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a b s t r a c t

In this contribution, we rigorously construct a pathwise solution to a general scalar
random differential equation with state-dependent Dirac-delta impulse terms at a finite
number of time instants. Furthermore, we obtain the first probability density function
of the solution by combining two main results, firstly, the Liouville–Gibbs equation
between the impulse instants, and secondly, the Random Variable Transformation
technique at the impulse times. Finally, all theoretical findings are illustrated on two
stochastic models, widely used in mathematical modeling, carrying on computational
simulations.
© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Differential equations-based dynamical systems, also known as continuous dynamical systems, have become the
ornerstone of the modeling of real-world phenomena. This key role played by dynamical systems includes theoretical
nalysis and simulations of physical systems in engineering, biology, medicine, etc.
Most naturally occurring phenomena can be described as a function with a continuous rate of change with respect to

ime. However, there are cases where the system suddenly changes its state, affecting its dynamics in ways that require
pecial mathematical tools for correctly modeling its dynamics. For example, when determining the effect of a pesticide
pplied to an insect infestation at a specific time, the insect population could be suddenly reduced. As a consequence, the
unction describing the population density of insects with respect to time would be discontinuous at that time instant.
imilar situations appear when modeling the time evolution of a tumor mass under the effect of certain therapies, such
s partial tumor removal at specific times instants. The appropriate modeling of this kind of problem may help doctors
imulate the future evolution of the tumor mass in multiple scenarios. These are known as harvesting models and are
rimarily used to analyze possible control strategies [1–3].
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Dynamical systems consist of an input, a set of parameters, and an output. When analyzing and predicting the behavior
f a real-world system, one must obtain a set of measurements with the objective of calibrating the model parameters so
hat the dynamical system output closely resembles the measurement data. However, it is practically impossible to have
perfect fit between the model output and the measurements. The reason behind this impossibility can be classified into
wo categories [4,5]:

• Mathematical models are usually simplifications of real-world systems, leaving out some variables that, unawarely,
may affect the evolution of the system. This is usually termed as epistemic, or structural uncertainty.

• Measurement devices have error tolerances which imply that, whatever measurement has been taken to obtain a
given parameter or initial condition, one must consider a given amount of uncertainty. Also, some models include
variables that cannot be directly measured or that present a high variability. These facts entail that the informa-
tion given by the mathematical model must also account for uncertainty in model parameters (initial/boundary
conditions, source term and/or coefficients). This is usually termed aleatoric uncertainty.

Therefore, to have a truly accurate and realistic model of a real-world system, one has to quantify all the uncertainties
appearing in the model. One of the most flexible approaches used for the Uncertainty Quantification (UQ) of continuous
dynamical systems is to consider Random Differential Equations (RDEs) [5–7].

In the setting of RDEs, the inputs of the equation (initial/boundary conditions, forcing term and/or coefficients)
are assumed to be random variables and/or stochastic processes defined on a probability space (Ω,F,P). Apart from
rigorously obtaining the solution of the RDE, which is a stochastic process, say X(t) ≡ X(t, ω), ω ∈ Ω , many contributions
also focus on computing the mean and variance functions since they provide statistical relevant information of the output.
However, the greatest goal is to determine the so called n-dimensional Probability Distribution Function, also termed n-
PDFs or n-fidis [7], and particularly, the 1-PDF of the solution. This deterministic function, say fX(t)(x) (often also denoted
by f (x, t)), allows the computation of any statistical one-dimensional moment,

E[(X(t, ω))k] =

∫
∞

−∞

xkfX(t)(x)dx, k = 1, 2, . . . ,

here E[ ] denotes the expectation operator. The 1-PDF also permits computing the probability that the solution lies within
any interval of interest

P[{ω ∈ Ω : a ≤ X(t, ω) ≤ b}] =

∫ b

a
fX(t)(x)dx,

as well as the computation of confidence intervals.
In the setting of RDEs, the task of obtaining the 1-PDF of a stochastic process has been classically done in two main

ways, firstly, via Monte-Carlo sampling and, secondly, by applying the Random Variable Transformation (RVT) technique.
On the one hand, obtaining the 1-PDF at a certain time instant via Monte-Carlo sampling consists in numerically obtaining
samples of the random variables appearing in the RDE and then simulating their evolution up to the corresponding time
in order to build the histogram that represents the 1-PDF at the desired time [8]. Although this method is widely used
and is fairly simple to implement in its naive version, it is also true that a vast number of samples must be used to obtain
an accurate representation of the PDF [9,10]. Nevertheless, improved Monte-Carlo techniques, such as variance-reduction,
multi-level, etc., have been successfully designed to speed up the raw Monte-Carlo method [11]. On the other hand, the
RVT technique gives a closed formula of the 1-PDF at any time instant. Although this method provides great insight
into the dynamics of the solution of the problem, it relies on the exact knowledge of the solution of the corresponding
RDE [12,13], which is often not the case, as it is well-known.

In connection with what we have done in our previous works [14–16], we are going to make use of a theorem that links
the 1-PDF of a RDE solution to the solutions of a certain deterministic Partial Differential Equation (PDE). In particular,
it is linked with the Continuity [17,18], Liouville [19–21] or Liouville–Gibbs [7] equation. This result gives a closed-form
solution of the 1-PDF, when available, as well as the chance to study its qualitative dynamical behavior over time. Also,
the specific form of the PDE allows the use of several accurate and efficient deterministic numerical methods when a
closed-form solution of the PDE is not available.

This contribution is organized as follows. Section 2 is divided into two parts; in Section 2.1, we rigorously build a
pathwise solution of an RDE with state-dependent impulse terms under mild hypotheses on the scalar field. Then, in
Section 2.2, we apply the Liouville–Gibbs equation to obtain the corresponding 1-PDF of the solution of the RDE. We will
make particular emphasis on the determination of the 1-PDF behavior at the interface of the discontinuities due to the
application of the impulses. We will do so without any knowledge of the explicit form of the field function of the RDE.
This results in the application of the Liouville–Gibbs approach to general RDEs. To illustrate this latter fact, in Section 3,
we apply the theoretical findings to devise a computational procedure that will be applied to two relevant models widely
used in biology and medicine. Conclusions are drawn in Section 4.
2
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Fig. 1. Path solution to (2.1) in a neighborhood of an impulse time. Conditions (1)–(3) are clearly reflected in this example.

2. Theory

In this section we will study, from a probabilistic standpoint, the following random Initial Value Problem (IVP):⎧⎪⎪⎪⎨⎪⎪⎪⎩
dX(t, ω)

dt
= g(X(t, ω), t,A(ω)) −

N∑
k=1

Γk(ω)δ(t − tk)X(t, ω), t > t0,

X(t0, ω) = X0(ω).

(2.1)

Here t0 denotes a real number; X0(ω), A(ω) := (A1(ω), . . . , Am(ω)) and {Γk(ω)}Nk=1 are assumed to be independent
absolutely continuous random variables defined on the Hilbert space L2(Ω,R), whose elements are real-valued random
variables with finite variance and (Ω,F,P) denotes a complete probability space [22]; δ(t − tk) stands for the Dirac delta
function [23] acting at the prefixed time instants t = tk, k = 1, . . . ,N and g is known as the (scalar) field function satisfying
certain conditions that will be specified later. Finally, X(t, ω) denotes the solution of the random IVP (2.1). For the sake
of simplification in the notation, hereinafter, the ω-dependence will be hidden in the notation when convenient.

Observe that we set the impulse terms with the negative sign because, in most practical cases, one is interested in
the instantaneous change of the system state in a way that is opposite to its unaltered dynamics. For example, when
modeling tumor growth, one is often interested in the dynamics after the instantaneous retrieval of a part of the tumor.
Alternatively, when modeling the decay of drug concentration in a person’s bloodstream, interest is shifted to simulating
the concentration after the drug administration. In the setting of these two illustrative examples, the dynamics before the
retrieval of the tumor or drug administration is governed by the specified form of the field function g .

Regarding the regularity assumptions on g , they will be determined by the sample realizations of the parameter random
vector A(ω). Therefore, we consider the following random events:

E1 = {ω ∈ Ω : g(·, t,A(ω)) ∈ Lip(R), uniformly in t}, (2.2)

E2 = {ω ∈ Ω : g(x, ·,A(ω)) ∈ C0([t0, ∞)) for all x ≥ 0}, (2.3)

and assume that both sets are P−measurable, with P[E1 ∩ E2] = 1. The solution of the random IVP (2.1) is a stochastic
process, which can be seen as a family of deterministic trajectories, or paths, indexed in the underlying probability space
Ω; that is, {X([t0, +∞, ]ω)}ω∈Ω . Therefore, by fixing ω ∈ Ω̃ := E1 ∩ E2 we can analyze a random trajectory of the IVP
2.1) using the deterministic theory of ODEs [24].

The sample-fixed ODE defining (2.1) does not verify the hypotheses of either the Cauchy–Peano [25], or the Picard–
indelöf theorems [24]. Therefore, a priori, we cannot guarantee the existence of a solution or its uniqueness. However,
he regularity assumptions given by conditions (2.2) and (2.3) are sufficient for the global existence of each sample
rajectory. Therefore, if a solution X(t) exists, it must be ‘‘well-behaved’’ between the impulse times {tk}Nk=1. In particular,
his behavior implies the following conditions (see Fig. 1):

(1) Continuous differentiability in (tk−1, tk), k = 1, . . . ,N .
(2) Existence and finiteness of X(t+k ) := limt→t+k

X(t) for all k = 0, . . . ,N and X(t−k ) := limt→t−k
X(t) for k = 1, . . . ,N .

(3) Uniqueness of the solution in (tk−1, tk) given X(t+k−1), X(t−k ) or some X(t∗), with t∗ ∈ (tk−1, tk), for k = 1, . . . ,N .

2.1. Pathwise (weak) solution

Keeping the comments in the previous paragraphs in mind, we will build a pathwise solution for the random IVP
(2.1). Let us fix ω ∈ Ω̃ and compute the deterministic Laplace transform [26] to the corresponding IVP (2.1). Denoting
λ(s) = L[X(·, ω)](s), x0 = X0(ω), a = A(ω) and, momentarily, dropping the ω notation, we obtain

sλ(s) − x0 = L[g(X(·), ·, a)](s) −

N∑
Γke−stkX(tk),
k=1

3
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λ(s) =
x0
s

+
L[g(X(·), ·, a)](s)

s
−

N∑
k=1

Γk
e−stk

s
X(tk). (2.4)

omputing the inverse Laplace transform of (2.4) gives

X(t) = x0 +

∫ t

t0

g(X(s), s, a)ds −

N∑
k=1

ΓkX(tk)H(t − tk), (2.5)

where H(·) is the Heaviside function, defined as

H(x) =

{
1 x ≥ 0,
0 x < 0.

Notice that expression (2.5) is actually the integral form of Eq. (2.1), where δ(·) acts as a measure [27]. We can now
see what happens at the first impulse. The value of X(t1) is, a priori, unknown. However, substituting t = t1 and solving
or X(t1), (2.5) yields

X(t1) =

x0 +
∫ t1
t0

g(X(s), s, a)ds

1 + Γ1
=

limt→t−1
X(t)

1 + Γ1
:=

X(t−1 )
1 + Γ1

. (2.6)

Let us emphasize the interesting transformations given by the previous equation. Consider an arbitrary but fixed ω.
We have the following transformations:

(1) The transformation will be well-defined (and invertible) if Γ1(ω) ̸= −1.
(2) If Γ1(ω) = 0, the identity transformation applies; that is, X(t1, ω) = X(t−1 , ω).
(3) If Γ1(ω) ∈ (0, ∞), we will have X(t1, ω) < X(t−1 , ω).
(4) If Γ1(ω) ∈ (−1, 0), we will have X(t1, ω) > X(t−1 , ω).
(5) If Γ1(ω) ∈ (−2, −1), we will have X(t1, ω) < −X(t−1 , ω).
(6) If Γ1(ω) ∈ (−∞, −2), we will have X(t1, ω) > −X(t−1 , ω).

ote that condition (1) occurs almost surely (i.e., with unit probability) when Γ1 is an absolutely continuous random
ariable.
Now, let us see what happens after the impulse. From (2.5) and the previous relation for X(t1), we can compute the

ump induced in the paths by the impulse term

X(t+1 ) − X(t−1 ) =

∫ t+1

t−1

g(X(s), s, a)ds − Γ1X(t1). (2.7)

et us see that the integral term in the previous equation is 0,⏐⏐⏐⏐⏐
∫ t+1

t−1

g(X(s), s, a)ds

⏐⏐⏐⏐⏐ ≤ lim
ε→0

(∫ t1

t1−ε

|g(X(s), s, a)|ds +

∫ t1+ε

t1

|g(X(s), s, a)|ds
)

(2.8)

≤ lim
ε→0

(
sup

t∈[t1−ε,t1)
|g(X(t), t, a)|ε + sup

t∈(t1,t1+ε]

|g(X(t), t, a)|ε
)

(2.9)

=0,

because both supremum terms are finite. This is due to the three conditions (1)–(3) stated before the current subsection.
Using (2.6), equality (2.7) now reads,

X(t+1 ) − X(t−1 ) = −Γ1X(t1) ⇐⇒ X(t+1 ) =
X(t−1 )
1 + Γ1

= X(t1).

hat is, the general solution (2.5) is right-continuous at the first impulse. Furthermore, notice that (2.7) and (2.9) show
hat right-continuity at impulse times must be verified by solutions of Eq. (2.1). Recovering the ω-notation, the previous
identity is stated as

X(t1, ω) = X(t+1 , ω) =
X(t−1 , ω)
1 + Γ1(ω)

, (2.10)

hich means that, for every sample ω ∈ Ω̃ , the paths are right-continuous at t = t1. We can follow the same procedure
or the following impulse times. For example, for all t ∈ [t1, t3), the solution process is given by

X(t) = x0 +

∫ t

g(X(s), s, a)ds − Γ1X(t1) − Γ2X(t2)H(t − t2). (2.11)

t0

4
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Now, by using (2.5), we see that, at time t = t2, (2.11) can be written as:

X(t2) = X(t1) +

∫ t2

t1

g(X(s), s, a)ds − Γ2X(t2), (2.12)

hich yields

X(t2) =

X(t1) +
∫ t2
t1

g(X(s), s, a)ds

1 + Γ2
= lim

t→t−2

X(t)
1 + Γ2

:=
X(t−2 )
1 + Γ2

. (2.13)

Following the same reasoning as in (2.7) and (2.8)–(2.9), the value after the impulse will be

X(t+2 ) − X(t−2 ) = −Γ2X(t2) = −
Γ2

1 + Γ2
X(t−2 ) ⇐⇒ X(t+2 ) =

X(t−2 )
1 + Γ2

. (2.14)

The steps followed for the analysis of the first and second impulse times can be easily generalized for any number of
inite impulse times. Particularly, at a given impulse time tk, and recovering the ω-notation:

X(t+k , ω) = X(tk, ω) =
X(t−k , ω)
1 + Γk(ω)

, (2.15)

or all k = 1, . . . ,N . Also, note that the transformation properties for the first impulse, that are listed in (1)–(6) after
q. (2.6), apply at every impulse time and for every impulse term.
Summarizing, we have constructed a right-continuous pathwise solution of the random IVP (2.1), given by

X(t, ω) = X0(ω) +

∫ t

t0

g(X(s, ω), s,A(ω))ds −

N∑
k=1

Γk(ω)X(tk, ω)H(t − tk), t ≥ t0, (2.16)

X(tk, ω) =
X(t−k , ω)
1 + Γk(ω)

= X(t+k , ω), ω ∈ Ω̃. (2.17)

Note that, if we can assure {X([t0, ∞], ω)}ω∈Ω̃ ⊆ D, for some set D (independently of the realizations ω), then the
ipschitz regularity of g can be simplified to the set D; that is, we would only need Lipschitz regularity of g in the set D.

.2. Probability density function evolution

Because of the local (and global) probability conservation property of RDEs, whose field function we denote by b, we
an obtain an evolution PDE which is verified by its 1-PDF. The theorem can be stated as follows

heorem 2.1 ([15]). Let b(·, t) : R −→ R be a Lipschitz-continuous function for all t ∈ (t0, ∞), and continuous in t. Let
(t, ω), t ≥ t0, ω ∈ Ω be the stochastic process verifying the following RDE in the almost-surely or mean square sense:⎧⎪⎨⎪⎩

dX(t)
dt

= b(X(t), t), t > t0,

X(t0) = X0 ∈ L2(Ω,R).

(2.18)

et D be a set such that {X([t0, ∞], ω)}ω∈Ω ⊂ D. Then, the 1-PDF of the stochastic process X(t), denoted by f = fX(t), verifies
he Liouville PDE:⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂t f (x, t) + ∂x[b f ](x, t) = 0, x ∈ D, t > t0,

f (x, t0) = f0(x), x ∈ D,

∂xf (x, t) = 0, x ∈ ∂D, t ≥ t0,

(2.19)

here f0 is the PDF of X0 = X0(ω).

The boundary condition ∂xf (x, t) = 0 appears naturally from the probability conservation property of RDEs when the
phase space is bounded (otherwise, the PDF will decay to 0 naturally). It is the mathematical form of saying that no
probability exits or enters the phase space at its boundaries (see [7, Th. 6.2.2] and [17, Sec. 4.1.2]). However, in most one-
dimensional models, such as the ones that will be analyzed in Section 3, this condition is automatically verified because
of the form of its field function [14,15]. In higher dimensions, this condition may have to be explicitly stated [16].

When the RDE has random parameters, IVP (2.19) becomes a family of deterministic PDE problems indexed in the
realizations, a, of the random parameter vector, A = A(ω),{

∂t f (x, t | a) + ∂x[b(x, t, a)f (x, t | a)] = 0, x ∈ D ⊆ R, t > t0,
(2.20)
f (x, t0 | a) = f0(x), x ∈ D.

5
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The PDF of the RDE solution (independent of parameter realizations) is obtained by marginalizing the joint PDF of both
the solution and the parameter vector A, which, using the conditional PDF, can be written as:

f (x, t) =

∫
Rm

f (x, t | a)fA(a)da = EA[f (x, t | A)], (2.21)

where fA is the parameters’ joint PDF and EA denotes the expectation operator with respect to the random vector A. This
shows that the PDF can be obtained by solving (2.20) for all realizations a of A and then computing its mean.

However, a priori we can only assure the global-in-time existence of a solution to the Liouville equation when
the field function b(·, t) is Lipschitz continuous, uniformly in t . As mentioned earlier, the field under consideration,
b(x, t) = g(x, t)−

∑
k γkδ(t − tk)x, does not verify this hypothesis at the impulse times {tk}Nk=1. Our objective is to obtain a

condition such as the jump condition (2.7) for the PDF. This will allow the computation of the evolution of f0, accurately
capturing the discontinuities at the impulse times.

2.2.1. PDF transformation at the impulse times
Let us turn back to the set of conditions in (2.17), which are identities between random variables. We are going to

make use of the RVT theorem, which can be written as follows:

Theorem 2.2 ([7,14]). Let X, Y : Ω → RM be two random vectors with PDFs fX and fY, respectively. Assume that there is a
one-to-one, C1 function h such that X = h(Y). Then, denoting h−1 as the inverse mapping of h,

fX(x) = fY(h−1(x))
⏐⏐⏐⏐∂h−1(x)

∂x

⏐⏐⏐⏐ , (2.22)

here
⏐⏐⏐ ∂h−1(x)

∂x

⏐⏐⏐ denotes the absolute value of the determinant of the Jacobian matrix.

As in the case of the pathwise solution analysis, let us consider the first transformation in detail and then we will
write the result for the general case. Let f (·, t1) be the PDF of the stochastic process solution at a given impulse time t1;
that is, the PDF of X(t1, ·) (which is unknown). Let f (·, t−1 ) be the PDF before the jump; that is, the PDF of X(t−1 , ·) (which
is known because it verifies the Liouville equation in (t0, t1)). Using (2.10) we can compute the Jacobian of the variable
transformation:

X(t1, ω)(1 + Γ1(ω)) = X(t−1 , ω) ⇐⇒ |J| =

⏐⏐⏐⏐∂X(t−1 , ω)
∂X(t1, ω)

⏐⏐⏐⏐ = |1 + Γ1(ω)|. (2.23)

enoting the joint PDFs of X(t, ·) and Γ1 by f(X(t),Γ1), for t = t1, t−1 , the application of the RVT theorem leads to

f(X(t1),Γ1)(x, γ1, t1) = f(X(t−1 ),Γ1)

(
x (1 + γ1), γ1, t−1

)
|1 + γ1| = f

(
x (1 + γ1), t−1

)
fΓ1 (γ1)|1 + γ1|,

because X(t−1 , ·) is independent from Γ1, which only appears at the impulse time. Finally, to obtain the PDF of X(t1, ·), we
have to marginalize respect to Γ1

f (x, t1) =

∫
D(Γ1)

f
(
x (1 + γ1), t−1

)
|1 + γ1|fΓ1 (γ1)dγ1 = EΓ1 [f

(
x (1 + Γ1), t−1

)
|1 + Γ1|], (2.24)

for all x > 0, which shows that, at the jump, there is a rescaling of f (·, t−1 ), both in its argument and in its value, for every
realization of Γ1 (see Fig. 2). The average of these transformations gives the PDF of X(t1, ·). Note that, in (2.24), D(Γ1)
denotes the domain of random variable Γ1(ω).

Now, the Liouville equation describes the evolution of the PDF (2.24) until the following impulse time t2. Clearly, at
any other impulse time, we will have the same case as for t1:

f (x, tk) = EΓk [f
(
x (1 + Γk), t−k

)
|1 + Γk|], ∀x > 0, k = 1, . . . ,N, (2.25)

because of the relations at (2.17).

2.2.2. Evolution between impulse times
Let us consider again a general field function b(·, t, a) ∈ C1(D) for all t > t0 and all a, Eq. (2.20) can be written as:

∂t f (x, t | a) + b(x, t, a)∂xf (x, t | a) = −f (x, t | a)∂xb(x, t, a), x ∈ D, t > t0, (2.26)

and its solution can be analyzed through its characteristic equations [15,16,19]. These curves describe the time evolution
of a particle, say φ(t), and the value of the desired PDE solution at that particle’s position. These equations form a system
of ODEs, which are defined as

d
dt

φ(t) = b(φ(t), t, a), φ(0) = x0,
d
f (φ(t), t | a) = −f (φ(t), t | a)∂xb(φ(t), t, a), f (φ(0), 0 | a) = f0(x0),

(2.27)
dt
6
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Fig. 2. PDF transformation at the impulse times. An illustrative example concerning the case of Γ > 0 almost surely.

here x0 is a generic point in D, which represents the initial position of the particle to be simulated. The first equation
efines the time evolution of the particle’s position, whereas the last equation in (2.27) defines the evolution of the PDF
alue in the considered particle.
Returning to our particular case, where b(x, t) = g(x, t)−

∑
k γkδ(t−tk)x, note that the field function b(·, t, ·) = g(·, t, ·)

or all t ∈ ∪
N−1
k=0 (tk, tk+1). Therefore, between the impulse times, we can compute the solution of the Liouville equation by

olving the characteristic Eqs. (2.27), in the corresponding intervals:

φ(t; x0, a) = x0 +

∫ t

tk

g(φ(s; x0, a), s, a)ds, t ∈ [tk, tk+1), (2.28)

f (φ(t; x0, a), t | a) = f (x0, tk) exp
(

−

∫ t

tk

∂xg(φ(s; x0, a), s, a)ds
)

, t ∈ [tk, tk+1), (2.29)

here φ(t; x0, a) denotes the characteristic curve at time t , starting at (tk, x0), with parameter values a. Note that,
n Eq. (2.29), f (·, tk) is obtained in Eq. (2.25).

As it can be seen, the first ODE in (2.27) and its corresponding solution (2.28) are the deterministic version of the
andom IVP (2.1) between impulses, solved for random samples x0, and a of the initial condition X0(ω) and parameter
ector A(ω), respectively, with ω ∈ Ω̃ . The second equation in (2.27) and its solution (2.29) describe the change in the
alue of the PDF in time at the sample path φ(t; x0, a).

2.2.3. Full evolution simulation
Summarizing, the PDF evolution of the random IVP (2.1) described by the Liouville equation can be split into the

following steps:

(1) Define f0, the PDF of the random initial condition X0(ω).
(2) Compute its evolution for all realizations of the random parameter vector, A(ω), via the characteristic Eqs. (2.27),

until the first impulse time t1. We now have a family of PDFs at time t1 before the impulse, which we denote by
{f (·, t−1 | a)}a∈A(Ω).

(3) Compute the expected PDF with respect to the random parameter distribution, which we denote by f (·, t−1 ).
(4) Transform f (·, t−1 ) via (2.24), obtaining f (·, t1) .
(5) Repeat steps (1)–(4), but with f0(·) = f (·, t1) until the following impulse time t2.
(6) Repeat Steps (1)–(5) until the last impulse time, tN using (2.25) and (2.27).
(7) Evolve f (·, tN ) until wanted.

The Liouville equation approach for the time evolution of the initial PDF f0 is given as the solution to a PDE, whose
solution is given by an ODE system, and the posterior substitution of its solution into another function whose form is
known exactly. When a closed form of the sample path solution φ(t; x0, a) is known, and we can solve for the initial
condition variable (that is, if x := φ(t; x0, a), then we can write x0(t; x, a)), then the PDF is almost completely determined.
ll that is left is to compute the integral in (2.29), and the mean PDF with respect to the parameter distribution, which
an be done analytically or numerically.
However, this approach is not always useful in general IVPs, where no closed-form expression of the solution is
vailable. In that case, numerical methods might have to be used to obtain the characteristic curve φ(t; x0) at certain

7
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times. Regarding the case where no closed form expression of the solution φ(t; x0) is available, the characteristic curve
pproach of the Liouville equation allows the use of the so-called Lagrangian methods [28,29], together with numerical
echniques such as Adaptive Mesh Refinement (AMR) for the accurate and efficient computation of the PDF evolution.

. Examples

This section is aimed at showing the applicability of the theoretical findings stated in the previous sections to some
elevant random mathematical models where jumps are a key feature in the mathematical formulation. In [30,31], similar
roblems have been studied in the setting of the logistic equation, a classical and widely used mathematical model which
ppears in several areas of science. In this contribution, we are going to deal with the impulse-harvest generalized logistic
odel with a finite number of captures, say N ,

X ′(t, ω) = α(t) r(ω)X(t, ω)

(
1 −

(
X(t, ω)
K (ω)

)ν(ω)
)

−

N∑
n=1

Γn(ω)δ(t − tn)X(t, ω), (3.1)

X(t0, ω) = X0(ω),

here t ≥ t0 and ω ∈ Ω̃ . As usual, t is interpreted as the time, the parameter r is the growth (r > 0) or decay (r < 0) rate,
nd K is the carrying capacity. The differential equation is generalized by adding two terms: a positive, monotonically
rowing function α(·) and a constant positive term ν. The first term, α(·), allows controlling the so-called lag phase, which
s the growth phase in which the population under study has not yet achieved fully exponential growth. In particular, we
ave chosen [32]:

α(t) :=
q(ω)

q(ω) + e−m(ω) t , q,m > 0 a.s.

he latter, ν, is a power that controls how fast the carrying capacity K is approached and is known as deceleration term.
hen ν = 1, the classical logistic differential equation is obtained. And when ν tends to 0, the Gompertz equation is

iven. The incorporation of both the function α(·) and the power ν allows for more flexible S-shaped curves to model
rowth phenomena over time.
We are going to simulate two examples with purely illustrative purposes. One will consider periodic impulses with

on-identically, normally distributed intensities, while the second case will deal with periodic impulses with identically
istributed intensities. In both cases the components of the parameter random vector A(ω) = (q(ω),m(ω), r(ω), K (ω),
(ω)) will have appropriate pre-assigned parametric probability distributions. By no means the parameter values have
een considered as an accurate representation of real-world behavior. They will only be considered so as to give a general
dea about the capabilities to perform UQ for random differential equations with impulses.

The field function of the generalized logistic equation under study (3.1) verifies all the conditions of Theorem 2.1,
here the set D in Theorem 2.1 for the generalized logistic model (3.1) is going to be D = [0, ∥K∥L∞ ], with ∥K∥L∞ =

up{K (ω) : ω ∈ Ω̃}. Furthermore, it is smooth in space and time variables so the use of the Liouville equation as in (2.26)
s available. Therefore, its corresponding Liouville equation between impulse times is:

∂t f (x, t | a) + α(t) rx
(
1 −

( x
K

)ν)
∂xf (x, t | a) = −f (x, t | a)α(t) r

(
1 − (1 + ν)

( x
K

)ν)
.

e remind the computation of the marginal PDF respect to A as in Eq. (2.21). Using this final PDF, we will compute the
tatistical information given by the mean E[X(t, ω)], and variance V[X(t, ω)] = E[(X(t, ω))2] − (E[X(t, ω)])2 at a certain
refixed time instant, say t .

.1. Intravenous (I. V.) injections

Pharmacokinetics consists in the analysis and prediction of the concentration level of a certain drug inside an organism.
t plays a key role when determining the appropriate levels and injection schedules that must be followed in order to
chieve certain pre-established targets [33].
Drugs used for pain management are usually administered via I.V. injections. For example, morphine is a drug

ommonly used to treat severe pain due to cancer, surgery or trauma. However, a high dose of morphine is lethal [34].
herefore, it is crucial to understand the dynamics of its concentration in the bloodstream before the actual administration
chedule is chosen.
We can model this problem as (3.1), where the parameter vectors are chosen as follows:

• The initial drug concentration X0 ∼ N|(0,4)(3.4, 0.025); that is, a normal distribution truncated on the interval (0, 4).
• Variables q and m will be given the deterministic values q = 1 and m = 4.
• We consider r ∼ N| (−0.294, 0.025), ν ∼ Unif(1.1, 1.25) and K ∼ Unif(3.9, 4).
(−1,0)

8
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Fig. 3. Time evolution of the mean drug concentration and a 95% confidence interval with several injections.

• We are going to consider 3 injections, at times TIV = {t1 = 15, t2 = 25, t3 = 35} (so N = 3), where the intensity of
each injection will be given as

Γ1 ∼ N|(−1,0)(−0.8, 0.01), Γ2 ∼ N|(−1,0)(−0.855, 0.01), Γ3 ∼ N|(−1,0)(−0.865, 0.01)

As previously explained at the beginning of Section 2, the truncation interval has been chosen on the negative
numbers so that the model correctly represents the absorption of the drug over time.

Fig. 3 shows the time evolution of the mean drug concentration as modeled by the generalized logistic Eq. (3.1) with
the parameters chosen above. We can see that, after each injection, the uncertainty of the solution reflected by the
amplitude of the 95%-confidence interval, suffers a great increase (see Fig. 4). This implies that no accurate predictions
can be done for long-time concentrations with continued injections. However, the asymptotic state (or steady-state) is
deterministic (the drug concentration converges to 0 asymptotically), and therefore, the uncertainty eventually reduces
to 0 if no further injections are considered. Furthermore, Fig. 5 shows the full simulated PDFs computed as solutions of
the Liouville equation for this specific problem. The PDFs after the jump are clearly seen as they are very wide, which is
the sign of very high uncertainty in the system that can be seen in the other two Figs. 3 and 4.

3.2. Tumor removal

There are many ways of treating cancer, such as radiotherapy, chemotherapy, and in some cases, direct retrieval of a
fraction of the tumor mass. The first two treatments have a prolonged effect of tumor destruction, whereas the latter
intervention can be modeled via a delta-type impulse function because of the sudden extraction of the tumor mass
with respect to the total treatment. Regarding un-altered tumor growth, it is well known that Malthus-type models of
exponential growth only work when studying initial growth stages. Let us, therefore, model this problem as (3.1), where
the parameter vectors are chosen as follows:

• The initial tumor size X0 ∼ N|(0,1)(0.15, 0.01), where N|(0,1) is a normal distribution truncated on the interval (0, 1).
• Variables q and m will be given the same deterministic values as in the previous example: q = 1 and m = 4.
• We consider r ∼ N|(0,1)(0.15, 0.0075), ν ∼ Unif(1, 1.25) and K ∼ Unif(0.9, 1).
• We are going to consider 5 removals with equally distributed intensity given by Γ1 = . . . = Γ5 = Γ ∼ N|R+ (2, 0.01),

at times TTumor = {t1 = 15, t2 = 25, t3 = 35, t4 = 45, t5 = 55}.

In Fig. 6, we have plotted the mean and 95%-confidence intervals according to the prefixed parameters and removal
times. It can be seen how, after each removal, the tumor size starts growing according to the un-removed size of the tumor.
Interestingly, the confidence interval amplitude before each removal is higher than the uncertainty after the removal.
Indeed, since all removals are distributed as Γ ∼ N|R+ (2, 0.01), it can be easily seen that each removal takes away half
of the tumor (in average), thus reducing the uncertainty after each removal time. Contrary to the previous example, this
9
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Fig. 4. Time evolution of the 95% Confidence Interval (CI) amplitude and the standard deviation of the drug concentration with repeated injections.

Fig. 5. Full view of the PDF evolution simulations of the I.V. Injection problem Section 3.1 at the corresponding time values in TIV together with
the mean (red) and 95% confidence interval (dashed, black). Compare to Fig. 3.

case allows having a long-time prediction with a reduced level of uncertainty while still considering random impulses (see
Fig. 7). This can be further seen in Fig. 8, where the PDF given as the solution of the Liouville equation in this particular
problem setting is shown in every simulated time in TTumor.

4. Conclusions and future work

In this contribution, we have rigorously obtained a pathwise solution to a general random differential equation with
a finite number of random-intensity, state-dependent, impulsive terms, with the usual assumptions on the regularity of
10
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Fig. 6. Time evolution of the mean tumor size and a 95% confidence interval with several extractions.

Fig. 7. Time evolution of the 95% Confidence Interval (CI) amplitude and the standard deviation of the tumor growth with extractions.

the field function. Furthermore, we have determined the evolution of the first probability density function of the solution
stochastic process by combining the Liouville equation and the Random Variable Transformation theorem. After some brief
comments on the numerical approach for the simulation of the probability density function evolution, we have applied our
general theoretical findings to two mathematical models emerging from the generalized logistic model with natural decay
and growth, respectively, being both altered by impulsive terms acting contrarily to their respective natural dynamics.
This has been done to showcase the applicability of the theoretical findings in this contribution. Regarding future work,
we are currently working on extending this approach to general Random Differential Systems and calibrating this family
of models (Inverse Uncertainty Quantification) with respect to real data to model the behavior of a real-world system.
11
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t
1

Fig. 8. Full view of the PDF evolution simulations of the tumor growth problem Section 3.2 at the corresponding time values in TTumor , together
with the mean (red) and 95% confidence intervals (dashed, black). Compare with Fig. 6.
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