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a b s t r a c t 

The enormous amount of containers handled at ports hampers the efficiency of terminal operations. The 

optimization of crane movements is crucial for speeding up the loading and unloading of vessels. To this 

end, the premarshalling problem aims to reorder a set of containers placed in adjacent stacks with a 

minimum number of crane movements, so that a container with an earlier retrieval time is not below 

one with a later retrieval time. In this study, we present a series of constraint programming models to 

optimally solve the premarshalling problem. Extensive computational comparisons show that the best 

proposed constraint programming formulation yields better results than the state-of-the-art integer pro- 

gramming approach. A salient finding in this paper is that the logic behind the model construction in 

constraint programming is radically different from that of more traditional mixed integer linear program- 

ming models. 

© 2022 The Authors. Published by Elsevier B.V. 
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. Introduction 

In recent decades, container transportation of goods has seen 

normous growth. According to UNCTAD (2020) , in 2019, world 

ontainer port throughput was about 811.2 million TEUs 1 whereas 

n 1990, the throughput reported was just under 85.6 million TEUs 

 UNCTAD, 1992 ). These figures translate into an increasing diffi- 

ulty in operating the terminals efficiently. Furthermore, not only 

as the amount of containers handled in ports greatly increased, 

ut also the average size of ships has significantly grown: the first 

hips had a capacity of 600 to 900 TEUs, they reached 4000 TEUs 

n the 1980s, and at present the largest containerships are above 

3,0 0 0 TEUs, ( Hoffmann & Hoffmann, 2021; UNCTAD, 2018 ). The 

rrival of these huge vessels at a port leads to demand peaks that 

ay exceed a terminal’s capacity and result in long wait times. 

The more operating inefficiencies there are in terminals, the 

ore it costs for ports, shippers and the environment. Hence, it 

s really advantageous to search for the best strategies to optimize 

ort operations. One possibility is to extend port terminals in or- 
∗ Corresponding author. 

E-mail addresses: cejipi@upvnet.upv.es (C. Jiménez-Piqueras), rruiz@eio.upv.es 

R. Ruiz), Consuelo.Parreno@uv.es (C. Parreño-Torres), Ramon.Alvarez@uv.es (R. 

lvarez-Valdes) . 
1 TEU, Twenty-foot Equivalent Unit, it refers to the nominal capacity of a 

tandard-size 20-foot-long container. 
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er to deal with demand peaks. However, this approach is hugely 

xpensive and there would be significant underutilization times. 

oreover, it is hard to implement due to land limitations and ad- 

itionally it has a negative environmental impact. Alternatively, in 

he literature there are many optimization problems with the ob- 

ective of finding solutions that enable the full exploitation of the 

vailable resources in ports. 

Port terminals are a connection between different means of 

ransport, thus large numbers of containers need to be temporarily 

tored in the port yard. Due to space limitations, containers have 

o be placed in stacks, and hence, they follow a Last In, First Out 

tructure. This means that when a container has to be retrieved, if 

here are containers above it, they have to be moved to a different 

tack first and this is very time consuming. In this work, we con- 

ider the container premarshalling problem, CPMP for short, which 

ims to find a most efficient sequence of crane movements to en- 

ble the reordering of a bay (set of containers placed in adjacent 

tacks) in a way that no container is above another with an earlier 

etrieval time. When a bay is fully “ordered” a retrieval is carried 

ut without additional relocations or reshuffles, greatly increasing 

rane utilization and reducing the time to load large vessels, which 

n turn eliminates the need to increase the capacity of the port. 

The objective of this study is to explore the constraint pro- 

ramming technique for solving the relocation problem with a 

lack-box solver. The use of standard solvers has many advantages. 

irstly, they usually include a language or API to facilitate the 
nder the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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onstruction of the model. This allows to easily reproduce the 

odel and easily add or remove constraints to meet the specific 

equirements of the problem. Another advantage is that solvers 

mprove over time, and the improvements are independent of the 

ncrease in computational power. According to Bixby (2002) or 

chterberg & Wunderling (2013) , since 1991 solvers have become 

.3 million times faster, or about 1.8 times faster per year. Lastly, 

hey might be an ideal approach for practical applications, since 

ompanies only need a license to use them. 

It has to be noted that dealing with a black-box solver is also a 

hallenging task since one does not have the source codes and/or 

etailed algorithms. Our strategy has consisted of building a series 

f four constraint programming models adding a new group of de- 

ision variables to the previous one. The results show that each of 

ur models improves on the previous one in the series, which is 

 salient finding in this work: by adding additional decision vari- 

bles, we significantly improve the performance of the proposed 

onstraint programming models, unlike more traditional mixed in- 

eger linear programming model construction, where this is not 

 common strategy. The experiments carried out also reveal that 

he best of our constraint programming formulations performs sig- 

ificantly better than the mathematical programming models for 

he CPMP existing in the literature, where the state-of-the-art is 

he IPS6 model proposed by Parreño-Torres, Alvarez-Valdes, & Ruiz 

2019) . 

This paper is structured as follows. First, in Section 2 , we pro- 

ide a review of the literature related to our work. Then, the pre- 

arshalling problem is defined ( Section 3 ). After that, the models 

roposed in this study and the solution procedure are presented 

n Section 4 . The computational study is described in Section 5 . 

inally, the conclusions are outlined and some future lines of in- 

estigation are suggested ( Section 6 ). 

. Previous work 

The literature on the premarshalling problem contains numer- 

us heuristic and exact approaches. 

.1. Exact approaches for the premarshalling problem 

To the best of our knowledge, the first mathematical pro- 

ramming model designed for the premarshalling problem was 

hat of Lee & Hsu (2007) , specifically, an integer multicommodity 

ow model. The nodes and arcs of the network embedded in the 

odel represent the bay slots and the possible container move- 

ents between them, respectively, and they are indexed by time 

oints. A heuristic based on the integer model is also presented. 

n de Melo da Silva, Toulouse, & Calvo (2018) a unified integer pro- 

ramming model for the premarshalling and block relocation prob- 

em is proposed. The formulation contains three groups of decision 

ariables; one of them describes the layout of the bay and the oth- 

rs the movements. Time is discretized and just one movement 

s allowed at each time step. An upper bound for the number of 

ovements is needed and it is obtained by a heuristic. Parreño- 

orres et al. (2019) explore eight different integer programming 

ormulations for the premarshalling problem, varying the groups 

f decision variables and their indexes. Time is divided into seg- 

ents where, at most, one movement is performed and an itera- 

ive solution procedure is developed in order to avoid the difficulty 

n calculating a tight upper bound for the number of movements. 

We also find other exact approaches for premarshalling in the 

iterature, apart from mathematical models. Expósito-Izquierdo, 

elián-Batista, & Moreno-Vega (2012) implement an A 

∗ algorithm 

or the problem. The optimal solutions obtained are used to check 

he performance of the Lowest Priority First Heuristic presented 

n the article. Tierney, Pacino, & Voß (2016) propose an iterative 
669 
eepening A 

∗. They use the lower bound for the number of move- 

ents presented in Bortfeldt & Forster (2012) and multiple sym- 

etry breaking and branching rules. A branch and price technique 

s proposed by van Brink & van der Zwaan (2014) , who also prove

hat the problem is NP-hard. There are also several branch and 

ound algorithms for the premarshalling problem. Zhang, Jiang, & 

un (2015) develop a heuristic-guided branch and bound that uses 

 lower bound to determine which branches are explored first. A 

imilar approach is the iterative deepening branch and bound of 

anaka & Tierney (2018) with new branching and dominance rules 

nd a tighter lower bound that improves upon that of Bortfeldt 

 Forster (2012) . This strategy is enhanced by Tanaka, Tierney, 

arreño-Torres, Alvarez-Valdes, & Ruiz (2019) and they provide an- 

ther refinement of the lower bound. 

Although constraint programming has been successfully applied 

o a wide range of combinatorial optimization problems, such as 

ssembly line balancing ( Bukchin & Raviv, 2018 ), job shop schedul- 

ng ( Meng, Zhang, Ren, Zhang, & Lv, 2020 ), vehicle routing ( Ham,

018 ) or assignment and scheduling operations in container ter- 

inals ( Kizilay, Hentenryck, & Eliiyi, 2020 ). To the best of our 

nowledge, just one constraint programming approach has been 

escribed so far for the premarshalling problem by Rendl & Prandt- 

tetter (2013) . They propose an iterative procedure to solve the 

roblem where they use the lower bound for the number of move- 

ents and the heuristic presented by Bortfeldt & Forster (2012) . In 

ontrast with Rendl & Prandtstetter (2013) , our proposed constraint 

rogramming models do not require the implementation of an ad- 

oc heuristic, as we simply employ a commercial solver, and hence 

hey are much easier to use and to reproduce. 

.2. Heuristic approaches for the premarshalling problem 

Regarding heuristic methods, the state-of-the-art approach cor- 

esponds to the deep learning assisted heuristic tree search pre- 

ented by Hottung, Tanaka, & Tierney (2020) . Other recent pro- 

osals are: target-guided approaches, such as those developed by 

ang, Jin, & Lim (2015) and Wang, Jin, Zhang, & Lim (2017) , ge-

etic algorithms such as the biased random-key genetic algorithm 

y Hottung & Tierney (2016) and the multi-heuristic approach 

resented by Jovanovic, Tuba, & Voß (2017) which develops the 

owest Priority First Heuristic of Expósito-Izquierdo et al. (2012) . 

lso, in previous work we find the tree search procedure pro- 

osed by Bortfeldt & Forster (2012) , a labelling algorithm devel- 

ped by Huang & Lin (2012) , the neighborhood search process by 

ee & Chao (2009) and the algorithm described by Caserta & Voß

2009) that is based on the corridor method. 

.3. Related problems 

In the literature we can find some variants of the premar- 

halling problem that try to deal with the uncertainty that may ap- 

ear in retrieval times, such as the robust CPMP ( Boge, Goerigk, & 

nust, 2020; Tierney & Voß, 2016 ) or the stochastic premarshalling 

f warehouses ( Maniezzo, Boschetti, & Gutjahr, 2021 ). 

There are also some variants that take into account the time 

pent by the crane to perform the premarshalling movements: the 

PMP with a crane time minimization objective ( Parreño-Torres, 

lvarez-Valdes, Ruiz, & Tierney, 2020 ) and the Stochastic Container 

elocation Problem with Constrained Pre-processing ( Zweers, Bhu- 

ai, & van der Mei, 2020 ), which contains a phase similar to pre-

arshalling, but where the reorganization of the bay is partially 

erformed as the available time is limited. 

The block relocation problem, BRP for short, is similar to the 

PMP but there is an important difference between them: in the 

ormer, containers are retrieved from the bay, while in the pre- 

arshalling problem no container leaves the bay. In the literature, 

ome recent exact approaches for the block relocation problem are 
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ranch and bound ( Tanaka & Mizuno, 2018 ), branch and cut ( Bacci,

attia, & Ventura, 2020 ), mixed integer programming ( Lu, Zeng, & 

iu, 2020 ) and iterative deepening A 

∗ algorithm ( Jin, 2020; Quispe, 

intzmayer, & Xavier, 2018 ). We can also find multiple heuristic 

ethods, some of the most recent approaches for several variants 

f BRP are: ant colony optimization algorithm ( Jovanovic, Tuba, 

 Voß, 2019b ), GRASP ( Jovanovic, Tanaka, Nishi, & Voß, 2019a; 

a Silva Firmino, de Abreu Silva, & Times, 2019 ) and beam search 

 Bacci, Mattia, & Ventura, 2019; Ting & Wu, 2017 ). 

. Premarshalling problem 

Containers are temporarily stored in the port yard until they are 

oaded on to a vessel or other means of transport such as a train

r a truck. In this area, containers are arranged in parallel lines of 

tacks and there are groups of adjacent lines called blocks . Thus, 

ach block consists of several lines and multiple rows which we 

efer to as bays . Since containers are stacked, when one has to be

etrieved, every container above it blocks its removal and needs to 

e reshuffled. We will refer as a blocking container to a container 

hat is placed on top of another with an earlier retrieval time and 

o every container above it. The aim of the premarshalling problem 

s to identify the minimum number of crane movements to trans- 

orm a bay layout into one without blocking containers, consid- 

ring that no container can leave the bay during the movements. 

herefore, no temporary storage outside the bay is allowed. Boge 

t al. (2020) describe the conditions a bay must satisfy so that it 

an be rearranged by premarshalling. 

We consider that all the containers in the bay are of the same 

ize and the only distinction between them is the priority group. 

hese groups are defined according to the expected retrieval times 

f the containers and each one is identified by a number: contain- 

rs in group number 1 will be retrieved first, then it will be the 

urn of those with priority 2 and so on until group p̄ , where p̄ is

he number of priority groups. We assume that there is full in- 

ormation about the priorities and each group p ∈ P = { 1 , . . . , p̄ } ,
here P is the set of priority groups, has a fixed number of con- 

ainers m p . 

The dimensions of a bay are limited by s̄ , the maximum num- 

er of stacks, and t̄ , the maximum number of tiers or maximum 

eight of every stack. The position of a container is represented by 

 pair (s, t) ∈ S × T , where S = { 1 , 2 , . . . , ̄s } is the set of stacks and

 = { 1 , 2 , . . . , ̄t } , the set of tiers. The input of the problem is a bay

onfiguration, i.e., the priority group of the container placed in slot 

s, t) , for all pairs in S × T , which is denoted by f s,t . This parame-

er takes values in the set P 

0 = P ∪ { 0 } = { 0 , . . . , p̄ } , where 0 is for

mpty slots. Accordingly, the number of empty slots is represented 

y m 0 . 

A solution to the problem is determined by a sequence of 

ovements {〈 s ′ 
1 
, s ′′ 

1 
〉 , 〈 s ′ 

2 
, s ′′ 

2 
〉 , . . . , 〈 s ′ m 

, s ′′ m 

〉} , where m is the total

umber of movements and 〈 s ′ , s ′′ 〉 means that the topmost con-

ainer of stack s ′ is placed at the top of stack s ′′ . All movements

re performed inside the bay, i.e., no container is removed from 

he bay nor added to it. 

Fig. 1 shows an example of an optimal solution. We can 

ee five bay configurations, the initial one, 0, and the result 

f each one of the four movements that define the solution, 

〈 3 , 1 〉 , 〈 2 , 1 〉 , 〈 3 , 2 〉 , 〈 4 , 3 〉} . Containers are represented as boxes

ith the number of its priority group inside and blocking contain- 

rs are shaded. 

. Constraint programming models 

In this section, we present a series of four feasibility constraint 

rogramming models and we detail the iterative algorithm de- 

eloped to obtain optimal solutions from them. The models are 
670 
amed CPX , where X is the number of groups of decision variables 

n the formulation. The first one has two sets of variables, CP2 , and 

P3 to CP5 are built from the previous one, adding a new group of 

ecision variables and the corresponding constraints. 

.1. Iterative algorithm and lower bound 

The solution procedure employed in this work is an iterative al- 

orithm ( Parreño-Torres et al., 2019; Rendl & Prandtstetter, 2013 ). 

ach iteration of the algorithm consists of solving the problem 

iven a set of stages K = { 1 , . . . , ̄k } and searching for a feasible so-

ution with k̄ movements, one per stage. In the first iteration, k̄ is 

qual to a lower bound for the number of movements, lb. If the 

roblem is infeasible, a new iteration is performed with k̄ = lb + 1 .

he algorithm iterates increasing k̄ by one when the problem is in- 

easible and solves it again for that number of stages, until a feasi- 

le solution is found. 

A key difference with previously published models is that the 

onstraint programming formulations presented here do not have 

n objective function as it is not needed. The structure of the it- 

rative algorithm ensures optimality whenever a feasible solution 

s found. Therefore, our models are designed to solve a feasibil- 

ty problem given a fixed number of movements and stages. The 

onfiguration of the bay at stage k corresponds to the layout af- 

er performing the k th movement (to simplify, we say that the k th 

ovement is performed at stage k ). We consider a stage number 0 

or the initial layout of the bay and the set of stages including it is

enoted by K 

0 = { 0 , 1 , . . . , ̄k } . 
As mentioned, the iterative algorithm requires a lower bound 

or the number of movements. In this work, we use the lower 

ound presented by Tanaka et al. (2019) , which, to the best of our 

nowledge, is the best one in the literature at the moment and 

t has been shown to be very tight in previous studies. Note that 

his lower bound is a refinement of the one developed by Tanaka 

 Tierney (2018) , which is based on the lower bound proposed by 

ortfeldt & Forster (2012) . 

An alternative to the iterative algorithm is the solution proce- 

ure proposed by de Melo da Silva et al. (2018) : defining a set of

tages, allowing at most one movement per stage and including 

n objective function that minimizes the number of movements. 

owever, in that case, the number of stages has to be an upper 

ound for the number of movements. The larger the number of 

tages, the bigger the resulting model, so a tight upper bound is 

esirable. However, obtaining a tight upper bound is not easy, as it 

equires using complex metaheuristic algorithms. For this reason, 

ogether with some tests that we have performed in order to se- 

ect the best solution procedure for our models, we have chosen 

he iterative algorithm explained above. Another option for the it- 

rative procedure could have been using a binary search to look for 

he optimal number of movements, but in this case, it is unlikely 

hat a binary search speeds the algorithm, given the existence of a 

ight lower bound and the absence of any good upper bound. 

.2. CP2: Constraint programming model with 2 groups of variables 

At least two groups of variables are needed to formulate the 

roblem as, for each stage, the configuration of the bay and the 

ovement performed have to be determined. The basic model CP2 

s built using only these two types of variables, x k s,t and y k s,t . 

 

k 
s,t = 

{ 

0 If the slot (s, t) is empty during stage k 
p If a container with priority p is placed in (s, t) 

during stage k 

∀ s ∈ S, ∀ t ∈ T , ∀ k ∈ K 

0 
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Fig. 1. Example of an optimal solution for the problem. Blocking containers are shaded and the container moved at each stage is indicated with a thick border. 
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k 
s,t = 

{ 

1 If a container is moved to slot (s, t) 
during stage k 

0 Otherwise 

∀ s ∈ S, ∀ t ∈ T , ∀ k ∈ K 

These two groups of variables are the same as those described 

n Rendl & Prandtstetter (2013) on which the CP2 model is loosely 

ased. In contrast with the mathematical programming formula- 

ions of de Melo da Silva et al. (2018) and Parreño-Torres et al. 

2019) , the variables that describe the configuration of the bay are 

nteger here, as they take values in the set of priorities instead of 

ncluding the priority as an index of binary variables. 

The CP2 model is formulated as follows. 

 

0 
s,t = f s,t ∀ s ∈ S, t ∈ T (1) 

{ x k s,t : s ∈ S, t ∈ T , x k s,t = p} ∣∣ = m p ∀ p ∈ P 

0 , k ∈ K (2) 

 

k̄ 
s,t+1 ≤ x k̄ s,t ∀ s ∈ S, t ∈ T \ { ̄t } (3) 

 

k 
s,t+1 ≤ p̄ · x k s,t s ∈ S, t ∈ T \ { ̄t } , k ∈ K \ { ̄k } (4) 

 

k −1 
s,t ≤ x k s,t + p̄ · h (x k s,t ) s ∈ S, t ∈ T , k ∈ K (5) 

x k s,t ≤ x k −1 
s,t + p̄ · h (x k −1 

s,t ) s ∈ S, t ∈ T , k ∈ K (6) 

∑ 

s ∈S, t∈T 
y k s,t = 1 ∀ k ∈ K (7) 

 

k 
s,t ≤ x k s,t ∀ s ∈ S, t ∈ T , k ∈ K (8) 

 

k 
s,t ≤ p̄ (y k s,t + x k −1 

s,t ) s ∈ S, t ∈ T , k ∈ K (9) 

 

k −1 
s,t ≤ p̄ (1 − y k s,t ) s ∈ S, t ∈ T , k ∈ K (10) 

 

k 
s,t ≤ x k +1 

s,t s ∈ S, t ∈ T , k ∈ K \ { ̄k } (11) 

The initial layout of the bay is assigned to the variables by (1) .

onstraints (2) ensure that the multiplicities of the priority groups 

nd the number of empty slots are invariant. In a feasible solution, 

here are no blocking containers in the final layout, this is imposed 
671
y (3) . Constraints (4) ensure that there are no empty slots be- 

ween containers in the same stack. When a slot is occupied dur- 

ng two consecutive stages, the container in the slot has to be the 

ame at both stages, in other words, the priority group assigned to 

he slot has to be the same. That is expressed in (5) and (6) , where

 (x ) takes value 1 when x = 0 and 0 when x is positive. Since the

riority groups of the containers that are not moved are fixed by 

onstraints (5) and (6) , and constraints (2) ensure that the number 

f containers in each priority group is constant, it is guaranteed 

hat the priority group of the container being moved is not altered 

uring the movement. 

The condition that exactly one movement has to be performed 

t each stage corresponds with (7) . Constraints (8) ensure that 

hen a container is moved to a certain slot in stage k , the slot is

hen occupied by a container in that stage. If there is a container in 

 slot in stage k , either the container was there during the previous

tage or it has been moved to that slot in stage k , this is imposed

y (9) . Constraints (10) express that a container can be moved to 

 certain slot in stage k only if it was empty during the previous

tage. Finally, Eq. (11) are included in order to discard solutions 

aster in the search process. Eq. (11) impose that when a container 

s moved to a slot, this slot has to remain occupied in the next 

tage, that is, the same container cannot be moved in two consec- 

tive stages (because it could be reduced to just one movement). 

he rule expressed in (11) is known as “transitive move avoidance”

 Tierney et al., 2016 ). 

.3. CP3: Constraint programming model with 3 groups of variables 

In the previous model CP2 , the configuration of the bay at each 

tage is given by variables x k s,t , which take integer values in the set 

f priorities P 

0 . Integer-valued variables are useful in some con- 

traints but cumbersome in others. Also, variables x k s,t and y k s,t are 

eakly related in CP2 . Model CP3 is built from CP2 , complement- 

ng variables x k s,t with a new group of binary variables, δk 
s,t , that do 

ot contain information about the priority group of the container 

ccupying a position, but only indicate whether a slot is empty or 

ot. 

k 
s,t = 

{
0 If the slot (s, t) is empty during stage k 
1 If there is a container in slot (s, t) during stage k 

∀ s ∈ S, ∀ t ∈ T , ∀ k ∈ K 

0 

In recent integer models, such as de Melo da Silva et al. 

2018) and Parreño-Torres et al. (2019) , the layout is represented by 

-index binary variables. Here, in contrast, two groups of 3-index 

ariables, one binary and the other integer, are used. There are far 

ewer variables, but the relationship between the two groups must 

e established. 

Model CP3 contains constraints (1), (2), (3) and (7) of model 

P2 , and the following, where (12) and (13) are new constraints, 
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nd (14) to (20) are modified constraints of the CP2 model. 

 

k 
s,t ≤ p̄ · δk 

s,t ∀ s ∈ S, t ∈ T , k ∈ K 

0 (12) 

k 
s,t ≤ x k s,t ∀ s ∈ S, t ∈ T , k ∈ K 

0 (13) 

 

k −1 
s,t ≤ x k s,t + p̄ 

(
1 − δk 

s,t 

) ∀ s ∈ S, t ∈ T , k ∈ K (14) 

 

k 
s,t ≤ x k −1 

s,t + p̄ 
(
1 − δk −1 

s,t 

) ∀ s ∈ S, t ∈ T , k ∈ K (15) 

 

k 
s,t ≤ δk 

s,t ∀ s ∈ S, t ∈ T , k ∈ K (16) 

k 
s,t ≤ y k s,t + δk −1 

s,t ∀ s ∈ S, t ∈ T , k ∈ K (17) 

 

k 
s,t+1 + δk −1 

s,t+1 ≤ δk −1 
s,t ∀ s ∈ S, t ∈ T \ { ̄t } , k ∈ K (18) 

 

k 
s, 1 + δk −1 

s, 1 ≤ 1 ∀ s ∈ S, k ∈ K (19) 

 

k 
s,t ≤ δk +1 

s,t ∀ s ∈ S, t ∈ T , k ∈ K \ { ̄k } (20) 

Constraints (12) and (13) are added to define the relationship 

etween variables δk 
s,t and x k s,t , that is, δk 

s,t takes value 0 when x k s,t 

s 0, and 1 when the latter is positive. 

The constraints that have changed from CP2 to CP3 are those 

hat use the information about whether a slot is occupied or not 

nd it is easier and more precise to write them in terms of vari-

bles δk 
s,t instead of x k s,t . Following this idea, we have substituted 

5) and (6) for (14) and (15) , respectively, (8) for (16), (9) for (17),

10) for (18) and (19) and (11) for (20) . In constraints (18) not only

ave variables x k s,t been substituted for δk 
s,t but also the term δk −1 

s,t 

as been added in order to improve the constraints: (18) impose 

hat a container can only be moved to a slot (s, t) which was

mpty during the previous stage, as in (10) , but it also requires 

hat the slot (s, t − 1) was occupied. Obviously, the new term can- 

ot be added to the constraints for the first tier, so we have (19) in

hat case. 

In CP2 , (4) was included in order to avoid having empty slots 

etween containers of the same tier. Constraints (18) from CP3 , en- 

ure that condition, so (4) is no longer necessary. 

.4. CP4: Constraint programming model with 4 groups of variables 

In the previous models, we have described variables y k s,t that 

etermine the slot to which a container is moved. In CP4 , the defi-

ition of the movements is more precise as we add a new group of 

ecision variables that indicates the slot from which the container 

s removed: 

 

k 
s,t = 

{ 

1 If a container is removed from slot (s, t) 
during stage k 

0 Otherwise 

∀ s ∈ S, ∀ t ∈ T , ∀ k ∈ K 

The addition of the new variables z k s,t allows for a stronger re- 

ationship between variables that describe the configuration of the 

ay and those that determine the movements. This type of vari- 

bles has already been used in the integer models of de Melo da 

ilva et al. (2018) and Parreño-Torres et al. (2019) . 

Model CP4 includes constraints (1), (2), (3), (12), (13), (14), 

15) involving variables x k s,t and δk 
s,t , and constraints (7), (19) and 
672 
20) involving variables y k s,t and δk 
s,t . In addition, the formulation of 

P4 contains the constraints below. ∑ 

s ∈S, t∈T 
z k s,t = 1 ∀ k ∈ K (21) 

k 
s,t + z k s,t = y k s,t + δk −1 

s,t ∀ s ∈ S, t ∈ T , k ∈ K (22) 

 

k 
s,t+1 + δk −1 

s,t+1 + z k s,t ≤ δk −1 
s,t ∀ s ∈ S, t ∈ T \ { ̄t } , k ∈ K (23) 

 

k +1 
s, ̄t 

+ y k 
s, ̄t 

≤ δk 
s, ̄t 

∀ s ∈ S, k ∈ K \ { ̄k } (24) 

 

1 
s, ̄t 

≤ δ0 
s, ̄t 

∀ s ∈ S (25) 

∑ 

t∈T 
y k s,t + 

∑ 

t∈T 
z k +1 

s,t ≤ 1 ∀ s ∈ S, k ∈ K \ { ̄k } (26) 

∑ 

t∈T 

(
z k s,t + y k v ,t + z k +1 

u,t + y k +1 
r,t 

)
≤ 3 ∀ s ∈ S, v ∈ S \ { s } , 

u ∈ S : u < s ∧ u � = v , 

r ∈ S \ { s, v , u } , k ∈ K \ { ̄k } 
(27) 

A new group of constraints analogous to (7) is added for vari- 

bles z k s,t , (21) , which expresses that exactly one container has to 

e removed from the slot where it is placed at each stage. 

Including variables z k s,t in the model allows for the strength- 

ning of some of the constraints such as (17) and (18) , that are

ubstituted with (22) and (23) , respectively. (19) , which comple- 

ented (18) for the first tier, is maintained and the analogous con- 

traints for variables z k s,t are included in the formulation, namely 

24) and (25) . In (24) , the term y k 
s, ̄t 

is not necessary, but it helps

o reduce the range of possible values for z k +1 
s, ̄t 

. Without y k 
s, ̄t 

, these

onstraints only impose that a container cannot be removed from 

n empty slot and, including y k 
s, ̄t 

, they also express that a container 

hich has been placed in a slot in stage k , cannot be removed dur-

ng stage k + 1 . The term y k 
s, ̄t 

cannot be included in the constraints

or the initial stage, so we have (25) in that case. 

Constraints (16) are not included in CP4 because this condition 

s already imposed by (22), (23), (19), (24) and (25) together. 

Two new groups of constraints are added in order to remove 

ymmetries and infeasible solutions more quickly. (26) impose 

hat when a container is moved to a certain stack, no container 

an be removed from that stack in the next stage. Constraints 

27) break symmetries. If r, s , u , v are four different stacks, se- 

uences 〈 r, s 〉 , 〈 u, v 〉 and 〈 u, v 〉 , 〈 r, s 〉 produce the same solution,

nd constraints (27) only allow the first sequence. 

.5. CP5: Constraint programming model with 5 groups of variables 

In CP5 we include a new group of variables, w 

k 
s,t that collect 

nformation about the blocking containers at each stage. More pre- 

isely, these variables indicate whether there is a blocking con- 

ainer in a slot or not. 

 

k 
s,t = 

{ 

1 If there is a blocking container in slot (s, t) 
in stage k 

0 Otherwise 

∀ s ∈ S, ∀ t ∈ T , ∀ k ∈ K 

The information about where and how many blocking contain- 

rs there are is very valuable since the target of the premarshalling 
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roblem is to relocate this kind of container. Moreover, the num- 

er of blocking containers is a basic lower bound for the number 

f movements necessary to reorder a bay. As we have described 

efore, the solution to the problem is built step by step, perform- 

ng one movement after another, and so, at each stage, we can 

alculate a lower bound for the number of movements needed to 

omplete the reordering of the bay from the layout in that stage. 

herefore, the new variables allow us to obtain a lower bound to 

he number of movements at each stage. Consequently, those solu- 

ions where the lower bound is greater than the number of move- 

ents that remain to be conducted, which are clearly infeasible, 

an be discarded more quickly. To the best of our knowledge, this 

ype of variables has never been used in previous models. 

The formulation of CP5 contains all the constraints of the CP4 

odel, except for (3) , and the following. 

 

k 
s,t+1 ≤ x k s,t + p̄ · w 

k 
s,t+1 ∀ s ∈ S, t ∈ T \ { ̄t } , k ∈ K (28) 

 

k 
s,t + δk 

s,t+1 ≤ w 

k 
s,t+1 + 1 ∀ s ∈ S, t ∈ T \ { ̄t } , k ∈ K (29) 

 

k 
s,t ≤ δk 

s,t ∀ s ∈ S, t ∈ T , k ∈ K (30) 

 

k 
s, 1 = 0 ∀ s ∈ S, k ∈ K (31) 

 

k 
s,t + 1 ≤ x k s,t+1 + ( ̄p + 1) · (1 − w 

k 
s,t+1 + w 

k 
s,t ) ∀ s ∈ S, t ∈ T \ { ̄t } , k ∈ K 

(32) 

∑ 

s ∈S,t∈T 
w 

k 
s,t + k ≤ k̄ ∀ k ∈ K (33) 

Constraints (28) –(32) specify when there is a blocking container 

n a slot or not. Eq. (28) express that when there is a container

laced on top of another container with an earlier retrieval time, 

t is a blocking container. Eq. (29) impose that if there is a blocking

ontainer in slot (s, t) and slot (s, t + 1) is occupied, then there is

 blocking container in slot (s, t + 1) . In the first tier, there are no

locking containers, nor in the empty slots, this is included in the 

ormulation by (31) and (30) respectively. Constraints (32) ensure 

hat when there is not a blocking container in slot (s, t) and there

s not a container with a higher priority in the slot on top of it,

hen there is also no blocking container in slot (s, t + 1) . 

The aim of adding variables w 

k 
s,t is to force the number of block- 

ng containers at each stage to be less than or equal to the num- 

er of movements that have not been performed yet. Otherwise, 

he solution is not feasible, so this strategy allows for a reduction 

n the range of possible solutions to explore. Constraints (33) im- 

ose that the number of blocking containers at each stage cannot 

e greater than the number of following stages. 

Constraints (3) , that indicate there should not be any blocking 

ontainer in the last stage, are not included in the CP5 model. This 

ondition is already ensured by constraints (28) and (33) , which 

dentify the blocking containers and limit the number of them at 

ach stage, respectively. 

. Computational experiments 

The models presented in this work have been analysed through 

n extensive computational study carried out on a set of virtual 

achines with four virtual processors and eight GBytes of RAM 

emory each. The virtual machines run Windows 10 Enterprise 

4 bits. Virtual machines are run on an OpenStack virtualization 

latform supported by several blade servers, each one with two 
673 
8-core Intel Xeon Gold 5220 processors running at 2.2 gigahertz. 

nd 384 GBytes of RAM. All the experiments have been executed 

ith a time limit of 3600 seconds. The models tested are solved 

ith the IBM solvers CPLEX and CP Optimizer, for the mathemat- 

cal programming models and constraint programming models re- 

pectively. We have used the latest version available at the time of 

he writing of this paper, i.e., version 20.1.0. 

The computational experiments have been performed using 

our well-known datasets from the literature. These data enable us 

o verify the formulations presented in this paper and to compare 

hem with the integer programming model proposed by Parreño- 

orres et al. (2019) ( IPS6 ). Moreover, we compare the best of 

ur four constraint programming models with the closest possible 

athematical programming model formulation ( CP5 IP ), and IPS6 

ith its constraint programming version ( IPS6 CP ), in order to inves- 

igate how solving a similar formulation with these two different 

echniques (constraint programming and mathematical program- 

ing) affects the results. 

.1. Datasets 

The BZ dataset from van Brink & van der Zwaan (2014) contains 

nstances with 3, 5, 7 or 9 stacks, 4 or 6 tiers and a fill percentage

f 50% or 70%. In total, there are 960 instances. 

The ZJY dataset was generated by Zhang et al. (2015) . It con- 

ists of 100 instances where there are bays with 4 tiers and 6, 7, 8

r 9 stacks, or 5 tiers and 6 stacks. 

The EMM dataset was originally generated by Expósito- 

zquierdo et al. (2012) , and then by Tierney et al. (2016) , as the

rst one was lost. We have considered bays with 4 tiers, 4, 7 or 10

tacks and fill percentages of 50% and 75%. From this group of 450 

nstances, we have used the ones which are not already ordered, 

17 in total. 

In the instances from the CV dataset of Caserta & Voß

2009) all containers have different priorities in the bay. All stacks 

re filled with the same number of containers and two additional 

mpty top tiers are considered. These characteristics make this 

ataset the most difficult of the four employed here. In this study, 

e use those instances where the dimensions of the bay range 

rom 3 to 8 stacks and 5 tiers, and from 4 to 7 stacks and 6 tiers.

here is a total of 400 instances, but we exclude one of them be- 

ause the bay is already ordered. 

Bays with 5, 6 tiers and 7, 8 stacks, such as those in these 

atasets, are representative of most actual container terminal 

ards. 

.2. Size of the CP models 

The number of variables and constraints for each CP model pre- 

ented in this work, depends on the number of stacks and tiers of 

he bay, the number of stages, and the number of priority groups. 

able 1 shows these figures for the instances with the largest di- 

ensions in each dataset. Regarding the number of stages, we have 

onsidered the lower bound for the number of movements, i.e. the 

umber of stages in the first iteration. Therefore, in Table 1 , the 

umber of stages considered is the largest lower bound, for the 

nstances with the same values for the other parameters. 

We can observe there is a gradual increase in the number of 

ariables from one model to the next one in the series. How- 

ver, the number of constraints experiences a sharp increase from 

odel CP3 to CP4 . This is due to the addition of constraints 

27) . It should be noted that, in spite of increasing the size of 

he model, Eq. (27 ) help to break symmetries and accelerate the 

earch. 
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Table 1 

Number of variables and constraints for the instances with the largest dimensions in each dataset, namely the number of 

stacks, s̄ , and tiers, t̄ , the number of priority groups, p̄ , and the number of stages, k̄ . 

#Variables #Constraints 

Dataset s̄ t̄ k̄ p̄ CP2 CP3 CP4 CP5 CP2 CP3 CP4 CP5 

BZ 9 6 27 6 2970 4482 5940 7398 10,179 12,033 50,391 55,719 

ZJY 9 4 17 10 1260 1908 2520 3132 4335 5199 29,093 31,225 

EMM 10 4 28 8 2280 3440 4560 5680 7840 9350 76,848 80,766 

CV 7 6 27 28 2310 3486 4620 5754 8559 10,001 20,185 24,335 

Table 2 

Number of instances from the BZ dataset (optimally) solved by each model and the average running time 

for each model for the instances that are solved by all the models (column “All”). Best values are in bold 

and the instances are divided into groups by the number of stacks, s̄ , the number of tiers, t̄ , and the fill 

percentage (%) of the bay, #Inst. refers to the number of instances in each group. 

#Optimal Average time (seconds) 

s̄ t̄ % #Inst. CP2 CP3 CP4 CP5 All CP2 CP3 CP4 CP5 

3 4 50 60 60 60 60 60 60 0.3 0.3 0.3 0.3 

3 4 70 60 60 60 60 60 60 1.5 1.0 0.6 0.7 

3 6 50 60 60 60 60 60 60 7.2 2.1 0.8 0.7 

3 6 70 60 60 60 60 60 60 248.4 28.0 9.0 9.9 

5 4 50 60 60 60 60 60 60 0.5 0.4 0.3 0.3 

5 4 70 60 60 60 60 60 60 8.4 3.9 1.3 0.9 

5 6 50 60 56 57 60 60 56 77.1 20.9 2.0 1.0 

5 6 70 60 32 34 46 51 30 454.2 118.2 8.9 6.0 

7 4 50 60 60 60 60 60 60 2.0 1.5 0.6 0.6 

7 4 70 60 59 59 60 60 59 64.2 17.2 4.3 2.3 

7 6 50 60 50 50 56 60 48 196.2 63.6 4.1 2.1 

7 6 70 60 19 25 33 42 18 420.3 109.7 14.5 8.7 

9 4 50 60 60 60 60 60 60 17.6 9.4 1.9 1.8 

9 4 70 60 50 50 60 60 47 153.6 109.3 28.3 6.0 

9 6 50 60 39 43 58 60 36 107.9 87.9 9.3 8.1 

9 6 70 60 5 10 25 33 5 164.0 178.9 13.3 9.3 

Total 960 790 808 878 906 779 87.0 29.2 4.8 2.8 

Table 3 

Number of instances from the ZJY dataset (optimally) solved by each model and the average running 

time for each model for the instances that are solved by all the models (column “All”). Best values 

are in bold and the instances are divided into groups by the number of stacks, s̄ , and tiers, t̄ , of the 

bay, #Inst. refers to the number of instances in each group. 

#Optimal Average time (seconds) 

s̄ t̄ #Inst. CP2 CP3 CP4 CP5 All CP2 CP3 CP4 CP5 

6 4 20 9 14 19 20 9 452.1 78.1 7.1 4.0 

6 5 20 1 2 9 15 1 2201.2 343.2 17.0 22.3 

7 4 20 6 10 17 19 6 1622.6 426.5 12.4 5.5 

8 4 20 8 10 14 20 8 295.0 324.4 10.1 5.2 

9 4 20 2 6 9 19 2 197.8 323.5 8.1 6.1 

Total 100 26 42 68 93 26 721.6 263.4 9.7 5.6 
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.3. Performance of the proposed models, CP2 , CP3 , CP4 and CP5 

Results from the four datasets reveal that each of the proposed 

odels outperforms the previous one in the series. In other words, 

hen adding each one of the new groups of decision variables, and 

he new constraints that are written using them, the constraint 

rogramming model improves. In Tables 2–5 we can observe the 

rogression of both a rise in the total number of instances solved 

nd a decrease in the average running times (calculated on the in- 

tances that are solved by all the four models, column “All”). Al- 

hough the total number of instances solved increases following 

he series from CP2 to CP5 , the dominance of the models is not 

trict for all instances. For example, in the BZ dataset it can be 

een that the number of instances solved by all models is lower 

han the number of instances solved by CP2 , 779 vs. 790, and the 

ame applies to the EMM dataset, 308 vs. 313. 

In particular, for the CV dataset, which contains the most dif- 

cult instances, CP2 solves fewer than 25% of the instances and 
674 
P5 solves more than 70% of the instances within an hour, (see 

able 5 ). There is also a great difference in the ZJY dataset, as we

an observe in Table 3 , the most basic model solves 26% of the 

nstances and the last one in the series solves 93%. 

The running time for the instances that are solved by the four 

odels experiences an enormous decrease from the first model 

n the series to the fourth one. The time is more than 75 times 

reater for CP2 than for CP5 for the datasets ZJY and CV, and more 

han 20 times for BZ and EMM. Note that the datasets BZ and EMM 

ontain some groups of instances that are easily solved by the first 

odel in the series, and hence, there is not much room for im- 

rovement in the corresponding running times. 

The cumulative effect of the improved models, from CP2 to CP5 , 

an be seen in Table 6 , which summarizes part of the results of 

he previous tables, showing the percentages of optimal solutions 

ound by each model on the different datasets. The results vary 

epending on the difficulty of the datasets, being BZ the easiest 

ne and CV the hardest one. The values in column CP2 indicate 
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Table 4 

Number of instances from the EMM dataset (optimally) solved by each model and the average running 

time for each model for the instances that are solved by all the models (column “All”). Best values are 

in bold and the instances are divided into groups by the number of stacks, s̄ , and the fill percentage (%) 

of the bay, #Inst. refers to the number of instances in each group. 

#Optimal Average time (seconds) 

s̄ % #Inst. CP2 CP3 CP4 CP5 All CP2 CP3 CP4 CP5 

4 50 58 58 58 58 58 58 0.3 0.3 0.3 0.3 

4 75 65 65 65 65 65 65 147.2 31.7 12.5 15.0 

7 50 69 69 69 69 69 69 7.9 4.0 1.4 1.0 

7 75 75 33 39 50 55 32 265.4 68.4 13.7 9.6 

10 50 75 73 70 75 75 70 168.4 87.5 6.8 4.0 

10 75 75 15 19 27 40 14 391.9 97.9 15.2 10.3 

Total 417 313 320 344 362 308 116.6 39.1 6.7 5.8 

Table 5 

Number of instances from the CV dataset (optimally) solved by each model and the average running 

time for each model for the instances that are solved by all the models (column “All”). Best values are 

in bold and the instances are divided into groups by the number of stacks, s̄ , and tiers, t̄ , of the bay, 

#Inst. refers to the number of instances in each group. 

#Optimal Average time (seconds) 

s̄ t̄ #Inst. CP2 CP3 CP4 CP5 All CP2 CP3 CP4 CP5 

3 5 39 39 39 39 39 39 76.0 13.6 5.4 3.8 

4 5 40 35 40 40 40 35 316.8 54.3 7.3 4.1 

5 5 40 17 31 37 39 17 731.4 122.5 10.0 4.7 

6 5 40 4 11 28 39 4 519.3 137.0 15.5 4.4 

7 5 40 2 5 12 36 2 1852.3 136.4 11.5 5.8 

8 5 40 0 2 9 30 0 – – – –

4 6 40 5 16 32 31 5 284.7 45.6 8.6 6.7 

5 6 40 0 1 7 17 0 – – – –

6 6 40 0 0 1 10 0 – – – –

7 6 40 0 0 0 0 0 – – – –

Total 399 102 145 205 281 102 330.3 54.5 7.5 4.3 

Table 6 

Percentage of optimal solutions obtained solv- 

ing the models CP2 , CP3 , CP4 and CP5 on the 

four datasets. 

Percentage of optimal solutions 

Dataset CP2 CP3 CP4 CP5 

BZ 82 84 91 94 

ZJY 26 42 68 93 

EMM 75 77 82 87 

CV 26 36 51 70 
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hat, although the model is correct, the relation between the inte- 

er variables that describe the bay configuration, x k s,t , and the bi- 

ary variables that refer to the destination slot of each movement, 

 

k 
s,t , is rather loose and the model cannot be efficiently solved in 

any cases. By adding a new group of binary variables for identify- 

ng the occupied slots, δk 
s,t , in model CP3 , the relationship between 

ariables is strengthened and the results improve on all datasets, 

ith an average improvement of 7.5% more optimal solutions. In 

he CP4 model, variables z k s,t are added to indicate the origin of 

ach movement, and that makes much stronger the relationship 

etween container positions and movements, producing on average 

3.2% more optimal solutions. The CP5 model includes a new set of 

ariables to identify the blocking containers, w 

k 
s,t , and that allows 

or detecting infeasible solutions much earlier, improving the per- 

ormance of the constraint programming solver, with an average of 

3% more optimal solutions. 

The average number of iterations performed by the algorithm, 

or the best model, CP5 , until a feasible solution is found or the 

ime limit is reached is between 1.2 and 2.1, depending on the 

ataset, and with a maximum of 6 iterations on CV and 9 on BZ. 
675 
As mentioned in Section 4.1 , we have conducted some experi- 

ents to check whether including an objective function in the CP5 

odel leads to better results than the iterative algorithm or not. 

hen using an objective function, the number of optimal solutions 

btained drastically decreases, and the feasible solutions found are 

f poor quality in general. Hence, the iterative algorithm is a much 

etter approach. 

.4. Comparison with the state-of-the-art integer programming 

odel and between constraint programming and mathematical 

rogramming approaches 

We have implemented the state-of-the-art integer programming 

odel IPS6 from Parreño-Torres et al. (2019) . Moreover, in order 

o explore the differences between constraint programming and 

athematical programming, we have built an integer programming 

ersion of our best model, CP5 , that will be denoted as CP5 IP , and

e have adapted the formulation of IPS6 to constraint program- 

ing, IPS6 CP . To ensure a fair comparison, all the models have been 

olved under the same conditions, using the iterative algorithm de- 

cribed in Section 4.1 . As well as CP5 , CP5 IP does not consider an

bjective function. The formulation of the model CP5 IP is the same 

s that of CP5 , except for the set of non-linear constraints (2) , that

re substituted with (34) : ∑ 

s ∈S,t∈T 
x k s,t = 

∑ 

s ∈S,t∈T 
x k −1 

s,t ∀ k ∈ K (34) 

Constraints (34) ensure that the sum of the priorities assigned 

o the slots in the bay is the same for two consecutive stages. In 

articular, they demand that the priority of the container moved 

t each stage does not change, as constraints (14) and (15) express 

his condition for the containers which are not moved. As the ini- 

ial bay layout at stage 0 is known, constraints (34) are equivalent 
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Table 7 

Number of instances from the BZ dataset (optimally) solved by each model and the average running time for each 

model for the instances that are solved by all the models (column “All”). Best values are in bold and the instances 

are divided into groups by the number of stacks, s̄ , the number of tiers, t̄ , and the fill percentage (%) of the bay, 

#Inst. refers to the number of instances in each group. 

#Optimal Average time (seconds) 

s̄ t̄ % #Inst. CP5 IPS6 CP5 IP IPS6 CP All CP5 IPS6 CP5 IP IPS6 CP 

3 4 50 60 60 60 60 60 60 0.3 0.3 0.2 0.6 

3 4 70 60 60 60 60 60 60 0.7 1.7 1.0 25.7 

3 6 50 60 60 60 60 60 60 0.7 4.0 1.6 68.4 

3 6 70 60 60 60 60 47 47 2.2 10.3 6.6 573.5 

5 4 50 60 60 60 60 60 60 0.3 0.5 0.4 3.6 

5 4 70 60 60 60 60 60 60 0.9 2.0 2.9 112.9 

5 6 50 60 60 60 60 60 60 1.7 11.3 35.3 516.8 

5 6 70 60 51 45 38 30 30 6.0 13.3 102.8 1915.0 

7 4 50 60 60 60 60 60 60 0.6 0.8 1.1 12.7 

7 4 70 60 60 60 59 60 59 2.3 4.7 68.2 847.3 

7 6 50 60 60 58 54 56 53 3.3 10.2 209.3 1121 

7 6 70 60 42 39 23 30 23 14.2 96.4 570.5 2457.8 

9 4 50 60 60 60 59 60 59 1.6 1.0 17.2 143.9 

9 4 70 60 60 60 48 60 48 5.6 16.4 414.2 1509.3 

9 6 50 60 60 60 41 58 41 7.6 29.7 355.1 2264.6 

9 6 70 60 33 38 3 21 3 6.6 4.4 52.0 3600.2 

Total 960 906 900 805 842 783 2.5 9.2 89.1 612.2 

Table 8 

Number of instances from the ZJY dataset (optimally) solved by each model and the average running time 

for each model for the instances that are solved by all the models (column “All”). Best values are in bold 

and the instances are divided into groups by the number of stacks, s̄ , and tiers, t̄ , of the bay, #Inst. refers 

to the number of instances in each group. 

#Optimal Average time (seconds) 

s̄ t̄ #Inst. CP5 IPS6 CP5 IP IPS6 CP All CP5 IPS6 CP5 IP IPS6 CP 

6 4 20 20 20 15 10 10 4.4 24.6 291.8 1642.0 

6 5 20 15 10 1 2 0 – – – –

7 4 20 19 18 13 13 13 10.6 89.8 725.4 3148.3 

8 4 20 20 17 9 14 9 6.7 18.1 617.7 1658.0 

9 4 20 19 17 3 10 3 7.0 12.2 1352.0 1003.6 

Total 100 93 82 41 49 35 7.5 46.1 627.5 2150.9 

Table 9 

Number of instances from the EMM dataset (optimally) solved by each model and the average running time 

for each model for the instances that are solved by all the models (column “All”). Best values are in bold and 

the instances are divided into groups by the number of stacks, s̄ , and the fill percentage (%) of the bay, #Inst. 

refers to the number of instances in each group. 

#Optimal Average time (seconds) 

s̄ % #Inst. CP5 IPS6 CP5 IP IPS6 CP All CP5 IPS6 CP5 IP IPS6 CP 

4 50 58 58 58 58 58 58 0.3 0.3 0.2 0.4 

4 75 65 65 65 65 40 40 0.7 1.7 1.6 23.2 

7 50 69 69 69 69 69 69 1.0 1.2 7.8 199.4 

7 75 75 55 50 38 40 38 7.1 240.8 364.3 1084.4 

10 50 75 75 75 72 75 72 4.3 2.2 178.9 1176.8 

10 75 75 40 43 13 29 13 9.4 28.0 616.4 1492.4 

Total 417 362 360 315 311 290 2.8 33.9 121.9 551.9 
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6

o constraints (2) , indicating that the multiplicities of the priority 

roups are invariant at each stage. 

Tables 7 –10 show a comparison between the number of in- 

tances optimally solved for each of the models mentioned in the 

revious paragraph and also the average running time for the in- 

tances that all four models solve. 

We can observe that CP5 solves more instances than IPS6 for 

he four datasets, especially for the CV dataset (30 percentage 

oints more), which contains the most difficult instances. Regard- 

ng the running times, there is a great difference between the two 

odels. For the datasets BZ and ZJY, the average time displayed 

n Tables 7 and 8 for IPS6 , is more than 4 and 6 times, respec-

ively, than that of CP5 . For the other datasets the difference is 

ven greater: CP5 is over 12 and 22 times faster on average than 
676 
PS6 , on the EMM and CV datasets (see Tables 9 and 10 ). These

esults show that the CP5 model outperforms IPS6 . 

In Tables 7–10 we can observe that CP5 IP solves significantly 

ewer instances than CP5 , 52% fewer in the case of ZJY and around 

5% for CV. Also, the average running times for the instances that 

re solved by all the models are considerably higher for CP5 IP than 

or CP5 . This shows that the procedure followed to build the con- 

traint programming model is not suitable for an integer linear 

rogramming model. 

The differences in number of instances solved and running 

imes between IPS6 and IPS6 CP are smaller than between CP5 and 

P5 IP , but still significantly, IPS6 CP clearly performs worse than 

PS6 . The difference in the number of instances solved ranges from 

% for the BZ dataset to 33% for the ZJY dataset. We can observe 
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Table 10 

Number of instances from the CV dataset (optimally) solved by each model and the average running time for 

each model for the instances that are solved by all the models (column “All”). Best values are in bold and 

the instances are divided into groups by the number of stacks, s̄ , and tiers, t̄ , of the bay, #Inst. refers to the 

number of instances in each group. 

#Optimal Average time (seconds) 

s̄ t̄ #Inst. CP5 IPS6 CP5 IP IPS6 CP All CP5 IPS6 CP5 IP IPS6 CP 

3 5 39 39 38 39 35 34 2.4 33.5 8.0 953.2 

4 5 40 40 38 39 33 33 3.0 65.1 30.7 1383.4 

5 5 40 39 32 32 23 23 6.1 122.0 79.2 2314.2 

6 5 40 39 26 17 13 12 9.7 291.9 495.0 2716.5 

7 5 40 36 12 6 6 5 12.6 360.1 1693.6 3600.6 

8 5 40 30 5 1 3 1 17.3 220.8 1489.5 3600.3 

4 6 40 31 7 5 4 4 5.5 95.7 63.4 2731.1 

5 6 40 17 3 3 0 0 – – – –

6 6 40 10 1 0 0 0 – – – –

7 6 40 0 0 0 0 0 – – – –

Total 399 281 162 142 117 112 4.8 107.2 171.9 1753.7 
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n Tables 7–10 that IPS6 CP has the longest average time of the four 

odels for every dataset. In relation to IPS6 , IPS6 CP is more than 16

imes slower for the datsets EMM and CV, almost 39 times for the 

Z datset and over 46 times for the ZJY dataset. These results re- 

eal that the formulation designed for mathematical programming 

oes not succeed in the constraint programming paradigm. 

. Conclusions and future work 

The premarshalling problem has been widely studied in the lit- 

rature, but a competitive constraint programming model had not 

een proposed so far. In this paper we have presented a constraint 

rogramming model, CP5 , that is comparable to the mathematical 

rogramming approaches existing for this problem. 

The CP5 model has been built in four steps. First, we have de- 

eloped CP2 , which has two groups of decision variables, and then, 

e have obtained the models CP3 to CP5 by adding a new set of 

ariables and the corresponding constraints to the previous formu- 

ation. 

The models presented in this paper have been tested on more 

han 1800 instances from four well-known datasets and they 

ave been compared to the integer programming model IPS6 by 

arreño-Torres et al. (2019) , which have been implemented and 

un under the same conditions. The experiments show that the 

est of the models presented in this work significantly outperforms 

he state-of-the-art integer programming model. 

In addition, we have adapted our best constraint programming 

odel to become an integer linear programming model ( CP5 IP ) 

nd the IPS6 to become a constraint programming one ( IPS6 CP ), 

n order to explore the performance of the formulations using the 

ther technique. Results reveal that CP5 IP and IPS6 CP solve consid- 

rably fewer instances than CP5 and IPS6 and they spend much 

ore time on the same instances. These experiments show that 

he strategies that improve a formulation for constraint program- 

ing or mathematical programming are not generally effective for 

he other paradigm. 

Future avenues of research include exploring other ways of 

trengthening the constraint programming formulation proposed 

n this work, as well as developing tighter upper and lower bounds 

hat allow for more effective solution procedures. Another interest- 

ng direction would be extending the approach presented in this 

aper to different variants of premarshalling or other close reloca- 

ion problems. 
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