 ∶𝑆𝑗 ) and satisfies inequality
(30) as an equality. If we remove in this tour the traversal of 𝑒 and
add the traversal of the edges in a path joining 𝑢 and 𝑣 formed with
edges 𝑒𝑖, 𝑒𝑗 plus some edges in 𝐺(𝑆0), 𝐺(𝑆𝑖) and 𝐺(𝑆𝑗 ) (if any of these
last edges is traversed three times, two copies would be removed), we
obtain another GTSP tour satisfying (30) as an equality. By comparing
both tours we obtain 𝑎𝑒𝑖 +𝑎𝑒𝑗 +𝑎𝑒 = 𝑏𝑒𝑖 +𝑏𝑒𝑗 = 4𝜆, which implies 𝑎𝑒 = 2𝜆
(and recall that 𝑏𝑒 = 2𝜆). Hence, 𝑎𝑒 = 𝑏𝑒 = 2𝜆, for each edge 𝑒 ∈ (𝑆𝑖 ∶𝑆𝑗 ),
𝑖 ≠ 𝑗.

By substituting all the previously computed coefficients 𝑎𝑒, 𝑏𝑒 in
inequality 𝑎𝑥 + 𝑏𝑦 ≥ 𝑐 we obtain

(𝜆𝑥 + 2𝜆𝑦)(𝛿(𝑆0)) +
∑

(2𝜆𝑥 + 2𝜆𝑦)(𝑆𝑟 ∶ 𝑆𝑡) ≥ 𝑐.
9

1≤𝑟<𝑡≤𝑝
Given that the GTSP tour in Fig. 6(a), for example, satisfies this
inequality with equality, we obtain 2𝜆𝑝 = 𝑐 and, hence, inequality
𝑎𝑥 + 𝑏𝑦 ≥ 𝑐 reduces to

(𝜆𝑥 + 2𝜆𝑦)(𝛿(𝑆0)) +
∑

1≤𝑟<𝑡≤𝑝
(2𝜆𝑥 + 2𝜆𝑦)(𝑆𝑟 ∶ 𝑆𝑡) ≥ 2𝜆𝑝,

which is a scalar multiple of (30). ⧫

3.3. Cover inequalities

The following inequalities are based on the knapsack cover inequal-
ities (Glover, 1973). Given a subset of edges 𝐹 ⊆ 𝐸 and, for each edge
𝑒 ∈ 𝐹 , a level 𝑘𝑒 such that ∑

𝑒∈𝐹 𝛼𝑘𝑒𝑒 > 𝑇 , it is trivial to see that the
following cover inequalities are valid for the U-GTSP:

∑

𝑒∈𝐹

𝐾
∑

𝑘=𝑘𝑒

(𝑥𝑘𝑒 + 𝑦𝑘𝑒 ) ≤ |𝐹 | − 1. (33)

4. Valid inequalities based on costs

Consider two edges 𝑒1, 𝑒2 and two upgrade levels 𝑘1, 𝑘2. If there are
two other upgrade levels for these edges such that the sum of their costs
is smaller, and the sum of their 𝛼− values is also smaller, no optimal
solution will traverse the two edges 𝑒1, 𝑒2 with the upgrade levels 𝑘1
and 𝑘2. This is better expressed in the following theorems.

Theorem 17. Consider two pairs of variables 𝑥𝑘1𝑒1 , 𝑥
𝑘2
𝑒2 and 𝑦𝑘1𝑒1 , 𝑦

𝑘2
𝑒2 corre-

sponding to two edges 𝑒1, 𝑒2 ∈ 𝐸 and two upgrade levels 𝑘1, 𝑘2 ∈ {1,… , 𝐾},
and suppose there are two other upgrade levels 𝑘3, 𝑘4 ∈ {1,… , 𝐾} such that

𝛼𝑘1
𝑒1

+ 𝛼𝑘2
𝑒2

≥ 𝛼𝑘3
𝑒1 + 𝛼𝑘4

𝑒2
(upgrade levels 𝑘3, 𝑘4 are cheaper), (34)

𝑐𝑘1 + 𝑐𝑘2 > 𝑐𝑘3 + 𝑐𝑘4 (upgrade levels 𝑘 , 𝑘 have lower traversal cost). (35)
𝑒1 𝑒2 𝑒1 𝑒2 3 4
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Then, the variables are incompatible, i.e., any optimal U-GTSP tour satisfies
the inequalities:

𝑥𝑘1𝑒1 + 𝑥𝑘2𝑒2 ≤ 1, (36)
𝑘1
𝑒1 + 𝑦𝑘2𝑒2 ≤ 1. (37)

roof. Let us consider a U-GTSP tour that does not satisfy (36), i.e., it
atisfies
𝑘1
𝑒1 + 𝑥𝑘2𝑒2 = 2.

his means that edge 𝑒1 is upgraded to level 𝑘1 and traversed once
𝑥𝑘1𝑒1 = 1, 𝑦𝑘1𝑒1 = 0) and edge 𝑒2 is upgraded to level 𝑘2 and traversed once
𝑥𝑘2𝑒2 = 1, 𝑦𝑘2𝑒2 = 0). We can construct another U-GTSP tour traversing the
ame edges but changing the upgrade level of edge 𝑒1 to 𝑘3 and that
f edge 𝑒2 to 𝑘4. This new solution maintains the same structure as the
revious one (it traverses the same edges the same number of times)
nd satisfies (3) as (34) implies that the new 𝛼-cost is lower. Since the
ost of this new solution is lower than that of the original one due to
35), the original solution is not optimal. Let us consider now a solution
f the U-GTSP that does not satisfy (37), i.e., it satisfies
𝑘1
𝑒1 + 𝑦𝑘2𝑒2 = 2.

his means that edge 𝑒1 is upgraded to level 𝑘1 and traversed twice
𝑥𝑘1𝑒1 = 0, 𝑦𝑘1𝑒1 = 1) and edge 𝑒2 is recovered to level 𝑘2 and traversed
wice also. As before, we can construct another feasible U-GTSP tour
y changing the upgrade level of edge 𝑒1 to 𝑘3 and that of edge 𝑒2 to
4. This solution, that satisfies (37), has a lower cost due to (35), so the
riginal solution is not optimal. ⧫

heorem 18. Consider two variables 𝑦𝑘1𝑒1 , 𝑥
𝑘2
𝑒2 corresponding to two edges

𝑒1, 𝑒2 ∈ 𝐸 and two upgrade levels 𝑘1, 𝑘2 ∈ {1,… , 𝐾}, and suppose there
are two upgrade levels 𝑘3, 𝑘4 ∈ {1,… , 𝐾} such that

𝛼𝑘1𝑒1 + 𝛼𝑘2𝑒2 ≥ 𝛼𝑘3𝑒1 + 𝛼𝑘4𝑒2 (cheaper), (38)

2𝑐𝑘1𝑒1 + 𝑐𝑘2𝑒2 > 2𝑐𝑘3𝑒1 + 𝑐𝑘4𝑒2 (less cost). (39)

Then, the two variables are incompatible, i.e., any optimal U-GTSP tour
satisfies the inequalities:

𝑦𝑘1𝑒1 + 𝑥𝑘2𝑒2 ≤ 1. (40)

Proof. As in the proof of Theorem 17, if we have a U-GTSP solution
that does not satisfy (40), we can transform it into another one that
does with lesser cost by changing the upgrade levels of edges 𝑒1 and 𝑒2
from 𝑘1 and 𝑘2 to 𝑘3 and 𝑘4, respectively. ⧫

We will refer to inequalities (36), (37), and (40) as 𝑥𝑥 cost-based,
𝑦𝑦 cost-based, and 𝑥𝑦 cost-based inequalities, respectively. The 𝑥𝑥 and
𝑦𝑦 cost-based inequalities can be easily lifted as the following corollary
shows. It is not difficult to see that 𝑥𝑦 cost-based inequalities can also
be lifted in a similar way.

Corollary 1. Let 𝑒1, 𝑒2 ∈ 𝐸 be two edges. Let 𝑆, 𝑇 ⊂ {1,… , 𝐾} two sets of
upgrade levels such that, for each pair 𝑘1 ∈ 𝑆, 𝑘2 ∈ 𝑇 , there is another pair
𝑘3, 𝑘4 ∈ {1,… , 𝐾} satisfying (34) and (35). Then, any optimal solution of
the U-GTSP satisfies the inequalities:
∑

𝑘∈𝑆
𝑥𝑘𝑒1 +

∑

𝑘∈𝑇
𝑥𝑘𝑒2 ≤ 1, (41)

∑

𝑘∈𝑆
𝑦𝑘𝑒1 +

∑

𝑘∈𝑇
𝑦𝑘𝑒2 ≤ 1. (42)

Note that 𝑥𝑥 and 𝑦𝑦 cost-based inequalities, which involve two
edges, can be extended to sets of three edges as the following theorem
shows:
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Theorem 19. Consider three edges 𝑒1, 𝑒2, 𝑒3 ∈ 𝐸 and three upgrade levels
𝑘1, 𝑘2, 𝑘3. Suppose that there are other three upgrade levels 𝑘4, 𝑘5, 𝑘6 ∈
{1,… , 𝐾} such that

𝛼𝑘1
𝑒1
+𝛼𝑘2

𝑒2
+𝛼𝑘3

𝑒3 ≥ 𝛼𝑘4
𝑒1
+𝛼𝑘5

𝑒2 +𝛼
𝑘6
𝑒3 (upgrade levels 𝑘4, 𝑘5, 𝑘6are cheaper) and (43)

𝑐𝑘1𝑒1 +𝑐𝑘2𝑒2 +𝑐𝑘3𝑒3 > 𝑐𝑘4𝑒1 +𝑐𝑘5𝑒2 +𝑐𝑘6𝑒3 (upgrade levels 𝑘4, 𝑘5, 𝑘6 have less cost). (44)

Then, any optimal U-GTSP solution satisfies the inequalities:

𝑥𝑘1𝑒1 + 𝑥𝑘2𝑒2 + 𝑥𝑘3𝑒3 ≤ 2, (45)

𝑦𝑘1𝑒1 + 𝑦𝑘2𝑒2 + 𝑦𝑘3𝑒3 ≤ 2. (46)

5. Preprocessing

In this section we will study if, for a given instance, some variables
𝑥𝑘𝑒 and 𝑦𝑘𝑒 can be dropped from the model or fixed to zero in order to
reduce its size.

Let 𝐺 = (𝑉 ,𝐸) be a connected undirected graph with set of vertices
𝑉 and set of edges 𝐸, and two costs 𝑐𝑒, 𝛼𝑒 associated with each edge.
The cost-constrained GTSP (CC-GTSP) consists of finding a minimum
cost tour (computed in terms of costs 𝑐𝑒) visiting all the vertices at least
once with an 𝛼-cost less than or equal to a certain amount 𝑇 . For every
edge 𝑒 ∈ 𝐸, let variable 𝑥𝑒 be equal to 1 if edge 𝑒 is traversed exactly
once and 0 otherwise, and variable 𝑦𝑒 equal to 1 if 𝑒 is traversed exactly
twice and 0 otherwise. The CC-GTSP in 𝐺 can be formulated as follows:

(CC-GTSP(G)) Minimize
∑

𝑒∈𝐸

(

𝑐𝑒𝑥𝑒 + 2𝑐𝑒𝑦𝑒
)

s.t.

(𝑥 + 2𝑦)
(

𝛿(𝑖)
)

≡ 0 (mod 2), ∀ 𝑖∈𝑉 , (47)

(𝑥 + 2𝑦)
(

𝛿(𝑆)
)

≥ 2, ∀ 𝑆 ⊂ 𝑉 (48)
∑

𝑒∈𝐸

(

𝛼𝑒𝑥𝑒 + 𝛼𝑒𝑦𝑒
)

≤ 𝑇 , (49)

𝑥𝑒 + 𝑦𝑒 ≤ 1, ∀ 𝑒 ∈ 𝐸 (50)
𝑥𝑒, 𝑦𝑒 ∈ {0, 1}, ∀𝑒 ∈ 𝐸 (51)

The CC-GTSP is a graphical relaxation of the cost-constrained TSP
(Sokkappa, 1990) or the Resource-Constrained TSP (Pekny and Miller,
1990). The CC-GTSP in a graph 𝐺 is a particular case of the U-GTSP in
𝐺 with 𝐾 = 1 upgrade levels. Interestingly, the U-GTSP with 𝐾 levels
in a graph 𝐺 can be solved as a CC-GTSP in a multigraph �̂� that has 𝐾
parallel copies of each edge of 𝐺, as shown in the following theorem.

Theorem 20. The optimal solution of any U-GTSP can be obtained by
solving a CC-GTSP on a multigraph.

Proof. Let us consider the U-GTSP defined on a graph 𝐺 = (𝑉 ,𝐸),
where each edge 𝑒 ∈ 𝐸 has 𝐾 possible levels, and for each level an
associated cost 𝑐𝑘𝑒 and price 𝛼𝑘𝑒 . Then let �̂� = (𝑉 , �̂�) be the augmented
graph of 𝐺 such that for each edge 𝑒 ∈ 𝐸 we have 𝐾 edges 𝑒𝑘 ∈ �̂�
(|�̂�| = |𝐸| ×𝐾). For each edge 𝑒𝑘 ∈ �̂� we define the costs 𝑐𝑒𝑘 = 𝑐𝑘𝑒 and
𝛼𝑒𝑘 = 𝛼𝑘𝑒 . The CC-GTSP in �̂� would be expressed as follows:

(CC-GTSP(�̂�)) Minimize
∑

𝑒𝑘∈�̂�

(

𝑐𝑒𝑘𝑥𝑒𝑘 + 2𝑐𝑒𝑘𝑦𝑒𝑘
)

s.t.

(𝑥 + 2𝑦)
(

𝛿(𝑖)
)

≡ 0 (mod 2), ∀ 𝑖∈𝑉 , (52)

(𝑥 + 2𝑦)
(

𝛿(𝑆)
)

≥ 2, ∀ 𝑆 ⊂ 𝑉 (53)
∑

𝑒𝑘∈�̂�

(

𝛼𝑒𝑘𝑥𝑒𝑘 + 𝛼𝑒𝑘𝑦𝑒𝑘
)

≤ 𝑇 , (54)

𝑘 ̂
𝑥𝑒𝑘 + 𝑦𝑒𝑘 ≤ 1, ∀ 𝑒 ∈ 𝐸 (55)
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𝑥𝑒𝑘 , 𝑦𝑒𝑘 ∈ {0, 1}, ∀𝑒𝑘 ∈ �̂� (56)

Note that, if we identify variables 𝑥𝑘𝑒 of the U-GTSP formulation
with variables 𝑥𝑒𝑘 of the CC-GTSP one, both formulations are the same
except for inequalities (4) and (55), since constraints (55) do not have
a summation over the values of 𝑘. It is obvious that any feasible
solution of the U-GTSP is feasible for the CC-GTSP, since inequality (4)
dominates (55).

Let us suppose there is a feasible solution 𝑆 of 𝐶𝐶 − 𝐺𝑇𝑆𝑃 (�̂�)
with an edge 𝑓 such that

(

𝑥𝑓𝑘 + 𝑦𝑓𝑘
)

≤ 1 for every 𝑘 ∈ {1,… , 𝐾} but
∑𝐾

𝑘=1
(

𝑥𝑓𝑘 + 𝑦𝑓𝑘
)

≥ 1. Let �̂� be the maximum value in 1,… , 𝐾 such that
𝑥𝑓 �̂� + 𝑦𝑓 �̂� = 1. Let �̂� be the CC-GTSP solution we get from 𝑆 such that
̂𝑒𝑘 = 𝑥𝑒𝑘 , �̂�𝑒𝑘 = 𝑦𝑒𝑘 for all 𝑒 ∈ 𝐸 ⧵ 𝑓 , �̂�𝑓𝑘 = 0 and �̂�𝑓𝑘 = 0 except:

• �̂�𝑓 �̂� = 1, if ∑𝐾
𝑘=1

(

𝑥𝑓𝑘 + 2𝑦𝑓𝑘
)

≡ 0 (mod 2),
• �̂�𝑓 �̂� = 1, if ∑𝐾

𝑘=1
(

𝑥𝑓𝑘 + 2𝑦𝑓𝑘
)

≡ 1 (mod 2).

�̂� satisfies ∑𝐾
𝑘=1

(

�̂�𝑓𝑘 + �̂�𝑓𝑘
)

≤ 1 and is also feasible for both
CC-GTSP(�̂�) and U-GTSP(𝐺) since:

• (�̂� + 2�̂�)
(

𝛿(𝑖)
)

≡ 0 (mod 2) for all 𝑖 ∈ 𝑉 given that
∑𝐾

𝑘=1
(

𝑥𝑓𝑘 + 2𝑦𝑓𝑘
)

≡ �̂�𝑓 �̂� + 2�̂�𝑓 �̂� (mod 2),
• ∑𝐾

𝑘=1
(

�̂�𝑒𝑘 + �̂�𝑒𝑘
)

≤ 1,
• (�̂� + 2�̂�)

(

𝛿(𝑊 )
)

≥ 2 for all 𝑊 ⊂ 𝑉 given that ∑𝐾
𝑘=1

(

𝑥𝑓𝑘 + 2𝑦𝑓𝑘
)

≡
�̂�𝑓 �̂� + 2�̂�𝑓 �̂� (mod 2) and the solution remains connected,

• ∑𝐾
𝑘=1

∑

𝑒∈𝐸
(

𝛼𝑘𝑒 �̂�𝑒𝑘 + 𝛼𝑘𝑒 �̂�𝑒𝑘
)

≤ 𝑇 .

Moreover, clearly �̂� also has a lower objective function value,
so solution 𝑆 is not optimal. Therefore, the optimal solution of the
CC-GTSP is an optimal solution of the U-GTSP. ⧫

Theorem 21. Let 𝑒 = (𝑢, 𝑣) ∈ 𝐸 be an edge of graph 𝐺 and 𝑘 an upgrade
level. If there is a path  = {𝑒1,… , 𝑒

||

} in �̂� from 𝑢 to 𝑣 and a set of
upgrade levels {𝑘1, 𝑘2,… , 𝑘

||

} for the edges in  such that ∑||

𝑖=1 𝑐
𝑘𝑖
𝑒𝑖

≤ 𝑐𝑘𝑒
and ∑

||

𝑖=1 𝛼
𝑘𝑖
𝑒𝑖

≤ 𝛼𝑘𝑒 , then there is an optimal solution of the U-GTSP in 𝐺
satisfying 𝑥𝑘𝑒 = 0 and 𝑦𝑘𝑒 = 0.

Proof. If a U-GTSP solution uses edge 𝑒 = (𝑢, 𝑣) with level 𝑘, we can
replace it with the edges of the path {𝑒1,… , 𝑒

||

} with levels 𝑘1,… , 𝑘
||

.
The new solution will be feasible (it has less 𝛼-cost) and better (it has
less 𝑐-cost). ⧫

Theorem 21 allows to set the variables 𝑥𝑘𝑒 and 𝑦𝑘𝑒 to zero in the
formulation of the U-GTSP, if a path from 𝑢 to 𝑣 with both cheaper
costs is found in the corresponding CC-GTSP. One way to try to find
cheaper paths from 𝑢 to 𝑣 consists of finding a constrained shortest path
on �̄� from 𝑢 to 𝑣. In general, the term Constrained Shortest Path Problem
(C-SPP) refers to the problem of finding a shortest path but establish-
ing an upper limit on the sum of another edge cost (Handler et al.,
1980). Although the Shortest Path Problem can be solved optimally in
polynomial time (Deo and Pang, 1984), unfortunately the C-SPP is NP-
hard (Hartmanis, 1982). However, in Lozano and Medaglia (2013) an
exact method for the C-SPP capable of handling large-scale networks
in a reasonable amount of time is proposed. This method is based on a
Dynamic Programming algorithm called Pulse Algorithm .

In Algorithm 1 we have adapted the Pulse Algorithm in order to get
the negligible levels of an edge 𝑒 = (𝑢, 𝑣) according to Theorem 21.
Given an edge 𝑒 = (𝑢, 𝑣) and a level 𝑘, Algorithm 1 returns true if there
exists some path from 𝑢 to 𝑣 in �̄� with both 𝑐-cost and 𝛼-cost lower than
𝑐𝑘𝑒 and 𝛼𝑘𝑒 , respectively. In this case, 𝑥𝑘𝑒 and 𝑦𝑘𝑒 can be fixed to zero.

As we are not searching for the shortest path but any path that can
replace 𝑒, the algorithm is not programmed in a recursive way, which
allows to finalize at the moment a shorter path is found. Initially, both
costs of any vertex are +∞ since no vertex has been visited.  is a list
of items (each item is a 3-tuple formed by a node that has already been
11

visited, a 𝑐-cost and an 𝛼-cost) that have yet to be explored. A node 𝜈
Algorithm 1:
Input : 𝑒 = (𝑢, 𝑣), 𝑘
Output: 𝑡𝑟𝑢𝑒 if there is a path from 𝑢 to 𝑣 in �̄� with total costs

respectively lower than 𝑐𝑘𝑒 and 𝛼𝑘𝑒
𝑓𝑎𝑙𝑠𝑒 in else case

1 r = false
2 foreach 𝑖 ∈ 𝑉 do
3 𝑑𝑐 (𝑖) = +∞
4 𝑑𝛼(𝑖) = +∞

5  = {(𝜈1 = 𝑢, 𝑐1 = 0, 𝛼1 = 0)}
6 while  ≠ ∅ and not r do
7 (𝑢′, 𝑐′, 𝛼′) = 

||

8  =  ⧵
||

9 foreach 𝑒 = (𝑢′, 𝑣′) ∶ 𝑣′, 𝑒 ≠ 𝑒 do
10 foreach 𝑘′ = 1, .., 𝐾 do
11 if 𝑐′ + 𝑐𝑒𝑘′ ≤ 𝑐𝑘𝑒 and 𝛼′ + 𝛼𝑒𝑘′ ≤ 𝛼𝑘𝑒 then
12 if v’=v then
13 r = true
14 else if 𝑐′ + 𝑐𝑒𝑘′ ≤ 𝑑𝑐 (𝑣′) or 𝛼′ + 𝛼𝑒𝑘′ ≤ 𝑑𝛼(𝑣′) then
15  =  ∪ (𝑣′, 𝛼′ + 𝛼𝑒𝑘′ , 𝑐

′ + 𝑐𝑒𝑘′ )
16 if 𝑐′ + 𝑐𝑒𝑘′ < 𝑑𝑐 (𝑣′) and 𝛼′ + 𝛼𝑒𝑘′ < 𝑑𝛼(𝑣′) then
17 𝑑𝑐 (𝑣′) = 𝑐′ + 𝑐𝑒𝑘′
18 𝑑𝛼(𝑣′) = 𝛼′ + 𝛼𝑒𝑘′

19 return r

could be in several items of  but with different costs, meaning that
there are different paths to get to node 𝜈 from 𝑢. The algorithm starts by
introducing in  the source node 𝑢 with zero costs, 𝑐1 = 0 and 𝛼1 = 0.

In the main loop, the last item of  (containing the last visited node
𝑢′) is explored and removed from the list. Basically, we get to each
node 𝑣′ in the neighborhood of 𝑢′ by exploring all the edges parallel
to 𝑒 = (𝑢′, 𝑣′). Those partial paths that are feasible, that is, with both
updated costs 𝑐′ + 𝑐𝑒𝑘′ ≤ 𝑐𝑘𝑒 and 𝛼′ + 𝛼𝑒𝑘′ ≤ 𝛼𝑘𝑒 , are inserted in  as an
item (𝑣′, 𝑐′+𝑐𝑒𝑘′ , 𝛼

′+𝛼𝑒𝑘′ ). If at any point we reach node 𝑣, the algorithm
nds and returns 𝑡𝑟𝑢𝑒. The algorithm can also terminate because  is
mpty, which means that there is no path with costs respectively equal
o or lower than 𝑐𝑘𝑒 and 𝛼𝑘𝑒 , so 𝑓𝑎𝑙𝑠𝑒 will by returned.

In order to save computational time, the Pulse Algorithm also avoids
exploring the partial paths that are dominated by others already ex-
plored. For this purpose, a list of non-dominated costs associated with
each node is saved. Depending on the instances, this list can be very
large, thus reduction strategies are proposed, but the optimal solution
would also be reached in case of exploring the dominated paths too. In
our case, we have reduced the list of dominated costs to one item per
node. If a node is reached and both costs are better than the previous
ones, then its dominating costs 𝑑𝑐 and 𝑑𝛼 will be updated. This means
that a node will not be explored unless one of its costs is better than
its saved equivalent.

6. A branch-and-cut algorithm

In this section, we present a branch-and-cut algorithm for the U-
GTSP. First we will introduce the linear relaxation solved at the root
node. Then we will describe the separation algorithms that are part of
the cutting-plane procedure applied at each node of the tree. We will
also propose a primal heuristic to obtain good upper bounds from the
fractional solutions of the linear relaxations and a branching strategy.

6.1. Initial linear relaxation

In the linear relaxation solved at the root node of the branch-and-

cut tree, we include constraints (4), connectivity constraints (2) only for
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sets 𝑆 with one single vertex (to ensure that all the vertices are visited)
and the budget constraint (3). We also consider the 𝑝-connectivity
inequalities with 𝑝 = 2 and |𝑘1| = |𝑘3| = 1, i.e., inequalities (32)
with |𝑆| = 2, since there are only |𝐸| of them and they help increase
he lower bound. Parity inequalities (1) are relaxed, as well as the
ntegrality condition from (5).

Let us call (�̄�, �̄�) the solution of the linear relaxation of the U-GTSP
olved at one of the nodes of the branch-and-cut algorithm. Then, we
ill define two aggregated values, 𝑥𝑎𝑔𝑔𝑒 =

∑𝐾
𝑘=1 �̄�

𝑘
𝑒 and 𝑦𝑎𝑔𝑔𝑒 =

∑𝐾
𝑘=1 �̄�

𝑘
𝑒 .

6.2. Separation algorithms

In this section we describe the separation algorithms that have
been applied to identify the following families of inequalities that are
violated by the LP solution at any iteration of the cutting-plane algo-
rithm: connectivity and parity inequalities (12) and (29), 𝑝-connectivity
inequalities (2), cover inequalities (33), 𝑥𝑥 cost-based inequalities (36),
𝑦𝑦 cost-based inequalities (37), and 𝑥𝑦 cost-based inequalities (40).

6.2.1. Connectivity inequalities
To separate violated connectivity inequalities, we use a heuristic

algorithm that is based on computing the connected components of the
graph induced by the edges 𝑒 such that 𝑥𝑎𝑔𝑔𝑒 ≥ 𝜀, where 𝜀 is a given
parameter. For each connected component, we check the corresponding
connectivity inequality for violation. We try 𝜀 = 0, 0.25, 0.5, 0.75, but
a given value is tried only when the previous one did not succeed in
finding a violated inequality. If the solution of the linear relaxation
is integer, this procedure applied with 𝜀 = 0 guarantees that, if the
solution is not connected, it will find at least one violated connectivity
inequality.

6.2.2. Parity inequalities
In order to find cutsets that may correspond to a violated parity

inequality (29), we use the idea that an edge 𝑒 for which the fractional
part of 𝑥𝑎𝑔𝑔𝑒 is close to 0.5 should not appear in the cutset, since they
would either decrease the value of the right-hand side of the inequality
(if the edge is assigned to set 𝐹 ) or increase the value of the left-hand
side (if the edge is not assigned to 𝐹 ).

Given an edge 𝑒, we denote with {𝑥𝑎𝑔𝑔𝑒 } the fractional part of 𝑥𝑎𝑔𝑔𝑒 .
Then, we sort all the edges according to the value |

|

{𝑥𝑎𝑔𝑔𝑒 } − 0.5|
|

in
increasing order. In that way, the first edges of this ordering will be
those that we do not want to appear in the cutset. We choose the first
edge 𝑒 = (𝑖, 𝑗) of the list and initialize 𝑆 = {𝑖, 𝑗}. Then, we choose
𝐹 ⊆ 𝛿(𝑆) according to the procedure described in Campbell et al.
(2021) and based on the one proposed in Ghiani and Laporte (2000)
and check if the associated parity inequality is violated. If it is violated,
we add the cut, mark all the edges in 𝐸(𝑆) as used, and start the process
again by choosing from the list another initial edge for 𝑆 that is not
marked as used yet. If the parity inequality is not violated, then we
add one more vertex to 𝑆 by choosing among the vertices adjacent to
those in 𝑆 the one that improves the violation of the inequality the
most, i.e., it maximizes the difference between the increase of the right-
hand side minus the increase of the left-hand side of the inequality. We
continue adding vertices to 𝑆 until the inequality is violated or no more
vertices can be added.

6.2.3. p-connectivity inequalities
In 𝑝-connectivity inequalities (31), the set of vertices 𝑉 is parti-

tioned into 𝑝 + 1 subsets 𝑆0, 𝑆1,… , 𝑆𝑝. We have designed a heuristic
separation algorithm to find violated 𝑝-connectivity inequalities with
|𝑆𝑖| = 1 for 𝑖 = 1,… , 𝑝, i.e. inequalities (32).

For each edge 𝑒 = (𝑖, 𝑗) ∈ 𝐸 such that 0 < 𝑥𝑎𝑔𝑔𝑒 ≤ 0.9, we initialize
𝑆 = {𝑖, 𝑗}. We construct a candidate list of vertices 𝐶 containing all
the vertices in 𝑉 ⧵ 𝑆 that are adjacent to a vertex in 𝑆. Now, for
each vertex 𝑣 ∈ 𝐶, we evaluate the 𝑝-connectivity inequality associated
12

with the vertex set resulting from incorporating 𝑣 to 𝑆. If we find a
Table 1
Results obtained with the different configurations of the cutting-plane procedure.

Conf. # opt LB UB Gap Nodes opt Nodes no opt Time

Base 7 40125.62 47214.33 8.52 1983.7 10607.7 184.1
C1 7 40114.32 47439.44 9.96 1063.1 6979.9 303.8
C2 7 40115.23 47701.89 10.25 977.3 1397.1 344.8
C3 7 40131.48 46773.22 6.92 1267.3 9210.6 153.8
C4 8 40128.22 47549.89 9.47 1505.1 7860.2 207.0

vertex such that the corresponding 𝑝-connectivity inequality is violated,
we add it to the LP and start the separation algorithm again with a
different edge. Otherwise, we choose the candidate vertex for which the
resulting inequality is closest to being violated and add it to 𝑆. Then,
we update the list of candidate vertices 𝐶 and continue evaluating them
and increasing the size of 𝑆 until a violated 𝑝-connectivity inequality
is found or 𝐶 = ∅.

6.2.4. Cover inequalities
To find violated cover inequalities (33), we first initialize 𝐹 as the

set of all the edges such that ∑𝐾
𝑘=1(𝑥

𝑘
𝑒 + 𝑦𝑘𝑒 ) ≥ 0.9. For each edge 𝑒∈𝐹 ,

we set 𝑘𝑒 as the first level of edge 𝑒 ∈ 𝐹 such that ∑𝐾
𝑘=1(𝑥

𝑘
𝑒 + 𝑦𝑘𝑒 ) > 0,

nd for each edge 𝑒∉𝐹 , 𝑘𝑒 = 1. If the cover inequality associated with
his set 𝐹 is not violated, that is ∑

𝑒∈𝐹
∑𝐾

𝑘=𝑘𝑒
(𝑥𝑘𝑒 + 𝑦𝑘𝑒 ) ≤ |𝐹 |−1, we stop

and no new inequality is introduced in the LP. Note that the inequality
can be violated but not valid yet, since ∑

𝑒∈𝐹 𝛼𝑘𝑒𝑒 > 𝑇 must be satisfied.
f the cover inequality is violated, let us define 𝑡𝑒 as

𝑒 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝛼�̄�𝑒𝑒 −𝛼𝑘𝑒𝑒
𝑥𝑘𝑒𝑒 +𝑦𝑘𝑒𝑒

if 𝑒∈𝐹

𝛼�̄�𝑒𝑒
1−

∑𝐾
𝑘=1(𝑥

𝑘
𝑒+𝑦𝑘𝑒 )

if 𝑒∉𝐹

,

where �̄�𝑒 is the first upgrade level of edge 𝑒 greater than 𝑘𝑒 for which
𝑥𝑘𝑒 + 𝑦𝑘𝑒 > 0 (if there is no such level, 𝑡𝑒 = 0). The value of 𝑡𝑒 is the ratio
between the increase of the 𝛼-cost and the loss of violation in the cover
inequality when we increase the chosen level for edge 𝑒 to �̄�𝑒 (which
also implies adding 𝑒 to 𝐹 if 𝑒∉𝐹 ).

Now we choose the edge 𝑒 ∈ 𝐸 that maximizes 𝑡𝑒 while ensuring
that the cover inequality is still violated when changing level 𝑘𝑒 to �̄�𝑒
and, if 𝑒∉𝐸, adding 𝑒 to 𝐹 . Then, we set 𝑘𝑒 = �̄�𝑒, add 𝑒 to 𝐹 if it was
not in 𝐹 yet, and update 𝑡𝑒. We continue choosing new edges while the
inequality is violated. When no more edges with 𝑡𝑒 > 0 can be chosen,
we check if ∑𝑒∈𝐹 𝛼𝑘𝑒𝑒 > 𝑇 . If so, the associated cover inequality is valid
and violated, so we added it to the LP.

6.2.5. Cost-based inequalities
Violated cost-based inequalities (36), (40), and (37) are separated

by means of an exhaustive search for all pairs of edges 𝑒1, 𝑒2 such that
𝑥𝑎𝑔𝑔𝑒1 + 𝑥𝑎𝑔𝑔𝑒2 > 1, 𝑦𝑎𝑔𝑔𝑒1 + 𝑦𝑎𝑔𝑔𝑒2 > 1, and 𝑦𝑎𝑔𝑔𝑒1 + 𝑥𝑎𝑔𝑔𝑒2 > 1, respectively, since
the time needed for such search is small.

6.3. Primal heuristic

To obtain good upper bounds for the branch-and-cut algorithm, we
have designed a matheuristic algorithm that is applied to some of the
fractional solutions obtained when solving the linear relaxations along
the search tree. Given the optimal solution of the linear relaxation
solved at the current node of the search tree, if vectors 𝑥𝑎𝑔𝑔 and 𝑦𝑎𝑔𝑔

are integer, we check if the route defined by these values satisfies
connectivity and parity. If it does, then we have a feasible solution
of the GTSP defined on 𝐺, and we can obtain a feasible solution of
the U-GTSP by solving a Multi-Choice Knapsack Problem as defined in

Remark 1.
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𝑥
c
n

6.4. Branching strategy

We have tried and compared two different branching strategies. The
first one consists of applying the strong branching strategy (Applegate
et al., 1995) implementation of Cplex to branch on the variables of the
formulation. In the second strategy, we proceeded as follows.

Given a fractional solution, we select the edge 𝑒 ∈ 𝐸 for which
𝑎𝑔𝑔
𝑒 − ⌊𝑥𝑎𝑔𝑔𝑒 ⌋ or 𝑦𝑎𝑔𝑔𝑒 − ⌊𝑦𝑎𝑔𝑔𝑒 ⌋ is maximal, and we branch by adding the
onstraints ∑𝐾

𝑘=1 𝑥
𝑘
𝑒 = 0 and ∑𝐾

𝑘=1 𝑥
𝑘
𝑒 = 1 (or with the 𝑦𝑘𝑒 variables). If

o such fractional values are found for any edge 𝑒, we let Cplex choose
a variable for branching using the strong branching strategy.

The idea behind this strategy is that, in that way, we would reach
solutions where 𝑥𝑎𝑔𝑔𝑒 and 𝑦𝑎𝑔𝑔𝑒 are integer sooner, and then we would
be able to apply the primal heuristic earlier in the tree and more often
to obtain upper bounds. However, in our initial computational tests
the results obtained with this second strategy performed considerably
worse than just using strong branching. We suspect that the reason was
that the strong branching strategy is very powerful compared with a
simple rule based on just selecting the most fractional value. Therefore,
we decided to try adding the following new variables to the formulation

𝑧1𝑒 =
𝐾
∑

𝑘=1
𝑥𝑘𝑒 , 𝑧2𝑒 =

𝐾
∑

𝑘=1
𝑦𝑘𝑒 ,

and use the strong branching strategy giving higher priority to these
new variables. In this way, we achieve the same effect as when branch-
ing with the previous constraints without losing the benefits of strong
branching.

7. Computational results

We have generated U-GTSP instances from some undirected graphs
taken from the web page www.uv.es/plani/instancias.htm Although
these are instances defined for different arc routing problems, we
have considered only the underlying undirected graphs. From each
undirected graph 𝐺 = (𝑉 ,𝐸), with a cost 𝑐𝑒 for each edge 𝑒 ∈ 𝐸, we
have generated a U-GTSP instance. We have considered 𝐾 = 4 upgrade
levels and, for each 𝑒 ∈ 𝐸, we have generated the values for the costs
𝑐𝑘𝑒 and the prices 𝛼𝑘𝑒 , 𝑘 = 1, 2, 3, 4 as follows:

𝑐4𝑒 = 𝑐𝑒(the original cost), 𝑐3𝑒 = 2𝑐𝑒, 𝑐2𝑒 = 3𝑐𝑒, and 𝑐1𝑒 = 4𝑐𝑒,

𝛼4𝑒 = 3𝑐𝑒𝑟𝑒, 𝛼3𝑒 = 2𝑐𝑒𝑟𝑒, 𝛼2𝑒 = 𝑐𝑒𝑟𝑒, and 𝛼1𝑒 = 0,

where 𝑟𝑒 is a random real number between 1 and 3. We select
a different number 𝑟𝑒 for each 𝑒 ∈ 𝐸 in order to avoid a direct
relationship between the cost of traversing an edge that has been
upgraded to a level 𝑘 and the price of upgrading the edge to this level
𝑘. The total available budget 𝑇 is calculated as the average value of
𝛼3𝑒 for all the edges 𝑒 ∈ 𝐸, multiplied by the number of vertices in the
graph, |𝑉 |. Note that this value for 𝑇 is an estimation of the budget for
a GTSP tour (which has approximately |𝑉 | edges) in the case that all
the edges in the tour have been upgraded to level 3.

The sets of undirected graphs taken from
www.uv.es/plani/instancias.htm are:

• Graphs ‘‘Albaida’’ (|𝑉 | = 116 and |𝐸| = 174) and ‘‘Madrigueras’’
(|𝑉 | = 196 and |𝐸| = 316) graphs, from the corresponding Rural
Postman Problem instances.

• 6 GTSP instances, with 150 ≤ |𝑉 | ≤ 225 and 296 ≤ |𝐸| ≤ 433,
obtained from 7 planar Euclidean TSP instances from TSPLIB.

• 12 graphs from the Rural Postman Problem instances called UR5*
with 298 ≤ |𝑉 | ≤ 499 and 597 ≤ |𝐸| ≤ 1526, one from the UR7*
instances (|𝑉 | = 749, |𝐸| = 2314) and one from the UR1* ones
13

(|𝑉 | = 1000, |𝐸| = 3083).
We also tried 24 smaller instances obtained from the well-known
Christofides Rural Postman Problem ones, but they were all optimally
solved in less than 1 s, so we are not reporting the results here.

All the algorithms have been coded in C++ using Cplex 12.1 Concert
Technology with Cplex cuts turned off. The computational experiments
have been executed on a i7-9700F CPU at 3 GHz with a time limit of
one hour.

In order to assess the contribution of the different families of cuts,
we have run the 22 instances with different configurations of the
cutting-plane procedure. The base configuration uses the separation al-
gorithms for connectivity, parity, and 𝑝-connectivity inequalities, since
some preliminary experiments had shown that they were all fundamen-
tal for the success of the branch-and-cut algorithm and removing any of
them produces much worse results. The following configurations were
also tried:

• C1: Base configuration and 𝑥𝑥 and 𝑦𝑦 cost-based inequalities.
• C2: Configuration C1 and cover inequalities.
• C3: Base Configuration with 𝑥𝑥 and 𝑦𝑦 cost-based inequalities

introduced as local cuts.
• C4: Configuration C3 with 𝑥𝑦 cost-based inequalities introduced

as local cuts.

The reason for using cost-based inequalities as local cuts in configu-
rations C3 and C4 is that the experiments with configuration C1 showed
that none of these cuts were found at the root node, but a huge number
of such violated inequalities was obtained once we started to branch.
We thought that the appearance of these violated cuts was due to the
fact that when branching some variables are fixed to 1. But if this was
true, these cuts found would probably be useless in the other branch of
the tree in which this same variable is fixed to 0, so introducing them
in the linear relaxations as local cuts, i.e., cuts that are only used at
this node and the ones that stem from it, could reduce the size of the
linear problems solved and, thus, the time needed to solve them.

The results obtained with these configurations are summarized in
Table 1. The first column shows the configuration name. Column ‘#
opt’ gives the total number of instances that were solved optimally.
The next two columns, labeled ‘LB’ and ‘UB’, report the average values
of the lower bound at the end of the execution, and the final upper
bound, respectively. The ‘Gap’ column gives the average percentage gap
between the final lower and upper bounds for those instances that could
not be solved optimally and for which an upper bound was obtained
with all the configurations (this amounts to a total of nine instances).
Column ‘Nodes opt’ and ‘Nodes no opt’ show the average number
of branch-and-cut nodes explored for the instances that were solved
optimally and for those that were not, respectively, while column
‘Time’ presents the average computing time, in seconds, for the seven
instances that were solved optimally by all the configurations.

As can be seen in Table 1 , introducing cost-based inequalities as
global cuts in configuration C1 resulted in worse results both in terms
of average gap and time. Interestingly, the number of nodes explored
reduced drastically in this configuration both for the solved and the
unsolved instances. This seemed to imply that these inequalities were
useful to reduce the number of nodes needed to find the optimal
solution, but that the time needed to solve each linear relaxation
was greater due to the huge number of cost-based inequalities added.
The addition of cover inequalities in configuration C2 caused the gap
and solution time to be even worse. However, changing cost-based
inequalities from global to local in C3 produced the best results in terms
of gap and computing time. Unfortunately, the further addition of 𝑥𝑦
cost-based inequalities did produce worse gaps and times, although one
more optimal solution could be found. Since configuration C3 was the
one producing the best results, we decided to use it for the following
computational experiments.

In Table 2 we present the detailed results for all the 22 instances
obtained with the branch-and-cut algorithm using the strong branch-
ing strategy implemented in Cplex and no heuristic procedure (called

http://www.uv.es/plani/instancias.htm
http://www.uv.es/plani/instancias.htm
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Table 2
Effect of the primal heuristic and the new branching strategy.

Instance Optimal? LB UB Time Gap

B&C1 B&C2 B&C1 B&C2 B&C1 B&C2 B&C1 B&C2 B&C1 B&C2

Albaida Yes Yes 14160 14160 14160 14160 80 20 0.00 0.00
Madrigueras Yes Yes 22185 22185 22185 22185 436 81 0.00 0.00
rat195 g Yes Yes 3962 3962 3962 3962 32 4 0.00 0.00
kroA150 g Yes Yes 46589 46589 46589 46589 314 54 0.00 0.00
pr152 g Yes Yes 150183 150183 150183 150183 48 49 0.00 0.00
ts225 g No No 222466 221370 222589 222589 3600 3600 0.06 0.55
kroB200 g Yes Yes 51137 51137 51137 51137 34 43 0.00 0.00
kroA200 g Yes Yes 49674 49674 49674 49674 131 40 0.00 0.00
UR532 No Yes 18366 18367 18368 18367 3600 829 0.01 0.00
UR535 No No 28675 28870 30340 29505 3600 3600 5.80 2.20
UR537 No No 31370 31671 34702 32656 3600 3600 10.62 3.11
UR542 No No 14886 14911 15087 15011 3600 3600 1.34 0.67
UR545 No No 24012 24040 26970 31668 3600 3600 12.32 31.73
UR547 No No 26358 26416 29984 29282 3600 3600 13.75 10.85
UR552 No No 16325 16392 18348 16487 3600 3600 12.39 0.58
UR555 No No 23174 23070 24571 – 3600 3600 6.03 –
UR557 No No 23248 23319 – – 3600 3600 – –
UR562 No No 17690 17719 18523 17936 3600 3600 4.71 1.22
UR565 No No 21191 21134 24173 24440 3600 3600 14.07 15.64
UR567 No No 20914 20886 – – 3600 3600 – –
UR767 No No 26560 26434 – – 3600 3600 – –
UR167 No No 29761 29755 – – 3600 3600 – –
‘B&C1’) versus the results obtained using the branching strategy de-
scribed in Section 6.4 together with the primal heuristic presented in
Section 6.3 (called ‘B&C2’). The first column corresponds to the name
of the instance. The columns labeled ‘Optimal?’ report if the optimal
solution has been found or not for each instance. Columns ‘LB’ and
‘UB’ show the final lower and upper bounds, while columns ‘Time’ and
‘Gap’ present the computation time, in seconds, and the percentage gap
between the lower and upper bounds. When no upper bound has been
found within the time limit, the symbol ‘-’ is reported in the ‘UB’ and
‘Gap’ columns.

From the results in Table 2, it can be seen that one more instance
has been solved by the algorithm B&C2. This version of the algorithm
including the new branching strategy and the primal heuristic obtains
a better lower bound in 9 instances, while B&C1 outperforms it in
6. The upper bound obtained with B&C2 is better on 7 of the 14
instances that were not previously solved. Strangely, B&C1 obtains
a better upper bound in two of these instances, while there is an
instance in which B&C2 is not able to obtain a feasible solution but
B&C1 does. Regarding the gap, B&C2 outperforms B&C1 in 7 instances,
while the opposite happens in 3 instances. The average gap for those
instance for which an upper bound is obtained with both procedures
is 0.5% better with B&C2. Finally, the average computing time for the
instances solved by both algorithms is 154 s with B&C1 and 42 with
B&C2. So we can conclude that version of the algorithm including the
primal heuristic and the new branching strategy clearly performs better
than the previous one. We also have tried running both algorithms
increasing the time limit to two hours. While algorithm B&C1 could
not solve any further instance optimally, B&C2 was able to find two
new optimal solutions, namely U542 and U552.

To study the effect of the number of upgrade levels on the difficulty
of the instances, we have applied algorithm B&C2 to the same instances
using only the first two and the first three levels. When solving the
instance with two levels, the total budget has been reduced to 25%
of the original one, while in the case of three levels it is 50% of
the original budget. The results are summarized in Table 3. The first
column gives the number of levels used. Column ‘Optimal’ reports the
number of instances (out of 22) optimally solved. ‘No UB’ presents the
number of instances for which no feasible solution was found within the
time limit, and ‘Gap’ shows the average gap between the final upper
and lower bounds (for those instances for which a feasible solution
has been found). Column ‘Time’ reports the average computing time,
14

in seconds, for those instances that have been solved to optimality. It
Table 3
Effect of the number of levels on the difficulty of the instances.

Levels Optimal No UB Gap Time

2 11 0 0.81 471.21
3 11 2 3.12 552.42
4 8 5 3.91 140.44

can be seen that the average gap, as well as the number of instances
for which no feasible solution is found, diminish when the number of
levels is smaller. The number of optimal solutions found increases when
we move from four to three levels, although it stays the same when the
number of levels diminishes to 2.

8. Conclusions

In this work, we have proposed a framework for selecting upgrade
levels for the edges in a non-complete graph with the goal of obtaining
routes in the graph traversing all the nodes with the minimum possible
total costs and within a budget threshold.

We have developed a novel formulation. For this formulation, we
have analyzed the polyhedron of solutions and proposed several valid
inequalities. For the branch-and-cut algorithm we have proposed, we
have designed a math-heuristic for improving the upper bounds, which
exploits the structure of a related multi-choice knapsack problem.
Moreover, we have proved that any U-GTSP can be expressed as a cost-
constrained GTSP and we take advantage of this property for stating
effective preprocessing rules.

We have conducted a numerical study to test the proposed branch
and cut and to get insights about the designed framework that has
revealed the good performance of most of the valid inequalities, as
well as the great effect of the primal heuristic and the new branching
strategy.

The study of the upgrading of edges in other routing problems
as well as the development of clever math-heuristic procedures for
obtaining quality solutions for the U-GTSP within reasonable times will
be the topic of forthcoming works.

CRediT authorship contribution statement

Mercedes Landete: Conceptualization, Methodology, Software,
Validation, Formal analysis, Investigation, Writing – original draft,



Computers and Operations Research 159 (2023) 106321M. Landete et al.
Writing – review & editing. Isaac Plana: Conceptualization, Method-
ology, Software, Validation, Formal analysis, Investigation, Writing –
original draft, Writing – review & editing. José Luis Sainz-Pardo:
Conceptualization, Methodology, Software, Validation, Formal anal-
ysis, Investigation, Writing – original draft, Writing – review &
editing. José María Sanchis: Conceptualization, Methodology, Soft-
ware, Validation, Formal analysis, Investigation, Writing – original
draft, Writing – review & editing.

Data availability

The data instances used in the computational experiments and
the best solutions obtained can be found at www.uv.es/plani/
instancias.htm.

Acknowledgments

This work was supported by Generalitat Valenciana, Spain through
project CIGE/2021/161 and by grant PID2021-122344NB-I00 funded
by MCIN/AEI/10.13039/501100011033 and ‘‘ERDF A way of making
Europe’’.

References

Afrashteh, E., Alizadeh, B., Baroughi, F., 2020. Optimal approaches for upgrading
selective obnoxious p-median location problems on tree networks. Ann. Oper. Res.
289, 153–172.

Alvarez-Miranda, E., Sinnl, M., 2017. Lagrangian and branch-and-cut approaches for
upgrading spanning tree problems. Comput. Oper. Res. 83, 13–27.

Applegate, F., Bixby, R., Chvátal, V., Cook, W., 1995. Finding Cuts in the TSP (a
Preliminary Report). DIMACS Technical Report 95-05.

Baldomero-Naranjo, M., Kalcsics, J., Marín, A., Rodríguez-Chía, A.M., 2022. Upgrading
edges in the Maximal Covering Location Problem. European J. Oper. Res. 303 (1),
14–36.

Barahona, F., Grötschel, M., 1986. On the cycle polytope of a binary matroid. J.
Combin. Theory B 40, 40–62.

Blanco, V., Marín, A., 2019. Upgrading nodes in tree-shaped hub location. Comput.
Oper. Res. 102, 75–90.

Campbell, J.F., Corberán, Á., Plana, I., Sanchis, J.M., Segura, P., 2021. Solving the
length constrained K-drones rural postman problem. European J. Oper. Res. 292
(1), 60–72.

Campbell, A.M., Lowe, T.J., Zhang, L., 2006. Upgrading arcs to minimize the maximum
travel time in a network. Networks 47 (2), 72–80.

Carr, R., Ravi, R., Simonetti, N., 2023. A new integer programming formulation of the
graphical traveling salesman problem. Math. Program. 197, 877–902.

Corberán, Á., Plana, I., Rodríguez-Chía, A.M., Sanchis, J.M., 2013. A branch-and-cut
algorithm for the maximum benefit Chinese postman problem. Math. Program. 141,
21–48.

Cornuéjols, G., Fonlupt, J., Naddef, D., 1985. The Traveling Salesman Problem on a
graph and some related integer polyhedra. Math. Program. 33, 1–27.

Demgensky, I., Noltemeier, H., Wirth, H.-C., 2002. On the flow cost lowering problem.
European J. Oper. Res. 137 (29), 265–271.

Deo, N., Pang, C.Y., 1984. Shortest-path algorithms: Taxonomy and annotation.
Networks 14 (2), 275–323.

Dilkina, B., Lai, K.J., Gomes, C.P., 2011. Upgrading shortest paths in networks. In:
Achterberg, T., Beck, J.C. (Eds.), Integration of AI and OR Techniques in Constraint
Programming for Combinatorial Optimization Problems. CPAIOR 2011, In: Lecture
Notes in Computer Science, vol. 6697, Springer.
15
Drangmeister, K.U., Krurnke, S.O., Marathe, M.V., Noltemeier, H., Ravi, S.S., 1998.
Modifying edges of a network to obtain short subgraphs. Theoret. Comput. Sci.
203, 91–1211.

Espejo, I., Marín, A., 2020. Upgraded network 𝑝-median problem. In: X International
Workshop on Locational Analysis and Related Problems, Vol. 51.

Fleischmann, B., 1985. A cutting-plane procedure for the Traveling Salesman Problem
on a road network. European J. Oper. Res. 21, 307–317.

Fredericksont, G.N., Solis-Oba, R., 1999. Increasing the weight of minimum spanning
trees. J. Algorithms 33, 244–266.

Fulkerson, D.R., Harding, G.C., 1977. Maximizing the minimum source–sink path
subject to a budget constraint. Math. Program. 13 (1), 116–118.

Ghiani, G., Laporte, G., 2000. A branch–and–cut algorithm for the Undirected Rural
Postman Problem. Math. Program. 87, 467–481.

Glover, F., 1973. Unit-Coefficient Inequalities for Zero–One Programming. Management
Science Report 73-7, University of Colorado.

Hambrusch, S.E., Tu, H.-Y., 1997. Edge weight reduction problems in directed acyclic
graphs. J. Algorithms 24 (1), 66–93.

Handler, G.Y., Zang, I., I, 1980. A dual algorithm for the constrained shortest path
problem. Networks 10 (4), 293–309.

Hartmanis, J., 1982. Computers and intractability: a guide to the theory of
np-completeness. Siam Rev. 24.

Krumke, S.O., Noltemeier, H., Marathe, M.V., Ravi, S.S., Drangmeister, K.U., 1997.
Modifying networks to obtain low cost trees. In: d’Amore, F., Franciosa, P.G.,
Marchetti-Spaccamela, A. (Eds.), Graph-Theoretic Concepts in Computer Science.
WG 1996, In: Lecture Notes in Computer Science, vol 1197, Springer, Berlin,
Heidelberg.

Krumke, S.O., Noltemeier, H., Wirth, H.-C., Marathe, M.V., Ravi, R., Ravi, S., Sun-
daram, R., 1999. Improving spanning trees by upgrading nodes. Theor. Comput.
Sci. 221 (1), 139–155.

Lozano, L., Medaglia, A.L., 2013. On an exact method for the constrained shortest path
problem. Comput. Oper. Res. 40 (1), 378–384.

Naddef, D., Rinaldi, G., 1991. The symmetric traveling salesman polytope and
its graphical relaxation: Composition of valid inequalities. Math. Program. 51,
359–400.

Naddef, D., Rinaldi, G., 1992. The graphical relaxation: A new framework for the
symmetric traveling salesman polytope. Math. Program. 58, 53–88.

Naddef, D., Rinaldi, G., 2007. The symmetric traveling salesman polytope: New facets
from the graphical relaxation. Math. Oper. Res. 32 (1), 233–256.

Oswald, M., Reinelt, G., Theis, D.O., 2007. On the graphical relaxation of the symmetric
traveling salesman polytope. Math. Program B 110, 175–193.

Paik, D., Sahni, S., 1995. Network upgrading problems. Networks 26, 45–58.
Pekny, J.F., Miller, D.L., 1990. An exact parallel algorithm for the resource constrained

traveling salesman problem with application to scheduling with an aggregate
deadline. In: Proceedings of the 1990 ACM Annual Conference on Cooperation.
pp. 208–214.

Saharoy, D., Sen, S., 2014. Approximation algorithms for budget constrained network
upgradeable problems. arXiv:1412.3721.

Sepasian, A.R., 2018. Upgrading the 1-center problem with edge length variables on a
tree. Discrete Optim. 29, 1–17.

Sepasian, A.R., Monabbati, E., 2017. Upgrading min–max spanning tree problem under
various cost functions. Theoret. Comput. Sci. 704, 87–91.

Sokkappa, P.R., 1990. The Cost-Constrained Traveling Salesman Problem (Ph.D. thesis).
Lawrence Livermore National Lab, CA (USA).

Zhang, Q., Guan, X., Pardalos, P.M., 2021. Maximum shortest path interdiction problem
by upgrading edges on trees under weighted norm. J. Global Optim. 79 (4),
959–987.

https://www.uv.es/plani/instancias.htm
https://www.uv.es/plani/instancias.htm
https://www.uv.es/plani/instancias.htm
http://refhub.elsevier.com/S0305-0548(23)00185-5/sb1
http://refhub.elsevier.com/S0305-0548(23)00185-5/sb1
http://refhub.elsevier.com/S0305-0548(23)00185-5/sb1
http://refhub.elsevier.com/S0305-0548(23)00185-5/sb1
http://refhub.elsevier.com/S0305-0548(23)00185-5/sb1
http://refhub.elsevier.com/S0305-0548(23)00185-5/sb2
http://refhub.elsevier.com/S0305-0548(23)00185-5/sb2
http://refhub.elsevier.com/S0305-0548(23)00185-5/sb2
http://refhub.elsevier.com/S0305-0548(23)00185-5/sb3
http://refhub.elsevier.com/S0305-0548(23)00185-5/sb3
http://refhub.elsevier.com/S0305-0548(23)00185-5/sb3
http://refhub.elsevier.com/S0305-0548(23)00185-5/sb4
http://refhub.elsevier.com/S0305-0548(23)00185-5/sb4
http://refhub.elsevier.com/S0305-0548(23)00185-5/sb4
http://refhub.elsevier.com/S0305-0548(23)00185-5/sb4
http://refhub.elsevier.com/S0305-0548(23)00185-5/sb4
http://refhub.elsevier.com/S0305-0548(23)00185-5/sb5
http://refhub.elsevier.com/S0305-0548(23)00185-5/sb5
http://refhub.elsevier.com/S0305-0548(23)00185-5/sb5
http://refhub.elsevier.com/S0305-0548(23)00185-5/sb6
http://refhub.elsevier.com/S0305-0548(23)00185-5/sb6
http://refhub.elsevier.com/S0305-0548(23)00185-5/sb6
http://refhub.elsevier.com/S0305-0548(23)00185-5/sb7
http://refhub.elsevier.com/S0305-0548(23)00185-5/sb7
http://refhub.elsevier.com/S0305-0548(23)00185-5/sb7
http://refhub.elsevier.com/S0305-0548(23)00185-5/sb7
http://refhub.elsevier.com/S0305-0548(23)00185-5/sb7
http://refhub.elsevier.com/S0305-0548(23)00185-5/sb8
http://refhub.elsevier.com/S0305-0548(23)00185-5/sb8
http://refhub.elsevier.com/S0305-0548(23)00185-5/sb8
http://refhub.elsevier.com/S0305-0548(23)00185-5/sb9
http://refhub.elsevier.com/S0305-0548(23)00185-5/sb9
http://refhub.elsevier.com/S0305-0548(23)00185-5/sb9
http://refhub.elsevier.com/S0305-0548(23)00185-5/sb10
http://refhub.elsevier.com/S0305-0548(23)00185-5/sb10
http://refhub.elsevier.com/S0305-0548(23)00185-5/sb10
http://refhub.elsevier.com/S0305-0548(23)00185-5/sb10
http://refhub.elsevier.com/S0305-0548(23)00185-5/sb10
http://refhub.elsevier.com/S0305-0548(23)00185-5/sb11
http://refhub.elsevier.com/S0305-0548(23)00185-5/sb11
http://refhub.elsevier.com/S0305-0548(23)00185-5/sb11
http://refhub.elsevier.com/S0305-0548(23)00185-5/sb12
http://refhub.elsevier.com/S0305-0548(23)00185-5/sb12
http://refhub.elsevier.com/S0305-0548(23)00185-5/sb12
http://refhub.elsevier.com/S0305-0548(23)00185-5/sb13
http://refhub.elsevier.com/S0305-0548(23)00185-5/sb13
http://refhub.elsevier.com/S0305-0548(23)00185-5/sb13
http://refhub.elsevier.com/S0305-0548(23)00185-5/sb14
http://refhub.elsevier.com/S0305-0548(23)00185-5/sb14
http://refhub.elsevier.com/S0305-0548(23)00185-5/sb14
http://refhub.elsevier.com/S0305-0548(23)00185-5/sb14
http://refhub.elsevier.com/S0305-0548(23)00185-5/sb14
http://refhub.elsevier.com/S0305-0548(23)00185-5/sb14
http://refhub.elsevier.com/S0305-0548(23)00185-5/sb14
http://refhub.elsevier.com/S0305-0548(23)00185-5/sb15
http://refhub.elsevier.com/S0305-0548(23)00185-5/sb15
http://refhub.elsevier.com/S0305-0548(23)00185-5/sb15
http://refhub.elsevier.com/S0305-0548(23)00185-5/sb15
http://refhub.elsevier.com/S0305-0548(23)00185-5/sb15
http://refhub.elsevier.com/S0305-0548(23)00185-5/sb16
http://refhub.elsevier.com/S0305-0548(23)00185-5/sb16
http://refhub.elsevier.com/S0305-0548(23)00185-5/sb16
http://refhub.elsevier.com/S0305-0548(23)00185-5/sb17
http://refhub.elsevier.com/S0305-0548(23)00185-5/sb17
http://refhub.elsevier.com/S0305-0548(23)00185-5/sb17
http://refhub.elsevier.com/S0305-0548(23)00185-5/sb18
http://refhub.elsevier.com/S0305-0548(23)00185-5/sb18
http://refhub.elsevier.com/S0305-0548(23)00185-5/sb18
http://refhub.elsevier.com/S0305-0548(23)00185-5/sb19
http://refhub.elsevier.com/S0305-0548(23)00185-5/sb19
http://refhub.elsevier.com/S0305-0548(23)00185-5/sb19
http://refhub.elsevier.com/S0305-0548(23)00185-5/sb20
http://refhub.elsevier.com/S0305-0548(23)00185-5/sb20
http://refhub.elsevier.com/S0305-0548(23)00185-5/sb20
http://refhub.elsevier.com/S0305-0548(23)00185-5/sb21
http://refhub.elsevier.com/S0305-0548(23)00185-5/sb21
http://refhub.elsevier.com/S0305-0548(23)00185-5/sb21
http://refhub.elsevier.com/S0305-0548(23)00185-5/sb22
http://refhub.elsevier.com/S0305-0548(23)00185-5/sb22
http://refhub.elsevier.com/S0305-0548(23)00185-5/sb22
http://refhub.elsevier.com/S0305-0548(23)00185-5/sb23
http://refhub.elsevier.com/S0305-0548(23)00185-5/sb23
http://refhub.elsevier.com/S0305-0548(23)00185-5/sb23
http://refhub.elsevier.com/S0305-0548(23)00185-5/sb24
http://refhub.elsevier.com/S0305-0548(23)00185-5/sb24
http://refhub.elsevier.com/S0305-0548(23)00185-5/sb24
http://refhub.elsevier.com/S0305-0548(23)00185-5/sb25
http://refhub.elsevier.com/S0305-0548(23)00185-5/sb25
http://refhub.elsevier.com/S0305-0548(23)00185-5/sb25
http://refhub.elsevier.com/S0305-0548(23)00185-5/sb25
http://refhub.elsevier.com/S0305-0548(23)00185-5/sb25
http://refhub.elsevier.com/S0305-0548(23)00185-5/sb25
http://refhub.elsevier.com/S0305-0548(23)00185-5/sb25
http://refhub.elsevier.com/S0305-0548(23)00185-5/sb25
http://refhub.elsevier.com/S0305-0548(23)00185-5/sb25
http://refhub.elsevier.com/S0305-0548(23)00185-5/sb26
http://refhub.elsevier.com/S0305-0548(23)00185-5/sb26
http://refhub.elsevier.com/S0305-0548(23)00185-5/sb26
http://refhub.elsevier.com/S0305-0548(23)00185-5/sb26
http://refhub.elsevier.com/S0305-0548(23)00185-5/sb26
http://refhub.elsevier.com/S0305-0548(23)00185-5/sb27
http://refhub.elsevier.com/S0305-0548(23)00185-5/sb27
http://refhub.elsevier.com/S0305-0548(23)00185-5/sb27
http://refhub.elsevier.com/S0305-0548(23)00185-5/sb28
http://refhub.elsevier.com/S0305-0548(23)00185-5/sb28
http://refhub.elsevier.com/S0305-0548(23)00185-5/sb28
http://refhub.elsevier.com/S0305-0548(23)00185-5/sb28
http://refhub.elsevier.com/S0305-0548(23)00185-5/sb28
http://refhub.elsevier.com/S0305-0548(23)00185-5/sb29
http://refhub.elsevier.com/S0305-0548(23)00185-5/sb29
http://refhub.elsevier.com/S0305-0548(23)00185-5/sb29
http://refhub.elsevier.com/S0305-0548(23)00185-5/sb30
http://refhub.elsevier.com/S0305-0548(23)00185-5/sb30
http://refhub.elsevier.com/S0305-0548(23)00185-5/sb30
http://refhub.elsevier.com/S0305-0548(23)00185-5/sb31
http://refhub.elsevier.com/S0305-0548(23)00185-5/sb31
http://refhub.elsevier.com/S0305-0548(23)00185-5/sb31
http://refhub.elsevier.com/S0305-0548(23)00185-5/sb32
http://refhub.elsevier.com/S0305-0548(23)00185-5/sb33
http://refhub.elsevier.com/S0305-0548(23)00185-5/sb33
http://refhub.elsevier.com/S0305-0548(23)00185-5/sb33
http://refhub.elsevier.com/S0305-0548(23)00185-5/sb33
http://refhub.elsevier.com/S0305-0548(23)00185-5/sb33
http://refhub.elsevier.com/S0305-0548(23)00185-5/sb33
http://refhub.elsevier.com/S0305-0548(23)00185-5/sb33
http://arxiv.org/abs/1412.3721
http://refhub.elsevier.com/S0305-0548(23)00185-5/sb35
http://refhub.elsevier.com/S0305-0548(23)00185-5/sb35
http://refhub.elsevier.com/S0305-0548(23)00185-5/sb35
http://refhub.elsevier.com/S0305-0548(23)00185-5/sb36
http://refhub.elsevier.com/S0305-0548(23)00185-5/sb36
http://refhub.elsevier.com/S0305-0548(23)00185-5/sb36
http://refhub.elsevier.com/S0305-0548(23)00185-5/sb37
http://refhub.elsevier.com/S0305-0548(23)00185-5/sb37
http://refhub.elsevier.com/S0305-0548(23)00185-5/sb37
http://refhub.elsevier.com/S0305-0548(23)00185-5/sb38
http://refhub.elsevier.com/S0305-0548(23)00185-5/sb38
http://refhub.elsevier.com/S0305-0548(23)00185-5/sb38
http://refhub.elsevier.com/S0305-0548(23)00185-5/sb38
http://refhub.elsevier.com/S0305-0548(23)00185-5/sb38

	Upgrading edges in the Graphical TSP
	Introduction
	The Problem
	The polytope of solutions
	Parity inequalities
	p-connectivity inequalities
	Cover inequalities

	Valid inequalities based on costs
	Preprocessing
	A branch-and-cut Algorithm
	Initial linear relaxation
	Separation algorithms
	Connectivity inequalities
	Parity inequalities
	p-connectivity inequalities
	Cover inequalities
	Cost-based inequalities

	Primal heuristic
	Branching strategy

	Computational results
	Conclusions
	CRediT authorship contribution statement
	Data availability
	Acknowledgments
	References


