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A B S T R A C T

The Rural Postman Problem (RPP) is one of the most well-known problems in arc routing. Given an undirected
graph, the RPP consists of finding a closed walk traversing and servicing a given subset of edges with minimum
total cost. In the General Routing Problem (GRP), there is also a subset of vertices that must be visited. Both
problems were introduced by Orloff and proved to be NP-hard. In this paper, we propose a new formulation for
the RPP and the GRP using two sets of binary variables representing the first and second traversal, respectively,
of each edge. We present several families of valid inequalities that induce facets of the polyhedron of solutions
under mild conditions. Using this formulation and these families of inequalities, we propose a branch-and-
cut algorithm, test it on a large set of benchmark instances, and compare its performance against the exact
procedure that, as far as we know, produced the best results. The results obtained show that the proposed
formulation is useful for solving undirected RPP and GRP instances of very large size.
1. Introduction

Arc routing problems (ARPs) refer to problems where one or more
vehicles must fulfill the demand of customers, represented as edges
or arcs on a graph, to optimize a given objective. These customers
can be streets, highways, or contour lines defining shapes, among
others, requiring services such as cleaning, snow removal, or con-
tour cutting. The objective may involve minimizing the total distance
traveled, balancing the duration of routes, or maximizing the benefit
derived from serving customers. For more information on models,
applications, and solution procedures for ARPs, readers can refer to the
cited Dror (2000), Corberán and Prins (2009), Corberán and Laporte
(2015), Mourão and Pinto (2017), and Corberán et al. (2021).

This paper addresses two important problems: the Rural Postman
Problem (RPP) and the General Routing Problem (GRP). The RPP
is an extension of the well-known Chinese Postman Problem (Guan,
1962), while the GRP further extends the complexity of the RPP. Orloff
(1974) initially introduced both the RPP and the GRP, which were later
proven to be NP-hard by Lenstra and Rinnooy Kan (1976). Notably,
Orloff highlighted that the difficulty of the problem increases with the
number of connected components in the graph formed by the required
edges and vertices. We will refer to these components as 𝑅-connected
components and their corresponding sets of vertices as 𝑅-sets.
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The RPP and the GRP are defined as follows. Consider an undirected
graph 𝐺 = (𝑉 ,𝐸) consisting of a set of vertices 𝑉 and a set of edges
𝐸. Let 𝐸𝑅 be a subset of 𝐸 that represents the required edges, and let
𝐸𝑁𝑅 = 𝐸 ⧵ 𝐸𝑅 be the set of non-required edges. Each edge 𝑒 ∈ 𝐸 has
a deadheading cost 𝑐𝑒 ≥ 0, while each required edge 𝑒 ∈ 𝐸𝑅 incurs
a service cost 𝑐𝑠𝑒 ≥ 𝑐𝑒, which applies only to its first traversal. The
objective of the RPP is to find a tour, a closed walk, with the minimum
total cost that traverses and services all the required edges. In the case
of the GRP, where we further consider a set of required vertices 𝑉𝑅 ⊆ 𝑉 ,
the objective is to find a tour with the minimum total cost that traverses
all the required edges and visits all the required vertices at least once.

It is important to point out that when 𝑉𝑅 = ∅, the General Routing
Problem simplifies to the Rural Postman Problem. Furthermore, if in
addition 𝐸𝑅 = 𝐸, the problem becomes the Chinese Postman Problem.
On the other hand, when 𝐸𝑅 = ∅, we encounter the Steiner Graphical
Traveling Salesman Problem, as discussed by Cornuéjols et al. (1985),
which is also referred to as the Road Traveling Salesman Problem
by Fleischmann (1985). Finally, if both 𝐸𝑅 = ∅ and 𝑉𝑅 = 𝑉 , we
obtain the Graphical Traveling Salesman Problem (GTSP), as studied
in Cornuéjols et al. (1985).

To simplify the structure and formulation of the problem, it is
common practice to convert the original graph 𝐺 = (𝑉 ,𝐸) into a sim-
plified graph 𝐺𝑇 = (𝑉𝑅, 𝐸𝑇 ) using the transformation method proposed
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by Christofides et al. (1981) for the RPP. This transformation involves
the elimination of non-required vertices, which generally facilitates
both problem formulation and its solution. However, it is important to
keep in mind that this transformed graph may have more edges than
the original graph and, in certain cases, polynomial instances could
become non-polynomial. For this reason, some researchers choose to
formulate the problem directly in the original graph to avoid these
complexities. Although in this paper we will do the theoretical study on
general graphs, we have carried out the computational experiments on
RPP and GRP benchmark instances, which are all defined on simplified
graphs.

The initial formulation of the Rural Postman Problem (RPP) was
introduced by Christofides et al. (1981). This formulation is based on
the simplified graph 𝐺𝑇 and uses variables 𝑥𝑒, which represent the
number of times edge 𝑒 is traversed without servicing it (in dead-
eading), as well as variables 𝑧𝑖, which, multiplied by 2, represent the
egree of vertex 𝑖. In their approach, they proposed a lower bound by

incorporating constraints that impose the even degree of each vertex
within the objective function in a Lagrangian fashion. To evaluate the
performance of their formulation, the authors solved twenty-four ran-
domly generated instances, satisfying the conditions |𝑉 | ≤ 84, |𝐸| ≤ 184
and up to 8 𝑅-sets, using a branch-and-bound algorithm. All instances
were solved optimally.

Corberán and Sanchis proposed formulations for the RPP (Corberán
and Sanchis, 1994) and the GRP (Corberán and Sanchis, 1998) on the
original graph 𝐺 using the same variables 𝑥𝑒 introduced in Christofides
et al. (1981). In their paper, they showed that, apart from the trivial
ones, a facet-inducing inequality for the RPP and GRP polyhedra can be
obtained from every facet-inducing inequality for the GTSP polyhedron.
In addition, they introduced new families of facet-inducing inequalities,
including K-C and Honeycomb inequalities, as well as the so-called
𝑅-odd inequalities,
∑

𝑒∈𝛿(𝑆)
𝑥𝑒 ≥ 1, for all 𝑆 ⊂ 𝑉 , |𝑆 ∩ 𝑉𝑅| is odd. (1)

In their paper, Corberán and Sanchis (1994) presented a cutting plane
algorithm for the RPP, where the separation problems were solved
visually. The algorithm proved to be efficient, successfully solving 23
out of the 24 instances initially introduced by Christofides et al. (1981).
Furthermore, the algorithm was able to solve two bigger instances
derived from the street network of Albaida, Spain.

Letchford (1997) introduced a generalization of K-C inequalities,
called path-bridge inequalities. The author gave a polynomial-time ex-
act separation routine for a simple subset of the path-bridge inequalities
but did not report computational results. In Corberán et al. (2001),
a cutting plane algorithm was proposed for both the RPP and the
GRP. The algorithm incorporated connectivity constraints, R-odd cut
inequalities, K-C inequalities, path-bridge inequalities, and honeycomb
inequalities. Computational experiments were conducted using a SUN
Sparc 20 workstation, which had performance comparable to that of
a 66 MHz Pentium processor. The algorithm yielded optimal solutions
for the RPP instances presented in Christofides et al. (1981), as well as
for those proposed in Hertz et al. (1999). In addition, it achieved the
optimal solution in 34 out of 40 GRP instances, with up to 196 vertices,
316 edges, and 111 𝑅-sets. Furthermore, the algorithm solved 6 out of
the 7 Graphical Traveling Salesman Problem instances obtained from
the TSPLIB (Reinelt, 1991), with up to 200 vertices.

Ghiani and Laporte (2000) proposed a slightly modified formulation
for the RPP compared to the formulation presented by Corberán and
Sanchis (1994). Their formulation differs in that it exclusively employs
binary variables. This formulation marks the first case of using 0/1
variables for the RPP (which can easily be extended to the GRP).
The authors based their approach on a significant observation: there
always exists an optimal solution for the RPP in which, at most, the
variables associated with the edges of a minimum cost tree spanning the
𝑅-connected components are equal to 2. Recognizing that all other vari-
2

ables are binary, it becomes possible to express the RPP using solely 0/1
variables by duplicating those associated with the minimum spanning
tree. Then, Barahona and Grötschel’s cocircuit inequalities (Barahona
and Grötschel, 1986) can be adapted to the RPP thus formulated as:

𝑥
(

𝛿(𝑆) ⧵ 𝐹
)

≥ 𝑥(𝐹 ) − |𝐹 | + 1, (2)

for each set 𝑆 ⊂ 𝑉 and each 𝐹 ⊂ 𝛿(𝑆) such that |𝐹 | + |𝛿(𝑆) ∩ 𝐸𝑅| is
odd. In their paper, Ghiani and Laporte presented a branch-and-cut al-
gorithm for the RPP. This algorithm uses a combination of connectivity
inequalities, R-odd inequalities, and the subset of cocircuit inequalities
with |𝐹 | = 1, known as R-even inequalities. This algorithm was able to
solve instances with up to 350 vertices optimally.

Garfinkel and Webb (1999) proposed a distinct formulation for
the RPP, which was later enhanced by Fernández et al. (2003). Their
approach involves computing matchings connecting the 𝑅-connected
components on a transformed graph. Expanding upon this formula-
tion, Fernández et al. (2003) developed an exact algorithm that success-
fully solved 145 out of 158 RPP and GRP instances from Corberán et al.
(2001). Additionally, they addressed 15 new, larger RPP instances,
ranging up to 284 vertices and 31 𝑅-sets. Remarkably, even for the
instances that remained unsolved, the optimality gap observed was
consistently below 1%.

As far as we are aware, the best exact algorithm for the RPP and GRP
is the one proposed by Corberán et al. (2007) for the Windy General
Routing Problem (WGRP). The WGRP is a generalization of the GRP in
which the problem is defined on a windy graph, an undirected graph
with asymmetric costs in the edges. In Corberán et al. (2007) it is
reported that this algorithm was able to solve to optimality instances
involving up to 1000 vertices, 3080 edges, and 304 𝑅-sets. The perfor-
mance of the algorithm proposed in our work will be compared against
the results obtained by that algorithm.

The Maximum Benefit Chinese Postman Problem (MBCPP) was
studied in Corberán et al. (2013). In the MBCPP, each edge is associated
with a set of benefits that are collected in a specific order during each
traversal of the edge, and the objective is to find a tour that maxi-
mizes the total net benefit obtained. The formulation of the MBCPP
involves the utilization of two binary variables, 𝑥𝑒 and 𝑦𝑒, for each
edge 𝑒 ∈ 𝐸. These variables represent the first and second traversals,
respectively, of the edge. Encouraged by the favorable computational
results observed in that study, we have been motivated to explore a
similar formulation using these types of variables for both the Rural
Postman Problem and the General Routing Problem. This is the purpose
of this work.

The paper is structured as follows. Section 2 presents a new formula-
tion for the Rural Postman Problem and the General Routing Problem.
Moving on to Section 3, we define the polytope associated with the
feasible solutions of these problems. Within this section, we also deter-
mine its dimension and provide proof for the facet-inducing property of
certain inequalities. Section 3.1 examines parity inequalities in detail.
Sections 3.2 and 3.3 focus on the exploration of 𝑝-connectivity and K-
C inequalities, respectively. The branch-and-cut algorithm is detailed
in Section 4, while Section 5 presents the computational experiments
conducted. Section 6 summarizes the conclusions drawn from the study
and the Appendix includes the detailed computational results on each
instance and with each algorithm.

2. The RPP and GRP formulation

In the RPP and the GRP, it is commonly assumed that all vertices
are either required or incident with a required edge. This assumption
is made to simplify the problem, as any graph can be transformed into
a new one that satisfies this condition. However, in our approach, we
choose not to perform this transformation and instead allow the graph
to contain non-required vertices that are not connected to any required
edges.

The GRP is defined on an undirected graph 𝐺 = (𝑉 ,𝐸) with edge

set 𝐸 = 𝐸𝑅 ∪ 𝐸𝑁𝑅 and vertex set 𝑉 = 𝑉𝑅 ∪ 𝑉𝑁𝑅. Here, 𝐸𝑅 represents
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the required edges and 𝑉𝑅 represents the required vertices. Each edge
𝑒 ∈ 𝐸 has a non-negative deadheading cost 𝑐𝑒, and each required edge
𝑒 ∈ 𝐸𝑅 has a service cost 𝑐𝑠𝑒 ≥ 𝑐𝑒 corresponding to the first traversal
of that edge. The objective of the GRP is to find a tour (closed walk)
with the minimum total cost, which traverses all the required edges and
visits all the required vertices.

It is important to note that the Rural Postman Problem (RPP)
is a special case of the GRP where there are no required vertices.
Therefore, throughout this paper, we will primarily refer to the GRP,
while recognizing that all the results discussed are also applicable to
the RPP.

Note that if vertex 𝑖 ∈ 𝑉 is incident with any required edge 𝑒 ∈ 𝐸𝑅,
the requirement for the tour to traverse edge 𝑒 inherently includes the
condition of visiting vertex 𝑖. Therefore, for the sake of simplicity, we
will assume that 𝑉𝑅 contains the set of vertices that are incident with
the required edges.

Consider the (generally disconnected) subgraph (𝑉𝑅, 𝐸𝑅) of 𝐺. Let
𝑄 be the number of its connected components and 𝑉 1, 𝑉 2, … , 𝑉 𝑄

their corresponding sets of vertices that we call 𝑅-sets. The induced
subgraphs 𝐺(𝑉 𝑖) in 𝐺 will be referred to as 𝑅-connected components
of 𝐺. Note that an 𝑅-connected component (𝑅-set) may consist only of
a single (required) vertex and that ∪

𝑖
𝑉 𝑖 = 𝑉𝑅.

The following notation is used. Given two subsets of vertices 𝑆, 𝑆′ ⊆
𝑉 , (𝑆 ∶ 𝑆′) denotes the edge set with one endpoint in 𝑆 and the other
one in 𝑆′. Given a subset 𝑆 ⊆ 𝑉 , let us denote 𝛿(𝑆) = (𝑆 ∶ 𝑉 ⧵ 𝑆) and
𝐸(𝑆) = (𝑆 ∶ 𝑆). For any subset 𝐹 ⊆ 𝐸, we will denote 𝐹𝑅 = 𝐹 ∩ 𝐸𝑅
and 𝐹𝑁𝑅 = 𝐹 ∩ 𝐸𝑁𝑅. Similarly, For any subset 𝑊 ⊆ 𝑉 , we will denote
𝑊𝑅 = 𝑊 ∩ 𝑉𝑅 and 𝑊𝑁𝑅 = 𝑊 ∩ 𝑉𝑁𝑅. Given a vector 𝑥 indexed on the
set 𝐸 of edges, for each subset 𝐹 ⊆ 𝐸, we denote 𝑥(𝐹 ) =

∑

𝑒∈𝐹 𝑥𝑒.
To formulate the GRP we define the following variables: 𝑥𝑒, 𝑦𝑒, ∀𝑒 ∈

𝐸, representing the first and second traversal, respectively, of the edge
𝑒. The GRP can be formulated as follows:

Minimize
∑

𝑒∈𝐸𝑅

(

𝑐𝑠𝑒𝑥𝑒 + 𝑐𝑒𝑦𝑒
)

+
∑

𝑒∈𝐸𝑁𝑅

𝑐𝑒
(

𝑥𝑒 + 𝑦𝑒
)

∑

𝑒∈𝛿(𝑖)

(

𝑥𝑒 + 𝑦𝑒
)

≡ 0 (mod 2), ∀𝑖 ∈ 𝑉 (3)

∑

𝑒∈𝛿(𝑆)

(

𝑥𝑒 + 𝑦𝑒
)

≥ 2, ∀𝑆 =
(

∪
𝑖∈𝑇

𝑉 𝑖
)

∪𝑊 ,

∅ ≠ 𝑇 ⊊ {1,… , 𝑄},𝑊 ⊂ 𝑉𝑁𝑅 (4)
∑

𝑒∈𝛿(𝑆)

(

𝑥𝑒 + 𝑦𝑒
)

≥ 2𝑥𝑓 , ∀𝑆 ⊂ 𝑉 such that (𝑉 ⧵ 𝑆)𝑅 ≠ ∅,

∀𝑓 ∈ 𝐸(𝑆), (5)
𝑥𝑒 = 1, ∀𝑒 ∈ 𝐸𝑅 (6)
𝑥𝑒 ≥ 𝑦𝑒, ∀𝑒 ∈ 𝐸𝑁𝑅 (7)

𝑥𝑒, 𝑦𝑒 ∈ {0, 1}, ∀𝑒 ∈ 𝐸. (8)

The constraints (3) enforce that each vertex in the route is visited an
even number of times, which could be zero as well. The conditions (4)
ensure that the route connects all the 𝑅-sets, thereby visiting all the
‘‘isolated’’ required vertices. Furthermore, conditions (5) prevent the
inclusion of ‘‘solutions’’ that consist of isolated cycles formed by non-
required edges and vertices. To ensure the traversal of all required
edges, we have constraints (6). Constraints (7) guarantee that a second
traversal of a non-required edge can only occur after it has been tra-
versed previously. Finally, constraints (8) define the binary conditions
for the variables.

Obviously, this formulation is also valid for the RPP. The only
distinction is that in the RPP, there are no subsets 𝑉 𝑖 that consist of
a single vertex.

Furthermore, in any GRP tour, it is always true that 𝑥𝑒 = 1 for
all 𝑒 ∈ 𝐸𝑅. As a result, these variables can be eliminated from the
3

formulation. Additionally, for non-required edges connecting vertices
within the same set 𝑉 𝑖, it is possible to fix all corresponding 𝑦𝑒 variables
to zero, as demonstrated by Corberán and Sanchis (1994). Moreover,
based on the dominance relations described in Chapter 5 of Corberán
and Laporte (2015), other 𝑦𝑒 variables can also be fixed to zero. It
is important to note that in our formulation, we will retain all these
variables as they assist in expressing certain inequalities and facilitate
the polyhedral study.

Let us call GRP tour to a closed walk on graph 𝐺 traversing all the
required edges and visiting all the required vertices. Associated with
each GRP tour we can consider:

(a) An incidence vector (𝑥, 𝑦) ∈ Z2|𝐸|, where variables 𝑥𝑒 take the
value 1 if edge 𝑒 is traversed once, variables 𝑦𝑒 take the value 1 if edge
𝑒 is traversed twice, and

(b) a support graph (𝑉 ,𝐸(𝑥,𝑦)), where 𝐸(𝑥,𝑦) contains one copy of
edge 𝑒 ∈ 𝐸 for each variable 𝑥𝑒 = 1 or 𝑦𝑒 = 1.

Note that the support graphs are even and connected. Conversely,
any even and connected subgraph of 𝐺 corresponds to a tour on 𝐺. In
fact, it is important to highlight that an incidence vector or a subgraph
may correspond to several different closed walks, but all of them
have the same cost and can be easily computed (with the Hierholzer
algorithm, Hierholzer and Wiener (1873), for example). Hence, and for
the sake of simplicity, we will refer to the closed walk, its incidence
vector, and its corresponding support graph as a GRP tour on 𝐺.

3. The RPP and GRP polytope

The polyhedron GRP(𝐺) is defined as the convex hull of all GRP
tours in graph 𝐺. To analyze this polyhedron, we rely on certain results
presented in Corberán et al. (2013) for the MBCPP. In Corberán et al.
(2013), the MBCPP is initially defined in a general setting, considering
multiple benefits associated with each edge. However, it is later simpli-
fied as follows. Given an undirected connected graph 𝐺 = (𝑉 ,𝐸), where
vertex 1 represents the depot, and each edge 𝑒 ∈ 𝐸 has two associated
benefits: one for the first traversal and another for the second traversal.
The objective of the MBCPP is to find a tour that starts from the depot,
traverses a subset of edges in 𝐸 at most twice, and returns to the depot,
while maximizing the total benefit. As mentioned earlier, the MBCPP
formulation in Corberán et al. (2013) employs two binary variables, 𝑥𝑒
and 𝑦𝑒, for each edge 𝑒 ∈ 𝐸, representing the first and second traversal
of 𝑒, respectively. It is shown that the convex hull of all MBCPP tours,
i.e., the vectors (𝑥, 𝑦) satisfying
∑

𝑒∈𝛿(𝑖)

(

𝑥𝑒 + 𝑦𝑒
)

≡ 0 (mod 2), ∀𝑖 ∈ 𝑉 (9)

∑

𝑒∈𝛿(𝑆)

(

𝑥𝑒 + 𝑦𝑒
)

≥ 2𝑥𝑓 , ∀𝑆 ⊂ 𝑉 ⧵ {1}, ∀𝑓 ∈ 𝐸(𝑆) (10)

𝑥𝑒 ≥ 𝑦𝑒, ∀𝑒 ∈ 𝐸 (11)
𝑥𝑒, 𝑦𝑒 ∈ {0, 1}, ∀𝑒 ∈ 𝐸, (12)

is a full dimensional polytope and several families of valid and facet-
inducing inequalities are described.

Let 𝑣0 ∈ 𝑉𝑅 and consider the MBCPP defined on graph 𝐺, with the
vertex 𝑣0 serving as the depot. Every GRP tour (𝑥, 𝑦) ∈ Z(2|𝐸|) is a closed
walk starting and ending at the depot and is also a MBCPP tour. Hence,
we can state the following theorem:

Theorem 1. Let 𝑓 (𝑥, 𝑦) ≥ 𝛼 be a valid inequality for the MBCPP on graph
𝐺 with depot 𝑣0 ∈ 𝑉𝑅. The corresponding inequality 𝑓 (𝑥, 𝑦) ≥ 𝛼 is valid for
the GRP on 𝐺.

For example, from inequalities (10) we obtain inequalities (5).
Furthermore, from several families of valid inequalities for the MBCPP,
namely parity, 𝑝-connectivity, and K-C inequalities, we will obtain valid
inequalities for the GRP (see Sections 3.1–3.3).

In the following, we will obtain the dimension of GRP(𝐺) and will

study conditions under which some of the above constraints, as well
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as other valid inequalities, define facets of the polyhedron. To conduct
this study, we will construct various GRP tours in graph 𝐺. One such
tour is formed by taking two copies of each edge in 𝐸. This basic tour
is used in proving Theorem 2. As we proceed with the proofs of other
theorems, we will develop more specific and detailed GRP tours. To do
this, we need some additional definitions.

Consider a vertex subset 𝑉 𝑜 ⊆ 𝑉 , with |𝑉 𝑜
| even. A subset of edges

𝑀 ⊆ 𝐸 is a T-join if, in the subgraph (𝑉 ,𝑀), the degree of 𝑣 is odd if
and only if 𝑣 ∈ 𝑉 𝑜. It is well-known that for a connected graph 𝐺, there
exists a T-join for every set 𝑉 𝑜 ⊆ 𝑉 with |𝑉 𝑜

| even (see Nemhauser and
Wolsey (1988) for further details).

Given 𝐺 = (𝑉 ,𝐸) = (𝑉 ,𝐸𝑅 ∪ 𝐸𝑁𝑅), let 𝑉 𝑜
𝑅 ⊆ 𝑉𝑅 be the set of 𝑅-

odd vertices, i.e., the vertices incident with an odd number of required
edges. Let 𝑀 ⊆ 𝐸 be any T-join corresponding to 𝑉 𝑜

𝑅. The graph
(𝑉𝑅,𝑀 ∪ 𝐸𝑅), where 𝑀 ∪ 𝐸𝑅 contains two copies of each required
edge in 𝑀 , is an even graph, although it may not be connected. By
incorporating the edges from a closed walk that visits at least one node
in each connected component of this graph, we obtain a GRP tour.

Theorem 2. dim(GRP(𝐺))= 2|𝐸| − |𝐸𝑅| if and only if 𝐺 is a 3-edge
connected graph.

Proof. GRP(𝐺) is a polytope in R2|𝐸|. Since all its points satisfy Eq. (6),
which are linearly independent, we have dim(GRP(𝐺))≤ 2|𝐸| − |𝐸𝑅|.

If 𝐺 is not 3-edge connected, there exists a cut-set 𝛿(𝑆) with at most
2 edges. If 𝛿(𝑆) contains exactly two edges, namely 𝑒 and 𝑓 , all GRP
tours satisfy the equation 𝑥𝑒 − 𝑦𝑒 = 𝑥𝑓 − 𝑦𝑓 . Similarly, if 𝛿(𝑆) = {𝑒}, all
GRP tours satisfy the equation 𝑥𝑒 = 𝑦𝑒. Given that these equations are
linearly independent from Eq. (6), we conclude that dim(DRPP(𝐺))<
2|𝐸| − |𝐸𝑅|. On the other hand, let us now suppose that graph 𝐺 is
3-edge connected. We will prove that dim(GRP(𝐺))≥ 2|𝐸| − |𝐸𝑅|. Let
𝑎𝑥 + 𝑏𝑦 = 𝑐, i.e.,
∑

𝑒∈𝐸
𝑎𝑒𝑥𝑒 +

∑

𝑒∈𝐸
𝑏𝑒𝑦𝑒 = 𝑐 (13)

be an equation satisfied by all the GRP tours. We have to prove that
this equation is a linear combination of Eq. (6), i.e., to prove that

𝑎𝑒 = 0, ∀𝑒 ∈ 𝐸𝑁𝑅,

𝑏𝑒 = 0, ∀𝑒 ∈ 𝐸,

𝑐 =
∑

𝑒∈𝐸𝑅

𝑎𝑒.

Consider the vector 𝑇 = (𝑥, 𝑦) formed with two copies of each edge
in 𝐸. In other words, 𝑇 is a vector where all its entries are equal to 1.
Since 𝑇 is a GRP tour on 𝐺, it satisfies (13) and we have
∑

𝑒∈𝐸
𝑎𝑒 +

∑

𝑒∈𝐸
𝑏𝑒 = 𝑐. (14)

Let 𝑓 ∈ 𝐸𝑁𝑅. Since 𝐺 is a 3-connected graph, we can remove the
two copies of edge 𝑓 from the vector 𝑇 , resulting in a new GRP tour
denoted as 𝑇 −2𝑓 . Consequently, it satisfies (13) and we have
∑

𝑒∈𝐸⧵{𝑓}
𝑎𝑒 +

∑

𝑒∈𝐸⧵{𝑓}
𝑏𝑒 = 𝑐.

By subtracting this equation from (14), we obtain 𝑎𝑓 + 𝑏𝑓 = 0, for all
𝑓 ∈ 𝐸𝑁𝑅.

Let  be an arbitrary cycle on 𝐺. By removing one copy of each edge
in  from the vector 𝑇 , we obtain another GRP tour denoted 𝑇 −. This
new tour also satisfies (13). Substituting 𝑇 − into (13) and subtracting
the resulting equation from (14), we obtain 𝑏() = 0, where recall that
𝑏(𝐶) =

∑

𝑒∈ 𝑏𝑒 = 0.
Consider an arbitrary edge 𝑓 = (𝑖, 𝑗) ∈ 𝐸. As graph 𝐺 is a 3-edge

connected graph, there exist two edge-disjoint paths 1 and 2, that
join vertices 𝑖 and 𝑗 using edges other than 𝑓 . Now, let us consider
three cycles: 1 ∪ {𝑓}, 2 ∪ {𝑓}, and 1 ∪ 2. It holds that 𝑏() = 0 for
each of these cycles. Consequently, we can deduce that
𝑏( ) + 𝑏 = 0, 𝑏( ) + 𝑏 = 0, and 𝑏( ) + 𝑏( ) = 0.
4

1 𝑓 2 𝑓 1 2
From these equations, we can conclude that 𝑏𝑓 = 0 for each 𝑓 ∈ 𝐸.
Given that 𝑎𝑓 + 𝑏𝑓 = 0 holds for each 𝑓 ∈ 𝐸𝑁𝑅, we have 𝑎𝑓 = 0 for all
𝑓 ∈ 𝐸𝑁𝑅. By substituting these values in (14), we obtain ∑

𝑒∈𝐸𝑅
𝑎𝑒 = 𝑐.

This concludes the proof. ⧫

In what follows, to prove that some inequalities are facet-defining
for GRP(𝐺), we will assume that 𝐺 is a 3-edge connected graph.

Theorem 3. The inequality 𝑦𝑒 ≥ 0, for each edge 𝑒 ∈ 𝐸𝑁𝑅, is facet-
inducing for GRP(𝐺). The inequality 𝑦𝑒 ≥ 0, for each edge 𝑒 ∈ 𝐸𝑅, is
facet-inducing for GRP(𝐺) if the graph 𝐺 ⧵ {𝑒} is 3-edge connected.

roof. Let 𝑎𝑥 + 𝑏𝑦 ≥ 𝑐, i.e., ∑

𝑓∈𝐸 𝑎𝑓𝑥𝑓 +
∑

𝑓∈𝐸 𝑏𝑓 𝑦𝑓 ≥ 𝑐, be a valid
nequality such that
(𝑥, 𝑦) ∈ GRP(G) ∶ 𝑦𝑒 = 0

}

⊆
{

(𝑥, 𝑦) ∈ GRP(G) ∶ 𝑎𝑥 + 𝑏𝑦 = 𝑐
}

.
To establish that this inequality is a linear combination of the

qualities (6) and 𝑦𝑒 ≥ 0, we need to prove the following conditions:

𝑓 = 0, ∀𝑓 ∈ 𝐸𝑁𝑅,

𝑏𝑓 = 0, ∀𝑓 ∈ 𝐸, 𝑓 ≠ 𝑒,

𝑐 =
∑

𝑓∈𝐸𝑅

𝑎𝑓 .

(a) We will first prove it for 𝑒 ∈ 𝐸𝑁𝑅. Let 𝑇 be the GRP tour formed
ith two copies of each edge in 𝐸 and 𝑇 −2𝑒 the GRP tour obtained by

removing the two copies of 𝑒 from 𝑇 . Since 𝑇 −2𝑒 satisfies 𝑦𝑒 = 0, it also
satisfies 𝑎𝑥 + 𝑏𝑦 = 𝑐, and we have

∑

𝑓∈𝐸⧵{𝑒}
𝑎𝑓 +

∑

𝑓∈𝐸⧵{𝑒}
𝑏𝑓 = 𝑐. (15)

Let 𝑔 ∈ 𝐸𝑁𝑅, 𝑔 ≠ 𝑒. Since graph 𝐺 is 3-connected, the vector
𝑇 −2𝑒−2𝑔 , obtained by removing the two copies of 𝑔 from 𝑇 −2𝑒, is also
a GRP tour satisfying 𝑦𝑒 = 0. Hence, it also satisfies 𝑎𝑥 + 𝑏𝑦 = 𝑐 and,
by subtracting this equation from (15), we obtain 𝑎𝑔 + 𝑏𝑔 = 0, ∀𝑔 ∈
𝐸𝑁𝑅, 𝑔 ≠ 𝑒.

Let us consider a cycle  on 𝐺 that does not contain edge 𝑒. The
tour 𝑇 −2𝑒 − is obtained by removing one copy of each edge in  from
𝑇 −2𝑒. Since it does not include edge 𝑒, it remains a valid GRP tour and
satisfies 𝑦𝑒 = 0. By substituting its incidence vector in the equation
𝑎𝑥 + 𝑏𝑦 = 𝑐, we have:

∑

𝑓∈𝐸⧵{𝑒}
𝑎𝑓 +

∑

𝑓∈𝐸⧵{𝑒∪}
𝑏𝑓 = 𝑐. (16)

By subtracting Eq. (16) from (15), we obtain that 𝑏() = 0.
Now, let us consider a cycle  on 𝐺 that contains edge 𝑒. The tour

𝑇 − is obtained by removing one copy of each edge in  from 𝑇 . It is
a GRP tour and satisfies 𝑦𝑒 = 0. By substituting its incidence vector in
the equation 𝑎𝑥 + 𝑏𝑦 = 𝑐, we have:
∑

𝑓∈𝐸
𝑎𝑓 +

∑

𝑓∈𝐸⧵{}
𝑏𝑓 = 𝑐. (17)

By subtracting Eq. (17) from (15), we obtain −𝑎𝑒 + 𝑏( ⧵ {𝑒}) = 0 and,
hence, 𝑏() = 𝑎𝑒 + 𝑏𝑒.

Consider the edge 𝑒. Since 𝐺 is a 3-edge connected graph, there exist
two edge-disjoint paths, 1, 2, joining the end-nodes of 𝑒 using edges
other than 𝑒. Now, let us consider the three cycles 1 ∪ {𝑒}, 2 ∪ {𝑒},
and 1 ∪ 2. We have that
𝑏(1) + 𝑏𝑒 = 𝑎𝑒 + 𝑏𝑒, 𝑏(2) + 𝑏𝑒 = 𝑎𝑒 + 𝑏𝑒, and 𝑏(1) + 𝑏(2) = 0.

From these equations we obtain 𝑎𝑒 = 0.
Let 𝑓 ∈ 𝐸 ⧵ {𝑒} be any other edge. Since 𝐺 is a 3-edge connected

graph, there are two edge-disjoint paths 1, 2 joining the end-nodes of
𝑓 with edges different from 𝑓 . Again, consider the three cycles 1∪{𝑓},
2 ∪ {𝑓}, and 1 ∪ 2. We will distinguish two cases. Assume first that
𝑒 ∉ 1 ∪ 2. In this case,
𝑏(1) + 𝑏𝑓 = 0, 𝑏(2) + 𝑏𝑓 = 0, and 𝑏(1) + 𝑏(2) = 0.

Assume now that, for example, 𝑒 ∈ 1. In this case,
𝑏( ) + 𝑏 = 𝑎 + 𝑏 , 𝑏( ) + 𝑏 = 0, and 𝑏( ) + 𝑏( ) = 𝑎 + 𝑏 .
1 𝑓 𝑒 𝑒 2 𝑓 1 2 𝑒 𝑒
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In both cases, we obtain 𝑏𝑓 = 0, for each 𝑓 ∈ 𝐸 ⧵ {𝑒}. Given
hat 𝑎𝑓 + 𝑏𝑓 = 0 holds for each 𝑓 ∈ 𝐸𝑁𝑅 ⧵ {𝑒}, we have 𝑎𝑓 = 0

for all 𝑓 ∈ 𝐸𝑁𝑅 ⧵ {𝑒}. By substituting these values in (15), we obtain
∑

𝑓∈𝐸𝑅
𝑎𝑓 = 𝑐 and we are done.

(b) We will now prove it for the case 𝑒 ∈ 𝐸𝑅 and the graph 𝐺 ⧵ {𝑒}
is 3-edge connected. Since 𝐺 is a 3-edge connected graph, there exist
two edge-disjoint paths, 1, 2, that join the end-nodes of 𝑒 using edges
ifferent from 𝑒. Let 𝑇 1 and 𝑇 2 be the GRP tours formed with two copies
f each edge in 𝐸 except the edges on 1 and 2, respectively. The edge

𝑒 is traversed once in each of the tours.
Consider any edge 𝑓 ∈ 𝐸𝑁𝑅. If 𝑓 ∉ 1, we consider the tours 𝑇 1

nd 𝑇 1−2𝑓 , which satisfy 𝑦𝑒 = 0, and by subtracting their corresponding
qualities 𝑎𝑥 + 𝑏𝑦 = 𝑐 we obtain that 𝑎𝑓 + 𝑏𝑓 = 0. The case 𝑓 ∉ 2 can
e handled similarly with the tours 𝑇 2 and 𝑇 2−2𝑓 . Hence, 𝑎𝑓 + 𝑏𝑓 = 0

for all 𝑓 ∈ 𝐸𝑁𝑅.
Let  be a cycle in 𝐺 that does not contain the edge 𝑒. Suppose, for

example, that 𝑓 ∉ 1. Given the GRP tour 𝑇 1 above, we can define a
new GRP tour as follows: 𝑇 ∗ = 𝑇 1 ⧵+2( ∩1). This tour also satisfies
𝑦𝑒 = 0. By subtracting the equalities 𝑎𝑥 + 𝑏𝑦 = 𝑐 corresponding to 𝑇 1

and 𝑇 ∗, we obtain that 𝑏(⧵1) = 𝑏(∩1) and, hence, 𝑏() = 2𝑏(∩1)
for all cycles  in 𝐺 that do not contain the edge 𝑒.

Let 𝑓 ∈ 𝐸, 𝑓 ≠ 𝑒. Since 𝐺 ⧵ {𝑒} is 3-edge connected, there exist two
edge-disjoint paths, ̄1 and ̄2, joining the end-nodes of 𝑓 using edges
other than 𝑓 and 𝑒. We consider three cycles: ̄1 ∪ {𝑓}, ̄2 ∪ {𝑓}, and
̄1 ∪ ̄2. Given that 𝑒 ∉ ̄1, 𝑒 ∉ ̄2, and 𝑓 ∉ 1, we have
𝑏(̄1) + 𝑏𝑓 = 2𝑏(̄1 ∩ 1),

𝑏(̄2) + 𝑏𝑓 = 2𝑏(̄2 ∩ 1), and
𝑏(̄1) + 𝑏(̄2) = 2𝑏(̄1 ∩ 1) + 2𝑏(̄2 ∩ 1),
and we obtain that 𝑏𝑓 = 0 for all 𝑓 ∈ 𝐸, 𝑓 ≠ 𝑒. Finally, since

𝑎𝑓+𝑏𝑓 = 0 for every 𝑓 ∈ 𝐸𝑁𝑅, we conclude that 𝑎𝑓 = 0 for all 𝑓 ∈ 𝐸𝑁𝑅.
This completes the proof. ⧫

Theorem 4. Inequality 𝑥𝑒 ≤ 1, for each edge 𝑒 ∈ 𝐸𝑁𝑅, is facet-inducing
for GRP(𝐺).

Proof. Let 𝑎𝑥+𝑏𝑦 ≤ 𝑐 be a valid inequality such that
{

(𝑥, 𝑦) ∈ GRP(G) ∶
𝑥𝑒 = 1

}

⊆
{

(𝑥, 𝑦) ∈ GRP(G) ∶ 𝑎𝑥 + 𝑏𝑦 = 𝑐
}

. We need to prove that
this inequality is a linear combination of the equalities (6) and 𝑥𝑒 ≤ 1.
This implies proving that

𝑎𝑓 = 0, ∀𝑓 ∈ 𝐸𝑁𝑅, 𝑓 ≠ 𝑒,

𝑏𝑓 = 0, ∀𝑓 ∈ 𝐸,

𝑐 =
∑

𝑓∈𝐸𝑅

𝑎𝑓 + 𝑎𝑒.

Let 𝑇 be the GRP tour formed by taking two copies of each edge in
𝐸. This tour satisfies 𝑥𝑒 = 1, and therefore it also satisfies 𝑎𝑥 + 𝑏𝑦 = 𝑐,
and we have that
∑

𝑓∈𝐸
𝑎𝑓 +

∑

𝑓∈𝐸
𝑏𝑓 = 𝑐. (18)

Consider any edge 𝑓 ∈ 𝐸𝑁𝑅, 𝑓 ≠ 𝑒. Since 𝐺 is a 3-connected
graph, we can construct a GRP tour 𝑇 −2𝑓 that also satisfies 𝑥𝑒 = 1.
By substituting this tour into 𝑎𝑥 + 𝑏𝑦 = 𝑐 and subtracting the resulting
equality from (18), we obtain that 𝑎𝑓 + 𝑏𝑓 = 0, ∀𝑓 ∈ 𝐸𝑁𝑅, 𝑓 ≠ 𝑒.

For any cycle  in 𝐺, the tour 𝑇 − is also a GRP tour that satisfies
𝑥𝑒 = 1. Substituting its incidence vector into the equation 𝑎𝑥 + 𝑏𝑦 = 𝑐,
we have
∑

𝑓∈𝐸
𝑎𝑓 +

∑

𝑓∈𝐸⧵{}
𝑏𝑓 = 𝑐. (19)

Subtracting Eq. (19) from (18), we obtain: 𝑏() = 0.
Let 𝑓 ∈ 𝐸 be any edge (perhaps 𝑒). Since 𝐺 is a 3-edge connected

graph, there exist two edge-disjoint paths, 1 and 2, that join the end-
nodes of 𝑓 with distinct edges of 𝑓 . Now, let us consider the three
cycles: 1 ∪ {𝑓}, 2 ∪ {𝑓}, and 1 ∪ 2. From these cycles, we have
5

𝑏(1) + 𝑏𝑓 = 0, 𝑏(2) + 𝑏𝑓 = 0, and 𝑏(1) + 𝑏(2) = 0, and we obtain
𝑏𝑓 = 0 for each 𝑓 ∈ 𝐸. Furthermore, since 𝑎𝑓 + 𝑏𝑓 = 0 holds for each
𝑓 ∈ 𝐸𝑁𝑅 ⧵ {𝑒}, we conclude that 𝑎𝑓 = 0 for all 𝑓 ∈ 𝐸𝑁𝑅 ⧵ {𝑒}. By
substituting these values into Eq. (18), we obtain ∑

𝑓∈𝐸𝑅
𝑎𝑓 + 𝑎𝑒 = 𝑐,

which completes the proof. ⧫

Theorem 5. The inequalities (7), 𝑥𝑒 ≥ 𝑦𝑒 for each edge 𝑒 ∈ 𝐸𝑁𝑅, are
facet-inducing for GRP(𝐺) if graph 𝐺 ⧵ {𝑒} is 3-edge connected.

Proof. Let 𝑎𝑥 + 𝑏𝑦 ≥ 𝑐 be a valid inequality such that
{

(𝑥, 𝑦) ∈ GRP(G) ∶ 𝑥𝑒 = 𝑦𝑒
}

⊆
{

(𝑥, 𝑦) ∈ GRP(G) ∶ 𝑎𝑥 + 𝑏𝑦 = 𝑐
}

.
We have to prove that this inequality is a linear combination of the

equalities (6) and 𝑥𝑒 − 𝑦𝑒 ≥ 0. Note that this means proving that

𝑎𝑓 = 0, ∀𝑓 ∈ 𝐸𝑁𝑅, 𝑓 ≠ 𝑒,

𝑏𝑓 = 0, ∀𝑓 ∈ 𝐸, 𝑓 ≠ 𝑒,

𝑎𝑒 = −𝑏𝑒,

𝑐 =
∑

𝑓∈𝐸𝑅

𝑎𝑓 .

Let 𝑇 be the GRP tour formed with two copies of each edge in 𝐸,
which satisfies 𝑥𝑒 = 𝑦𝑒 and, therefore, also satisfies 𝑎𝑥 + 𝑏𝑦 = 𝑐 and we
have
∑

𝑓∈𝐸
𝑎𝑓 +

∑

𝑓∈𝐸
𝑏𝑓 = 𝑐. (20)

Consider any edge 𝑓 ∈ 𝐸𝑁𝑅. Since 𝐺 is a 3-edge connected graph,
we can construct a GRP tour 𝑇 −2𝑓 that also satisfies 𝑥𝑒 = 𝑦𝑒. By
substituting it into 𝑎𝑥 + 𝑏𝑦 = 𝑐 and subtracting the resulting equality
from Eq. (20), we obtain that 𝑎𝑓 + 𝑏𝑓 = 0, ∀𝑓 ∈ 𝐸𝑁𝑅. Note that this
equality also holds for edge 𝑒, giving 𝑎𝑒 + 𝑏𝑒 = 0.

For every cycle  in 𝐺 that does not contain edge 𝑒, the tour 𝑇 − 
is also a GRP tour satisfying 𝑥𝑒 = 𝑦𝑒 and, therefore, 𝑎𝑥+ 𝑏𝑦 = 𝑐 and we
have
∑

𝑓∈𝐸
𝑎𝑓 +

∑

𝑓∈𝐸⧵{}
𝑏𝑓 = 𝑐. (21)

Subtracting (21) from (20) we obtain that 𝑏() = 0.
Let 𝑓 ∈ 𝐸 be any edge, 𝑓 ≠ 𝑒. Since 𝐺 ⧵ {𝑒} is a 3-edge connected

graph, there are two edge-disjoint paths 1, 2 that join the end-nodes
of 𝑓 with distinct edges of 𝑓 . Consider the three cycles 1∪{𝑓}, 2∪{𝑓},
and 1 ∪ 2. Therefore, we have 𝑏(1) + 𝑏𝑓 = 0, 𝑏(2) + 𝑏𝑓 = 0,
and 𝑏(1) + 𝑏(2) = 0, and we obtain 𝑏𝑓 = 0, for all 𝑓 ≠ 𝑒. Since
𝑎𝑓 + 𝑏𝑓 = 0, ∀𝑓 ∈ 𝐸𝑁𝑅, we obtain that 𝑎𝑓 = 0 for all 𝑓 ∈ 𝐸𝑁𝑅 ⧵ {𝑒}.
Substituting these values for 𝑎, 𝑏 into (20) we get ∑𝑓∈𝐸𝑅

𝑎𝑓 = 𝑐 and we
are done. ⧫

Note 1. The inequalities 𝑥𝑒 ≥ 0 and 𝑦𝑒 ≤ 1, for 𝑒 ∈ 𝐸𝑁𝑅, are not
facet-inducing because they are dominated by the inequality 𝑥𝑒 ≥ 𝑦𝑒.

In the following, we will describe the conditions under which the
connectivity inequalities (4) and (5) are facet inducing. It is important
to note that, since 𝑥𝑒 = 1 holds for all 𝑒 ∈ 𝐸𝑅, if 𝛿𝑅(𝑆) ≠ ∅, then
inequalities (4) and (5) are trivially satisfied. Therefore, we will assume
𝛿𝑅(𝑆) = ∅.

Theorem 6. Let 𝑆 =
(

∪
𝑖∈𝑇

𝑉 𝑖) ∪ 𝑊 with 𝑇 ⊊ {1,… , 𝑝}, 𝑇 ≠ ∅, and
𝑊 ⊂ 𝑉𝑁𝑅. The connectivity inequality (4):

(𝑥 + 𝑦)(𝛿(𝑆)) ≥ 2,

is facet-inducing for GRP(𝐺) if 𝛿𝑅(𝑆) = ∅ and the subgraphs 𝐺(𝑆) and
𝐺(𝑉 ⧵ 𝑆) are both 3-edge connected.

Proof. Let 𝑎𝑥 + 𝑏𝑦 ≥ 𝑐 be a valid inequality such that
{

(𝑥, 𝑦) ∈ GRP(G) ∶ (𝑥+ 𝑦)(𝛿(𝑆)) = 2
}

⊆
{

(𝑥, 𝑦) ∈ GRP(G) ∶ 𝑎𝑥+ 𝑏𝑦 =
𝑐
}

.
We need to prove that this inequality is a linear combination of
the equalities (6) and (𝑥 + 𝑦)(𝛿(𝑆)) ≥ 2. This can be expressed as:



Computers and Operations Research 162 (2024) 106482Á. Corberán et al.
∑

𝑒∈𝐸𝑅

𝑎𝑒𝑥𝑒 +
∑

𝑒∈𝛿(𝑆)

(

𝜆𝑥𝑒 + 𝜆𝑦𝑒
)

≥
∑

𝑒∈𝐸𝑅

𝑎𝑒 + 2𝜆. Therefore, we have to prove

that

𝑎𝑒 = 𝑏𝑒 = 0, ∀𝑒 ∈ 𝐸𝑁𝑅(𝑆) ∪ 𝐸𝑁𝑅(𝑉 ⧵ 𝑆),

𝑏𝑒 = 0, ∀𝑒 ∈ 𝐸𝑅,

𝑎𝑒 = 𝑏𝑒 = 𝜆, ∀𝑒 ∈ 𝛿(𝑆),

𝑐 =
∑

𝑒∈𝐸𝑅

𝑎𝑒 + 2𝜆.

Let 𝑇 = (𝑥, 𝑦) here be the GRP tour formed with two copies of each
edge in 𝐸(𝑆)∪𝐸(𝑉 ⧵𝑆) plus two copies of a given edge 𝑓 ∈ 𝛿(𝑆). Since
this tour satisfies (𝑥 + 𝑦)(𝛿(𝑆)) = 2, it also satisfies 𝑎𝑥 + 𝑏𝑦 = 𝑐, and we
have

∑

𝑒∈𝐸⧵𝛿(𝑆)
𝑎𝑒 +

∑

𝑒∈𝐸⧵𝛿(𝑆)
𝑏𝑒 + 𝑎𝑓 + 𝑏𝑓 = 𝑐. (22)

For each edge 𝑒 ∈ 𝐸𝑁𝑅 ⧵ 𝛿(𝑆), 𝑇 −2𝑒 is a GRPP tour because 𝐺(𝑆)
and 𝐺(𝑉 ⧵ 𝑆) are 3-edge connected graphs, satisfying (𝑥 + 𝑦)(𝛿(𝑆)) = 2.
By substituting 𝑇 −2𝑒 in the equation 𝑎𝑥 + 𝑏𝑦 = 𝑐 and subtracting the
resulting equality from (22), we obtain 𝑎𝑒 + 𝑏𝑒 = 0 for each edge
𝑒 ∈ 𝐸𝑁𝑅 ⧵ 𝛿(𝑆).

For each cycle  either in 𝐺(𝑉 ⧵ 𝑆) or in 𝐺(𝑆), the vector 𝑇 −  is
also a GRP tour satisfying (𝑥 + 𝑦)(𝛿(𝑆)) = 2. Substituting its incidence
vector into 𝑎𝑥+ 𝑏𝑦 = 𝑐 and subtracting the resulting equality from (22)
we obtain that 𝑏() = 0.

Let 1 be any path in 𝐺(𝑆) or in 𝐺(𝑉 ⧵ 𝑆) that joins two vertices
𝑖, 𝑗. Since graphs 𝐺(𝑆) and 𝐺(𝑉 ⧵ 𝑆) are 3-edge connected, there are
two other edge-disjoint paths 2 and 3 joining 𝑖 and 𝑗. Considering
the three cycles 1 ∪2, 2 ∪3, and 2 ∪3, for which 𝑏() = 0 holds,
we obtain that 𝑏() = 0 for each path either in 𝐺(𝑆) or in 𝐺(𝑉 ⧵ 𝑆). In
particular, 𝑏𝑒 = 0 for each edge 𝑒 ∈ 𝐸⧵𝛿(𝑆). Moreover, if 𝑒 ∈ 𝐸𝑁𝑅⧵𝛿(𝑆),
since 𝑎𝑒 + 𝑏𝑒 = 0, we have 𝑎𝑒 = 𝑏𝑒 = 0 for all 𝑒 ∈ 𝐸𝑁𝑅 ⧵ 𝛿(𝑆).

Let us denote the edges in 𝛿(𝑆) as 𝑒1,… , 𝑒𝑝, where 𝑝 ≥ 3 since
graph 𝐺 is 3-edge connected. Consider two edges 𝑓, 𝑒 ∈ 𝛿(𝑆). Let 𝑇
be the GRP tour described above, and let 𝑇 ∗ be the tour obtained from
𝑇 by removing the second traversal of 𝑓 and one copy of each edge
on the two paths 1,2 joining the endpoints of 𝑓 and 𝑒, and adding
the first traversal of 𝑒. Both tours 𝑇 and 𝑇 ∗ satisfy (𝑥+ 𝑦)(𝛿(𝑆)) = 2. By
subtracting the corresponding equalities, we obtain 𝑏(1) + 𝑏(2) + 𝑏𝑓 −
𝑎𝑒 = 0 and, hence, 𝑏𝑓 = 𝑎𝑒. By interchanging the roles of the edges 𝑓
and 𝑒, we obtain 𝑏𝑒 = 𝑎𝑓 . Proceeding in this way for all pairs of edges
in 𝛿(𝑆), we conclude that 𝑎𝑒𝑖 = 𝑏𝑒𝑗 for all 𝑖 ≠ 𝑗 ∈ {1,… , 𝑝}. This implies
that 𝑎𝑒𝑖 = 𝑎𝑒𝑗 = 𝑏𝑒𝑖 = 𝑏𝑒𝑗 = 𝜆, for a certain constant value 𝜆, for all 𝑖, 𝑗
(since 𝑝 ≥ 3 holds).

Substituting 𝑎𝑒 = 𝑏𝑒 = 0 for each 𝑒 ∈ 𝐸𝑁𝑅 ⧵ 𝛿(𝑆), 𝑏𝑒 = 0 for each
edge 𝑒 ∈ 𝐸𝑅, and 𝑎𝑒 = 𝑏𝑒 = 𝜆 for each 𝑒 ∈ 𝛿(𝑆) in Eq. (22), we get that
∑

𝑒∈𝐸𝑅
𝑎𝑒 + 2𝜆 = 𝑐, and we are done. ⧫

Theorem 7. Let 𝑆 ⊆ 𝑉 be such that 𝑉𝑅 ⊆ (𝑉 ⧵𝑆) and let 𝑓 ∈ 𝐸(𝑆). The
connectivity inequality (5),

(𝑥 + 𝑦)(𝛿(𝑆)) ≥ 2𝑥𝑓 ,

is facet inducing for GRP(𝐺) if the subgraphs 𝐺(𝑆) and G(𝑉 ⧵𝑆) are 3-edge
connected.

Proof. Note that 𝑉𝑅 ⊆ (𝑉 ⧵𝑆) implies that 𝑆𝑅 = ∅ and 𝐸𝑅(𝑆) = 𝛿𝑅(𝑆) =
∅. Let 𝑎𝑥 + 𝑏𝑦 ≥ 𝑐 be a valid inequality such that
{

(𝑥, 𝑦) ∈ GRP(G) ∶ (𝑥 + 𝑦)(𝛿(𝑆)) − 2𝑥𝑓 = 0
}

⊆
{

(𝑥, 𝑦) ∈ GRP(G) ∶
𝑎𝑥 + 𝑏𝑦 = 𝑐

}

.
We have to prove that this inequality is a linear combination of

the equalities (6) and (𝑥 + 𝑦)(𝛿(𝑆)) − 2𝑥𝑓 ≥ 0. Note that such a linear
combination is ∑

𝑒∈𝐸𝑅

𝑎𝑒𝑥𝑒 +
∑

𝑒∈𝛿(𝑆)

(

𝜆𝑥𝑒 + 𝜆𝑦𝑒
)

≥
∑

𝑒∈𝐸𝑅

𝑎𝑒 + 2𝜆, and we have

to prove that

𝑎 = 𝑏 = 0, ∀𝑒 ∈ 𝐸 (𝑆) ∪ 𝐸 (𝑉 ⧵ 𝑆), 𝑒 ≠ 𝑓
6

𝑒 𝑒 𝑁𝑅 𝑁𝑅
𝑎𝑓 = −2𝜆, 𝑏𝑓 = 0,

𝑏𝑒 = 0 ∀𝑒 ∈ 𝐸𝑅,

𝑎𝑒 = 𝑏𝑒 = 𝜆, ∀𝑒 ∈ 𝛿(𝑆),

𝑐 =
∑

𝑒∈𝐸𝑅

𝑎𝑒.

Let 𝑇 be the GRP tour formed with two copies of each edge in
𝐸(𝑆) ∪ 𝐸(𝑉 ⧵ 𝑆) along with two copies of a given edge 𝑔 ∈ 𝛿(𝑆). Since
𝛿(𝑆) ⊆ 𝐸𝑁𝑅, 𝑇 satisfies (𝑥 + 𝑦)(𝛿(𝑆)) = 2𝑥𝑓 = 2. Therefore, 𝑇 also
satisfies 𝑎𝑥 + 𝑏𝑦 = 𝑐, and we have

∑

𝑒∈𝐸⧵𝛿(𝑆)
𝑎𝑒 +

∑

𝑒∈𝐸⧵𝛿(𝑆)
𝑏𝑒 + 𝑎𝑔 + 𝑏𝑔 = 𝑐. (23)

For each edge 𝑒 ∈ 𝐸𝑁𝑅⧵𝛿(𝑆), with 𝑒 ≠ 𝑓 , 𝑇 −2𝑒 is a GRP tour because
both subgraphs 𝐺(𝑆) and 𝐺(𝑉 ⧵𝑆) are 3-edge connected. Moreover, 𝑇 −2𝑒

satisfies (𝑥 + 𝑦)(𝛿(𝑆)) = 2𝑥𝑓 . By substituting 𝑇 −2𝑒 into 𝑎𝑥 + 𝑏𝑦 = 𝑐 and
subtracting the resulting equality from (23), we obtain 𝑎𝑒 + 𝑏𝑒 = 0 for
each edge 𝑒 ∈ 𝐸𝑁𝑅 ⧵ 𝛿(𝑆), 𝑒 ≠ 𝑓 . For each cycle  either in 𝐺(𝑉 ⧵𝑆) or
in 𝐺(𝑆), the vector 𝑇 − is also a GRP tour satisfying (𝑥+𝑦)(𝛿(𝑆)) = 2𝑥𝑓 .
By substituting its incidence vector into 𝑎𝑥+ 𝑏𝑦 = 𝑐 and subtracting the
resulting equality from (23), we obtain 𝑏() = 0.

Let 1 be any path in either 𝐺(𝑆) or 𝐺(𝑉 ⧵ 𝑆) joining two vertices
𝑖 and 𝑗. Since 𝐺(𝑆) and 𝐺(𝑉 ⧵𝑆) are 3-edge connected, there exist two
more edge-disjoint paths 2 and 3 joining 𝑖 and 𝑗. Considering the
three cycles 1 ∪ 2, 2 ∪ 3, and 2 ∪ 3, for which 𝑏() = 0 holds,
we obtain that 𝑏() = 0 for each path in either 𝐺(𝑆) or 𝐺(𝑉 ⧵ 𝑆).
In particular, 𝑏𝑒 = 0 for each edge 𝑒 ∈ 𝐸 ⧵ 𝛿(𝑆) (including 𝑏𝑓 = 0).
Furthermore, if 𝑒 ∈ 𝐸𝑁𝑅 ⧵ 𝛿(𝑆), 𝑒 ≠ 𝑓 , since 𝑎𝑒 + 𝑏𝑒 = 0, we have
𝑎𝑒 = 𝑏𝑒 = 0 for all 𝑒 ∈ 𝐸𝑁𝑅 ⧵ 𝛿(𝑆), 𝑒 ≠ 𝑓 .

Let us denote the edges in 𝛿(𝑆) as 𝑒1,… , 𝑒𝑝, where 𝑝 ≥ 3 since 𝐺
is 3-edge connected. Now consider two edges 𝑔, 𝑒 ∈ 𝛿(𝑆). Consider the
GRP tour 𝑇 described earlier, and let 𝑇 ∗ be the tour obtained from 𝑇
after removing the second traversal of 𝑔 and one copy of each edge on
two paths 1,2 joining the endpoints of 𝑔 and 𝑒, and adding the first
traversal of 𝑒. Both tours satisfy (𝑥+𝑦)(𝛿(𝑆)) = 2𝑥𝑓 and, after subtracting
the corresponding equalities, we obtain 𝑏(1) + 𝑏(2) + 𝑏𝑔 − 𝑎𝑒 = 0,
which implies 𝑏𝑔 = 𝑎𝑒. If we interchange the roles of the edges 𝑔
and 𝑒, we obtain 𝑏𝑒 = 𝑎𝑔 . Proceeding in this way with all pairs of
edges in 𝛿(𝑆), we obtain 𝑎𝑒𝑖 = 𝑏𝑒𝑗 for all 𝑖 ≠ 𝑗 ∈ {1,… , 𝑝}, and then
𝑎𝑒𝑖 = 𝑎𝑒𝑗 = 𝑏𝑒𝑖 = 𝑏𝑒𝑗 = 𝜆, where 𝜆 is a certain constant value, for all 𝑖, 𝑗
(because 𝑝 ≥ 3 holds).

Let 𝑒 = (𝑖, 𝑗) ∈ 𝛿(𝑆) with 𝑗 ∈ 𝑆. Consider the GRP tour 𝑇 ∗ formed
with two copies of each edge in 𝐸(𝑉 ⧵𝑆), two copies of 𝑒, two copies of
each edge in a given path  in 𝐺(𝑆) joining 𝑗 to an end node of 𝑓 , and
two copies of edge 𝑓 . 𝑇 ∗ is a GRP tour because all the required edges
and vertices are in 𝐺(𝑉 ⧵ 𝑆) and satisfies (𝑥 + 𝑦)(𝛿(𝑆)) = 2𝑥𝑓 = 2. By
comparing this tour with the GRP tour obtained after removing the two
copies of the edges in  and the two copies of 𝑒 and 𝑓 , which satisfies
(𝑥+ 𝑦)(𝛿(𝑆)) = 2𝑥𝑓 = 0, we obtain that 𝑎𝑒 + 𝑏𝑒 + 𝑎𝑓 + 𝑏𝑓 = 0. Given that
𝑏𝑓 = 0 and 𝑎𝑒 = 𝑏𝑒, we have 𝑎𝑓 = −2𝑎𝑒 for any edge 𝑒 ∈ 𝛿(𝑆).

By substituting 𝑎𝑒 = 𝑏𝑒 = 0 for each 𝑒 ∈ 𝐸𝑁𝑅 ⧵ 𝛿(𝑆), 𝑒 ≠ 𝑓 , 𝑏𝑒 = 0
for each edge 𝑒 ∈ 𝐸𝑅, 𝑎𝑒 = 𝑏𝑒 = 𝜆 for each 𝑒 ∈ 𝛿(𝑆), and 𝑎𝑓 = −2𝜆 into
Eq. (23), we obtain ∑

𝑒∈𝐸𝑅
𝑎𝑒 = 𝑐, and the proof is finished. ⧫

Note that if condition 𝑉𝑅 ⊆ (𝑉 ⧵𝑆) is not satisfied, then there exists
an associated connectivity inequality (4) (𝑥+𝑦)(𝛿(𝑆)) ≥ 2. Consequently,
inequality (5) is not facet-inducing in this case.

In the remainder of the paper, we introduce several new fami-
lies of valid inequalities for the GRP, including parity inequalities,
𝑝-connectivity inequalities, and K-C inequalities.

3.1. Parity inequalities

In Corberán et al. (2013), the following constraints, which gener-
alize the well-known co-circuit inequalities (Barahona and Grötschel,
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1986), were proposed for the MBCPP. They are called parity inequali-
ties and, from Theorem 1, are also valid for GRP(𝐺):

(𝑥−𝑦)(𝛿(𝑆)⧵𝐹 ) ≥ (𝑥−𝑦)(𝐹 )− |𝐹 |+1, ∀𝑆 ⊂ 𝑉 , ∀𝐹 ⊆ 𝛿(𝑆) with |𝐹 | odd.
(24)

These parity inequalities (24) cut (infeasible) solutions in which
there is a cut-set with an odd number of edges traversed exactly once
(these edges define the set F) and the remaining edges are traversed
twice or not at all.

Note 2. Before proving that some parity inequalities (24) induce facets
of GRP(𝐺), we will describe two types of GRP tours that satisfy them
with equality. Recall that |𝐹 | is odd, and consider a cut-set 𝛿(𝑆) such
that the graphs 𝐺(𝑆) and 𝐺(𝑉 ⧵ 𝑆) are connected. GRP tours satisfying
(24) with equality traverse the cut-set 𝛿(𝑆) in the following two ways:
Type 1: All edges in 𝐹 plus one edge of 𝛿(𝑆) ⧵ 𝐹 are traversed once
(𝑥𝑒 = 1, 𝑦𝑒 = 0) while all other edges of 𝛿(𝑆) are either traversed twice
(𝑥𝑒 = 𝑦𝑒 = 1) or not traversed (𝑥𝑒 = 𝑦𝑒 = 0).
Type 2: All edges in 𝐹 except one of them are traversed once, while all
other edges in 𝛿(𝑆) are traversed twice or not at all.

Given a ‘‘traversal’’ of the cut-set 𝛿(𝑆) as described above, let 𝑉 𝑜 ⊂
𝑉 ⧵ 𝑆 be the set of vertices incident with an odd number of the
edges traversed once. Since the number of such edges is even, |𝑉 𝑜

| is
also even, and there is a T-join in 𝐺(𝑉 ⧵ 𝑆) associated with 𝑉 𝑜. This
same process takes place in 𝐺(𝑆). Consider two copies of each edge
in 𝐺(𝑉 ⧵ 𝑆) and in 𝐺(𝑆) not belonging to the T-joins. All these edges
plus the two T-joins, plus the ‘‘traversal’’ of 𝛿(𝑆), define a GRP tour
satisfying (24) with equality.

Theorem 8. Parity inequalities (24), for all 𝑆 ⊂ 𝑉 and for all 𝐹 ⊆ 𝛿(𝑆)
with |𝐹 | odd, are facet-inducing for GRP(𝐺) if subgraph 𝐺(𝑆) and 𝐺(𝑉 ⧵𝑆)
are 3-edge connected.

Proof. Inequalities (24) can be written as:

(𝑥 − 𝑦)(𝛿(𝑆) ⧵ 𝐹 ) − (𝑥 − 𝑦)(𝐹 ) ≥ 1 − |𝐹 |. (25)

After substituting 𝑥𝑒 = 1 for all 𝑒 ∈ 𝐸𝑅 in (25) we obtain the following
equivalent inequality:

(𝑥−𝑦)(𝛿𝑁𝑅(𝑆)⧵𝐹 )−(𝑥−𝑦)(𝐹𝑁𝑅)−𝑦(𝛿𝑅(𝑆)⧵𝐹 )+𝑦(𝐹𝑅) ≥ 1−|𝐹𝑁𝑅|−|𝛿𝑅(𝑆) ⧵ 𝐹 |.

(26)

Let us suppose there is another valid inequality 𝑎𝑥 + 𝑏𝑦 ≥ 𝑐 such that,
{

(𝑥, 𝑦) ∈ GRP(𝐺) ∶ (𝑥 − 𝑦)(𝛿(𝑆) ⧵ 𝐹 ) − (𝑥 − 𝑦)(𝐹 ) = 1 − |𝐹 |

}

⊆

⊆
{

(𝑥, 𝑦) ∈ GRP(𝐺) ∶ 𝑎𝑥 + 𝑏𝑦 = 𝑐
}

.

We have to prove that inequality 𝑎𝑥 + 𝑏𝑦 ≥ 𝑐 is a linear combination
of equalities (6) and (26). It can be seen (by adding the equalities (6),
each one multiplied by 𝑎𝑒 ∈ R, and inequality (6) multiplied by 𝜆 ∈ R,
and then comparing with 𝑎𝑥+ 𝑏𝑦 ≥ 𝑐) that this is equivalent to proving
that

𝑏𝑒 = 0, ∀𝑒 ∈ 𝐸𝑅 ⧵ 𝛿(𝑆),

𝑎𝑒 = 𝑏𝑒 = 0, ∀𝑒 ∈ 𝐸𝑁𝑅 ⧵ 𝛿(𝑆),

𝑏𝑒 = 𝜆, ∀𝑒 ∈ 𝐹𝑅,

𝑎𝑒 = −𝜆, 𝑏𝑒 = 𝜆, ∀𝑒 ∈ 𝐹𝑁𝑅,

𝑏𝑒 = −𝜆, ∀𝑒 ∈ 𝛿𝑅(𝑆) ⧵ 𝐹 ,

𝑎𝑒 = 𝜆, 𝑏𝑒 = −𝜆, ∀𝑒 ∈ 𝛿𝑁𝑅(𝑆) ⧵ 𝐹 ,

𝑐 =
∑

𝑒∈𝐸𝑅

𝑎𝑒 + 𝜆
(

1 − |𝐹𝑁𝑅| − |𝛿𝑅(𝑆) ⧵ 𝐹 |

)

.

Let 𝑒 ∈ 𝐸𝑁𝑅 ⧵ 𝛿(𝑆). Given that graphs 𝐺(𝑆) and 𝐺(𝑉 ⧵ 𝑆) are 3-
edge connected, they remain connected after deleting edge 𝑒. Moreover,
7

there exists a GRP tour 𝑇 in 𝐺 ⧵ {𝑒} that satisfies (24) with equality
(see Note 2). The GRP tour 𝑇 +2𝑒 also satisfies (24) with equality. By
subtracting the equations 𝑎𝑥 + 𝑏𝑦 = 𝑐 corresponding to both tours, we
obtain 𝑎𝑒 + 𝑏𝑒 = 0 ∀𝑒 ∈ 𝐸𝑁𝑅 ⧵ 𝛿(𝑆).

Let 𝑇 be any GRP tour constructed as described in Note 2, which
traverses all the edges in 𝐺(𝑉 ⧵ 𝑆) and 𝐺(𝑆). Let  denote the set
of required edges in the T-join associated with 𝑇 . For each cycle  in
either 𝐺(𝑉 ⧵𝑆) or 𝐺(𝑆), the tour 𝑇 − obtained by removing one copy
of each edge in  from 𝑇 is also even and connected. However, it may
not traverse the required edges in  ∩ . Let 𝑇 ∗ be the tour obtained
from 𝑇 − by adding two copies of each edge in  ∩. 𝑇 ∗ is a GRP tour
that satisfies (24) with equality. By subtracting the equations 𝑎𝑥+𝑏𝑦 = 𝑐
corresponding to 𝑇 and 𝑇 ∗, we find that

𝑏( ⧵ ( ∩ )) − 𝑏(( ∩ )) = 0.

Adding 2𝑏( ∩ ) to both terms yields

𝑏() = 2𝑏(( ∩ )),

for each cycle  in either 𝐺(𝑉 ⧵ 𝑆) or 𝐺(𝑆).
Let 𝑒 ∈ 𝐸(𝑉 ⧵𝑆). Since 𝐺(𝑉 ⧵𝑆) is a 3-connected graph, there exist

two edge-disjoint paths 1, 2 that join the end-nodes of 𝑒 using edges
other than 𝑒. Consider the three cycles 1 ∪ {𝑒}, 2 ∪ {𝑒}, and 1 ∪ 2,
for which the equation 𝑏() = 2𝑏( ∩ ) holds. If 𝑒 ∉  we have:
𝑏(1) + 𝑏𝑒 = 2𝑏( ∩ 1),

𝑏(2) + 𝑏𝑒 = 2𝑏( ∩ 2), and
𝑏(1) + 𝑏(2) = 2𝑏( ∩ 1) + 2𝑏( ∩ 2),
which implies 𝑏𝑒 = 0. If 𝑒 ∈  , we have:

𝑏(1) + 𝑏𝑒 = 2𝑏( ∩ 1) + 2𝑏𝑒, 𝑏(2) + 𝑏𝑒 = 2𝑏( ∩ 2) + 2𝑏𝑒 and
𝑏(1) + 𝑏(2) = 2𝑏( ∩ 1) + 2𝑏( ∩ 2),

which again leads to 𝑏𝑒 = 0. Hence, we have 𝑏𝑒 = 0 for all 𝑒 ∈
𝐸(𝑉 ⧵ 𝑆). Similarly, we can show that 𝑏𝑒 = 0 for each edge 𝑒 ∈ 𝐸(𝑆).
Furthermore, since 𝑎𝑒+𝑏𝑒 = 0 holds for all 𝑒 ∈ 𝐸𝑁𝑅 ⧵𝛿(𝑆), we conclude
that 𝑎𝑒 = 𝑏𝑒 = 0 for all 𝑒 ∈ 𝐸𝑁𝑅 ⧵ 𝛿(𝑆).

Let 𝑒 ∈ 𝛿𝑁𝑅(𝑆). If 𝑒 ∈ 𝐹𝑁𝑅 or 𝑒 ∈ 𝛿𝑁𝑅(𝑆) ⧵ 𝐹 , there exists a GRP
tour 𝑇 that does not traverse 𝑒 and satisfies (24) with equality. The
tour 𝑇 +2𝑒 also satisfies (24) with equality. By subtracting the equations
𝑎𝑥 + 𝑏𝑦 = 𝑐 corresponding to both tours, we obtain 𝑎𝑒 + 𝑏𝑒 = 0 for all
𝑒 ∈ 𝛿𝑁𝑅(𝑆).

Now, let us suppose there exists 𝑒1, 𝑒2 ∈ 𝐹 . Consider 𝑇 1, the GRP
tour of Type 2 in Note 2 that traverses once all the edges in 𝐹 except
𝑒1, which is traversed twice. Similarly, consider 𝑇 2 for edge 𝑒2. Both
tours satisfy (24) with equality. By subtracting the equalities 𝑎𝑥+𝑏𝑦 = 𝑐
corresponding to 𝑇 1 and 𝑇 2, and considering that 𝑎𝑒 = 𝑏𝑒 = 0 for all
edges 𝑒 ∈ 𝐸𝑁𝑅 ⧵ 𝛿(𝑆) and 𝑏𝑒 = 0 for all 𝑒 ∈ 𝐸𝑅 ⧵ 𝛿(𝑆), we obtain that
∑

𝑒∈𝐸𝑅⧵𝛿(𝑆) 𝑎𝑒 + 𝑏𝑒1 =
∑

𝑒∈𝐸𝑅⧵𝛿(𝑆) 𝑎𝑒 + 𝑏𝑒2 . Hence, 𝑏𝑒1 = 𝑏𝑒2 . By iterating
this argument, we obtain 𝑏𝑒 = 𝜆 for all 𝑒 ∈ 𝐹 , where 𝜆 is a certain
constant value. Furthermore, since 𝑎𝑒 + 𝑏𝑒 = 0 for each 𝑒 ∈ 𝛿𝑁𝑅(𝑆),
we have 𝑎𝑒 = −𝜆 for all 𝑒 ∈ 𝐹𝑁𝑅. Note that this is obviously true if 𝐹
contains only one edge.

Let us suppose there are 𝑒1, 𝑒2 ∈ 𝛿(𝑆) ⧵ 𝐹 . Let 𝑇 1 be the GRP tour
of Type 1 in Note 2 that traverses once the edges in 𝐹 ∪{𝑒1} and twice
the edge 𝑒2. Similarly, let 𝑇 2 be the GRP tour that traverses once the
edges in 𝐹 ∪{𝑒2} and twice 𝑒1. Both tours satisfy (24) with equality. By
subtracting the equalities 𝑎𝑥 + 𝑏𝑦 = 𝑐 corresponding to 𝑇 1 and 𝑇 2, we
obtain ∑

𝑒∈𝐸𝑅⧵𝛿(𝑆) 𝑎𝑒+𝑏𝑒2 =
∑

𝑒∈𝐸𝑅⧵𝛿(𝑆) 𝑎𝑒+𝑏𝑒1 . Hence, we have 𝑏𝑒1 = 𝑏𝑒2 .
By iterating this argument, we obtain 𝑏𝑒 = 𝜇 for all 𝑒 ∈ 𝛿(𝑆) ⧵ 𝐹 and, if
𝑒 ∈ 𝛿𝑁𝑅(𝑆), 𝑎𝑒 = −𝜇, where 𝜇 is a certain constant value. Again, this is
obviously true if 𝛿(𝑆) ⧵ 𝐹 contains only one edge.

Now, let us consider the case where |𝐹 | ≥ 1. Let 𝑒1 ∈ 𝐹 . If there
exists 𝑒2 ∈ 𝛿(𝑆) ⧵ 𝐹 , we can subtract the equalities 𝑎𝑥 + 𝑏𝑦 = 𝑐
corresponding to the two GRP tours: 𝑇 1, which traverses once the edges
in 𝐹 ∪{𝑒2}, and 𝑇 2, which traverses once the edges in 𝐹 ⧵{𝑒1} and twice
𝑒1, 𝑒2. This subtraction leads to ∑

𝑒∈𝐸𝑅⧵𝛿(𝑆) 𝑎𝑒 =
∑

𝑒∈𝐸𝑅⧵𝛿(𝑆) 𝑎𝑒 + 𝑏𝑒1 + 𝑏𝑒2 ,
and hence, 𝑏𝑒1 + 𝑏𝑒2 = 0 = 𝜆 + 𝜇 and we find that 𝜇 = −𝜆. Note that if

𝛿(𝑆) ⧵ 𝐹 = ∅, there is no parameter 𝜇.
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Furthermore, if we replace the (𝑥, 𝑦) values corresponding to any of
the previous tours 𝑇 and the values for 𝑎𝑒, 𝑏𝑒 obtained above into the
equation 𝑎𝑥 + 𝑏𝑦 = 𝑐, we have
∑

𝑒∈𝐸𝑅

𝑎𝑒 + 𝛼
(

1 − |𝐹𝑁𝑅| − |𝛿𝑅(𝑆) ⧵ 𝐹 |

)

= 𝑐,

and we have completed the proof. ⧫

Note 3. Theorem 8 also applies when one of the two shores 𝑆 or 𝑉 ⧵𝑆
consists of only one vertex.

Theorem 9. The following is a complete formulation for the GRP:

𝑥𝑒 = 1, ∀𝑒 ∈ 𝐸𝑅
𝑥𝑒 ≥ 𝑦𝑒, ∀𝑒 ∈ 𝐸𝑁𝑅

𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑖𝑛𝑒𝑞𝑢𝑎𝑙𝑖𝑡𝑖𝑒𝑠 (4) + (5)
𝑃𝑎𝑟𝑖𝑡𝑦 𝑖𝑛𝑒𝑞𝑢𝑎𝑙𝑖𝑡𝑖𝑒𝑠 (24)

𝑥𝑒 ∈ {0, 1}, ∀𝑒 ∈ 𝐸
𝑦𝑒 ∈ {0, 1}, ∀𝑒 ∈ 𝐸𝑁𝑅

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

(27)

Proof. We need to prove that any solution (𝑥∗, 𝑦∗) of (27) is a feasible
solution for the GRP. (𝑥∗, 𝑦∗) is a binary vector representing a graph on
the edges of 𝐺 that satisfies the following conditions: the second copy
of an edge 𝑒, 𝑦∗𝑒 = 1, exists only if the first copy exists (𝑥∗𝑒 ≥ 𝑦∗𝑒 ), and
each required edge must be traversed (𝑥∗𝑒 = 1, ∀𝑒 ∈ 𝐸𝑅). Now we need
to prove that the graph represented by (𝑥∗, 𝑦∗) is Eulerian. Suppose that
the graph represented by (𝑥∗, 𝑦∗) is not connected. Then there exist a
cut-set 𝛿(𝑆) that is not traversed, i.e., (𝑥∗ + 𝑦∗) (𝛿(𝑆)) = 0. Since at least
one of the two shores 𝑆 or 𝑉 ⧵𝑆 contains required edges, let us suppose
for example 𝐸(𝑉 ⧵ 𝑆), and some edge in 𝐸(𝑆) is traversed, say 𝑥∗𝑓 = 1
for any 𝑓 ∈ 𝐸(𝑆). Then, the corresponding connectivity inequality (4)
(if 𝑓 ∈ 𝐸𝑅) or (5) (if 𝑓 ∈ 𝐸𝑁𝑅) is not satisfied by (𝑥∗, 𝑦∗).

Let us now suppose that the graph represented by (𝑥∗, 𝑦∗) is not
even. Then, there exist, at least, a cut-set 𝛿(𝑆) such that (𝑥∗ + 𝑦∗) (𝛿(𝑆))
is an odd number. Let 𝐹 ⊆ 𝛿(𝑆) be the set of edges 𝑒 ∈ 𝛿(𝑆) satisfying
𝑥∗𝑒 = 1 and 𝑦∗𝑒 = 0. Note that |𝐹 | is odd. Note also that the edges in the
set 𝛿(𝑆) ⧵ 𝐹 satisfy 𝑥∗𝑒 = 𝑦∗𝑒 = 1 or 𝑥∗𝑒 = 𝑦∗𝑒 = 0, i.e., 𝑥∗𝑒 − 𝑦∗𝑒 = 0. Then,
(𝑥∗, 𝑦∗) does not satisfy the parity inequality (24) corresponding to 𝛿(𝑆)
and set 𝐹 because
(𝑥∗ − 𝑦∗)(𝛿(𝑆) ⧵ 𝐹 ) = 0 and (𝑥∗ − 𝑦∗)(𝐹 ) − |𝐹 | + 1 = 1. ⧫

3.2. 𝑝-connectivity inequalities

The constraints described in this section are an extension of those
introduced in Corberán et al. (2013) for the MBCPP to cut off frac-
tional solutions similar to the one described as follows. Consider the
GRP instance shown in Fig. 1(a), in which vertex 1 is required, each
thick line represents a required edge, and each thin line represents a
non-required one. Consider the fractional solution (𝑥∗, 𝑦∗) with values
𝑥∗(1,2) = 𝑦∗(1,2) = 𝑥∗(1,4) = 𝑦∗(1,4) = 𝑥∗(2,4) = 𝑦∗(2,4) = 0.5, and 𝑥∗(2,3) = 𝑦∗(2,3) =
𝑥∗(4,5) = 𝑦∗(4,5) = 1, and the remaining variables equal to zero. It can be
seen that this fractional solution satisfies all the inequalities presented
in previous sections but it is cut off with one of the 𝑝-connectivity
inequalities we present in what follows.

Let {𝑆0,… , 𝑆𝑝} be a partition of 𝑉 such that 𝛿(𝑆𝑖) ∩ 𝐸𝑅 = ∅ for
all 𝑖. Assume we divide the set {0, 1,… , 𝑝} =  ∪  (from ‘Required’
and ‘Non-required’) in such a way that 𝑖 ∈  if (𝑆𝑖)𝑅 ≠ ∅ (i.e. if
𝐺(𝑆𝑖) contains isolated required vertices or required edges) and 𝑖 ∈ 
otherwise. Select one edge 𝑒𝑖 ∈ 𝐸(𝑆𝑖) for every 𝑖 ∈  . Note that
𝑒𝑖 ∈ 𝐸𝑁𝑅 and that 1 ≤ || ≤ 𝑝 + 1, 0 ≤ | | ≤ 𝑝, and || + | | = 𝑝 + 1.
Note that all subsets in  have to be visited by all the solutions, while
those in  will be visited necessarily by the solutions that traverse an
edge inside them. The following inequality

(𝑥 + 𝑦)(𝛿(𝑆0)) + 2
∑

𝑥(𝑆𝑟 ∶ 𝑆𝑡) ≥ 2
∑

𝑥𝑒𝑖 + 2 (|| − 1) (28)
8

1≤𝑟<𝑡≤𝑝 𝑖∈
will be referred to as a 𝑝-connectivity inequality. The special case of
inequalities (28) when all the subsets 𝐺(𝑆𝑖) with 𝑖 ∈  contain required
edges are valid for the GRP from Theorem 1 because they are obtained
from the corresponding 𝑝-connectivity inequality for the MBCPP,

(𝑥 + 𝑦)(𝛿(𝑆0)) + 2
∑

1≤𝑟<𝑡≤𝑝
𝑥(𝑆𝑟 ∶ 𝑆𝑡) ≥ 2

𝑝
∑

𝑖=0,𝑖≠𝑑
𝑥𝑒𝑖 , (29)

after replacing the equalities 𝑥𝑒𝑖 = 1 for all 𝑖 ∈ . It can be seen that
the general case of inequalities (28) are also valid for the GRP with a
proof similar to that in Corberán et al. (2013) for the MBCPP.

This inequality with 𝑝 = 2 and | | = 1 is represented in Fig. 1(b)
and (c), where for each pair (𝑎, 𝑏) associated with an edge 𝑒, 𝑎 and 𝑏
represent the coefficients of 𝑥𝑒 and 𝑦𝑒, respectively.

Theorem 10. 𝑝-connectivity inequalities (28) are facet-inducing for
GRP(G) if subgraphs 𝐺(𝑆𝑖), 𝑖 = 0,… , 𝑝, are 3-edge connected, |(𝑆0 ∶ 𝑆𝑖)| ≥
2, ∀ 𝑖 = 1,… , 𝑝, and the graph induced by 𝑉 ⧵ 𝑆0 is connected.

Proof. Inequality (28) can be written as:

(𝑥 + 𝑦)(𝛿(𝑆0)) + 2
∑

1≤𝑟<𝑡≤𝑝
𝑥(𝑆𝑟 ∶ 𝑆𝑡) − 2

∑

𝑖∈
𝑥𝑒𝑖 ≥ 2|| − 2. (30)

Let us suppose there is another valid inequality 𝑎𝑥 + 𝑏𝑦 ≥ 𝑐 such that
{

(𝑥, 𝑦) ∈ GRP(𝐺) ∶ (𝑥 + 𝑦)(𝛿(𝑆0)) + 2
∑

1≤𝑟<𝑡≤𝑝
𝑥(𝑆𝑟 ∶ 𝑆𝑡)

−2
∑

𝑖∈
𝑥𝑒𝑖 = 2|| − 2

}

⊆

⊆
{

(𝑥, 𝑦) ∈ GRP(𝐺) ∶ 𝑎𝑥 + 𝑏𝑦 = 𝑐
}

.

We have to prove that inequality 𝑎𝑥 + 𝑏𝑦 ≥ 𝑐 is a linear combination
of equalities (6) and inequality (30). It can be seen (by adding the
equalities (6), each one multiplied by an 𝑎𝑒 ∈ R, and inequality (30)
multiplied by a 𝜆 ∈ R, and then equating it to 𝑎𝑥 + 𝑏𝑦 ≥ 𝑐) that this is
equivalent to prove that

𝑎𝑒 = 𝑏𝑒 = 𝜆, ∀𝑒 ∈ 𝛿(𝑆0),

𝑎𝑒 = 2𝜆, 𝑏𝑒 = 0, ∀𝑒 ∈ (𝑆𝑟 ∶ 𝑆𝑡), 1 ≤ 𝑟 < 𝑡 ≤ 𝑝,

𝑎𝑒𝑖 = −2𝜆, 𝑏𝑒𝑖 = 0, ∀𝑖 ∈  ,

𝑎𝑒 = 𝑏𝑒 = 0, ∀𝑒 ∈ 𝐸𝑁𝑅(𝑆𝑖), 𝑖 = 0,… , 𝑝, 𝑒 ≠ 𝑒𝑖,

𝑏𝑒 = 0, ∀𝑒 ∈ 𝐸𝑅(𝑆𝑖), 𝑖 = 0,… , 𝑝,

𝑐 =
∑

𝑒∈𝐸𝑅

𝑎𝑒 + 2𝜆 (|| − 1) .

In the GRP tours used in this proof we will not describe how the
edges in each set 𝐸(𝑆𝑖), 𝑖 = 0,… , 𝑝 are traversed. It can be seen that
all these tours can be completed by using T-joins in 𝐸(𝑆𝑖) plus two
copies of each edge in 𝐸(𝑆𝑖) not belonging to the T-joins, as described
in Note 2 for the parity inequalities.

Similar arguments to those used in the proof of Theorem 8 lead to
prove that 𝑎𝑒 + 𝑏𝑒 = 0, for each 𝑒 ∈ 𝐸𝑁𝑅(𝑆𝑖), 𝑖 ∈ , and for each
𝑒 ∈ 𝐸𝑁𝑅(𝑆𝑖) ⧵ {𝑒𝑖}, 𝑖 ∈  . Furthermore, using the 3-edge connectivity
of each graph 𝐺(𝑆𝑖) (hence, there are two edge-disjoint paths 1, 2
joining the end-nodes of an edge 𝑒 ∈ 𝐸(𝑆𝑖) with edges different from
𝑒), we obtain that 𝑏𝑒 = 0 for each edge 𝑒 ∈ 𝐸(𝑆𝑖). Hence, we have
𝑎𝑒 = 𝑏𝑒 = 0 for all 𝑒 ∈ 𝐸𝑁𝑅(𝑆𝑖), 𝑖 ∈ , and for all 𝑒 ∈ 𝐸𝑁𝑅(𝑆𝑖) ⧵ {𝑒𝑖},
𝑖 ∈  .

Let 𝑆𝑖 and 𝑆𝑗 , with 𝑖, 𝑗 ≠ 0, be two sets such that there is an edge
𝑒 ∈ (𝑆𝑖 ∶ 𝑆𝑗 ). Note that 𝑒 ∈ 𝐸𝑁𝑅. For the sake of simplicity, let us
assume 𝑖 ∈ , 𝑗 ∈  (with the other possibilities we would proceed
similarly). Since all the sets (𝑆0 ∶ 𝑆𝑘) are non-empty, and subgraph
𝐺(𝑆𝑗 ) is 3-edge connected, we can construct the GRP tour that traverses
twice an edge 𝑓 ∈ (𝑆0 ∶ 𝑆𝑗 ), traverses once the edge 𝑒𝑗 , traverses all
the required edges, and visits all the sets 𝑆𝑖, 𝑖 ∈  (see Fig. 2(a), where
we assume  = {0,… , ||−1} and  = {||,… , 𝑝}). This tour satisfies
inequality (30) as an equality. If we subtract the equality 𝑎𝑥 + 𝑏𝑦 = 𝑐
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Fig. 1. 2-connectivity inequalities.
Fig. 2. GRP tours satisfying (30) with equality.
corresponding to this tour from the one corresponding to the GRP tour
obtained after removing the two traversals of 𝑓 and all the traversals
of edges in 𝐸(𝑆𝑗 ), which also satisfies inequality (30) as equality, we
get 𝑎𝑓 + 𝑏𝑓 + 𝑎𝑒𝑗 = 0. We construct two more GRP tours satisfying (30)
with equality such as those depicted in Fig. 2(b) and (c). By comparing
(i.e., by subtracting their corresponding equalities 𝑎𝑥 + 𝑏𝑦 = 𝑐) the
GRP tours (a) and (b), we obtain 𝑎0𝑗 + 𝑏0𝑗 = 𝑎𝑖𝑗 + 𝑏𝑖𝑗 = −𝑎𝑒𝑗 , and by
comparing (a) and (c) we obtain 𝑎0𝑖 + 𝑏0𝑖 = 𝑎𝑖𝑗 + 𝑏𝑖𝑗 = −𝑎𝑒𝑗 , where
𝑎𝑘𝑙 (𝑏𝑘𝑙) represents the coefficient of the variable 𝑥 (𝑦) corresponding
to any edge in (𝑆𝑘 ∶ 𝑆𝑙). Given that the graph induced by 𝑉 ⧵ 𝑆0 is
connected, we can iterate this argument to conclude that 𝑎𝑒 + 𝑏𝑒 = 2𝜆
for every edge 𝑒 ∈ (𝑆𝑖 ∶ 𝑆𝑗 ) (including (𝑆0 ∶ 𝑆𝑖)), and 𝑎𝑒𝑖 = −2𝜆 for each
𝑒𝑖, 𝑖 ∈  , where 𝜆 is a certain constant value. Given that graph 𝐺(𝑆𝑖) is
3-edge connected and 𝑏𝑒 = 0 for all edge 𝑒 ∈ 𝐸(𝑆𝑖)⧵ {𝑒𝑖}, by comparing
a GRP tour traversing 𝑒𝑖 twice and the tour obtained by replacing the
second traversal of 𝑒𝑖 by the traversal of a path joining its end-vertices,
we obtain 𝑏𝑒𝑖 = 0 for each 𝑒𝑖, 𝑖 ∈  .

For each 𝑖 ∈ {1, 2,… , 𝑝}, let 𝑒1, 𝑒2 be two edges in (𝑆0 ∶ 𝑆𝑖) (recall
that |(𝑆0 ∶ 𝑆𝑖)| ≥ 2 holds). We have already proved that 𝑎𝑒1 + 𝑏𝑒1 =
𝑎𝑒2 + 𝑏𝑒2 = 2𝜆. It can be seen that we can construct four GRP tours
satisfying inequality (30) as an equality as follows. One tour traverses
𝑒1 once and does not traverses 𝑒2. Another tour traverses 𝑒2 once and
does not traverse 𝑒1. By comparing these tours we obtain 𝑎𝑒1 = 𝑎𝑒2
and, hence, 𝑏𝑒1 = 𝑏𝑒2 . The third tour traverses both 𝑒1 and 𝑒2 once,
and the fourth one traverses 𝑒1 twice and does not traverse 𝑒2. By
comparing them, we obtain 𝑎𝑒2 = 𝑏𝑒1 and, hence, also 𝑎𝑒1 = 𝑏𝑒2 , and
𝑎𝑒1 = 𝑏𝑒1 = 𝑎𝑒2 = 𝑏𝑒2 = 𝜆. Therefore, 𝑎𝑒 = 𝑏𝑒 = 𝜆 for each edge
𝑒 ∈ (𝑆0 ∶ 𝑆𝑖), 𝑖 = 1,… , 𝑝, i.e., for each edge 𝑒 ∈ 𝛿(𝑆0).

As above, let 𝑆𝑖 and 𝑆𝑗 , with 𝑖, 𝑗 ≠ 0, be two sets such that there
is an edge 𝑒 = (𝑢, 𝑣) ∈ (𝑆𝑖 ∶ 𝑆𝑗 ) (again with 𝑖 ∈ , 𝑗 ∈  , for
example). There is a GRP tour 𝑇 that traverses once edge 𝑒, an edge
𝑎 ∈ (𝑆 ∶ 𝑆 ), and an edge 𝑎 ∈ (𝑆 ∶ 𝑆 ) and satisfies inequality (30)
9

𝑖 0 𝑖 𝑗 0 𝑗
as an equality. If we remove from 𝑇 the traversal of 𝑒 = (𝑢, 𝑣) and add
the traversal of the edges in a path joining 𝑢 and 𝑣 formed with edges 𝑎𝑖
and 𝑎𝑗 , plus some edges in 𝐺(𝑆0), 𝐺(𝑆𝑖) and 𝐺(𝑆𝑗 )⧵{𝑒𝑗} (if any of these
last edges is traversed three times, two copies would be removed), we
obtain another GRP tour satisfying (30) as equality. By comparing both
tours we obtain 𝑎𝑒 = 𝑏𝑒𝑖 + 𝑏𝑒𝑗 = 2𝜆, which implies 𝑏𝑒 = 0 (recall that
𝑎𝑒 + 𝑏𝑒 = 2𝜆). Hence, 𝑎𝑒 = 2𝜆, 𝑏𝑒 = 0, for each edge 𝑒 ∈ (𝑆𝑖 ∶ 𝑆𝑗 ), 𝑖 ≠ 𝑗.

Furthermore, if we replace in 𝑎𝑥+𝑏𝑦 = 𝑐 the (𝑥, 𝑦) values correspond-
ing to any of the previous tours 𝑇 and the values for 𝑎𝑒, 𝑏𝑒 obtained
above, we have
∑

𝑒∈𝐸𝑅

𝑎𝑒 + 2𝜆 (|| − 1) = 𝑐,

and we are done. ⧫

3.3. K-C inequalities

K-C inequalities were introduced and proved to be facet-inducing for
the undirected Rural Postman Problem (RPP) in Corberán and Sanchis
(1994). In this section, we describe a new version of these inequalities
and prove they are valid and facet-inducing for the GRP.

Consider the GRP instance shown in Fig. 3, in which each thick line
represents a required edge, each thin line represents a non-required
one, and each large circle represents an arbitrary subgraph containing
at least a required edge or vertex.

Let (𝑥∗, 𝑦∗) be the fractional solution with 𝑥∗𝑒 = 1, 𝑦∗𝑒 = 0 for the
required edges, 𝑥∗(2,4) = 𝑦∗(2,4) = 𝑥∗(3,5) = 𝑦∗(3,5) = 0.5 and 𝑥∗(6,7) = 1, 𝑦∗(6,7) =
0. This solution is ‘‘connected’’ but is not ‘‘even’’ at vertex 2 nor at
vertex 3. Furthermore, it cannot be cut off with parity inequalities: For
example, associated with the cut-set 𝛿({2}) and 𝐹 = {(1, 2), (2, 3), (2, 4)}
we have the following parity inequality (24)

0 ≥ 𝑥 − 𝑦 + 𝑥 − 𝑦 + 𝑥 − 𝑦 − 3 + 1,
(1,2) (1,2) (2,3) (2,3) (2,4) (2,4)
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)

Fig. 3. A GRP instance to illustrate K-C inequalities.

which is not violated by (𝑥∗, 𝑦∗) (as 0 ≥ 0 holds). Note that the fractional
solution similar to (𝑥∗, 𝑦∗) except for 𝑥∗(2,4) = 𝑥∗(3,5) = 1, 𝑦∗(2,4) = 𝑦∗(3,5) = 0,
is indeed cut off by the above parity inequality. It can also be seen that
(𝑥∗, 𝑦∗) satisfies all the 𝑝-connectivity inequalities (28). However, the
fractional solution similar to (𝑥∗, 𝑦∗) except for 𝑥∗(6,7) = 𝑦∗(6,7) = 0.5, is
indeed cut off by a 𝑝-connectivity inequality. We will see that (𝑥∗, 𝑦∗)
is cut off with the inequalities presented in this section.

Let {𝑆0,… , 𝑆𝐾}, with 𝐾 ≥ 3, be a partition of 𝑉 such that 𝛿(𝑆𝑖) ∩
𝐸𝑅 = ∅ for all 𝑖 = 1, 2,… , 𝐾−1. Assume we divide the set {1,… , 𝐾−1} =
∪ (from ‘Required’ and ‘Non-required’) in such a way that 𝑖 ∈  if
(𝑆𝑖)𝑅 ≠ ∅ and 𝑖 ∈  otherwise, and select one edge 𝑒𝑖 ∈ 𝐸(𝑆𝑖) for every
𝑖 ∈  . Note that 𝑒𝑖 ∈ 𝐸𝑁𝑅, 0 ≤ || ≤ 𝐾 − 1 and 0 ≤ | | ≤ 𝐾 − 1, and
|| + | | = 𝐾 − 1. As for the 𝑝-connectivity inequalities, note that all
subsets in  have to be visited by all the solutions, while those in 
will be visited necessarily by the solutions that traverse an edge inside
them. Let 𝐹 ⊆ (𝑆0 ∶ 𝑆𝐾 ) be a set of edges, with |𝐹 | ≥ 2 and even. The
K-C inequalities for the GRP are defined as:

(𝐾 − 2)(𝑥 − 𝑦)
(

(𝑆0 ∶ 𝑆𝐾 ) ⧵ 𝐹
)

− (𝐾 − 2)(𝑥 − 𝑦)(𝐹 ) +

+
∑

0≤𝑖<𝑗≤𝐾
(𝑖,𝑗)≠(0,𝐾)

(

(𝑗 − 𝑖)𝑥(𝑆𝑖 ∶ 𝑆𝑗 ) + (2 − 𝑗 + 𝑖)𝑦(𝑆𝑖 ∶ 𝑆𝑗 )
)

≥ 2
∑

𝑖∈

𝑥𝑒𝑖 + 2|| − (𝐾 − 2)|𝐹 |. (31

The coefficients and structure of the K-C inequalities are shown in
Fig. 4, where, for the sake of simplicity, we assume  = {1,… , ||}
and  = {||+1,… , 𝐾 −1}. Edges in 𝐹 are represented by thick lines.
For each pair (𝑎, 𝑏) associated with an edge 𝑒, 𝑎 and 𝑏 represent the
coefficients in the inequality of 𝑥𝑒 and 𝑦𝑒, respectively.

The special case of the K-C inequalities (31) when all the subsets
𝐺(𝑆𝑖) with 𝑖 ∈  contain required edges are valid for the GRP from
Theorem 1 because they are obtained from the corresponding K-C
inequality for the MBCPP,

(𝐾 − 2)(𝑥 − 𝑦)
(

(𝑆0 ∶ 𝑆𝐾 ) ⧵ 𝐹
)

− (𝐾 − 2)(𝑥 − 𝑦)(𝐹 ) +

+
∑

0≤𝑖<𝑗≤𝐾
(𝑖,𝑗)≠(0,𝐾)

(

(𝑗 − 𝑖)𝑥(𝑆𝑖 ∶ 𝑆𝑗 ) + (2 − 𝑗 + 𝑖)𝑦(𝑆𝑖 ∶ 𝑆𝑗 )
)

≥ 2
𝐾−1
∑

𝑖=1
𝑥𝑒𝑖 − (𝐾 − 2)|𝐹 |,

after replacing the equalities 𝑥𝑒𝑖 = 1 for all 𝑖 ∈ . In general, it can
be seen that K-C inequalities (31) are valid for the GRP with a proof
similar to that in Corberán et al. (2013).

It is easy to see that, when 𝐾 = 2, the K-C inequality (31) reduces
to a connectivity inequality (4) when (𝑆0 ∪𝑆2)𝑅 ≠ ∅ and (𝑆1)𝑅 ≠ ∅, and
to a connectivity inequality (5) when (𝑆1)𝑅 = ∅.

Regarding the fractional solution (𝑥∗, 𝑦∗) described above for the
instance represented in Fig. 3, note that the K-C inequality (31) with
𝐾 = 3 and 𝐹 = {(1, 2), (2, 3)},

−𝑥 +𝑦 −𝑥 +𝑦 +𝑥 +𝑦 +𝑥 +𝑦 +𝑥 +𝑦 ≥ 4−2,
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(1,2) (1,2) (2,3) (2,3) (2,4) (2,4) (6,7) (6,7) (3,5) (3,5)
Fig. 4. Coefficients of the K-C inequality.

is violated by (𝑥∗, 𝑦∗) as −2 + 3 < 2 holds.

Note 4. Les us describe several types of GRP tours that satisfy the K-C
inequality (31) with equality that will be used in the proof of Theo-
rem 11. We do not detail how the edges in each set 𝐸(𝑆𝑖) are traversed.
Note that if subgraphs 𝐺(𝑆𝑖), 𝑖 = 0,… , 𝐾, are 3-edge connected, all
these tours can be completed by using T-joins as described in Note 2
for the parity inequalities.

The GRP tours represented in Fig. 5(a), (b) and (c) traverse each
edge 𝑒 ∈ 𝐹 (represented in bold lines in the figures) exactly once
(𝑥𝑒 = 1, 𝑦𝑒 = 0) and each edge not in 𝐹 either twice (𝑥𝑒 = 𝑦𝑒 = 1) or
none (𝑥𝑒 = 𝑦𝑒 = 0) and, therefore, these tours traverse the set (𝑆0 ∶ 𝑆𝐾 )
an even number of times. These GRP tours traverse each edge 𝑒𝑖 twice,
for all 𝑖 ∈  , and connect all the sets 𝑆𝑗 , 𝑗 = 0, 1, 2,… , 𝐾 − 1 in an
‘‘even’’ way. It can be seen that these tours satisfy (31) with equality.

The GRP tours represented in Fig. 5(d) are similar to those rep-
resented in Fig. 5(a) except that they do not traverse a given edge
𝑒𝑝, 𝑝 ∈  nor reaches the corresponding set 𝑆𝑝. These tours also
satisfy (31) with equality. The GRP tours represented in Fig. 5(e) and
(f) traverse the set (𝑆0 ∶ 𝑆𝐾 ) an odd number of times, and they connect
the sets 𝑆𝑖 with a ‘‘path’’ from 𝑆0 to 𝑆𝐾 , traversing each edge 𝑒𝑖, 𝑖 ∈ 
once. The tours in (e) traverse exactly once each edge in 𝐹 and one
more edge in (𝑆0 ∶ 𝑆𝐾 ) while the remaining edges in (𝑆0 ∶ 𝑆𝐾 ) are
either traversed twice or not traversed. The tours in (f) traverse exactly
once each edge in 𝐹 except one of them while the remaining edges in
(𝑆0 ∶ 𝑆𝐾 ) either twice or none. All these tours satisfy (31) with equality.

Theorem 11. K-C inequalities (31) are facet-inducing for GRP(𝐺) if
subgraphs 𝐺(𝑆𝑖), 𝑖 = 0,… , 𝐾, are 3-edge connected and |(𝑆𝑖 ∶ 𝑆𝑖+1)| ≥ 2
for 𝑖 = 0,… , 𝐾 − 1.

Proof. After substituting in (31) 𝑥𝑒 = 1 for each edge in (𝑆0 ∶ 𝑆𝐾 )𝑅 and
in 𝐹𝑅, we obtain the following equivalent inequality:

(𝐾 − 2)(𝑥 − 𝑦)
(

(𝑆0 ∶ 𝑆𝐾 )𝑁𝑅 ⧵ 𝐹
)

− (𝐾 − 2)(𝑥 − 𝑦)(𝐹𝑁𝑅) −

−(𝐾 − 2)𝑦
(

(𝑆0 ∶ 𝑆𝐾 )𝑅 ⧵ 𝐹
)

+ (𝐾 − 2)𝑦(𝐹𝑅) +

+
∑

0≤𝑖<𝑗≤𝐾
(𝑖,𝑗)≠(0,𝐾)

(

(𝑗 − 𝑖)𝑥(𝑆𝑖 ∶ 𝑆𝑗 ) + (2 − 𝑗 + 𝑖)𝑦(𝑆𝑖 ∶ 𝑆𝑗 )
)

− 2
∑

𝑖∈
𝑥𝑒𝑖 ≥

≥ 2|| − (𝐾 − 2)|𝐹𝑁𝑅| − (𝐾 − 2)|(𝑆0 ∶ 𝑆𝐾 )𝑅 ⧵ 𝐹 |. (32)

Let us suppose there is another valid inequality 𝑎𝑥+𝑏𝑦 ≥ 𝑐 such that
{

(𝑥, 𝑦) ∈ GRP(𝐺) ∶ (𝑥, 𝑦) satisfies (31) with equality
}
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Fig. 5. GRP tours described in Note 4 and used in the proof of Theorem 11.
⊆
{

(𝑥, 𝑦) ∈ GRP(𝐺) ∶ 𝑎𝑥 + 𝑏𝑦 = 𝑐
}

.

We have to prove that inequality 𝑎𝑥+ 𝑏𝑦 ≥ 𝑐 is a linear combination of
the equalities (6) and inequality (32).

It can be seen (by adding the equalities (6), each one multiplied by
an 𝑎𝑒 ∈ R, and inequality (32) multiplied by a 𝜆 ∈ R, and then equating
it to 𝑎𝑥 + 𝑏𝑦 ≥ 𝑐) that this is equivalent to prove that

𝑎𝑒 = 𝜆(𝐾 − 2), 𝑏𝑒 = −𝜆(𝐾 − 2), ∀𝑒 ∈ (𝑆0 ∶ 𝑆𝐾 )𝑁𝑅 ⧵ 𝐹 ,

𝑏𝑒 = −𝜆(𝐾 − 2), ∀𝑒 ∈ (𝑆0 ∶ 𝑆𝐾 )𝑅 ⧵ 𝐹 ,

𝑎𝑒 = −𝜆(𝐾 − 2), 𝑏𝑒 = 𝜆(𝐾 − 2), ∀𝑒 ∈ 𝐹𝑁𝑅,

𝑏𝑒 = 𝜆(𝐾 − 2), ∀𝑒 ∈ 𝐹𝑅,

𝑎𝑒 = 𝜆(𝑗 − 𝑖), 𝑏𝑒 = −𝜆(2 − 𝑗 + 𝑖), ∀𝑒 ∈ (𝑆𝑖 ∶ 𝑆𝑗 ), 0 ≤ 𝑖 < 𝑗 ≤ 𝐾, (𝑖, 𝑗) ≠ (0, 𝐾),

𝑎𝑒 = −2𝜆, 𝑏𝑒 = 0, ∀𝑒𝑖, 𝑖 ∈  ,

𝑎𝑒 = 𝑏𝑒 = 0, ∀𝑒 ∈ 𝐸(𝑆𝑖)𝑁𝑅, 𝑖 = 0, 1,… , 𝐾, 𝑒 ≠ 𝑒𝑖,

𝑏𝑒 = 0, ∀𝑒 ∈ 𝐸(𝑆𝑖)𝑅, 𝑖 = 0, 1,… , 𝐾,

𝑐 =
∑

𝑒∈𝐸𝑅

𝑎𝑒 + 2𝜆|| − 𝜆(𝐾 − 2)|𝐹𝑁𝑅|

−𝜆(𝐾 − 2)|(𝑆0 ∶ 𝑆𝐾 )𝑅 ⧵ 𝐹 |.

Similar arguments to those used in the proof of Theorems 8 and
10 using the 3-edge connectivity of graphs 𝐺(𝑆𝑖) lead to prove that
𝑎𝑒 = 𝑏𝑒 = 0, for each 𝑒 ∈ 𝐸𝑁𝑅(𝑆𝑖), 𝑖 ∈ , and for each 𝑒 ∈ 𝐸𝑁𝑅(𝑆𝑖)⧵{𝑒𝑖},
𝑖 ∈  , and, also that 𝑏𝑒 = 0 for each edge 𝑒 ∈ 𝐸(𝑆𝑖).

For each 𝑖 ∈  , let 𝑇 1 be the GRP tour of type (a) in Note 4
traversing twice an edge in each set (𝑆𝑗 ∶ 𝑆𝑗+1), 𝑗 ≠ 𝑖, and let 𝑇 2

be the GRP tour of type (d) traversing twice the same edge in each
set (𝑆𝑗 ∶ 𝑆𝑗+1), 𝑗 ≠ 𝑖 − 1, 𝑖. By subtracting the equations 𝑎𝑥 + 𝑏𝑦 = 𝑐
corresponding to both tours, we obtain that 𝑎𝑒 + 𝑏𝑒 + 𝑎𝑒𝑖 + 𝑏𝑒𝑖 = 0 for all
𝑒 ∈ (𝑆𝑖−1 ∶ 𝑆𝑖). If we consider the GRP tour 𝑇 3 of type (a) traversing
twice an edge in each set (𝑆𝑗 ∶ 𝑆𝑗+1), 𝑗 ≠ 𝑖 − 1, by subtracting the
equations corresponding to 𝑇 2 and 𝑇 3, we conclude 𝑎𝑒+𝑏𝑒+𝑎𝑒𝑖+𝑏𝑒𝑖 = 0,
for all 𝑒 ∈ (𝑆𝑖 ∶ 𝑆𝑖+1). For each 𝑖 ∈ , let 𝑇 1 and 𝑇 3 two GRP tours of
type (a) defined as above. By comparing them (i.e., by subtracting their
corresponding equalities 𝑎𝑥+ 𝑏𝑦 = 𝑐) we conclude that 𝑎𝑒 + 𝑏𝑒 = 𝑎𝑓 + 𝑏𝑓
for all 𝑒 ∈ (𝑆𝑖−1 ∶ 𝑆𝑖) and 𝑓 ∈ (𝑆𝑖 ∶ 𝑆𝑖+1). By iterating this argument,
we obtain that 𝑎𝑒 + 𝑏𝑒 = 2𝜆 for all 𝑒 ∈ (𝑆𝑖 ∶ 𝑆𝑖+1), 𝑖 = 1,… , 𝐾 − 1, and
𝑎𝑒𝑖 + 𝑏𝑒𝑖 = −2𝜆 for all 𝑖 ∈  , where 𝜆 is a certain constant value.

For each 𝑖 ∈  , let 𝑇 1 be the GRP tour of type (e) in Note 4
traversing edge 𝑒𝑖 = (𝑢, 𝑣) once. Given that 𝐺(𝑆𝑖) is a 3-edge connected
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graph, we can find a path connecting 𝑢 and 𝑣 that does not traverse 𝑒𝑖.
If we add this path plus one copy of 𝑒𝑖 to 𝑇 1, we obtain a GRP tour 𝑇 2

also satisfying (32) with equality. By comparing both tours, and given
that 𝑎𝑒 = 𝑏𝑒 = 0 for all 𝑒 ∈ 𝐸(𝑆𝑖)⧵{𝑒𝑖}, we obtain 𝑏𝑒𝑖 = 0 and, therefore,
𝑎𝑒𝑖 = −2𝜆.

For each 𝑖 ∈ {0, 1, 2,… , 𝐾 − 1}, let 𝑒, 𝑓 be two edges in 𝐸(𝑆𝑖 ∶ 𝑆𝑖+1)
(there exist because |(𝑆𝑖 ∶ 𝑆𝑖+1)| ≥ 2 holds). There are two GRP tours 𝑇 1

and 𝑇 2 of type (e) in Note 4 traversing edges 𝑒 and 𝑓 once respectively.
By comparing both tours, we get 𝑎𝑒 = 𝑎𝑓 . Since we have proved that
𝑎𝑒+𝑏𝑒 = 2𝜆 = 𝑎𝑓 +𝑏𝑓 , we have 𝑏𝑒 = 𝑏𝑓 . Furthermore, let 𝑇 3 be a tour of
type (a) traversing edge 𝑒 twice and 𝑇 4 a similar tour traversing 𝑒 and
𝑓 once. By comparing these tours, we obtain 𝑏𝑒 = 𝑎𝑓 and, since 𝑎𝑓 = 𝑎𝑒,
we get 𝑎𝑒 = 𝑏𝑒. Therefore 𝑎𝑒 = 𝑏𝑒 = 𝜆 for each edge 𝑒 ∈ 𝐸(𝑆𝑖 ∶ 𝑆𝑖+1),
for all 𝑖 ∈ {0, 1, 2,… , 𝐾 − 1}.

Let 𝑒 ∈ (𝑆0 ∶ 𝑆𝐾 )𝑁𝑅 and let 𝑇 be a GRP tour of type (f) in Note 4
that does not traverse edge 𝑒. The GRP tour 𝑇 +2𝑒 also satisfies (32)
with equality, since 𝑥𝑒 = 𝑦𝑒 = 1 and the sum of the coefficients of
both variables in (32) is zero. By comparing both tours, we obtain that
𝑎𝑒 + 𝑏𝑒 = 0, for all 𝑒 ∈ (𝑆0 ∶ 𝑆𝐾 )𝑁𝑅.

Let 𝑒 ∈ 𝐹𝑁𝑅. By comparing the GRP tour of type (a) traversing
once all the edges in 𝐹 and the GRP tour of type (f) traversing once
all the edges in 𝐹 , except edge 𝑒 that is not traversed, we obtain that
𝑎𝑒 + 𝜆(𝐾 − 1) − 𝜆 = 0. Hence, 𝑎𝑒 = −𝜆(𝐾 − 2) and 𝑏𝑒 = 𝜆(𝐾 − 2).

Let 𝑒 ∈ (𝑆0 ∶ 𝑆𝐾 )𝑁𝑅 ⧵ 𝐹 . By comparing the GRP tour of type
(a) traversing once all the edges in 𝐹 and the GRP tour of type (e)
traversing once all the edges in 𝐹 ∪{𝑒}, we obtain that 𝜆(𝐾−1)−𝜆 = 𝑎𝑒
and, hence, 𝑏𝑒 = −𝜆(𝐾 − 2).

Let 𝑒 ∈ 𝐹𝑅. By comparing the GRP tour of type (a) traversing once
all the edges in 𝐹 and the GRP tour of type (e) traversing once all
the edges in 𝐹 except edge 𝑒 that is traversed twice, we obtain that
𝜆(𝐾 − 1) = 𝑏𝑒 + 𝜆 = 0. Hence, 𝑏𝑒 = 𝜆(𝐾 − 2).

Let 𝑒 ∈ (𝑆0 ∶ 𝑆𝐾 )𝑅 ⧵ 𝐹 . By comparing the GRP tour of type (a)
traversing once all the edges in 𝐹 and twice edge 𝑒 and the GRP tour
of type (e) traversing once all the edges in 𝐹 ∪ {𝑒}, we obtain that
𝑎𝑒 + 𝑏𝑒 + 𝜆(𝐾 − 1) = 𝑎𝑒 + 𝜆 and, hence, 𝑏𝑒 = −𝜆(𝐾 − 2).

For each edge 𝑒 ∈ 𝐸(𝑆𝑖 ∶ 𝑆𝑗 ), with |𝑖 − 𝑗| > 1, by comparing tours
of type (a) and (c) in Fig. 5, we obtain 𝑎𝑒 = 𝜆|𝑖 − 𝑗|, and by comparing
tours of type (b) and (c), we obtain that 𝑏𝑒 + 𝜆

(

|𝑖 − 𝑗| − 1
)

= 𝜆 and,
therefore, 𝑏𝑒 = 𝜆

(

2 − |𝑖 − 𝑗|
)

.
Finally, if we replace in 𝑎𝑥 + 𝑏𝑦 = 𝑐 the (𝑥, 𝑦) values corresponding

to any of the previous tours 𝑇 and the values for 𝑎𝑒, 𝑏𝑒 obtained above,
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we have
∑

∈𝐸𝑅

𝑎𝑒 + 2𝜆|| − 𝜆(𝐾 − 2)|𝐹𝑁𝑅| − 𝜆(𝐾 − 2)|(𝑆0 ∶ 𝑆𝐾 )𝑅 ⧵ 𝐹 | = 𝑐,

nd we are done. ⧫

. A branch-and-cut algorithm

We describe in this section a branch-and-cut algorithm whose
utting-plane procedure uses inequalities from the polyhedral descrip-
ion presented in the previous sections.

The initial LP relaxation contains all the inequalities (6) and (7), the
ounds 0,1 on the variables, a connectivity inequality (4) for each R-set
𝑖, and a parity inequality (24) with 𝑆 = {𝑣} for each 𝑅-odd degree
ertex 𝑣 and 𝐹 = 𝛿𝑅(𝑣). At each iteration of the cutting-plane algorithm,
e use several separation procedures to find valid inequalities that are
iolated by the current LP solution (𝑥∗, 𝑦∗).

As mentioned previously, the RPP and GRP benchmark instances are
ll simplified. Therefore all the computational experiments have been
onducted on instances where 𝑉𝑁𝑅 = ∅ and ∪𝑉 𝑖 = 𝑉 . This implies that

the inequalities presented before become slightly simpler.

4.1. Separation of connectivity inequalities

Since 𝑉𝑁𝑅 = ∅, connectivity inequalities of the type (5) are not
needed and inequalities (4) are defined only for all 𝑆 =

(

∪𝑖∈𝑇 𝑉 𝑖),
with 𝑇 ⊂ {1,… , 𝑄}. These inequalities (4) can be separated exactly in
polynomial time with the well-known Gomory and Hu algorithm (Go-
mory and Hu, 1961). This is done by finding a minimum weight cut in
the weighted shrunk graph 𝐺𝑠 = (𝑉𝑠, 𝐸𝑠, �̄�∗ + �̄�∗) obtained by shrinking
each 𝑅-set into a single vertex. A minimum weight cut in an undirected
graph can be found by using the more efficient algorithms in Padberg
and Rinaldi (1990) and Nagamochi et al. (1994).

Although polynomial, the above exact algorithm is quite time-
consuming and we use it exceptionally. Instead, we use two faster
heuristic algorithms. The first one is based on the computation of the
connected components of the subgraph of 𝐺𝑠 induced by the edges
𝑒 ∈ 𝐸𝑠 with �̄�∗𝑒 + �̄�∗𝑒 > 𝜀, where 𝜀 is a given parameter. For each
set of vertices 𝑆 in the original graph corresponding to a connected
component such that (𝑥∗ + 𝑦∗)(𝛿(𝑆)) < 2, a violated connectivity
inequality (4) is obtained. Note that, for integral solutions, this heuristic
algorithm with 𝜀 = 0 finds any violated connectivity inequality if it
exists.

A second heuristic consists of iteratively shrinking in 𝐺𝑠 two com-
ponents among which �̄�∗ + �̄�∗ ≥ 1 into a single one, as long as possible.
Next, we calculate the minimum cut from a given resulting component
to all other ones. Again, if this minimum cut is less than 2 we have a
violated connectivity inequality (4).

4.2. Separation of parity inequalities

Parity inequalities (24) can be separated in polynomial time. Note
that if we change 𝑥 − 𝑦 for 𝑥 in

(𝑥−𝑦)(𝛿(𝑆)⧵𝐹 ) ≥ (𝑥−𝑦)(𝐹 )−|𝐹 |+1, ∀𝑆 ⊂ 𝑉 , ∀𝐹 ⊂ 𝛿(𝑆) with |𝐹 | odd,

we obtain the cocircuit inequalities presented in Ghiani and Laporte
(2000). These inequalities can be separated exactly in polynomial time
with an algorithm (see Benavent et al. (2000), for example) based on
the computation of odd minimum cuts on an auxiliary graph �̄�∗ in
which each edge 𝑒 = (𝑖, 𝑗) of 𝐺∗ has been split into two edges: (𝑖, 𝑢𝑒) with
weight 𝑥∗𝑒−𝑦∗𝑒 and (𝑢𝑒, 𝑗) with weight 1−(𝑥∗𝑒−𝑦∗𝑒 ), and where some parity
labels on the vertices are considered. Any odd cut-set (with respect to
those labels) in the graph �̄�∗ with weight less than 1 provides a violated
parity inequality (24). The minimal odd cut-sets can be computed with
the classical Padberg–Rao procedure (Padberg and Rao, 1982) or with
12

the improved one of Letchford et al. (2008).
For parity inequalities with 𝑆 = {𝑣}, 𝑣 ∈ 𝑉𝑅, one can apply an exact
and simple procedure (Ghiani and Laporte, 2000) to obtain the set 𝐹
of edges corresponding to the maximally violated inequality associated
with the cut-set 𝛿(𝑣), if it exists. The same procedure can be applied to
find the set 𝐹 corresponding to any subset 𝑆 ⊂ 𝑉 . In particular, we do
so for all 𝑅-sets.

A heuristic algorithm based on the computation of the connected
components of the support graph 𝐺∗ induced by the edges with 𝜀 <
𝑥∗𝑒 −𝑦∗𝑒 < 1−𝜀, where 𝜀 is a given parameter, is also used. For the set 𝑆
of vertices of each connected component of 𝐺∗, the corresponding set
𝐹 is found by applying the above procedure.

4.3. Separation of 𝑝-connectivity inequalities

When 𝑉𝑁𝑅 = ∅, the 𝑝-connectivity inequality (28) becomes simpler
and reduces to

(𝑥 + 𝑦)(𝛿(𝑆0)) + 2
∑

1≤𝑟<𝑡≤𝑝
𝑥(𝑆𝑟 ∶ 𝑆𝑡) ≥ 2𝑝 (33)

To separate these inequalities, we have devised the following heuristic
algorithm. Let (𝑥∗, 𝑦∗) be the current LP solution. Starting with 𝐶 𝑖 =
𝑉 𝑖, 𝑖 = 1,… , 𝑄 (the 𝑅-sets of 𝐺), we iteratively shrink 𝐶 𝑖 and 𝐶𝑗 if
(𝑥∗ + 𝑦∗)(𝐶 𝑖 ∶ 𝐶𝑗 ) ≥ 2, while possible. For each resulting set of vertices
𝐶 𝑖 we proceed as follows. We choose 𝑆0 = 𝐶 𝑖 and denote the remaining
sets 𝐶𝑗 as 𝑆1,… , 𝑆𝑝. While 𝑝 > 2, we try to merge pairs of sets 𝑆𝑖 and
𝑆𝑗 according to the following rules:

• If 𝑖, 𝑗 ≠ 0 and 𝑥∗(𝑆𝑖 ∶ 𝑆𝑗 ) ≥ 1, we merge 𝑆𝑖 and 𝑆𝑗 . Notice that if
we shrink 𝑆𝑖 and 𝑆𝑗 , the LHS of the inequality (33) decreases by
2𝑥∗(𝑆𝑖 ∶ 𝑆𝑗 ) while the RHS decreases by 2.

• If 𝑖 = 0 (or 𝑗 = 0) and (𝑥∗ + 𝑦∗) (𝑆0 ∶ 𝑆𝑖) +
∑

𝑟≠0,𝑖 (𝑥∗ − 𝑦∗) (𝑆𝑖 ∶
𝑆𝑟) ≥ 2, we make 𝑆0 ∶= 𝑆0 ∪ 𝑆𝑖. Note that if we shrink 𝑆0 and
𝑆𝑖, the LHS of the inequality (33) decreases by (𝑥∗ + 𝑦∗) (𝑆0 ∶ 𝑆𝑖)
since these variables disappear, and by ∑

𝑟≠0,𝑖 (𝑥∗ − 𝑦∗) (𝑆𝑖 ∶ 𝑆𝑟)
since each 2𝑥∗(𝑆𝑖 ∶ 𝑆𝑟) becomes (𝑥∗ + 𝑦∗)(𝑆𝑖 ∶ 𝑆𝑟), while the RHS
is decreased by 2.

The 𝑝-connectivity inequality (33) associated with the resulting sets
𝑆0, 𝑆1,… , 𝑆𝑝 is checked for violation.

4.4. Separation of K-C inequalities

Since 𝑉𝑁𝑅 = ∅, in the K-C inequalities (31), we have  = ∅ and
|| = 𝐾 − 1. Therefore these inequalities can be separated with an
algorithm similar to the one proposed in Corberán et al. (2001) for the
General Routing Problem (GRP).

4.5. The cutting-plane algorithm

At each iteration of the cutting plane algorithm the separation
procedures are called in the following order:

1. The first heuristic algorithm for separating connectivity inequal-
ities is applied with 𝜀 = 0. If no violated inequalities are found, it
is called again with 𝜀 = 0.25, 0.5. If this fails, the second heuristic
algorithm is run.

2. Parity inequalities are separated exactly for all subsets of vertices
consisting of a single required vertex or an 𝑅-set.

3. The heuristic procedure for parity inequalities is applied with
values of 𝜀 = 0, 0.2, 0.4, while it does not find any violated
inequality.

4. The heuristic algorithm for separating the 𝑝-connectivity in-
equalities is run at every node whose depth is less than or equal

to 6.
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Table 1
Characteristics of the instances.
Set Type Vertices Edges 𝑅-sets

Aver. Min Max Aver. Min Max Aver. Min Max

UR500 RPP 446.0 298 499 1128.9 597 1526 35.3 1 99
UR750 RPP 665.7 452 749 1698.4 915 2314 55.7 1 140
UR1000 RPP 886.2 605 1000 2289.9 1122 3083 74.8 1 204
UR40 × 25 RPP 1000 1000 1000 2562 2551 2576 182.3 136 232
UR40 × 50 RPP 2000 2000 2000 5201.1 5159 5248 339.3 219 458
UR60 × 50 RPP 3000 3000 3000 7827.2 7796 7846 523 344 686
UG500 GRP 500 500 500 1213.1 858 1571 92.2 1 259
UG750 GRP 750 750 750 1826.6 1346 2288 135.0 1 412
UG1000 GRP 1000 1000 1000 2437.2 1765 3105 176.8 1 573
GTSP GTSP 181.7 150 225 329.9 296 392 181.7 150 225
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5. Only at the root node, if no violated connectivity inequalities
have been found and the number of 𝑅-sets is not greater than
250, the heuristic algorithm for separating K-C inequalities is
executed.

6. The exact procedure for parity inequalities is applied with dif-
ferent strategies:

• For instances with up to 1000 vertices, if no violated parity
inequalities are found and the depth of the node is no
greater than 3.

• For instances with 1000 < |𝑉 | ≤ 2000, if no more than two
violated inequalities of any kind are found and the depth
of the node is no greater than 3.

• Finally, if |𝑉 | > 2000, only at the root node and when no
violated inequalities of any kind are found.

7. The exact separation algorithm for connectivity inequalities is
applied only at the root node if the previous heuristics fail and
|𝑉 | ≤ 1000.

Moreover, a tailing-off strategy is applied when the lower bound
ncreases less than 0,0015% in the last 20 iterations. If |𝑉 | ≤ 2000, the
trong branching strategy with a maximum of 10 candidates is applied,
therwise, the pseudo reduced costs strategy is used to select the
ariable for branching. Best bound is the strategy chosen for selecting
he node to study and Cplex cuts are turned off, as well as its heuristic.

. Computational experiments

In this section, we present the computational experiments carried
ut to assess the performance of the new algorithm, denoted from here
n NewB&C. The results are compared with those obtained by the exact
rocedure proposed in Corberán et al. (2007), denoted B&C, which, as
ar as we know, is the one producing the best results known for the
PP and GRP. First, we describe the instances that have been used

or the comparison and then we show the results on these instances.
oth the instances and computational results are available at https:
/www.uv.es/plani/instancias.htm.

.1. The instances

Both algorithms were tested on the 79 instances defined on undi-
ected graphs described in Corberán et al. (2007), 36 of them corre-
ponding to RPP instances, 36 to GRP, and 7 to GTSP. The 36 RPP
nstances were generated as follows. First, |𝑉 | ∈ {500, 750, 1000} points

are randomly selected on a 1000 × 1000 grid. Then, for each vertex 𝑣,
∈ {3, 4, 5, 6} edges connecting 𝑣 to its 𝑑 nearest neighbors are added.

f the resulting graph is not connected, the edges of five trees spanning
he connected components are added. The costs of the edges are given
y rounded Euclidean distances, and an edge is defined as required with
given probability 𝑝𝑟 ∈ {0.25, 0.50, 0.75}. Since the graphs associated
ith these instances could contain vertices not incident with the re-
uired edges, the authors applied a simplification procedure similar to
13

o

the one described in Christofides et al. (1981). Therefore, the number
of vertices of the simplified instances may be less than the initial value
set for |𝑉 |. The RPP instances are grouped into the sets denoted by
UR500, UR750, and UR1000 in Table 1. The 36 GRP instances were
generated as above, except that the graph was not simplified and all
the vertices were considered required. These instances are grouped in
three sets UG500, UG750, and UG1000, consisting of 12 instances each.
Finally, the set named GTSP contains seven GTSP instances generated
from well-known TSPLIB instances.

Since all the RPP instances were solved optimally by B&C, to
ompare its behavior with that of the new exact algorithm NewB&C
e have generated three new sets of RPP instances with 1000, 2000,
nd 3000 vertices, respectively. Ten instances have been generated on
40 × 25 grid, ten on a 40 × 50 grid, and ten on a 60 × 50 grid.

All horizontal and vertical edges are included, while diagonal edges
are included with a probability of 2/3. An edge is selected as required
with a given probability 𝑝𝑟 ∈ {0.2, 0.3}. If a vertex is not incident
with required edges, one of its incident edges is randomly selected and
declared as required. Fig. 6 shows the required edges of the RPP-GRID-
40-25-3-4 instance, which is the fourth instance generated on a 40 × 25
grid with 𝑝𝑟 = 0.3. Five instances are generated with each value of 𝑝𝑟
nd each grid for a total of 5×2×3 = 30 very large instances. These three
ets are named UR40 × 25, UR40 × 50, and UR50 × 60, respectively,
nd their characteristics, as well as those of the 36 RPP, 36 GRP, and
GTSP instances described above, are presented in Table 1. Note that

he largest instances have 3000 vertices, 7846 edges, and 686 𝑅-sets.

.2. Computational results

Here we present the results obtained after running both algorithms
n the same machine, an Intel(R) Core(TM) i7-7700HQ @2.80 GHz
PU and 16 GB RAM, using CPLEX Studio 12.10, on the sets of in-
tances presented above with a time limit of one hour. Table 2 reports,
or each set of instances and each algorithm, the number of instances
olved to optimality, the average time in seconds, the average number
f nodes of the search tree explored, and the average percentage gap
etween the final upper and lower bounds for the unsolved instances.
ote that, in some of these unsolved instances, no feasible solution was

ound and, therefore, this gap could not be calculated. The number in
rackets after the gap indicates the number of unsolved instances for
hich a feasible solution was found. The complete detailed results can
e found in Appendix.

Regarding computing times, we can observe in Table 2 that B&C is,
n general, faster than NewB&C. Note that, in some sets, the average
ime reported is considerably lower for NewB&C. However, if we did
ot take into account the unsolved instances, which account for 3600 s
ach, the average times would be similar or lower for B&C. This
ehavior can be observed in Fig. 7, that depicts the number of instances
olved optimally against the computing time consumed. Looking at the
umber of optimal solutions found, NewB&C, which solves 96 out of
09 instances to optimality, clearly outperforms B&C, which is capable

f solving only 86. Moreover, NewB&C is able to find feasible solutions

https://www.uv.es/plani/instancias.htm
https://www.uv.es/plani/instancias.htm
https://www.uv.es/plani/instancias.htm
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Fig. 6. Instance RPP-GRID-40-25-3-4.
or all the instances, while B&C fails to do so in 13 cases. A remarkable
esult is the one obtained for the GTSP instance TS225G, based on a
14
TSPLIB instance that was deliberately designed to be especially difficult
for cutting-plane algorithms. The new algorithm NewB&C is able to
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Table 2
Results with the two branch-and-cut algorithms.
Set B&C NewB&C

Optima Time Nodes Gap (%) Optima Time Nodes Gap (%)

UR500 12/12 2.9 7.1 12/12 40.8 2.0
UR750 12/12 31.9 21.2 12/12 160.6 115.2
UR1000 12/12 88.0 33.2 12/12 422.6 210.3
UR40 × 25 9/10 975.6 158.4 0.50 (1) 10/10 347.6 53.8
UR40 × 50 3/10 2803.7 125 0.19 (6) 9/10 2169.9 139.8 1.09 (1)
UR60 × 50 0/10 3600 14.2 0.14 (1) 0/10 3600 581.1 1.01 (10)
UG500 11/12 430.1 72.3 – 12/12 159.4 8.9
UG750 10/12 772.7 53.8 0.84 (2) 12/12 963.4 214.5
UG1000 9/12 1219.1 72.7 0.28 (1) 10/12 1240.6 286.7 0.50 (2)
GTSP 6/7 515.5 6424.6 2.60 (1) 7/7 9.5 1.0
Fig. 7. Number of optimal solutions found vs computing time.
solve this instance to optimality in the root node in 18.8 s, while
B&C could not solve it in one hour after exploring more than 44,000
nodes.

Overall, both algorithms are competent in solving large RPP and
GRP instances. The B&C algorithm is a very sophisticated one that
seems to be a better option for medium-sized instances, while NewB&C
would be preferable for the very large ones.

6. Conclusions

In this work we have introduced a new formulation for the Rural
Postman Problem (RPP) and the General Routing Problem (GRP). This
formulation, used formerly in Corberán et al. (2013), uses two binary
variables for each edge, representing its first and second traversal,
respectively. We have studied the polytope associated with the feasible
solutions and shown that several families of inequalities induce facets
of it. With these inequalities, we have designed a branch-and-cut algo-
rithm that has been tested on several sets of instances. After comparing
its performance with the exact procedure proposed in Corberán et al.
(2007), we can conclude that the formulation proposed is efficient for
solving RPP and GRP instances of large size and seems promising for
other arc routing problems on undirected graphs.
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Appendix. Detailed computational results

Here we report the complete computational results for each in-
stance. Tables 3 to 6 show for each instance and algorithm the lower
bound at the end of the root node (LB0), the final lower (LB) and upper
(UB) bounds (if any has been found), the number of nodes in the search
tree and the computing time in seconds, as well as whether the instance
has been solved to optimality or not. The number of 𝑅-sets of each
instance is also given in the first column.
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Table 3
RPP instances in sets UR500, UR750, and UR1000.

R-sets B&C NewB&C

LB0 Optimal LB UB Nodes Time LB0 Optimal LB UB Nodes Time

UR532 99 17 235.6 Yes 17 277 17 277 62 10.6 17 172.8 Yes 17 277 17 277 15 15.5
UR535 58 23 635 Yes 23 635 23 635 0 2.9 23 635 Yes 23 635 23 635 0 24.5
UR537 19 30 080.5 Yes 30 098 30 098 3 3.1 30 098 Yes 30 098 30 098 0 25.3
UR542 85 17 824 Yes 17 830 17 830 0 4.3 17 800.5 Yes 17 830 17 830 4 16.2
UR545 19 29 646.1 Yes 29 648 29 648 0 1.0 29 648 Yes 29 648 29 648 0 22.8
UR547 2 38 673.1 Yes 38 692 38 692 3 2.5 38 692 Yes 38 692 38 692 0 86.0
UR552 80 20 097 Yes 20 097 20 097 3 2.0 20 085 Yes 20 097 20 097 5 14.9
UR555 5 34 473.9 Yes 34 488 34 488 4 2.3 34 488 Yes 34 488 34 488 0 62.9
UR557 1 48 292.2 Yes 48 307 48 307 4 3.4 48 307 Yes 48 307 48 307 0 84.9
UR562 53 24 556 Yes 24 556 24 556 0 0.7 24 556 Yes 24 556 24 556 0 12.3
UR565 2 42 821.1 Yes 42 828 42 828 3 1.3 42 828 Yes 42 828 42 828 0 71.1
UR567 1 58 958.6 Yes 58 971 58 971 3 0.8 58 971 Yes 58 971 58 971 0 52.8

UR732 140 21 066.4 Yes 21 114 21 114 175 87.3 21 057 Yes 21 114 21 114 12 26.4
UR735 100 28 663 Yes 28 663 28 663 0 9.0 28 663 Yes 28 663 28 663 0 52.5
UR737 16 36 579.2 Yes 36 588 36 588 3 2.5 36 588 Yes 36 588 36 588 0 73.2
UR742 122 22 555.9 Yes 22 557 22 557 2 23.2 22 547.8 Yes 22 557 22 557 4 174.0
UR745 57 32 476.3 Yes 32 493 32 493 0 16.1 32 493 Yes 32 493 32 493 0 94.2
UR747 3 47 763 Yes 47 764 47 764 2 3.2 47 454 Yes 47 764 47 764 23 107.2
UR752 108 25 103.4 Yes 25 131 25 131 57 193.3 25 088.2 Yes 25 131 25 131 75 280.0
UR755 15 41 774 Yes 41 774 41 774 2 2.8 41 774 Yes 41 774 41 774 0 96.4
UR757 1 58 412.4 Yes 58 416 58 416 4 3.4 58 193.5 Yes 58 416 58 416 5 125.2
UR762 103 27 876.1 Yes 27 880 27 880 6 28.8 27 876 Yes 27 880 27 880 6 123.0
UR765 2 50 492 Yes 50 492 50 492 0 9.8 50 177 Yes 50 492 50 492 1015 463.2
UR767 1 72 949.8 Yes 72 950 72 950 2 3.3 72 694 Yes 72 950 72 950 242 311.4

UR132 204 23 861.6 Yes 23 913 23 913 133 230.5 23 853.4 Yes 23 913 23 913 21 128.5
UR135 124 33 087.6 Yes 33 088 33 088 7 30.8 33 064.8 Yes 33 088 33 088 7 109.4
UR137 24 42 796.3 Yes 42 797 42 797 2 3.3 42 447.9 Yes 42 797 42 797 7 177.3
UR142 167 25 547.6 Yes 25 548 25 548 3 48.4 25 537.9 Yes 25 548 25 548 8 272.5
UR145 71 39 007.6 Yes 39 008 39 008 3 24.0 38 992.2 Yes 39 008 39 008 5 124.2
UR147 4 55 949 Yes 55 959 55 959 3 7.7 55 387.5 Yes 55 959 55 959 1044 969.8
UR152 149 28 971.2 Yes 28 975 28 975 21 144.9 28 973 Yes 28 975 28 975 3 174.3
UR155 5 49 155.6 Yes 49 156 49 156 2 6.2 48 914.5 Yes 49 156 49 156 46 275.7
UR157 2 70 229.1 Yes 70 231 70 231 4 7.5 69 849.5 Yes 70 231 70 231 548 714.6
UR162 138 32 320.2 Yes 32 341 32 341 207 522.8 32 317.9 Yes 32 341 32 341 101 850.0
UR165 9 58 790.8 Yes 58 800 58 800 4 16.5 58 514.8 Yes 58 800 58 800 514 641.1
UR167 1 82 473.2 Yes 82 481 82 481 9 13.8 82 216 Yes 82 481 82 481 219 634.1
Table 4
GRP instances.

R-sets B&C NewB&C

LB0 Optimal LB UB Nodes Time LB0 Optimal LB UB Nodes Time

UG532 259 20 970.2 Yes 21 023 21 023 554 1068.9 20 969 Yes 21 023 21 023 36 236.8
UG535 113 25 004 Yes 25 004 25 004 0 8.9 25 004 Yes 25 004 25 004 0 34.5
UG537 25 30 068 Yes 30 068 30 068 0 2.0 30 068 Yes 30 068 30 068 0 9.3
UG542 242 21 274.3 No 21 282.1 – 107 3600.0 21 255.2 Yes 21 324 21 324 62 574.2
UG545 60 28 119 Yes 28 119 28 119 0 2.5 28 119 Yes 28 119 28 119 0 29.5
UG547 2 39 598 Yes 39 598 39 598 2 1.5 39 598 Yes 39 598 39 598 0 32.2
UG552 186 23 926.2 Yes 23 958 23 958 198 452.9 23 926.3 Yes 23 958 23 958 9 343.9
UG555 27 35 397 Yes 35 397 35 397 0 1.3 35 397 Yes 35 397 35 397 0 228.7
UG557 3 47 696.7 Yes 47 710 47 710 3 1.8 47 710 Yes 47 710 47 710 0 87.9
UG562 175 24 382 Yes 24 382 24 382 0 17.2 24 382 Yes 24 382 24 382 0 177.5
UG565 13 41 886 Yes 41 886 41 886 0 1.5 41 886 Yes 41 886 41 886 0 43.9
UG567 1 56 731.9 Yes 56 740 56 740 3 2.5 56 740 Yes 56 740 56 740 0 114.3

UG732 412 25 836.9 No 25 862.9 26 246 135 3614.9 25 809.2 Yes 25 978 25 978 1038 3421.3
UG735 154 30 987.8 Yes 30 989 30 989 3 21.4 30 989 Yes 30 989 30 989 0 119.4
UG737 27 37 574.7 Yes 37 580 37 580 3 2.9 37 580 Yes 37 580 37 580 0 37.5
UG742 348 26 719.7 No 26 737.7 26 797 284 3605.7 26 686.2 Yes 26 771 26 771 615 3316.0
UG745 96 35 335 Yes 35 335 35 335 0 5.5 35 335 Yes 35 335 35 335 0 137.5
UG747 5 48 237.6 Yes 48 241 48 241 3 3.8 47 856 Yes 48 241 48 241 268 668.5
UG752 304 28 069.2 Yes 28 087 28 087 177 1823.3 28 024.1 Yes 28 087 28 087 83 2038.9
UG755 36 43 062.3 Yes 43 071 43 071 3 8.9 43 046.7 Yes 43 071 43 071 7 298.4
UG757 1 59 591.9 Yes 59 594 59 594 4 4.4 59 359 Yes 59 594 59 594 81 237.2
UG762 222 31 629.5 Yes 31 644 31 644 19 165.1 31 636.9 Yes 31 644 31 644 5 814.2
UG765 13 50 869 Yes 50 875 50 875 3 8.3 50 690 Yes 50 875 50 875 172 207.3
UG767 2 71 555.2 Yes 71 562 71 562 11 8.7 71 428 Yes 71 562 71 562 305 264.5

(continued on next page)
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Table 4 (continued).
R-sets B&C NewB&C

LB0 Optimal LB UB Nodes Time LB0 Optimal LB UB Nodes Time

UG132 573 29 528.1 No 29 528.1 – 2 3616.5 29 353.1 No 29 614 29 863 69 3600.0
UG135 217 34 088.7 Yes 34 095 34 095 4 72.4 34 092.9 Yes 34 095 34 095 3 379.7
UG137 35 42 310.9 Yes 42 323 42 323 3 17.1 42 232 Yes 42 323 42 323 7 213.2
UG142 464 30 095.2 No 30 095.7 – 42 3610.3 30 079.3 No 30 097.6 30 148 48 3600.0
UG145 97 40 834.5 Yes 40 839 40 839 9 27.3 40 834.1 Yes 40 839 40 839 0 220.9
UG147 5 57 255.1 Yes 57 263 57 263 3 12.5 56 799.8 Yes 57 263 57 263 690 578.8
UG152 365 33 548 No 33 550.8 33 645 109 3613.3 33 521 Yes 33 560 33 560 201 1885.3
UG155 48 47 818 Yes 47 818 47 818 0 4.5 47 774.2 Yes 47 818 47 818 3 100.9
UG157 5 69 437.2 Yes 69 442 69 442 3 8.9 69 148.5 Yes 69 442 69 442 422 1037.9
UG162 294 36 789.1 Yes 36 826 36 826 626 3576.2 36 789.1 Yes 36 826 36 826 120 1603.3
UG165 18 60 278.6 Yes 60 283 60 283 4 7.9 60 209.5 Yes 60 283 60 283 305 477.1
UG167 1 84 824.4 Yes 84 833 84 833 67 62.6 84 544.5 Yes 84 833 84 833 1573 1189.8
Table 5
RPP instances in sets UR40 × 25, UR40 × 50, and UR60 × 50.

R-sets B&C NewB&C

LB0 Optimal LB UB Nodes Time LB0 Optimal LB UB Nodes Time

UR40 × 25_2_1 222 31 024.7 Yes 31 042 31 042 159 728.5 31 021.1 Yes 31 042 31 042 12 241.2
UR40 × 25_2_2 232 30 598.2 Yes 30 607 30 607 34 292.2 30 570.2 Yes 30 607 30 607 69 672.6
UR40 × 25_2_3 217 30 884 No 30 900.2 31 054 305 3600.0 30 876.7 Yes 30 930 30 930 272 635.7
UR40 × 25_2_4 217 31 179.1 Yes 31 190 31 190 199 1388.9 31 175.8 Yes 31 190 31 190 6 203.6
UR40 × 25_2_5 227 30 514.1 Yes 30 533 30 533 94 644.5 30 510.1 Yes 30 533 30 533 35 633.9
UR40 × 25_3_1 147 34 222.6 Yes 34 228 34 228 8 15.2 34 220.6 Yes 34 228 34 228 3 65.8
UR40 × 25_3_2 149 33 569.9 Yes 33 582 33 582 298 1309.8 33 553.9 Yes 33 582 33 582 8 259.1
UR40 × 25_3_3 136 33 557.3 Yes 33 559 33 559 10 23.3 33 554.2 Yes 33 559 33 559 3 92.5
UR40 × 25_3_4 140 33 962.7 Yes 33 982 33 982 55 73.5 33 962.4 Yes 33 982 33 982 22 273.0
UR40 × 25_3_5 136 33 753.7 Yes 33 773 33 773 422 1680.4 33 747 Yes 33 773 33 773 108 398.7

UR40 × 50_2_1 458 48 560.7 No 48 571 48 626 45 3600.0 48 569.1 Yes 48 595 48 595 179 3304.9
UR40 × 50_2_2 442 49 124.5 No 49 128.8 – 24 3600.0 49 126.1 No 49 135.3 49 679 271 3600.0
UR40 × 50_2_3 433 49 168.5 No 49 181.4 49 195 57 3600.0 49 176.5 Yes 49 188 49 188 82 2059.5
UR40 × 50_2_4 417 49 155.7 No 49 156.1 49 376 82 3600.0 49 142.9 Yes 49 180 49 180 714 3570.1
UR40 × 50_2_5 432 48 901.9 No 48 915 48 918 427 3600.0 48 894.6 Yes 48 918 48 918 88 1858.8
UR40 × 50_3_1 276 53 125.4 Yes 53 137 53 137 42 725.2 53 129.2 Yes 53 137 53 137 11 1355.0
UR40 × 50_3_2 231 53 855.7 No 53 875.3 54 164 182 3600.0 53 855.1 Yes 53 884 53 884 18 1858.9
UR40 × 50_3_3 226 54 636.6 Yes 54 651 54 651 56 1326.2 54 640.3 Yes 54 651 54 651 27 1861.9
UR40 × 50_3_4 259 54 086.2 Yes 54 091 54 091 30 786.4 54 084.7 Yes 54 091 54 091 4 1170.5
UR40 × 50_3_5 219 54 007 No 54 014.4 54 028 305 3600.0 53 983 Yes 54 016 54 016 4 1059.0

UR60 × 50_2_1 662 60 640.5 No 60 640.5 – 0 3600.0 60 632.6 No 60 648.2 61 149 409 3600.0
UR60 × 50_2_2 686 59 857.4 No 59 857.4 – 1 3600.0 59 838.6 No 59 864.3 60 787 392 3600.0
UR60 × 50_2_3 675 60 330.5 No 60 330.5 – 0 3600.0 60 302.8 No 60 335.9 61 067 590 3600.0
UR60 × 50_2_4 679 60 578 No 60 578 – 0 3600.0 60 492.5 No 60 494.6 61 273 383 3600.0
UR60 × 50_2_5 675 60 510.2 No 60 510.2 – 0 3600.0 60 409.7 No 60 419.3 60 971 584 3600.0
UR60 × 50_3_1 379 66 934 No 66 934 – 1 3600.0 66 908.5 No 66 936.2 68 270 685 3600.0
UR60 × 50_3_2 386 66 287 No 66 287.2 – 15 3600.0 66 248.1 No 66 274.2 66 780 700 3600.0
UR60 × 50_3_3 366 67 259.8 No 67 259.8 67 354 50 3600.0 67 222.8 No 67 260.5 67 285 854 3600.0
UR60 × 50_3_4 378 66 763.6 No 66 770.5 – 19 3600.0 66 734.6 No 66 768.2 66 885 746 3600.0
UR60 × 50_3_5 344 67 622.4 No 67 622.9 – 56 3600.0 67 592.2 No 67 613.4 68 634 468 3600.0
Table 6
GTSP instances.

R-sets B&C NewB&C

LB0 Optimal LB UB Nodes Time LB0 Optimal LB UB Nodes Time

KROA150G 150 26 428.2 Yes 26 524 26 524 108 2.1 26 524 Yes 26 524 26 524 0 8.5
KROB150G 150 26 070.8 Yes 26 130 26 130 31 0.9 26 090.5 Yes 26 130 26 130 4 3.2
KROA200G 200 29 357.5 Yes 29 368 29 368 9 1.2 29 368 Yes 29 368 29 368 0 2.9
KROB200G 200 29 437 Yes 29 437 29 437 0 0.9 29 437 Yes 29 437 29 437 0 3.4
PR152G 152 73 682 Yes 73 682 73 682 0 0.2 73 682 Yes 73 682 73 682 0 1.2
RAT195G 195 2311.25 Yes 2323 2323 92 3.0 2322.67 Yes 2323 2323 3 28.7
TS225G 225 122 284 No 123 407 127 533 44 732 3600.0 126 643 Yes 126 643 126 643 0 18.7
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