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TRACK 4: DIGITAL GAMES, VIRTUAL REALITY, AND AUGMENTED REALITY

Towards achieving a high degree of situational
awareness andmultimodal interaction with AR
and semantic AI in industrial applications

Juan Izquierdo-Domenech1 · Jordi Linares-Pellicer1 · Jorge Orta-Lopez1

Abstract
With its various available frameworks and possible devices, augmented reality is a proven
useful tool in various industrial processes such as maintenance, repairing, training, recon-
figuration, and even monitoring tasks of production lines in large factories. Despite its
advantages, augmented reality still does not usually give meaning to the elements it com-
plements, staying in a physical or geometric layer of its environment and without providing
information that may be of great interest to industrial operators in carrying out their work.
An expert’s remote human assistance is becoming an exciting complement in these envi-
ronments, but this is expensive or even impossible in many cases. This paper shows how a
machine learning semantic layer can complement augmented reality solutions in the indus-
try by providing an intelligent layer, sometimes even beyond some expert’s skills. This layer,
using state-of-the-art models, can provide visual validation and new inputs, natural lan-
guage interaction, and automatic anomaly detection. All this new level of semantic context
can be integrated into almost any current augmented reality system, improving the opera-
tor’s job with additional contextual information, new multimodal interaction and validation,
increasing their work comfort, operational times, and security.

Keywords Augmented reality · Semantics · Deep learning · Industry · CNN ·
Transformers · Multimodal interaction

Jordi Linares-Pellicer and Jorge Orta-Lopez contributed equally to this work.

� Juan Izquierdo-Domenech
juaizdom@upv.es

Jordi Linares-Pellicer
jlinares@dsic.upv.es

Jorge Orta-Lopez
jororlo2@upv.es

1 Valencian Research Institute for Artificial Intelligence (VRAIN), Universitat Politècnica de
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1 Introduction and related work

The use of augmented reality (AR) and its advantages in industrial settings has been nothing
new since the introduction of its possibilities in the field [8]. Different AR solutions are
currently successfully applied in nearly any industrial sector in production lines, operation,
and work in various industrial environments, maintenance tasks, reconfiguration, and others.

Several authors have already applied it for assembly tasks [25, 29], as a step-by-step
guide [33] or maintenance tasks [5, 16]. The main advantage AR provides in these envi-
ronments is safety and comfort to the operator. Using different AR solutions, industrial
operators can be assisted in the diverse maintenance, repair, and control processes through
additional synthetic elements anchored on the physical elements.

Nowadays, there are solutions that, in addition to the automatic assistance of traditional
AR systems, allow the participation of a real expert to aid the operator in specific tasks
remotely. It is especially interesting when the nature of the actions cannot be carried out
with current AR solutions alone due to their difficulty, risk, or other issues. In these condi-
tions, the expert can maintain bidirectional oral communication with the operator and create
indications about the elements or areas of interest. These indications or synthetic elements
are perfectly anchored in the physical environment using an AR device manipulated by the
operator. For example, Mourtzis, Siatras, and Angelopoulos use the approach of a remote
expert and uses the Microsoft Hololens as the AR device [26]. However, the need for an
expert and depending on their availability and cost limits the general use of this type of
solution.

The evolution of systems based on Deep Learning (DL) in areas such as vision, image
interpretation, and natural language processing (NLP) permits the development of solutions
to the necessity for expert assistance in AR environments. DL’s new possibilities allow new
situational awareness possibilities for the operator. Situational awareness in this context
refers to the perception of the elements, their meaning, and the projection of their status
in the near future [14]. DL also provides potential users with new possibilities, such as
mechanisms for detecting anomalous patterns, a task sometimes beyond the reach of an
expert through visual inspection and in real-time. Some examples of the use of Machine
Learning (ML) and DL techniques applied to the detection of anomalies in the industrial
field can be found in [22] and [42].

The use of architectures such as Convolutional Neural Networks (CNN) can assist the
operator in visual validation tasks with capabilities comparable to an expert providing
remote assistance. For instance, Lai, Tao, Leu, and Yin use an R-CNN, a network special-
ized in detecting regions and classifying objects inside these regions, for the detection of
tools in developing a multimodal AR system for intelligently aiding in assembly tasks [23].
For this work, the main focus is on different controls distributed over several machines the
operator interacts with.

The new opportunities, thanks to the evolution in NLP, by architectures based on trans-
formers such as BERT (Bidirectional Encoder Representations from Transformers), ([37]
and [11]), can provide the operator with answers to their questions in a natural language
format. These questions can be asked not only to Supervisory Control And Data Acquisi-
tion (SCADA) systems, Enterprise Resource Planning (ERP), or Human-machine interface
(HMI) but also to extensive technical manuals via Question Answering (QA). For exam-
ple, Coli, Melluso, Fantoni, and Mazzei use natural language to retrieve information from
technical documents through a conversational agent (also known as a Chatbot [10]) based
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on MultiWordNet [28], and Yu et al. uses natural language to retrieve answers based on
previous questions to the system [39].

The possible detection of anomalies or unusual patterns by integrating multimodal infor-
mation makes using techniques based on ML and DL conceivable candidates to overcome
the limitations of expert assistants when facing significantly complex patterns, where the
response speed is essential.

The hybridization of AR with the possibilities offered by image understanding through
neural networks, NLP systems, and models for anomaly detection and predictive mainte-
nance allows a semantic AI extension (semantic layer) by providing meaning and identity
to the elements of the 3D geometry of the environment (physical layer). Providing meaning
and identity to the different elements will allow operators a higher cognitive level of interac-
tion with them. The present work proposes an architecture based on multimodal interaction.
Combining DL techniques for image interpretation, NLP, and anomaly detection and using
AR as the central axis for integrating these new possibilities makes it feasible to offer great
comfort and assistance to operators in industrial environments. A general architecture is
presented, and particular solutions are tested in a real production chain.

This article is structured as follows: Section 2 gives a detailed explanation of the pro-
posed architecture, Section 3 explains the followed approach for validating the operators’
actions, Section 4 describes how a chatbot can help the operator in retrieving industrial data,
Section 5 focuses on the problem of asking questions on technical documentation, Section 6
proposes the usage of AR for indicating the operator the position of an anomaly. Finally,
Section 7 explains the application developed to test the proposed architecture, Section 8
evaluates the system in an industrial environment, and Section 9 presents the conclusions.

2 Architecture overview

Since the concept of Industry 4.0 appeared in 2013 [21], the operator’s role has been
questioned. Process automation and the communication between the different industrial ele-
ments represent a radical change and a challenge for those companies that do not have the
most modern machines [19]. However, thanks to technologies such as AR, the operator
gains protagonism; this happens after going through a process of adaptation and learning,
hence being able to give solutions to more complex problems and providing a more deci-
sive role to the company’s value chain [18]. Therefore, based on the three key elements that
make up a Cyber-physical system (CPS) [12]:

• A physical object, such as a machine or a production line.
• A data model, accessible through the network, for accessing information from that

machine.
• A service to allow accessing the data.

This work proposes an architecture that integrates the operator in an automated pro-
cess through AR and combines technologies of different nature, all ML or DL based, such
as NLP to promote a more natural interaction, CNNs to help the operator understand the
environment, and ML techniques for anomaly detection.

In Fig. 1, a general overview of the architecture is shown, where it is possible to distin-
guish four layers that improve the integration and the work of an operator in an industrial
plant.
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Fig. 1 General architecture overview
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The main characteristic of the proposed architecture is to achieve a synergy of the dif-
ferent elements that allow going beyond an isolated use of an AR system, reading and
interpretation of values of industrial components through CNNs models, interaction through
natural language, and anomaly detection.

The AR system acts as a central hub:

• The AR system shows in context, and anchored to the elements in question, the infor-
mation obtained by CNNs (i.e., values and states). In turn, the AR system provides
context and layout of the controls that simplify the work of the CNNs in providing the
necessary elements for a geometric correction (inverse perspective), greatly simplifying
their training.

• By obtaining values in a vector of features (from the CNNs and the ERP/SCADA), the
results of the anomaly detection model used can also be displayed as visual guides in
the AR environment for a better interpretation of the problem by the operator.

• The NLP system also benefits from the feedback provided by the AR system, which
allows knowing the operator’s location and narrowing down the context of the possible
questions asked.

The architecture’s different components, characteristics, and interactions will be detailed
in the following sections. Although some details will be provided about the implementation
used in evaluating this approach, it is worth noting that the system allows the use of dif-
ferent types of components in their different layers and solutions, always maintaining the
advantages of their interaction and synergy.

2.1 Interaction layer

In this layer, all the interaction methods and communication possibilities of the operator
with the machine are centralized, either through natural language, direct manipulation (e.g.,
touches on the screen, gesture recognition, and others), or through the camera and other
sensors (e.g., LIDAR, RGBD cameras and others) on a mobile device or specific devices
such as AR glasses. The camera and other specific sensors will allow the AR system to
analyze the environment to understand its location and spatial mapping. The AR physical
layer later explored will take care of this detection.

The interaction between the operator and the machine via the AR system is intended
to take place in situ because, in this way, the understanding of the context, especially in
scenarios in which the main objective is learning the system, is enhanced [17].

Additionally, the so far common user interaction styles in AR-based applications are
extended, with three additional elements that allow multimodality:

1. The interaction in natural language
2. The automatic validation actions that arise from obtaining the spatial mapping of the

environment, typically found in AR systems
3. The ability to give meaning to the captured elements (i.e., what they are and what their

status is) through DL techniques

2.2 AR physical layer

One of the essential layers of the proposed system’s architecture is the AR physical layer.
This layer ensures that the user’s device can understand its environment and superimpose

15879Multimedia Tools and Applications (2023) 82:15875–15901



synthetic information over the real environment. This layer is defined as the standard mech-
anism in most of the current AR systems and that, in one way or another, allows a spatial
mapping of the environment and the augmentation of reality with new synthetic elements to
help the operators in their work.

Mobile devices and smart glasses are the most used in the industrial field; and although
the focus of this work is on mobile devices, given their cheap availability to most companies,
they are not the only devices, and it would be convenient to carry out an evaluation of which
device is more suitable according to the context of use [13].

In this layer, it is possible to use any solution based on image tracking [36], surface track-
ing [34], or even Simultaneous Localization and Mapping (SLAM) techniques, which allow
the device to discover its position in an unknown environment, and in real-time [20]. Any of
these approximations are valid; even a mixed implementation would be feasible if it allows
for improving the positioning of the device in space and the geometrical understanding of
the environment.

The implemented solution uses the two AR techniques that provide the necessary ele-
ments for the semantic layer: image-based tracking and SLAM. The SLAM possibility is
convenient in cases when the industrial panel or machine is not unique or not easily dis-
tinguishable based on its image. In both cases, these two techniques provide the necessary
elements to facilitate the development of the semantic layer:

• To determine the operator’s position, allowing the generation of helpful context
information in the semantic layer.

• To provide the necessary parameters to apply a geometric correction to the captured
images that simplify the training of the CNNs and maximize their accuracy.

The AR physical layer is the main input element of the semantic level, which, as it will
be discussed, will give additional meaning to the elements of the environment in order to
improve the performance of current systems. The images captured by the AR system need a
perspective correction before going to the semantic level to facilitate their subsequent anal-
ysis by a neural network (e.g., operators are not necessarily facing an orthogonal position in
front of the machine due to some obstacles). This problem is solved by applying the inverse
of the geometric perspective transformation, which is feasible from the information pro-
vided by standard AR systems. This stage is described in Fig. 2 as the last image adaptation
before the semantic layer.

Also, Fig. 2 shows that the Optical value extraction module corresponds to the sequence
of steps necessary for the correct training of a neural network, either for the classification or
regression of possible values from an image; in this case, the different controls of interest.
The AR system can detect which machine or element the operator is facing, which allows a
preliminary knowledge and location of which controls may be interesting to analyze using
a neural network to obtain their possible status and other values.

As can be seen in Fig. 2, to read the images captured by the device, the system relies on
two elements:

• Data augmentation
• Geometric transformation

Our solution for understanding images is based on using CNN architectures. These neu-
ral networks are widely used and allow image classification (e.g., if a switch is on/off)
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Fig. 2 Detailed diagram of the physical and semantic layers

and regression (e.g., obtaining a specific value from the image of an analog control with
continuous values).

In the case at hand, and after the perspective correction of the original image, CNNs
with a straightforward architecture to obtain good results and metrics are the only require-
ment, without needing more complex CNNs or transfer learning. It is essential to use image
augmentation techniques to generate a set of variations that allow the CNN a correct general-
ization and subsequent good prediction metrics for each control. In particular, the synthetic
generation of variations is based on rotations, zooms, noise, contrast, and lighting changes.
These alterations are essential for the correct detection of the element to be interpreted.

The perspective correction and image augmentation process greatly simplify the nec-
essary preliminary work in preparing the required images of the different controls in the
training of the CNNs. In the tests, it has simply been necessary to capture a single image
per control and state, and in the case of analog controls, several pictures with the range of
possible values between the two extremes. An image augmentation process (e.g., rotations,
zooms, noise, contrast, and lighting) generates the required datasets to give accurate final
results.
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2.3 Semantic layer

The semantic layer of the proposed architecture couples the information received by the
previous layers to extract relevant information to transfer to the operator. This interaction
will be given using the AR system and its inherent benefits.

For this, the information from the AR physical layer and the already trained CNNs are
used for the analysis and extraction of meaning from the visual information, being able to
read the value of one or several analog or discrete controls, as can be seen in Fig. 8.

The operator also benefits from this semantic layer, given the possibility of interacting
in natural language. Chatbots and NLP advanced QA systems can work together with any
visual information captured by the CNNs or other real sensors. The visual identification of
an element can provide valuable context for possible queries the operator can send to an ERP
system, as observed from Listing 1. Furthermore, it is also possible to ask specific questions
about technical documentation, as seen in Table 1. This synergy with visuals, sensory, and
natural language interaction will be described in further detail later.

2.4 Business layer

Today, most industrial plants are partially or fully sensorized and adapted through ERP,
SCADA, or HMI control systems; however, access to this information usually requires the
operator to move to a computer or an HMI system, which might be inconvenient when
accessing the information is periodic or urgent. For this reason, and based on the three key
points listed above for a CPS, this data access service can be derived so that the user can
make requests in natural language to any device used in the AR solution, such as a mobile
device or some smart glasses.

One of the most significant benefits of this approach is the relief of the operator from
having to learn specific commands or actions in complex menus. This common way of
interacting with SCADA or ERP systems requires essential training time; otherwise, they
are only within reach of experts. In the proposed approach, the queries the operator wants
to make are given in natural language, a very intuitive way of interacting that reduces the
learning time compared to more traditional approaches. It should be noted that this approach
requires the post-processing of the information to translate the requests into the language or
query expected by the system as it will be described.

3 Visual interpretation and validation

The definition of a generic model for reading, interpreting, and extracting values or states
from images of industrial controls is still a challenge to be solved due to the great variety
of elements used in industrial environments, their different features, models, ranges, scales,
and manufacturers; however, the use of the information from the AR system regarding the
location and spatial layout of the control to be interpreted significantly facilitates the nec-
essary training in the most advanced techniques based on CNNs (i.e., geometric correction
using the inverse of the perspective transformation).

Focusing on Fig. 2, in this work, the use of simple CNN architectures for the interpreta-
tion of values based on images captured by the device is proposed, as can be seen in Fig. 3,
where the architecture is capable of interpreting the value of analog controls. The potential
of this approach lies in its combination with the AR physical layer.
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Listing 1 The question is “Rollers in stock?” with an intent of getting the stock of a specific item, identified
by the entity “rollers”. These elements can be easily translated to a formal query to an ERP

As has already been mentioned, AR can be used for many tasks such as product design
[27], process control [40], and maintenance and training tasks [16]. Suppose the opportuni-
ties offered by understanding these images are added on top of these functionalities. In that
case, it is possible to obtain systems that conduct the operator in a much more intelligent
and safe way through the tasks that make up a process, reduce errors, and even increase
security and comfort in tasks with a high-risk component [6]. In this way, it is possible to
develop a virtual expert able to help the operators.

In the experiments carried out, different CNN architectures for classification and regres-
sion tasks based on the images captured by the device are used. In Fig. 4, it is possible to
detect the state of a button (i.e., on/off) and ensure that the button is in the correct state before
continuing with any operator’s task; and in Fig. 5, the system can interpret the value through
an analog control that uses a pointer to indicate the current pressure value. In the case of
Fig. 5, the instrument is a pressure gauge that allows measuring the pressure of fluids con-
tained in a closed container. Regardless of whether the operator knows if a pressure value
is appropriate or not, the semantic layer can interpret and communicate that information to
the operator through elements in AR.

The plainness of the architecture used for this regression problem can be analyzed in
Fig. 12 in Appendix, a simplified CNN based on [1] that gives great precision in estimating
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Fig. 3 Using a CNN with regression to interpret the values of a pressure gauge

the value from the control image, with a regression coefficient close to 0.95, with Nadam
optimizer and around 100 epochs with mean squared error loss function.

When testing discrete elements, the architecture shown in Fig. 12 in Appendix gives
accuracy, precision, and recall values close to 1 in the tests. Again, the Nadam optimizer
was used with less than 100 epochs.

The previous knowledge of the position of each control, thanks to the AR system that
allows knowing with certainty the machine the operator is working with and the perspective
correction, are fundamental elements in the great precision obtained by the CNNs and an
important simplification of the training process.

This simplification is achieved thanks to the perspective correction that can be calculated
from the internal parameters of the location of the elements in the real world and their
relative position with respect to the operator. This allows, starting from only one image per

Fig. 4 Classification example
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Fig. 5 Regression example

state, to apply image augmentation techniques that only consider lighting variations, small
rotations, and zooms. In the case of the discrete control of two states, on/off, two images
have been used, of which 1000 variations have been generated with image augmentation of
each one, using 1500 as training and 500 as test. In the case of analog control, 25 images
of intermediate positions of the analog gauge have been used, which have generated 1000
images each with image augmentation, with again 75% for training and 25% for testing.

4 NLP using chatbots

Chatbots are Natural Language Understanding (NLU) platforms that make designing and
integrating a conversational user interface easy and help aid the operator’s daily tasks [10].
With rule-based grammar and ML matching, chatbots detect the intents and entities from
the input utterances. It is convenient to use rule-based grammar with few examples and
ML matching when many examples are available for better accuracy. The chatbot must
be trained using a collection of examples or utterances, where the user manually labels
a collection of intents and entities. After some examples, the chatbot can accomplish the
intent and entity recognition with high accuracy and be further trained with real questions
after deployment. Intents and values are generally returned in a JSON format that can be
easily converted into a formal query to a database, ERP, or SCADA system. An example
of how to get the remaining stock about a specific item in the facility is shown in Listing 1
with the AR solution facing the example in Fig. 6. The flexibility of this approach enables
the possibility of making the same query/intent for different elements/entities.
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Fig. 6 The operator can ask questions in natural language about this machine. The AR system gives infor-
mation regarding what element is the operator in front of, so the question is complemented with the required
context

One of the additional benefits of using chatbots is that the use of natural language not
only favors interaction more intuitively and naturally with the interface but also helps the
integration of staff with functional diversity [2]. In general, the semantic elements that
assist the operator described in this proposal can facilitate the inclusion of operators with
functional diversity in new tasks that were previously out of their possibilities.

Many tools permit the implementation of chatbots easily. It is possible to use cloud ser-
vices such as Dialogflow or Wit.ai, although using tools like Rasa is also possible if an
independent local server-based system is planned.

5 NLP using transformers with questions and answers

The substitution of an expert in all their functions implies the assistance through the per-
ception of the environment for interpreting visual controls, the validation of the operator’s
actions, and the possibility of answering possible questions of technical nature.

Traditionally, obtaining additional information relevant to an operator’s work is either
through an HMI or queries to SCADA or ERP systems. The operator can interact and obtain
relevant information by interacting with menus and screens that, perhaps, are far away from
the element’s position to be consulted. Direct interaction with an expert can significantly
facilitate this task, but it does not eliminate the eventual translation of the operator to other
areas where the elements they can use to retrieve the information are located. Experiments
have been conducted to evaluate the possibility of generating a virtual expert, as seen in [4].
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Recent NLP technologies involve a new step in the capability to receive questions in
natural language that can be converted into queries to databases or SCADA/ERP systems,
as has already been mentioned in Sections 1 and 4.

Apart from providing this possibility, the new capabilities derived from transformers are
explored in the present work. After an unsupervised training process with large corpora,
these recent neural network architectures are capable of various high-level NLP function-
alities, such as text classification, chatbot generation, or text summarization. Some of the
most widely used architectures today are RoBERTa [24], DistilBERT [32], and Google’s T5
[30]. Specifically, the current work has explored transformers’ use in resolving QA tasks on
technical manuals.

The lack of need for the operator to consult paper technical manuals during their activ-
ities saves them valuable time. Not having to carry this information with him or move to
another part of the facility to consult is a new step to provide a high degree of assistance on
traditional AR systems.

Although training transformers from scratch using a corpus of specific technical docu-
ments is a possibility, it is typical to use pre-trained transformers. Pre-training is the first step
of transfer learning in which a model is trained on a self-supervised task on vast amounts
of unlabeled data. The model is then fine-tuned on smaller labeled datasets specialized on
specific tasks, resulting in a more significant performance than simply training on the small,
labeled datasets without pre-training. In this case, the tests were done with pre-trained trans-
formers with a final fine-tuning process to improve the results in QA, and their metrics were
finally evaluated with SQuAD (Stanford Question Answering Dataset) [31].

Different architectures have been explored in this respect, choosing to use an extractive
open QA (the answers come strictly from the context) Intel/bert-large-uncased-squadv1.1-
sparse-80-1x4-block-pruneofa [41] for the experiments (with an f1-score of 91.174 on
SQuADv1.1). Some significant tests have been carried out on this model to validate the
possibilities of this new interaction. Examples of these tests can be seen in Table 1.

Suppose technical manuals are available in natural language and with due length and
depth in their explanations. In that case, current transformers can respond in natural lan-
guage to many problems that, even if they need to be solved in natural language, can
compete not only in speed of response but also in precision with the operator or expert using
technical documentation. Figure 7 shows a brief view of some of the answers/predictions
provided by the transformer, whose context of the search for answers is the technical
documentation for the assembly and adjustment of a pressure gauge.

The results are promising, but the accuracy of the responses is highly variable. This
possible variability depends not only on the architecture of the chosen transformer but also
on its pre-training process (i.e., main corpus) and fine-tuning (i.e., adjustments for QA).
Considering these aspects, it is also essential that the technical manuals themselves, their
length and clarity in the explanations, and the characteristics of the questions asked, have
greater weight in the accuracy of the possible answers.

The final model’s accuracy metrics, capable of answering questions from the operator in
front of a technical document describing different processes related to a device or machine,
can only be evaluated in a specific context. If there are some manuals, a set of questions,
and the answers obtained by the model, the only way to evaluate the model’s adequateness
is by comparing its responses to the ones given by humans [31].

Again, highlight that, even with the limited experimentation, the results and advantages
of using these transformers architectures in front of challenges such as QA of manuals are
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Fig. 7 Some examples of real questions using a manual of a pressure gauge

inarguable, particularly when facing decisions that require a quick response and taking into
account the extra benefits of integrating this technology into an AR solution.

For questions about the information contained in SCADA systems, ERP, and others,
the implementation is even easier to achieve since the only need is to perform preliminary
training on a chatbot architecture, as discussed in Section 4.

6 ML for anomaly detection

In the architecture exposed in this paper, the utmost effort is to complement the operator’s
knowledge, assist their work, and even replace the need for a remote expert.

It is evident that having the assistance of a remote expert integrated into an AR solution
is an element of great value, hardly replaceable in its entirety, but it is the purpose of the
present work to make use of human assistance only in very justified cases.

There are scenarios where some problems may arise that neither an operator nor a remote
expert can solve within a limited time. It is the case of having to detect some complex
anomalies that are challenging to see (i.e., when they result from a combination of different
values from different sources).
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In the scheme proposed in the current work, information from the sensors and other infor-
mation available in real-time is combined, plus a set of values that can be obtained through
CNNs from the image coming from the AR system. Many values may need to be summa-
rized into a feature vector required to train an anomaly identification ML system. There are
many and very diverse possibilities depending on the anomalies’ characteristics (e.g., point,
contextual, or collective) [9]. Not in a few cases, the complexity of these anomalous patterns
can escape the most experienced operator or expert and allow, for example, for efficient
predictive maintenance (e.g., stopping the production process when an imminent problem
is suspected), risk reduction, and operators’ integrity, production outside of standardized
values and possible defective products, among others.

The synergy of the proposed solution is based on the combination of sensorized informa-
tion captured from neural networks, its union with ML techniques for detecting anomalies,
detecting possible problems, locating these problems spatially, and giving convenient indi-
cations in AR to the operators. Therefore, it is not only about identifying possible anomalies
but benefiting from the AR by pointing them in the physical environment.

In the presented example in Fig. 8, different unsupervised classification algorithms have
been tested for anomaly detection. Some examples have been Isolation Forest [35] or K-
Means [3], with very positive results; however, what is beneficial about the architecture is
not only the speed of detecting the problem in a potentially complex situation, even for an
expert but also the AR-based feedback, which would allow operators to focus their attention
right on the spot where the problem lies.

7 General multimodal AR approach

As a consequence of the elements proposed in the suggested architecture from Fig. 1, the
final solution achieves a multimodal interaction with AR as the articulating axis, managing
to go beyond the traditional possibilities of interaction in AR. In this way, the operator
obtains a set of possibilities in maintenance, repair, or reconfiguration tasks, similar to those
with the assistance of an expert.

Fig. 8 The combination of several values can be seen as standard or as an anomaly, and visual cues are
possible in AR
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The operators’ workflow is enhanced, not only by the usual interactions AR systems are
capable of but also with two new possibilities:

• CNN-based visual validation is carried out reactively by the operator. Suppose that in
a specific action, the application receives the positive validation of the CNN (e.g., a
specific value in an analog control by regression or the specific position or state of
a switch in classification). The application can automatically move on and invite the
operator to perform another action from a list of maintenance or reconfiguration tasks.

• Translation of natural language sentences into specific queries to ERP, SCADA
systems, and questions to technical documentation and operations manuals with
transformer architectures.

All proactive or reactive interactions and their responses are duly transformed into syn-
thetic information of interest to the operator and anchored through the physical layer of
the AR on the elements involved. Figure 8 is a real example of the testing process where
information of interest to the operator about the factors involved is signaled at all times.

All the tests have been carried out successfully on a real production line and using, in this
case, a tablet mobile device; however, as mentioned before, the use of specific AR devices
such as smart glasses is also possible.

Figures 9 and 10 show two of these tests in which it has been possible to evaluate the
multimodal nature of the solution and the ability to provide solutions and obtain answers
in real-time without assistance from a remote expert. Specifically, the steps followed in the
sample application are:

1. The operator launches the application, and the AR physical layer determines its position
in front of the device or machine.

2. The AR solution invites the operator to perform a specific operation, for example,
activating a device such as the switch from Fig. 9. After the operator’s action and a per-
spective correction, the control image is sent to a CNN to classify if its state is on or
off, and the result authorizes or not the operator to continue with the next step.

3. In some processes, a specific value may be required in some non-sensorized control, as
in the case of the pressure gauge in Fig. 10. If a particular value needs to be reached
to continue the task, the AR physical layer is used to lead the operator’s focus. In this
case, the regression CNN reads the values of the analog control in real-time and permits
appropriate decisions to be made.

4. All the values of interest coming either from sensors or visually captured by the dif-
ferent CNNs are sent to anomaly detection ML systems, in this case, using K-Means
or Isolation Forest clustering. Again, any anomaly is displayed to the operator in its
physical context using the AR layer.

It is necessary to emphasize that the operator can ask questions in natural language to the
system during any of the steps mentioned above.

8 Experimental setup and evaluation

The evaluation of the proposed method has been carried out in a company’s facilities. The
company has a large factory with numerous production lines covering a broad and diverse
set of final products. This fact has facilitated the selection of a group of operators with these
two characteristics:
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Fig. 9 When the machine is switched on, the app lets the operator move to the next step

Fig. 10 Automatic value extraction from a pressure gauge
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1. The operators already have experience in the work and management of production lines.
2. None of the operators have worked directly on the production line or machines used in

this evaluation.

In this way, it has been possible to have eight highly skilled operators who are not directly
acquainted with the specific processes to evaluate. This aspect has allowed the division of
the operators into two groups to evaluate the advantages of the presented elements.

The additional elements of the proposed enhanced AR system with a semantic layer are
evaluated, not the inherent advantages of current AR systems. The workers who operated
the system had no previous experience using AR technology. Given the inexperience of the
operators with this type of technology, the evaluation of the usability of the system through
the System Usability Scale (SUS) [7] has been discarded due to the possible influence that
AR could induce on usability in the first use of the technology. AR is used in many fields
of industry, and its opportunities and benefits have already been extensively evaluated and
demonstrated ([6, 15], and [38]). Therefore, evaluating the times in achieving the proposed
tasks is sufficient to determine the benefits of the presented approach.

The evaluated applications, used by each group independently, belong to these two types:

• Group 1 (AR standard application): An AR application with a series of steps indicates
the elements the operator has to interact with. The operator also has technical manuals
and access to a terminal to consult an ERP.

• Group 2 (AR application with semantic layer): An AR application with the elements
presented in this work, specifically:

– visual validation of user actions
– obtaining values automatically from visual elements
– voice interaction in natural language to manuals or questions to the ERP
– a layer of additional anomaly detection

The system integrates the visual location of a possible incident through the AR physical
layer.

The evaluated process has focused on the elements of Figs. 6, 8, 9, and 10. This process
consists of the following set of tasks:

Task 1Machine activation (Fig. 9). In group 1, only the step to be carried out is indicated,
and the control in the AR environment is highlighted. In group 2, additional validation is
performed to check that the machine has been activated effectively, and the new task is
automatically triggered when ‘on’ is visually detected.
Task 2 Reaching a certain pressure value (Fig. 10). In group 1, only the control to
be monitored is indicated, with the operator checking that the indicator reaches the
expected value by direct visual inspection. In group 2, the semantic layer (i.e., a regres-
sion CNN) automatically checks that the level has been exceeded, and the AR application
automatically notifies the operator.
Task 3 Tolerable pressure value margin query (Fig. 10). Group 1 must conduct this
consultation on the technical manuals (i.e., on a mobile device). Group 2 can launch this
query through a question in natural language by voice.
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Task 4 Stock query (Fig. 6). Group 1 must make the query in a terminal. Group 2 uses
voice interaction to make the query in natural language (i.e., the command is converted
from the chatbot response data into an SQL statement).
Task 5 Anomaly detection (Fig. 8). For simplicity, a device not directly related to the
production line has been used, but it is suitable for evaluating the operators’ skills when
faced with this type of problem. Group 1 is informed about two combinations considered
anomalous by four controls, two analog and two with discrete values. An anomaly occurs
when the analog needle exceeds a threshold but only with a particular combination of
the other three controls. Group 2 does not know when the anomaly occurs and must
only operate with the device and wait for possible automatic detection of the anomaly.
Both groups are invited to manipulate the only three possible controls, and changes are
artificially induced on the analog control so that the two groups can face high control
values with combinations considered either anomalous or permissible.

In task 1, as expected, all the operators of both groups operate correctly, but the shift to
the next task is carried out automatically in group 2, which implies a shorter final time in
the task since, in group 1, the operators must press the ‘next’ button after completing their
action. The times can be seen in Table 2.

In task 2, the operator’s reaction time is assessed when a certain threshold is exceeded
in the analog control. Reaching a specific pressure value may depend on other factors unre-
lated to the experiment. As expected, the reaction times are similar, given that the operators
in group 1 were aware of the expected value. However, the greater security provided by hav-
ing a semantic layer that automatically validates and warns of this situation is evident. In
addition, when one of these situations occurs, the AR system can indicate to the operator the
control or element that requires their attention to detect a specific circumstance. After the
experiment, the operators of group 1 agreed on the clear advantages of having the automatic
validation of group 2.

In task 3, the time differences are very notable. Consulting technical documentation takes
much longer than formulating a question in natural language and receiving the answer in
voice and natural language. In this case, it is essential to note the possible inconveniences
when faced with a question erroneously interpreted or answered by the transformer. It was

Table 2 Task completion times without and with semantic layer

Group 1 (No semantics) Group 2 (With semantics)

Worker 1 Worker 2 Worker 3 Worker 4 Worker 5 Worker 6 Worker 7 Worker 8

Task 1 13s 10s 14s 20s 11s 12s 16s 14s

Task 2 3s 1s 1s 3s 1s 2s 4s 1s

Task 3 46s 123s 32s 43s 5s 8s * 18s 5s

Task 4 23s 16s 19s 21s 8s 5s 6s 5s

Task 5 98s 110s 76s 134s 2s 3s 1s 1s

*The operator re-phrased its question to be correctly understood by the semantic layer

Workers [1-4] belong to group 1, and workers [5-8] to group 2
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necessary to repeat the question on only one occasion when obtaining an incoherent answer
in the tests carried out. Even in this case, the final time was less than the average time
spent in direct consultations on the technical documentation, accessible through an external
terminal near the operated machine.

In task 4, group 1 has a nearby terminal to perform the query. In this way, the time
of interacting with the ERP to check the existence of stock of a particular production line
component is evaluated. Group 1 times correspond to those of operators familiar with the
query tools and the necessary navigation in the corresponding menus; yet, their times in
obtaining the answer are much higher than simply asking a question and getting the response
through the chatbot used, as performed by group 2.

Finally, in task 5, group 1 took much longer to consider the anomaly as having occurred
than group 2, whose interaction is reactive in front of automatic detection by the system.
After detecting the anomaly, group 2 times are the minimum associated with a visual and
audible signal reaction. The calculated time is the difference between the time the anomaly
occurs and how long it takes for the operator to realize it.

Table 2 shows that the improvements obtained by complementing the AR system with
the semantic layer and the new NLP possibilities are more than significant.

Table 3 and Fig. 11 show the result of the ANOVA test of two factors with repeated mea-
sures in one of them to determine if the effect of the group influences the execution time of
the tasks. The result shows a statistically significant difference between the groups, regard-
less of the task. However, the interaction between the group and the task was substantial, so
its execution time depends on the group that performs them. Thus, in tasks 1 and 2, no dif-
ferences were observed between the operators of groups 1 and 2, while in tasks 3, 4, and 5,
the execution times of the operators of group 2 were significantly lower than those of group
1 (p = 0.039, p < 0.001 and p < 0.001, respectively).

We can conclude that adding the semantic layer proposed in this work reduces the com-
pletion time of specific tasks. Even though time reduction is not significant in tasks 1 and
2, where the cognitive load given by the nature of the task is low, the semantic layer can be
a helpful assistant when the operator needs more guidance. In tasks 3, 4, and 5, as the com-
plexity of the task grows, we can observe that the distance between groups 1 and 2 increases
significantly.

9 Conclusions

AR is becoming a central axis in many processes requiring interaction with the physical
environment, which can benefit from various assistance processes. Even though the evolu-
tion of associated AR device technologies does not yet reach all the demanding requirements
for their use in any domain, it is evident that it is already possible to improve many industrial
processes in maintenance, repair, and others.

In a preliminary stage, AR focused on solving problems such as spatial mapping, 3D
registration, and the anchoring and alignment of synthetic elements with real elements. This
technology provides precise instructions on the elements on which to act, minimizing errors
and risks.

However, this AR physical layer can be complemented to solve a new range of problems.
Presently, some AR systems complement their features with the possibility of incorporating
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Fig. 11 Tasks comparison box plot

a remote expert capable of visualizing the remote work environment, making annotations
and anchoring synthetic elements on the operators’ display, and communicating with the
operator in the event of unexpected, complex problems, with risk or a high degree of
uncertainty.

Many of these possibilities provided by a remote expert can be solved by adding a seman-
tic layer. The evolution of neural networks and their different architectures and opportunities
allow that, in an AR environment, the device itself can retrieve ‘meaning’ from the envi-
ronment, such as reading states or values from non-sensorized controls. It is also possible
to validate the operators’ actions (e.g., checking that the operator has activated or not a spe-
cific switch before moving on to the next step). On the other hand, the evolution of NLP
techniques, Chatbots, and new architectures based on transformers allow the operator to
access valuable context information in natural language. The responses can also be returned
in natural form to comprehend better the actions carried out.

ML anomaly detection techniques can go beyond the problems or situations that can be
solved using a real expert. ML-based anomaly detection techniques can accelerate and deter-
mine errors or risk situations, problems, or irregularities in scenarios with a large amount of
information from sensors and images retrieved by AR devices.

This paper presents a general scheme of how this new semantic layer, based on
visual interpretation and NLP techniques that complement the AR physical layer, gives
many responses to changing situations, risk, high uncertainty, and challenging answers in
real-time.

Finally, an example has been presented and evaluated, with promising results yielded
from adding these layers to current AR systems in industrial environments.
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Appendix : CNN architectures

The following diagram represents the architecture for both deep neural networks.:

Fig. 12 Classification and regression CNN architectures
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