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Program slicing is a technique to extract the part of the program that can affect the values 
computed at a given program point (known as the slicing criterion). To represent programs, 
program slicing uses the System Dependence Graph (SDG), for which several extensions 
like the Java System Dependence Graph (JSysDG) or the Sub-Statement Linear Dependence 
Graph (SSLDG) exist to deal with Java object-oriented programs. In this paper, we present 
an incompleteness result proving that these graphs do not produce complete slices in all 
cases, and specifically when some object variables are selected as the slicing criterion. We 
first identify the source of the problem: the representation of dependences between partial 
definitions of objects is ill-defined in these approaches, leading to a loss of completeness 
in many cases. To solve this limitation, we extend these representations with the addition 
of a specific flow dependence for object type variables called object-flow dependence. This 
extension provides a more accurate flow representation between object variables and its 
data members and it allows us to obtain complete slices when an object variable is selected 
as the slicing criterion.
© 2022 The Authors. Published by Elsevier Inc. This is an open access article under the CC 

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Program representation is an important field in the program analysis research area, and it is at the base of most pro-
gram analysis and transformation techniques. An accurate representation of the internal program dependences is strongly 
associated with the quality, precision, and performance of many program analysis techniques. In this paper, we introduce 
a program representation for the analysis of object-oriented programs. Specifically, we propose a program slicing technique 
for object-oriented programs based on our new program representation.

Program slicing [1,2] is a technique to extract from a program the set of statements, the program slice [3], that affects 
the value of a variable v at a given program point p (〈p, v〉), which is known as the slicing criterion [4]. Program slicing 
is applied in many disciplines such as software maintenance [5], debugging [6], and program specialization [7], among 
others.

Example 1.1. Consider the Java code snippet in Fig. 1a, which contains a program with two classes: A and Main. The latter 
contains a main method that creates an instance of A.
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1 class A{
2 public int x,y;
3 public A (int a, int b) {
4 x = a;
5 y = b;
6 }
7 public void setX(int a) { x = a; }
8 public int f(int a) { return a * y; }
9 }

10
11 class Main{
12 public static void main(String[] args){
13 A a1 = new A(1,2);
14 int i = a1.f(10);
15 a1.setX(3);
16 A a2 = a1;
17 }
18 }

(a) Java code

1 class A{
2 public int x,y;
3 public A (int a, int b) {
4 x = a;
5 y = b;
6 }
7 public void setX(int a) { x = a; }
8 public int f(int a) { return a * y; }
9 }

10
11 class Main{
12 public static void main(String[] args){
13 A a1 = new A(1,2);
14 int i = a1.f(10);
15 a1.setX(3);
16 A a2 = a1;
17 }
18 }

(b) Slice w.r.t. 〈14,i〉
Fig. 1. Java code fragment and slice with respect to variable i at line 14.

If we observe that variable i at line 14 produces a wrong value, we can use program slicing to compute the part of 
the program that may have influenced this value, and thus may contain the bug. Fig. 1b shows the slice (the grey code is 
excluded from the slice) with respect to 〈14, i〉, represented with underlined code. Method f of class A internally uses its 
data member y to compute its result, but not data member x. Hence, as the slicing criterion is the result of a call to method
f, the slice contains the definition of method f and tracks down where the value of y comes from. In this example, the 
value of y comes from the call to the A’s constructor in line 13. Although object a1 is included in the slice, we can exclude 
its data member x and its initialization, since its value does not affect the value of the slicing criterion 〈14,i〉.

1.1. The problem

Currently, one of the most advanced program representations used to slice object-oriented programs is the Java System 
Dependence Graph (JSysDG) [8], a graph that can represent packages, interfaces, classes, and methods; and that gives sup-
port to polymorphism, dynamic binding, and inheritance. The slice shown in Fig. 1b is the minimal slice of the code in 
Fig. 1a, and it has been computed with the JSysDG.

Although, in general, the JSysDG provides accurate slices, in this paper, we present an incompleteness result: we show 
that some scenarios exist where the JSysDG’s slices are not complete. Therefore, we do not reveal an imprecision problem 
(the slices contain more code than they need), but an incompleteness problem (the slices contain less code than they need), 
which means that some code that can affect the slicing criterion is not included in the slice. This is a fundamental problem 
because completeness is a property required by most applications of program slicing. For instance, the slice computed from 
a bug symptom could not contain the bug. Or the slice computed from a variable to produce a specialized program could 
produce a specialized code that is not equivalent to the original program.

The source of the problem is that JSysDG is not prepared to select an object variable as the slicing criterion, and it can 
produce a slice where only some of its required data members are included. This lack of completeness is caused by the 
definition of flow dependence in the JSysDG. The classic flow dependence [1] was designed for variables that are atomically 
defined or used in a single statement, but has never been reconsidered to deal with object variables, which can be partially 
defined or used (e.g., by defining or using only one of its data members) in a statement.

Example 1.2 (JSysDG completeness counterexample). Consider again the code in Fig. 1a. We can define the slicing criterion 
〈15, a1〉, which means that we are interested in the whole object a1 after1 executing the method call in line 15. This 
means that the slice should include all the data members of a1, and the code needed to define them.

The code in black in Fig. 2a is the result obtained by slicing the JSysDG. The JSysDG includes the definition of a1.x in 
the slice because the function call a1.setX(3) is also included as part of the slice, but it ignores all the data members 
not being defined there. As a result, data member a1.y in line 2 and its definition in line 5 are not included in the slice. 
Even the call to A’s constructor is missing. The result is an incomplete slice for 〈15, a1〉, which provides no value for data 
member a1.y, nor for a1 itself. The expected complete slice is the code in black of Fig. 2b.

The problem described for the JSysDG is inherited by its later extensions, such as the Sub-Statement Level Dependence 
Graph (SSLDG) [9]. The SSLDG extends the theoretical model proposed by the JSysDG to accept more concrete slicing criteria. 

1 In the rest of the paper, for simplicity in our examples, we interpret the slicing criterion as “a1 after executing line 15”. The complementary interpre-
tation “a1 before executing line 15” can be achieved by simply changing the line of the slicing criterion (i.e., 〈14, a1〉).
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1 class A{
2 public int x,y;
3 public A (int a, int b) {
4 x = a;
5 y = b;
6 }
7 public void setX(int a) { x = a; }
8 public int f(int a) { return a * y; }
9 }

10
11 class Main{
12 public static void main(String[] args){
13 A a1 = new A(1,2);
14 int i = a1.f(10);
15 a1.setX(3);
16 A a2 = a1;
17 }
18 }

(a) JSysDG slice

1 class A{
2 public int x,y;
3 public A (int a, int b) {
4 x = a;
5 y = b;
6 }
7 public void setX(int a) { x = a; }
8 public int f(int a) { return a * y; }
9 }

10
11 class Main{
12 public static void main(String[] args){
13 A a1 = new A(1,2);
14 int i = a1.f(10);
15 a1.setX(3);
16 A a2 = a1;
17 }
18 }

(b) Expected slice

Fig. 2. JSysDG and expected slices of the code in Fig. 1 w.r.t. 〈15,a1〉.

Both models share the same representation for object variables in method calls, which is the key factor of the incomplete-
ness problem.

This paper presents an approach that solves the problem described in Example 1.2. We augment the JSysDG by replacing 
the current definition of flow dependence with three more accurate definitions: the standard definition of flow dependence 
for primitive variables and another pair of new definitions for object variables that we call object-flow dependence and object-
reference dependence. These definitions require the specialization of the ‘defined variables (DEF)’ and ‘used variables (USE)’ 
sets of each statement, two concepts coming from the JSysDG that are explained later through Definitions 2.1 and 2.2. The 
specialization of these sets allows the JSysDG to distinguish when object variables are being totally or partially used or 
defined in method calls.

The rest of the paper is structured as follows. Section 2 recalls some key concepts about the construction of the JSysDG. 
Section 3 explains and justifies the incompleteness problem of the current JSysDG when slicing an object that is the caller 
of a method call, illustrating it with an example in Java. Then, in Section 4, the DEF and USE sets for every statement are 
redefined in order to properly represent definitions and uses of object variables and its data members. After that, Section 5
formally introduces object-flow dependence and object-reference dependence, and justifies their necessity in OO programs. 
Section 6 presents some slicing restrictions that need to be added to the slicing algorithm when traversing object-flow 
dependences; and Section 7 presents the empirical evaluation comparing the JSysDG and the JSysDG extended with object 
dependences. Finally, Section 8 presents the related work and Section 9 concludes.

2. Background: the Java System Dependence Graph (JSysDG)

This section has been included to keep the paper self-contained. Those readers already familiar with the JSysDG can skip 
this section, where we explain how the program representation field has evolved to reach the current solution to properly 
represent the program in Fig. 1a so that we can automatically obtain the slice shown in Fig. 1b. In particular, we explain 
the JSysDG through its incremental evolution:

CFG → PDG → SDG → ClDG → JSysDG

CFG. The starting graph to build a JSysDG is the Control Flow Graph (CFG) [10]. It is a graph that represents all possible 
execution paths of a method. In the CFG, each statement is represented with a node, and two nodes are connected if they 
may be executed sequentially. Two nodes, Enter and Exit, are added as the initial and final nodes of the method execution 
respectively. Additionally, every CFG node is augmented with two sets: the definition set and the use set, that denote the 
set of variables respectively defined and used at this CFG node. Formally,

Definition 2.1 (Definition set (DEF)). Let G be a CFG. Let n be a node in G representing a statement s. The definition set of n
is denoted with DEF(n) and it contains all the program variables that are defined (their value is assigned) at statement s.

Definition 2.2 (Use set (USE)). Let G be a CFG. Let n be a node in G representing a statement s. The use set of n is denoted 
with USE(n) and it contains all the program variables that are used (their value is accessed) at statement s.

PDG. From the CFG we can calculate two different dependences that are used to construct a Program Dependence Graph 
(PDG) [11]. These dependences are the control dependence and the flow dependence, defined hereunder.
3
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1 class A{
2 public int x, y;
3 public A (int a, int b) { x = a; y = b; }
4 public int getX() { return x; }
5 public int getY() { return y; }
6 public void f() { x = x + 1; }
7 }
8 class B extends A{
9 public B (int a, int b){ super(a,b); }

10 public void f() { x = x + 2; }
11 }

12 class Main{
13 public static void main(String[] args){
14 A a;
15 if (Math.random() > 0.5)
16 a = new A(1);
17 else
18 a = new B(2);
19 a.f();
20 g(a);
21 }
22 public void g(A a){
23 System.out.println(a.getX() + a.getY());
24 }
25 }

Fig. 3. Fragment of Java code with a polymorphic call.

Definition 2.3 (Control dependence). Let G be a CFG. Let n and m be nodes in G . A node m post-dominates a node n in G
if every directed path from n to the Exit node passes through m. Node m is control dependent on node n if and only if m
post-dominates one but not all of n’s CFG successors.

Definition 2.4 (Flow dependence). Let G be a CFG. Let n and m be nodes in G . Node m is flow dependent on node n if:

(i) v ∈ DEF(n),
(ii) v ∈ USE(m), and

(iii) there exists a control-flow path from n to m where v is not redefined.

The PDG of a method is a graph G = (N, A) where N is the set of nodes of the CFG minus the Exit node, and A is a set 
of arcs that represent control and flow dependences.

SDG. A program usually contains a set of methods connected by method calls. For this reason, in order to connect the PDGs 
of all the methods of a program and simulate parameter passing between calls and definitions, Horwitz et al. defined the 
System Dependence Graph (SDG) [12]. An SDG represents each parameter of a method with a formal-in node, and a formal-
out node represents a parameter that may be modified inside the method. Analogously, each method call is augmented with 
an actual-in node for each argument of the call, and an actual-out node for each argument that may be modified by the 
method. The SDG connects method calls with their definitions representing parameter passing with (interprocedural) pa-
rameter arcs (input arcs connect actual-in with formal-in nodes and output arcs connect formal-out with actual-out nodes). 
Additionally, a call arc is generated to connect the call node to the method Enter node. Finally, a new kind of arc called 
summary arc is added to the SDG to describe the relation between input and output arguments in method calls. A summary 
arc connects an actual-in node and an actual-out node if the value related to the actual-in node is needed to calculate the 
value defined in the actual-out node.

ClDG. With an SDG as its base, the Class Dependence Graph (ClDG) [13] augments its representation to consider OO pro-
grams. The ClDG defines a class entry node for each class, connected to the method Enter nodes of all its methods by class 
membership arcs, and to all its data members by data membership arcs. In the ClDG graph, inheritance is represented with a 
class dependence arc from the base class to the derived classes.

JSysDG. The Java System Dependence Graph (JSysDG) augments the ClDG with a representation for polymorphic calls and 
dynamic binding. This can be seen in Figs. 3, 4, and 5, which shows a Java program and two portions of its JSysDG that 
illustrate different aspects of the graph described above. This figure also shows how the JSysDG represents two specific 
scenarios that are worth mentioning to later understand the source of incompleteness:

1. A polymorphic object is the caller of a method, and the call’s target is only known at runtime. The JSysDG represents 
the caller and its defined and used data members as a tree. There is a node for each possible dynamic type connected 
to the corresponding method definition. An example of this situation can be seen in Example 2.5.

Example 2.5. Consider the code in Fig. 3, where a Java program with two classes with an inheritance relationship (B
extends A) is represented. The program also contains a Main class with a main method that creates an object of either
A or B dynamic type depending on a randomly generated number. In line 19, the method that would be executed in 
the call a.f() can only be determined at runtime, thus, the static representation of the program needs to define both 
possibilities. An example of how the JSysDG represents this method call is shown in Fig. 4.

2. A method call contains a polymorphic object as a parameter. In this scenario the JSysDG representation follows the 
proposal introduced by Liang and Harrold in [14], where the object parameter is represented in the graph as a tree 
4
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Fig. 4. JSysDG of call a.f() in line 19 of Fig. 3.

Fig. 5. JSysDG of call g(a) in line 20 of the code in Fig. 3.

structure, with a subtree for each possible dynamic class, unfolding all its data members in both method call and 
definition. This scenario is shown in Example 2.6.

Example 2.6. Consider the call to method g in line 20 of Fig. 3. This call receives a polymorphic object (variable a) as a 
parameter. The corresponding JSysDG representation is shown in Fig. 5. In the JSysDG, only data members inside each 
type tree are linked, in order to accurately select only those data member used inside the method definition of g. Note 
that, when we follow the proposed representation, if an object is represented recursively, the tree representation may 
be infinite. To address this issue, the JSysDG employs a k-limiting approach (a tree representation is only unfolded to a 
level k).

3. Limitations of the JSysDG

As it has been proven with Example 2, even though being the current most accurate representation of Java OO programs, 
the JSysDG can produce incomplete slices. In this section we explain what its cause is.

In Java, program variables can be of two different types. On the one hand, we have primitive variables, which are atomic 
(e.g., int i = 42). These variables are always defined and used atomically, i.e., every time a primitive variable is defined 
in the program, the new value of the variable replaces the previous one, and the previous value cannot be further accessed. 
5
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Fig. 6. JSysDG representing lines 13 and 15 of the main method in Fig. 1, and slice w.r.t. 〈15, a1〉 (grey nodes represent the slice, bold nodes the slicing 
criterion).

On the other hand, there are object variables, which are compositionally formed by a collection of data members. Each data 
member, in turn, can be a primitive variable, or another object variable.

The JSysDG was proposed by Walkinshaw et al. [8] extending the representation provided by Liang and Harrold for C++ 
[14]. Both approaches share the same definition for program slice and slicing criterion:

“A program slice is a set of program statements and predicates that might affect the value of a program variable v that is defined or 
used at a program point p; 〈p, v〉 is known as the slicing criterion.”

According to this definition, an object variable can be considered as the slicing criterion. If we select an object variable 
as the slicing criterion, the slice should include all the statements that might affect the value of any of its data members. 
Nevertheless, as we have seen in Fig. 4, when an object variable is the caller of a method call, only the used and defined 
data members of the object have a representation in the unfolding tree as argument-in and argument-out nodes respectively. 
Additionally, all the flow dependences between object definitions and uses in method calls are propagated through their data 
members, but they never connect the node that represents the object variable itself.

If we put all this knowledge together, we can identify a specific scenario where the slice obtained by the JSysDG is 
not complete when selecting some object variables as the slicing criterion. This scenario is given in the main method of 
Fig. 1, in particular in lines 13 and 15 (the relevant code is shown in Fig. 6). Line 13 creates object variable a1 of type
A instantiating its data members x and y with a call to A’s constructor. Then, line 15 modifies only the value of its data 
member x. Therefore, after line 15, the values of the data members (x and y) of object a1 come from two statements: x is 
defined in line 15 (with value 3) and y is defined in line 13 (with value 2). However, there is not flow dependence between 
these two statements because method call a1.setX(3) does not depend on any data member of object variable a1 to 
define data member x. The described situation is represented in Fig. 6.

Fig. 6 represents with grey nodes the slice produced by the JSysDG with respect to 〈15, a1〉. This slicing criterion is 
marked in the JSysDG with a bold line. Note that, when the slicing criterion is an object variable, then all the data members 
are marked as the slicing criterion as well. Thus, the slicing criterion is formed from the control dependence subtree of 
node a1. This slice corresponds to the code shown in Fig. 2a. Contrarily to the expected slice, which is the one in Fig. 2b, 
the slicing traversal of the JSysDG ends without reaching the declaration of a1, the constructor call new A(1, 2), and 
data member y in class A. This counterexample reveals that flow dependences of object variables need to be redefined so 
that slices are correctly computed when a whole object variable is selected as the slicing criterion.
6
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Table 1
The ordered sequence DEFos and the USE set of some of the statements in the main method of Fig. 1a.

Scenario Statement DEFos USE

1 A a1 = new A(1,2); [a1.x, a1.y, a1] ∅
3 a1.setX(3); [a1.x, a1] {a1}
2 A a2 = a1; [a2.x, a2.y, a2] {a1}

4. Definitions and uses of object variables

In order to solve the problem identified in the previous section, we need to extend the standard notion of flow depen-
dence (see Definition 2.4) for the case of objects. We start by giving a more accurate description for the DEF and USE sets 
when object variables are contained inside them.

Unlike primitive variables, object variables are not completely replaced every time they are defined. Since they are 
formed from a collection of data members, a statement may modify only some of them. As a result, the definition of all the 
data members of an object variable may be split into different statements. Hence, object variables can be defined in two 
different ways:

Definition 4.1 (Total definition of an object variable). An object variable v that points to a memory location m1 is totally defined
in a program statement s if the execution of s makes v to point to m2, and m1 �= m2 (v points to a different object).

Total definitions appear in two different scenarios:

1. An assignment of an object variable with a constructor call. This happens, e.g., in A a1 = new A(1,2) (see line 
13 of Fig. 1), where a1 is totally defined. Constructor methods always define2 all the data members of the variable 
and never use them. Hence, the DEF set for this statement (DEF(#13)) includes the object variable itself and all its 
data members. The order in which all these definitions occur is crucial for the definition of flow dependence. For this 
reason, we transform the DEF set into an ordered sequence called DEFos where all data members are defined first, 
and the object variable is defined at the end, e.g., the ordered sequence of definitions in the mentioned statement is 
DEFos(#13) = [a1.x, a1.y, a1]. In this scenario, USE(#13) = ∅ since no variable is used.

2. An alias assignment between two object variables that point to different objects. This happens, e.g., in A a2 = a1
(see line 16 of Fig. 1), where a2 is totally defined.3 As in the previous scenario, the DEF set is transformed into an 
ordered sequence where data members are defined first, and the object variable is defined at the end. In contrast, 
USE(#16) remains as a set of uses, and contains the object variable of the right-hand side of the assignment ({a1}).

Definition 4.2 (Partial definition of an object variable). An object variable v is partially defined in a program statement s if v
points to the same object o before and after the execution of s, and s defines at least one data member of o.

Partial definitions occur when a statement modifies at least one data member of an object variable, but not the object it 
points to. Partial definitions appear in two different scenarios:

3. A method call that defines a data member of the caller. This happens, e.g., in a1.setX(3) (see line 15 of Fig. 1). 
Method calls may partially define object variables by defining some or all of its the data members. The DEF set is also 
transformed to an ordered sequence which, as it happened in total definitions, includes all the data members defined 
inside the method followed by the object variable itself. On the other hand, the USE set includes all the data members 
used inside the method together with the caller object itself, whose reference is needed to make the call.

4. An assignment of an object variable’s data member. This happens, e.g., in a1.x = 42. The JSysDG treats this case 
as a particular case of the previous scenario because the JSysDG inherits the program assumptions given by Liang and 
Harrold when building their version of the ClDG: “We further assume that data members of an object can be accessed only 
through a method (we replace a direct reference to a data member of an object as a method call)”. For this reason, before building 
the JSysDG, a1.x = 42 is a1.setX(42). Therefore, the DEF set turns into an ordered sequence that contains data 
member a1.x followed by the object variable itself. In this case, the USE set contains the object variable defined (a1).

Example 4.3. Table 1 provides an example of DEF and USE sets for the main method of the program in Fig. 1. In this table 
there are examples of the described scenarios. Definitions and uses appear in the order described in the previous scenarios.

2 This definition can be explicit or implicit, because Java initializes all data members by default.
3 This type of total definitions include also assignments of the form A a = f(); where an object variable is defined through the return of a method 

call.
7
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Fig. 7. Input and output scopes in a method call.

1 (...)
2 int x = 5; // def x
3 x = 1; // def x
4 y = x; // use x

(a) Def-use with primitive variables.

1 (...)
2 A a = new A(); // def a
3 a.setX(1); // def a
4 a.setY(2); // def a
5 b = a; // use a

(b) Def-use with object variables.

Fig. 8. Flow dependence in presence of primitive and object variables.

This new method to annotate definitions and uses of object variables in program statements is of fundamental im-
portance for the redefinition of flow dependence. Moreover, it comes with an important advantage over the previous 
formulation: It allows us to differentiate the specific moment in which a data member and an object is defined or used 
and, thus, it allows us to slice a program with respect to a specific instant in the computation (for instance, we can slice
a.setX(3) with respect to the value of a ‘before’ or ‘after’ the method invocation). To incorporate this feature to the 
JSysDG, we have enhanced the graph representation for object variables at the scope of a method call. On the one hand, we 
provide an object tree for the scope to represent its value before the call (scope_in). The root of this tree represents the use 
of the object variable, and the tree contains the data members used inside the function call. On the other hand, if the object 
is modified during the method invocation, we provide another object tree that represents its value after the call (scope_out). 
The root of this second tree represents the definition of the object variable and it contains the data members defined inside 
the function call. For instance, considering the function call a.setX(3), the resulting JSysDG is shown in Fig. 7.

5. Definition of object-flow and object-reference dependences

In Java, as it happens in most programming languages, a variable cannot be used without being previously defined. The 
definition of a primitive variable is always total, but, as shown in Section 4, the definition of an object variable can be 
partial. This poses new difficulties in the computation of the usual flow dependence. In fact, the standard definition (see 
Definition 2.4) is insufficient. Let us illustrate the problem with a simple example.

Example 5.1. Consider the code in Fig. 8a, where the primitive variable x is defined twice and then used. According to 
Definition 2.4, x in line 4 depends on x in line 3, but x in line 4 does not depend on x in line 2.

If we consider, however, the code in Fig. 8b, we have an analogous situation: a is defined twice and then used. Therefore, 
according to the standard definition of flow dependence, a in line 5 flow depends on a in line 4 (which is correct), but a
in line 5 does not depend on a in line 3 (which is clearly wrong).

The rationale why Definition 2.4 does not work with object variables is because they can be partially defined, while 
primitive variables are always totally defined. This is also the problem of the JSysDG: it uses the standard definition of flow 
dependence (Definition 2.4) with object variables. The solution is to extend the definition of flow dependence to account 
for objects. Interestingly, this extension allows for novel situations. For instance, in Fig. 8b, a in line 5 depends on a in line 
3 (even though it is redefined in line 4), but also, a (partial) definition can depend on another definition. In particular, a in 
line 4, which is a (partial) definition, depends on a in line 3, which is another definition.

With all these ideas, we identify (and formally define) two new dependences that complement the classical flow depen-
dence with a specific treatment for object variables (it does not apply to primitive variables, which continue using the classic 
8
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Fig. 9. CFG and eCFG nodes corresponding to statement A a1 = new A(1,2).

flow dependence definition (Definition 2.4)). We call these new dependences object-flow dependence and object-reference de-
pendence. The former can be formally defined with an extended CFG.

Definition 5.2 (Extended control-flow graph). Given a CFG G = (N, A), its extended version eCFG is a graph G ′ with the 
same nodes and arcs as G with one exception: every node n ∈ N that defines an object variable and contains m > 1 variable 
definitions (DEFos(n) = [v1, v2 . . . vm]) is replaced by a sequence of nodes (n1, ..., nm , connected by arcs) where each variable 
definition is represented by one single node.

The eCFG is useful to explicitly represent the order in which a sequence of operations happen inside a single statement. 
These operations cannot be distinguished in a CFG because all of them are represented with one single node, while they 
can be distinguished in the eCFG because they are represented by a sequence of nodes.

Example 5.3. Consider the assignment A a1 = new A(1,2) in line 13 of Fig. 1. This assignment contains a total defini-
tion of variable a1 and its CFG node together with its sequence of definitions and uses are shown in Fig. 9a. Note that the 
sequence of definitions appears in the order described by scenario 1 in Section 4. Since the node contains three different 
definitions, the node must be split into different nodes in the corresponding eCFG. Fig. 9b shows how the initial CFG node 
is split into three different nodes (one per variable definition) which are sequentially connected to form the corresponding 
eCFG representation.

We can now formally define object-flow dependence.

Definition 5.4 (Object-flow dependence). Let n and m be nodes in an eCFG. m is object-flow dependent on n if:

#1 (i) n defines an object o,
(ii) m uses the object o, and

(iii) there exists a control-flow path from n to m where object o is not redefined.
or

#2 (i) n defines a data member x of an object o,
(ii) m defines object o,4 and

(iii) there exists a control-flow path from n to m where data member x of o is not redefined.

The first set of conditions corresponds to the classic definition of flow dependence, the definition-use dependence, which 
also applies to object variables, even if the definition is partial. The second one considers a definition-definition dependence, 
produced by partial definitions. This flow dependence considers the case when the slicing criterion is an object variable, 
and it depends on all the complementary partial definitions that, together, produce the complete value of that variable.

Object-flow dependence represents all situations in which the values of the data members of an object are propagated. 
In particular, it is able to identify multiple partial definitions of an object and properly connect all of them to produce 
the whole value of an object. But object-flow dependence does not consider the object reference of objects. Unlike primitive 
variables, object variables have a pointer to a memory position where a specific object is stored. This pointer is updated 

4 I.e., in the eCFG, DEFos(m) = [v], where v is an object variable that points to object o.
9
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Fig. 10. Code with data member redefinition (left) and its JSysDG with object-flow (right).

every time a total definition of an object variable is executed (see Definition 4.1). Example 5.5 shows a scenario where 
object-flow dependence is insufficient to include the reference of an object in a slice.

Example 5.5. Consider the code in Fig. 10, where an object a of class A (which has one single data member x) is totally 
defined in line 2. Then, line 3 redefines data member x (even though its unique data member is redefined, the object 
reference remains unchanged). Finally, line 4 contains a use of variable a. All object-flow dependences in this code are 
represented in the graph of the figure labeled with #1 and #2. These object-flow dependences are the ones generated by 
the first (#1) and second (#2) sets of conditions in Definition 5.4, respectively.

With these dependences, the slice computed for 〈4, a〉 is shown with grey nodes. Clearly, this slice is incomplete, because 
line 2 should be included in the slice. The problem is that there is a missing dependence between a_out in line 3 and a in 
line 2. The missing part is the object reference of a, which is defined in line 2. The rationale is the following: even though 
all data members of a_out are defined in line 3, the object reference of a_out is not. Therefore, a_out in line 3 must depend 
on the code that defines its object reference (line 2).

To account for these missing dependences, we define a new type of dependence called object-reference dependence that 
complements object-flow dependence. It connects objects with their object reference. Formally,

Definition 5.6 (Object-reference dependence). Let G be a CFG. Let m and n be nodes in G . n is object-reference dependent on m
if m totally defines an object o, n partially defines object o, and there exists a control-flow path from m to n where object 
o is not totally defined.

Object-flow and object-reference dependences are the key elements to solve the incompleteness problem of the JSysDG. 
The completeness of both dependences with respect to any definition-use combination of statements with object variables 
is an important result that we formulate here and prove in Appendix A and Appendix B.

Theorem 5.7 (Object-flow completeness). Let s1; s2; . . . sn; be a sequence of statements. Let x be an object variable or a data member 
of an object variable defined at s1. If the value of an object o at sn data depends on the execution of s1, then there is a transitive 
object-flow dependence between s1 and sn.

Theorem 5.8 (Object-reference completeness). Let s1; s2; . . . sn; be a sequence of statements. Let x be an object variable totally defined 
at s1 . If the reference of an object variable v at sn depends on the total definition of s1 , then there is a path formed by object-flow and/or 
object-reference arcs between s1 and sn.

The final JSysDG that includes our new dependences is shown in the following example. With object-reference depen-
dence it solves the problem explained in Example 5.5.

Example 5.9. Consider again the code in Fig. 1a. Fig. 11 shows its associated JSysDG. The upper part of the figure corresponds 
to the representation of class Main, where we can see how object dependences are also defined over the tree structure of 
method calls. Although object dependences add arcs between object variables, the original definition of flow dependence 
is still applied to primitive variables. This happens in the call a1.f(10), where data member y of the constructor call is 
10
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Fig. 11. JSysDG of the program in Fig. 1 and slice w.r.t. 〈15,a1〉.

linked to the argument-in node y_in. We can see that the object-reference arc is needed to connect the object variable a1
after the call a1.setX(3) with the construction of this object in call new A(1,2). This JSysDG extended with object 
dependences can properly slice the graph from any slicing criterion. For instance, the slice computed for the slicing criterion 
〈15, a1〉 in Fig. 1a would be the expected slice, i.e., the code in black in Fig. 2b.

6. The slicing algorithm

The JSysDG slicing algorithm is the standard one proposed by Horwitz et al. [12]. It computes slices in two phases: (i) 
traverse the graph backwards from the slicing criterion collecting all nodes reached using any arc except for output arcs, (ii) 
traverse the graph backwards from any node in the slice collecting all nodes reached using any arc except call and input arcs. 
The overall process has a linear time complexity. This algorithm can be used with our graph, producing the same precision 
as with the JSysDG. However, this algorithm does not take advantage of the new object-flow dependences, producing a loss 
of precision. The standard algorithm would include in the slice all the data members of an object variable even if we are 
only interested in one of them. For instance, in Fig. 11, if we consider the node y inside the method call new A(1, 2), the 
algorithm would unnecessarily include in the slice data member x and its value 1 (due to arc a1 #2←− x).

The problem can be solved by limiting the traversal of the object-flow arcs in certain cases. When the traversal reaches 
a node n, an incoming object-flow arc can only be traversed if one of the following three conditions is true:

1. n has been reached via an object-flow arc,
2. n is the slicing criterion, or
3. n is a predicate.

Condition 1 ensures that the traversal of object-flow arcs is still transitive. Conditions 2 and 3 provide a starting point to 
traverse object-flow arcs. When the slicing criterion is an object variable (Condition 2), we need to traverse all object-flow 
arcs to include in the slice the value of all its data members. On the other hand, in Condition 3, when the traversal reaches 
a predicate (e.g., the condition of an if or a while statement) we need to follow object-flow arcs to include the data 
members used by its condition in order to keep the slice complete. The restriction imposed to the traversal of object-flow 
arcs increases the precision of the algorithm in the presence of object variables, while keeping its linear time complexity. 
Algorithm 1 includes all these conditions in the original slicing algorithm proposed in [12], making it suitable to traverse 
the JSysDG after adding object-flow dependences.
11
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Algorithm 1 Slicing algorithm for the JSysDG with object-flow dependence.

Input: A JSysDG G and the slicing criterion node nsc .
Output: The set of nodes that compose the slice S of G w.r.t. nsc .
Initialization: S0 ← {〈nsc, none〉}.

1: function MarkNodesOfSlice(G, nsc)
2: S1 ← MarkReachingNodes(G, S0, nsc, {Output}) � Phase 1
3: S2 ← MarkReachingNodes(G, S1, nsc, {Call, Input}) � Phase 2
4: S ← {n | 〈n, arcType〉 ∈ S2}
5: return S

6: function MarkReachingNodes(G, N, nsc, ArcTypes) � Change (A)
7: WorkList ← N
8: while WorkList �= ∅ do
9: select some 〈n, lastArcType〉 ∈ WorkList � Change (B)

10: WorkList ← WorkList \ 〈n, lastArcType〉
11: for all arc ∈ getIncomingArcs(n) do
12: if arcType ∈ ArcTypes then
13: continue
14: m ← getSourceNode(arc)
15: if arcType = ObjectFlow then
16: if lastArcType �= ObjectFlow ∧ n �= nsc ∧ ¬isPredicate(m) then
17: continue
18: N ← N ∪ 〈m, arcType〉
19: WorkList ← WorkList ∪ 〈m, arcType〉
20: return N

Algorithm 1 illustrates the slicing process by including a couple of relevant changes to Horwitz’s algorithm. The first one 
(A) is that the slicing criterion nsc is now used as a parameter of function MarkReachingNodes, since this function needs to 
identify in Line 16 whether the current node is the slicing criterion (to check Condition 2). Additionally, (B) the WorkList
in function MarkReachingNodes contains now tuples of two elements (see Line 9) instead of a single element, storing also 
the information about the type of the last traversed arc (to check Condition 1). The three aforementioned conditions are 
checked in lines 15-17. If any of them holds then the current node is not included in the slice.

Example 6.1 shows how the application of Algorithm 1 solves the incompleteness problem of the JSysDG presented in 
Section 3.

Example 6.1. The graph in Fig. 11 represents the JSysDG of the code in Fig. 2 augmented with object-flow and object-
reference dependences. It shows the slice computed with respect to the object variable a1 in line 15 after the method call
a.setX() (the slicing criterion node is marked with a bold line in the graph). To clearly show the two traversal phases of 
the algorithm, the slice is divided into two sets of nodes. The nodes marked in light grey are added to the slice during Phase 
1. On the other hand, the dark grey nodes are the nodes added to the slice during Phase 2. The slice code is exactly the 
expected slice shown in Fig. 2b. It is worth mentioning that the change proposed in Section 6 to Horwitz et al.’s algorithm 
has a direct impact on the slice’s precision.

Note that the traversal algorithm improves its accuracy by preventing the x data member of object variable a1 in method 
call new A(1,2) to be included in the slice. This happens because x can only be reached from a1 (through an object-flow 
arc) and this arc can only be traversed from another object-flow arc, according to Condition 1 of the slicing algorithm. Even 
though a1 can be reached from two object-flow arcs, none of them belong to the slice, thus x is never included in the slice.

7. Empirical evaluation

In this section we compare our implementation, which include object-flow and object-reference dependences, with the 
original JSysDG. We have compared both graph implementations by measuring the graph generation time, the slicing time, 
and the size of the slice, comparing the results obtained by both slicer executions.

All the algorithms and ideas described in this paper have been implemented in a prototype slicer for Java programs 
called JavaSlicer. JavaSlicer is open source and publicly available.5

To compare the performance difference between the JSysDG and JavaSlicer, we used the publicly available Java library 
re2j, a library developed by Google to work with regular expressions in Java. In particular, we used the most recent release of 
this library (version 1.66). re2j is a project with 8100 lines of code, distributed in 19 different Java files. In order to evaluate 
the techniques proposed throughout this work, we used both the JSysDG and JavaSlicer to build and slice the whole re2j
library. Then, to make the comparison meaningful, we selected as slicing criteria all the object variables (root node of the 

5 Available at https://github .com /mistupv /JavaSlicer.
6 Available at https://github .com /google /re2j /releases /tag /re2j -1.6.
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Table 2
Summary of experimental results, comparing the slices of re2j produced by the JSysDG (A) and JavaSlicer (B).

Size range SCs Slice time (A) Slice time (B) Slower Size (A) Size (B) Improv.

[0, 100) 49 0.076 ± 0.001 ms 0.927 ± 0.018 ms 48.876 9.10 39.59 693.74%
[100, 1000) 95 130.98 ± 1.823 ms 217.315 ± 2.874 ms 0.782 608.69 738.68 23.19%
[1000, 1400) 122 622.67 ± 10.833 ms 1164.423 ± 13.093 ms 0.857 1284.66 1664.99 29.32%
[1400, 1800) 146 881.09 ± 13.101 ms 1584.023 ± 12.429 ms 0.779 1535.62 1948.16 26.77%
[1800, ∞) 31 1603.05 ± 11.769 ms 2943.965 ± 15.702 ms 0.842 1994.42 2522.74 26.73%
[0, ∞) 443 602.13 ± 9.078 ms 1095.440 ± 12.039 ms 6.126 1130.99 1439.91 100.47%

Build times: JSysDG: 10.85 ± 0.09 s, JavaSlicer: 13.35 ± 0.07 s (23% slower).

object tree representations) that are directly connected to a return statement.7 The result of this selection is a total of 443 
different slicing criteria located over the 19 Java files.

All experiments were done on an Intel Core i5-7600 processor with 16 GB RAM (DDR4 at 2400MT/s) under a Linux OS 
with kernel version 5.18.1. The experiment was run with the OpenJDK Java Virtual Machine (version 11.0.15+10). During the 
execution of the experiment, all processes and services except for the program slicer and the shell it was launched from 
were completely stopped to prevent interferences in the CPU performance.

The methodology used to measure the performance of both slicers was the following: each time measurement (the graph 
generation or a specific slice) was repeated 101 times, and the first iteration was always discarded (to avoid influence of 
dynamically loading libraries to physical memory, data persisting in the disk cache, etc.). Finally, we computed the average 
with error margins (with 99% confidence) with the remaining 100 values.

The results of the experiments performed are summarized in Table 2.8 In it, the slicing criteria are grouped according to 
the size of the JSysDG slice (in nodes). This is due to the strong influence the size of the slice has on the time required to 
compute it and on the relative sizes of slices produced by both graphs. The columns of Table 2 are described as follows:

• Size Range: the sizes of the JSysDG slices (in nodes) that are contained in each row.
• SCs: the number of slicing criteria contained in a particular range.
• Slice Time (A/B): the average time required to slice the corresponding JSysDG (A) and JavaSlicer (B).
• Slower: how much slower is JavaSlicer in comparison to the JSysDG. It is computed as (TimeB − TimeA)/TimeA .
• Size (A/B): the average number of nodes in the JSysDG (A) and JavaSlicer (B) slices.
• Improv. (improvement): the average increase in size of the JavaSlicer slice compared to the JSysDG slice. It is computed 

as (SizeB − SizeA)/SizeA .

To interpret the results, we first need to focus on the usage of the SDG. Typically, a graph will be built once and 
sliced multiple times, and thus its creation can be (and often is) much more costly than its traversal. Regarding complexity, 
creation is polynomial and traversal is linear. Our results are as expected: creating the graph is between one and four orders 
of magnitude more time-consuming (depending on the final slice’s size). Regarding the graph creation, we can observe a 23% 
increase between the JSysDG and JavaSlicer, which is attributable to the great number of object trees that are featured on 
the graph. The graph itself consists of 42000 nodes, most of which represent objects, their polymorphism or their members. 
Thus, computing object-flow and object-reference arcs represents a noticeable increase in time consumption.

If we turn our attention to the slicing portion of the results, we can see that the slices can be classified into two distinct 
groups. The first group consists of slices whose size is below 100 in the JSysDG tend to “blow up”, as the addition of 
object-flow and object-reference adds a significant number of nodes to the slice (relative to the size of the original slice). 
Thus, the relative columns of the first row of results show a slicer that includes almost 700% more nodes and takes about 
50 times longer. Due to the small size of the resulting slices and the short time it takes the JSysDG to compute them 
(0.08 ms), a 50x increase only manages to bring the average up to 0.9 ms, which is negligible in most applications of 
program slicing. This first group can be considered an outlier, and it affects the averages of the table as a whole. The second 
group is represented by the rest of the table (slices with sizes above 100 nodes), where the results show that slices increase 
between 23% and 30%, with the cost being a 80% time increase. Throughout the table, time has increased linearly with slice 
size, as can be seen in Fig. 12. Whether the cost is worth the improvement in completeness is up to the application of 
slicing. For example, in compiler optimization, completeness is an important requirement for slicers; while for dependency 
highlighting or light debugging, a faster but incomplete slice may be more appropriate. Another important remark is the 
comparison between the slice results computed over the two models. We verified that every JavaSlicer’s slice included all 
the statements of the associated JSysDG slice. The rationale behind this is that the graph representation used by JavaSlicer 
is a conservative extension of the JSysDG (i.e., it also contains all the nodes and arcs of the JSysDG), where object-flow and 

7 Note that, to compare the performance of both models, selecting an object variable during the slicing traversal is preferable because any slicing criterion 
that produces a slice in the JSysDG without object variables would produce the same slice in our augmented JSysDG, as the two representations are identical 
except for object-flow and object-reference arcs.

8 The full dataset produced by the slicer execution is publicly available at https://mist .dsic .upv.es /git /program -slicing /SDG /-/snippets /9.
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Fig. 12. Relationship between the size and time required to compute a slice (logarithmic scale).

object-reference arcs are added. Therefore, for any possible slicing criterion, the slice computed with the JSysDG (SJSys) will 
always be contained in the slice computed with JavaSlicer (SJS):

S J S ys ⊆ SJS

8. Related work

In 1996, Larsen and Harrold [13] proposed the first graph representation able to slice OO programs, the Class Dependence 
Graph (ClDG). Their approach was the first to provide a way to represent inheritance, polymorphism, and dynamic binding. 
The ClDG connected all the methods and data members of a class in a single graph. Their proposal was later improved by 
other approaches like those of Tonella et al. [15], or Liang and Harrold [14]. Although all these proposals focused on OO 
programs, none of them noticed the difference between total and partial definitions in object variables and their impact in 
flow/data dependence.

When we review the literature looking for specific slicing approaches for Java, we find interesting related papers. For 
instance, Hammer and Snelting [16] defined a new object unfolding process for method calls in presence of recursive data 
types, improving the results of the k-limiting approach proposed in [14]. They defined an algorithm to completely unfold 
object variables without unfolding the same object twice in the same object tree and without loosing dependences based 
on point-to information. Kashima et al. [17] compared four different backward slicing techniques for Java: static execute 
before (SBE), based in the CFG; context-insensitive slicing (CIS), ignoring the call context; hybrid model (HYB), where the 
slice is defined as the intersection of SBE and CIS; and improved slicing (IMP), based on the Hammer and Snelting’s work 
[16]. They compared their precision, scalability, and tradeoffs, determining IMP as the more accurate but not applicable to 
large programs.

Other techniques focused on the representation of polymorphic objects in Java. This is the case of the JSysDG [8] and the 
SSLDG [9], mentioned at the beginning of this paper. Both graphs include a multiple-layer representation that contemplates 
Java programs at different levels: package level, class level, method level, and statement level. At statement level, both 
graphs use the unfolding of object variables in method calls using a tree-like representation for data members proposed in 
[14]. There are three main differences between these two graphs: the first one in that the SSLDG includes a sub-statement 
layer where object variables outside method calls are further split into their data members, making the representation of 
direct accesses to object fields explicit in the graph; the second one is that the SSLDG proposal enhances the information of 
the slicing criterion when slicing polymorphic objects, using a triplet as slicing criterion where the new element indicates 
the dynamic type of the object being sliced to further reduce the computed slice; and the third difference is the modification 
of the slicing algorithm to adapt its graph for forward slicing.

Other works dealt with object-oriented programs in other programming languages like C++ or Python. In [18], Pani et al. 
present an algorithm for finding dynamic slices for object oriented programs in presence of function overloading on C++; and 
in [19], Jain and Poonia proposed a mixed static and dynamic slicing for C++ OO programs, where they generate dynamic 
slices in a faster and more accurate way by using object-oriented information in C++. These works are centered on dynamic 
slicing, and they are not focused in the representation of object variables, but in taking advantage of the information given 
by the compiler to compute the slice. On the other hand, a program slicing approach for Python is presented by Xu et 
al. in [20]. This work defines the Python System Dependence Graph (PySDG), used to slice Python First-Class objects. The 
PySDG takes all the first-class objects including functions, methods, classes and modules into consideration, to construct the 
dependencies between the definition and use statements of these first-class objects. In this model, the authors also introduce 
a new kind of dependence (Entity Dependence), which describes the dependency relationship between the statement which 
defines the entity object and the statement which calls the entity object.

There are also some other works mainly focused on modeling data dependences for slicing in object-oriented programs. 
Chen and Xu [21] augmented the PDG of each method with tags, used to distinguish the different definitions and depen-
14
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dences inside a statement. The authors defined five different sets: Def (s), Ref (s), Def (s, x), Dep_D(s, x), and Dep_R(s, x). These 
sets were used to annotate data dependence arcs with the program variables involved in each data dependence. Despite the 
perspective is interesting, its purpose is different to ours. It gives extra information to data dependences by annotating 
them, limiting the graph traversal at slicing level when reaching a node looking for just a particular variable. Contrarily, our 
approach focuses on establishing a dependence between an object variable and the value of all its corresponding data mem-
bers in any program point. The work by Orso et al. [22] exhaustively analyzes data dependence in the presence of pointers. 
They considered two different aspects: the classification of definitions and uses, and the classification of different kinds of 
paths in the CFG. In their work, they differentiate 24 kinds of data dependence and allowed the possibility of slicing with 
respect to only some of them including the considered dependences as part of the slicing criterion. Unfortunately, their data 
dependence is more suitable for point-to analysis than for the OO paradigm, as it is based on point-to relationships.

Our approach may seem similar to object slicing, introduced by Liang and Harrold [14], or class slicing, defined by Chen 
and Xu in [23], but there are some differences between their approaches and ours. In object slicing, the slicing criterion is 
defined with a tuple 〈v, p, o〉 where v is a variable in a program statement p, and o is an object variable of the program. 
Object slicing determines which statements of o’s class affect the slicing criterion through object variable o. First, a standard 
slice is computed for the criterion 〈v, p〉. Then, considering the computed slice, a new process isolates all method calls with 
o as the caller object. Afterwards, method definitions corresponding to o’s detected method calls are identified. Finally, o’s 
slice is computed by extracting from the initial slice all the statements corresponding to those method definitions. Note that, 
in object slicing, the slicing criterion is not the object variable itself, but a mechanism to reduce the statements included in 
the original slice. Our objective is different: we are interested in considering the object variable o as the slicing criterion, 
extracting from the whole program (not only from o’s class) the code that affects its whole value (the value of all its data 
members) in a particular statement. Class slicing [23] is similar to object slicing: it is also defined over a slicing criterion 
〈v, p, c〉, but this time, instead of a specific object o, a class c is selected. Class slicing is restricted to a single class. It 
extracts any statement in c that affects the slicing criterion 〈v, p〉 for every object instance of class c that is part of the 
slice. This approach is a bit far from what we are interested in, because it considers a set of objects, not a single one and, 
once again, it focuses on a single class while we are interested in the whole program.

9. Conclusions

Object-oriented programs are challenging for program slicing since they introduce features such as inheritance, polymor-
phism, and dynamic binding; for which the standard program representation (the SDG) was not prepared. The scientific 
community has iteratively improved the SDG to solve the above problems, being the current solution the JSysDG, which 
subsumes previous approaches and introduces a precise representation of call sites where polymorphic objects are involved 
as the caller or as a parameter. Its representation allows us to accurately slice the data members of an object variable being 
used in a method, or defined through it.

Nevertheless, we have shown in this paper that the JSysDG is not prepared to slice programs when an object variable 
is selected as the slicing criterion because it can produce imprecise or even incomplete slices. Our first contribution is 
the design of a counterexample that reveals the JSysDG incompleteness. Further, we have identified the source of that 
incompleteness, and we have explained the rationale of this problem.

In order to solve the problem, we have properly redefined the DEF and USE sets for any statement that involves objects, 
specifically for caller variables in method calls. This is our second contribution, which has been mapped to the program 
representation so that it can be used for slicing. Since caller variables in method calls are unfolded in a tree representation, 
we have associated the definition and use of the caller to different nodes of the call. This has produced an important 
advantage of our program representation: in contrast to the standard approach, we allow a caller object to be selected as 
slicing criterion both before and after the method call was performed, obtaining a complete and accurate slice in both cases.

Our third contribution is a new definition of flow dependence with a specific treatment for object variables. This exten-
sion allows us to express the relationship between object variables and its data members in a more accurate way. Hence, 
flow dependence is split into flow dependence for primitive variables, and flow dependence for object variables (object-flow 
dependence and object-reference dependence). It is important to remark that the new definitions come with a proof of 
completeness, showing that they capture all dependences not considered in the previous approach.

Our fourth contribution is the extension of the JSysDG with the new object dependences and a new slicing algorithm 
that properly treats them. The new algorithm not only solves the described problems of the JSysDG, ensuring completeness 
and improving precision, but it also keeps the linear-time performance of the standard slicing algorithm.

Finally, our last (fifth) contribution is a new slicer for Java, the JavaSlicer, with the JSysDG in its basis that includes 
object-flow and object-reference dependences. Our experimental evaluation has shown that this incompleteness situation 
is frequently given in our benchmarks. Our approach adds around a quarter additional nodes to larger slices (100 or more 
nodes) and increases sizes seven-fold for smaller slices. The cost to this increase in completeness is a 23% slower graph 
creation and a linearly slower traversal to generate each slice.

Although our proposal targets Java, it can be easily adapted for similar object-oriented programming languages like C++, 
where the relation between objects and data members is analogous to Java’s.

Appendix A and Appendix B include the proofs of Theorems 5.7 and 5.8, respectively.
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Appendix A. Completeness proof of Theorem 5.7

Before proving Theorem 5.7, in order to ease the proof by reducing the number of possible scenarios, we enunciate and 
prove the following lemma:

Lemma 1. Let s be a statement in a program P . Let v be an object variable totally defined at s that points to object o. The 
value of v at s is not object-flow dependent on any previous statement s′ .

Proof. According to Definition 4.1 (see also the scenarios 1 and 2 of Section 4), a statement s that totally defines an 
object variable also defines all its data members. In Definition 5.4, a statement s can be object-flow dependent on another 
statement s′ iff: (i) s uses an object o, or (ii) s defines an object o and there is a data member x of o not defined between 
s′ and s. Since s is a definition of o and also defines all o’s data members, neither (i) nor (ii) are fulfilled and, thus, s cannot 
be object-flow dependent on any previous statement. �
Theorem 5.7 (Object-flow completeness). Let s1; s2; . . . sn; be a sequence of statements. Let x be an object variable or a data member 
of an object variable defined at s1. If the value of an object o at sn data depends on the execution of s1, then there is a transitive 
object-flow dependence between s1 and sn.

Proof. First of all, according to Lemma 1, when sn is a total definition the theorem is trivially proved because sn defines the 
value of o and its data members and no object-flow path can end at sn . With respect to the rest of possibilities, we divide 
the proof in three different scenarios:

1. o is defined at s1 and not redefined in s2 . . . sn−1.
(a) If sn uses object o and x = o, i.e., object variable x points to object o, the claim follows trivially by case #1 of 

Definition 5.4.
(b) If sn partially defines object o and x is a data member of o not defined at sn the claim follows trivially by case #2 

of Definition 5.4.
(c) If sn uses object o and x is a data member of o, then s1 also defines o according to scenario 3 described in Section 4. 

Thus, the claim follows by the object-flow path formed by cases 1a and 1b.
(d) If sn partially defines object o and x = o there exists an object-flow path from s1 to sn iff s1 also defines a data 

member of o not defined in sn , which makes this case equivalent to case 1b.
2. o is not defined at s1.

If s1 defines x where x �= o or x is a data member of a different object p, object-flow dependence cannot be applied, 
because in both cases #1 and #2 of Definition 5.4 it is mandatory for both statements to operate over the same object. 
Hence, there cannot be an object-flow path between s1 and sn .

3. x is redefined in s2 . . . sn−1.
In this case, we can assume that x = o or x is a data member of object o because in any other case we will find 
ourselves in case 2. We can prove the claim for n = 3 (s1; s2; s3;) because it does not matter the number of transitive 
dependencies. The proof is the same for each transitive step. We can analyze all cases separately. We use the following 
notation: si(A, B) with A = D to denote that x is defined at si and with A = U to denote that x is used at si ; and with 
B = O to denote that x is an object variable that points to object o at si and with B = DM to denote that x is a data 
member of object o at si . Since s1 and s2 perform the same definition over x they must share the same notation in all 
cases. This fact leaves 8 possible scenarios:
(a) s1(D, O ); s2(D, O ); s3(D, O );
(b) s1(D, DM); s2(D, DM); s3(D, O );
Scenarios 3a and 3b are trivially proved because s3 is a total definition of object o and total definitions does not depend 
on any previous statement according to Lemma 1. Hence, s3 cannot be object-flow dependent on a previous statement 
s1.
(c) s1(D, O ); s2(D, O ); s3(U , O );
(d) s1(D, O ); s2(D, O ); s3(D, DM);
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In scenario 3c, s3 is trivially object-flow dependent on s2 (case #1 of Definition 5.4) while in scenario 3d s3 is object-
flow dependent on s2 if s2 defines a data member of o different from the one defined at s3 (case #2 of Definition 5.4). 
In both scenarios there is not direct object-flow dependence between s1 and s3 because the redefinition of x in s2
prevents it. Additionally, there cannot be a transitive dependence either because s2 cannot be object-flow dependent on 
s1 due to Lemma 1.
(e) s1(D, DM); s2(D, DM); s3(U , O );
(f) s1(D, DM); s2(D, DM); s3(D, DM);
To prove scenarios 3e and 3f it is important to remember that when a statement si defines a data member of an object 
o, it also defines o (see scenario 3 of Section 4). In scenario 3e, s3 is object-flow dependent on s2 because it is the last 
existent definition of object o (case #1 of Definition 5.4). In scenario 3f, s3 is object-flow dependent on s2 if s2 defines 
a data member of o different from the one defined at s3 (case #2 of Definition 5.4). In scenarios 3e and 3f, due to the 
existence of s2, s3 cannot be directly dependent on s1 according to Definition 5.4. In turn, in both scenarios s2 is object-
flow dependent on any previous statement that defines a different data member of o (case #2 of Definition 5.4). Since 
s1 and s2 define the same data member x s2 is not object-flow dependent on s1 and there is no transitive object-flow 
path between s1 and s3.
(g) s1(D, O ); s2(D, O ); s3(U , DM);
(h) s1(D, DM); s2(D, DM); s3(U , DM);
Considering scenarios 3g and 3h, note that the theorem considers “the value of an object o” at s3. In these two cases, 
s3 uses a data member of an object o. If the data member of o is itself an object, these scenarios would be equivalent 
to scenarios 3c and 3e respectively. Finally, if the data member o is a primitive, this case would be out of the scope 
of the proof. In this case, there would not be a path to the last definition of this data member formed by object-flow 
edges, but for flow edges. �

Appendix B. Completeness proof of Theorem 5.8

Before proving Theorem 5.8, in order to ease the proof by reducing the number of possible scenarios, we enunciate and 
prove the following lemma:

Lemma 2. Let s be a statement in a program P . Let v be an object variable totally defined at s that points to object o. The 
reference of v at s is not object-reference dependent on any previous statement s′ .

Proof. According to Definition 5.6, a statement s is object-reference dependent on another statement s′ if s partially defines 
an object variable v . Since s totally defines v , s also defines v ’s reference (see Definition 4.1) and the condition is not 
fulfilled. Thus, s cannot be the target of any object-reference dependence. �
Theorem 5.8 (Object-reference completeness). Let s1; s2; . . . sn; be a sequence of statements. Let x be an object variable totally defined 
at s1 . If the reference of an object variable v at sn depends on the total definition of s1 , then there is a path formed by object-flow and/or 
object-reference arcs between s1 and sn.

Proof. First of all, according to Lemmas 1 and 2, when sn is a total definition the theorem is trivially proved because sn

cannot be the target of any object-flow or object-reference dependence. With respect to the rest of possibilities, we divide 
the proof into three different scenarios:

1. x is defined at s1 and not redefined in s2 . . . sn−1.
(a) If sn uses object variable v and x = v the claim follows trivially by the object-flow arc generated by case #1 of 

Definition 5.4.
(b) If sn partially defines object variable v and x = v the claim follows trivially by Definition 5.6.

2. v is not defined at s1.
If s1 defines x where x �= v , object-flow and object-reference dependences cannot be applied, because in both Defini-
tions 5.4 and 5.6 it is mandatory for both statements to operate over the same object. Hence, there cannot be a path 
formed by object-flow and/or object-reference arcs between s1 and sn .

3. x is redefined in s2 . . . sn−1.
In this case, we can assume that x = v because in any other case we will find ourselves in case 2. We can prove the 
claim for n = 3 (s1; s2; s3;) because it does not matter the number of transitive dependencies. The proof is the same for 
each transitive step. We can analyze all cases separately. We use the following notation: si(A) with A = DT to denote 
that x is totally defined at si , with A = D P to denote that x is partially defined at si , with A = U to denote that x is 
used at si , and with A = ∗ to denote that A can be either DT , D P or U . There are several possible scenarios:
(a) s1(∗); s2(∗); s3(DT );
Scenario 3a represents the set of cases where s3 totally defines variable v . These scenarios are trivially proved by 
Lemma 2, since s3 cannot be object-referent dependent on any previous statement.
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(b) s1(D P ); s2(∗); s3(∗);
Scenario 3b illustrates the set of cases where s1 partially defines x. Note that this scenario is not contemplated by 
the theorem because “x is totally defined at s1” is a condition described in the theorem that this scenario does not 
contemplate.
(c) s1(DT ); s2(DT ); s3(U );
(d) s1(DT ); s2(DT ); s3(D P );
In scenarios 3c and 3d, s3 is trivially object-flow dependent on s2 by cases #1 and #2 of Definition 5.4, respectively. In 
both scenarios there is neither direct object-flow, nor object-reference dependence between s1 and s3 because the total 
definition of x in s2 prevents it. Additionally, there cannot be a transitive dependence because s2 cannot be object-flow 
nor object-reference dependent on s1 due to Lemmas 1 and 2.
(e) s1(DT ); s2(D P ); s3(U );
In scenario 3e, s3 is trivially object-flow dependent on s2 according to case #1 of Definition 5.4. Additionally, since 
s2 partially defines an object variable that is totally defined in s1, s2 is object-reference dependent on s1 according to 
Definition 5.6. Therefore, in this scenario, there is a transitive path formed by object-flow and object-reference arcs that 
connect the use of an object variable to its last total definition in s1.
(f) s1(DT ); s2(D P ); s3(D P );
Finally, in scenario 3f, s3 may be object-flow dependent on s2 according to case #2 of Definition 5.4 if they define 
different data members of the same object. Either way, both s3 and s2 are always object-reference dependent on s1 for 
being partial definitions of an object variable totally defined at s1. Consequently, there is at least one path from the last 
total definition in s1 to the later partial definition in s3 formed by an object-reference arc. �
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