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Abstract
We consider a generic type of nonlinear Hammerstein-type integral equations 
with the particularity of having non-differentiable kernel of Nemystkii type. 
So, in order to solve it we consider a uniparametric family of iterative processes 
derivative free, with the main advantage that for a special value of the involved 
parameter the iterative method obtained coincides with Newton’s method, that 
is due to the fact of evaluating the divided difference operator when the two 
values are the same. We perform a qualitative convergence study by choosing 
an auxiliary point, that allow us to obtain the existence and separation of solu-
tions of the given equation, that is, local and semilocal convergence balls can 
be obtained.
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1 Introduction

In this paper, we focus on the study of the existence of a solution for nonlinear Ham-
merstein-type integral equations, as well as the uniqueness of this solution and its 
approximation. So, we consider nonlinear Hammerstein-type integral equations of 
the form [5, 28, 31]

where h ∈ C[a, b] , the kernel K(s,t) is a known function in [a,b] × [a,b], N  is the 
Nemytskii operator N ∶ C[a, b] → C[a, b] such that N(�)(x) = N(�(x)) , where 
N ∶ ℝ → ℝ , and z is the unknown function to be determined. In our case, we will 
require that the Nemystkii operator N  be a simply continuous operator.

A commonly used procedure to prove the existence and uniqueness of a solution 
of the (1) consists in transforming said equation into an equivalent fixed point prob-
lem (see [30, 31]). Thus, considering the operator T ∶ Ω ⊆ C[a, b] → C[a, b] with

by using a fixed point theorem, it is proved that the method of Successive Approxi-
mations converges to a fixed point of (2) and therefore a solution of (1). Other itera-
tive methods are also used for this purpose. Thus, for example, the Picard method has 
been used (see [10]), testing its convergence to a solution of the equation G(z) = 0 , 
equivalent to (1), where we consider the operator G ∶ Ω ⊆ C[a, b] → C[a, b] with

Other methods such as Newton’s method [12] and Newton-type methods [7, 25, 
29] have been used to prove the existence and uniqueness of a solution for the (1). 
These studies are based on the qualitative results, of existence and uniqueness of 
solution, provided by the study of the convergence of iterative processes considered.

In our case, since the kernel of Nemystkii N  is a continuous operator, there may 
be a possibility that it is not differentiable. In [16], the non-differentiable case has 
been studied. Also in this work, we will consider an iterative process that does not 
use derivatives in its algorithm, that is, a derivative-free iterative process. So, one of 
the aims of this paper is the qualitative study that we can obtain from the unipara-
metric family of iterative processes

(1)z(s) = h(s) + �∫
b

a

K(s, t)N(z)(t)dt, s ∈ [a, b], � ∈ ℝ,

(2)T(z)(s) = h(s) + �∫
b

a

K(s, t)N(z)(t)dt, s ∈ [a, b], � ∈ ℝ,

(3)[G(z)](x) = z(s) − h(s) − �∫
b

a

K(s, t)N(z)(t)dt, s ∈ [a, b], � ∈ ℝ,

(4)

⎧⎪⎨⎪⎩

z0, z−1 given in Ω, � ∈ [0, 1],

xn = (1 − �)zn + �zn−1,

yn = (1 + �)zn − �zn−1,

zn+1 = zn −
�
xn, yn;G

�−1
G(zn), n ≥ 0.

132



Numerical Algorithms (2023) 93:131–155

1 3

Note that this uniparametric family of iterative processes can be considered as 
a combination of the Kurchatov method [4, 22](λ = 1) and, for differentiable case, 
Newton’s method [8] (λ = 0). But, the main advantage for considering this scheme is 
that we have a family of derivative-free iterative methods that can be used in the non 
differential case. We use a first-order divided difference [1, 6, 14]. It is well known 
that, if we denote by L(X, Y) the space of bounded linear operators from X to Y, an 
operator 

[
x, y;D

]
∈ L(X, Y) is called a first-order divided difference for the operator 

D ∶ Ω ⊆ X → Y  on the points x and y (x≠y) if

To realize the qualitative study for the uniparametric family of iterative processes 
(4), we do an analysis of the convergence for (4), so that we can obtain the existence 
of a solution of (1) in a certain domain. Moreover, we obtain a result on the unique-
ness of solution that allows separating solutions of (1). We analyze the convergence 
of the method by a technique based on recurrence relations that use an auxiliary 
function [9, 11]. So, we use the theoretical results obtained from the convergence of 
the method (4) to draw conclusions about the existence and separation of solutions 
of (1).

Other of the aims of this paper is to approximate a solution of (1). To obtain this 
objective in an appropriate way, we have considered the family of iterative processes 
given in (4), which is formed by iterative processes with quadratic convergence 
and low operational cost, therefore efficient iterative processes that also have good 
accessibility [19]

Our main result in the paper is to perform a complete convergence study of the 
scheme that we state and prove in Section 2.1 along with some necessary lemmas. 
In Section  2.2 we introduce the assumptions to make the semilocal convergence 
analysis and give some preliminary results before to set the main theorem. Then, in 
Section 2.3 by choosing an adequate auxiliary point we get the local convergence 
results.

In Section  3, we apply the theoretical results obtained in previous sections 
for obtaining domains of existence and uniqueness of solutions for the nonlin-
ear Hammerstein-type integral equation, giving in the last subsection a numerical 
experiment.

Finally, in Section 4 we drawn some conclusions.

2  Convergence of Kurchatov‑type methods

In this section, to make our study of convergence as general as possible, we consider 
a nonlinear equation

where G ∶ Ω ⊆ X → Y  is a continuous operator defined on a nonempty convex sub-
set Ω of a Banach space X to a Banach space Y.

(5)
[
x, y;D

]
(x − y) = D(x) − D(y).

(6)G(x) = 0,
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In previous works [2, 3, 8, 13], the convergence analysis for these kind of itera-
tive methods, (4), have been analyzed from two different points of view. On the one 
hand, the semilocal convergence study, where we assume conditions on the initial 
guess z0 and on the operator G, in order to obtain the existence ball, that is, this pro-
cess assures the existence of solution z* of the equation G(z) = 0 remaining all the 
iterates and the solution in the cited ball. On the other hand, the local convergence 
study, where we must assume the existence of a solution z* of G(z) = 0 and then, 
with additional assumptions on the involved operators, we obtain the convergence 
domain, that is the ball centered at the z* where we can take a possible starting guess 
for the iterative process. Moreover, we also have in the literature the technique based 
on auxiliary points [9, 10]. We use it in this paper. So, we assume some conditions 
on the operator G and on an auxiliary point z̃ in Ω for getting the existence of a 
solution z* of G(z) = 0 and to prove the convergence of (4) to z*. So, this technique 
is much general driving us to obtain results of semilocal and local convergence for 
iterative process (4) by choosing adequately two particular auxiliary point z̃.

2.1  Convergence from an auxiliary point

Throughout our study, we will assume that there is a first-order divided difference in 
the Banach space X. Now, we perform a convergence result for the iterative process 
defined in (4), for a fixed value λ ∈ (0,1], by assuming that G is a continuous opera-
tor in Ω and such that the following conditions are satisfied.

 (C1) Let z0, z̃ ∈ Ω, with z0 ∈ B(z̃,𝜇) , z0 ≠ z̃ , and there exists [z̃, z0;G]−1 verifying 
‖[z̃, z0;G]−1G(z0)‖ ≤ 𝛼.

 (C2) Let z− 1 ∈Ω, with z− 1 ∈ B(z0,α) and z− 1≠z0,
 (C3) For all x,y,u,v ∈Ω, with x≠y and u≠v, holds: ‖[z̃, z0;G]−1([x, y;G] − [u, v;G])

‖ ≤ �(‖x − u‖, ‖y − v‖) , where � ∶ ℝ+ ×ℝ+
→ ℝ+ is a continuous nondecreasing 

function in its two arguments.

We notice that from (C3), we deduce the following condition:

 (C3’) For all x,y ∈Ω, with x≠y holds: ‖ ≤ 𝜓0

�‖x − z̃‖, ‖y − z0‖
�‖[z̃, z0;G]−1([x, y;G] − [z̃, z0;G]) , 

with �0 ∶ ℝ+ ×ℝ+
→ ℝ+ is a continuous nondecreasing function in two argu-

ments.

Therefore, (C3′) is not an extra condition.
In addition, we assume that the following items are verified:

 (C4) The auxiliary real equation

where

(7)(g0(t) + 1 − g(t))� − (1 − g(t))t = 0,
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 and

 has at least one positive real root and we denote by r the smallest positive real 
root.

 (C5)  B(z̃,𝜇 + r + 𝜆𝜂) ⊆ Ω , ψ0(μ + r + λη,r + λη) < 1 and max{g0(r), g(r)} < 1.

Firstly, notice that parameter η is well defined since that ψ0(μ + λα,λα) < ψ0(μ + r + 
λη,r + λη) < 1.

Secondly, we will consider that zk+ 1≠zk for all k ⩾ 0 , because, in other case, zk+ 1 = 
zk for some k ⩾ 0 , and then the sequence {zn} converges to z* with z* = zn = zk+ 1 = zk 
for all n ⩾ k + 2. Moreover, if zk+ 1≠zk we obtain that xk+ 1≠yk+ 1. Therefore, the opera-
tors [xk+ 1,yk+ 1;G] are always well defined.

Finally, with respect to the first-order divided differences, [1], we include the bound-
edness process by means of ω-functions, that is used in the non-differentiable case, (see 
[17]), and it is a generalization of the case in which [x,y;G] is Lipschitz-continuous or 
Hölder-continuous condition [20]. In the above cases, the Fréchet derivative of G exists 
in Ω and satisfies [x, x;G] = G�(x) , see[1]. Moreover, it is already well known, see [18], 
that if ψ(0,0) = 0 then G is differentiable, so in non-differentiable situations we have 
that ψ(0,0) > 0.

We will begin our convergence study by considering n = 0. Firstly, notice that

and

So, it follows that x0, y0 ∈ B(z̃,𝜇 + r + 𝜆𝜂), and as x0≠y0 then [xn,yn;G] is well 
defined.

Secondly, by using (C3′), we have that

� =
�

1 − �0(� + ��, ��)
,

g0(t) =
�(� + ��, ��)

1 − �0(� + �� + t, �� + t)

g(t) =
�(� + ��, ��)

1 − �0(� + �� + t, �� + t)
,

‖x0 − z̃‖ ≤ ‖x0 − z0‖ + ‖z0 − z̃‖
≤ ‖(1 − 𝜆)z0 + 𝜆z−1 − z0‖ + ‖z0 − z̃‖
≤ ‖z0 − z̃‖ + 𝜆‖z0 − z−1‖
< 𝜇 + 𝜆𝛼,

‖y0 − z0‖ ≤ ‖(1 + 𝜆)z0 − 𝜆z−1 − z0‖ ≤ 𝜆‖z0 − z−1‖ < 𝜆𝛼.

‖[z̃, z0;G]−1[x0, y0;G] − I‖ ≤ ‖[z̃, z0;G]−1([x0, y0;G] − [z̃, z0;G])‖≤ 𝜓0

�‖x0 − z̃‖, ‖y0 − z0‖
�

≤ 𝜓0(𝜇 + 𝜆𝛼, 𝜆𝛼)

≤ 𝜓0(𝜇 + r + 𝜆𝜂, r + 𝜆𝜂) < 1.
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Therefore, by applying Banach Lemma, one gets the existence of [x0,y0;G]− 1 
and

Next, we consider two technical lemmas that we use later.

Lemma 1 If zn,zn+ 1 ∈Ω, then

Proof As zn+ 1≠zn and xn≠yn, then [zn+ 1,zn;G] and [xn,yn;G] are well defined.
Then, by taking into account the algorithm (4), we have

Next, as [zn+ 1,zn;G](zn+ 1 − zn) = G(zn+ 1) − G(zn), the result is proved.

Lemma 2 Let G be a continuous operator in Ω such that the conditions (C1)–
(C5) are satisfied, zn,zn− 1 ∈ B(z0,r) and ∥zn − zn− 1∥≤∥z1 − z0∥, for n ⩾ 1 , then 
xn, yn ∈ B(z̃,𝜇 + r + 𝜆𝜂), and there exists [xn,yn;G]− 1 with

Proof Firstly, notice that

and

It follows that xn, yn ∈ B(z̃,𝜇 + r + 𝜆𝜂), and as xn≠yn then [xn,yn;G] is well 
defined.

Secondly, by using (C3′) and (10), we have that

Therefore, by applying Banach Lemma, one gets the existence of [xn,yn;G]− 1 and 
the result is obtained.

To continue, we set n = 1. From (9) and (10), we obtain that x1, y1 ∈ B

(z̃,𝜇 + r + 𝜆𝜂) ⊂ Ω . Next, as z0≠z1 then x1≠y1, and it follows that [x1,y1;G] is well 
defined.

‖z1 − z0‖ ≤ ‖[x0, y0;G]−1[z̃, z0;G]‖‖[z̃, z0;G]−1G(z0)‖ ≤ 𝛼

1−𝜓0(𝜇+𝜆𝛼,𝜆𝛼)
= 𝜂.

(8)G(zn+1) = ([zn+1, zn;G] − [xn, yn;G])(zn+1 − zn)

G(zn+1) = G(zn+1) − G(zn) − [xn, yn;G](zn+1 − zn).

‖[xn, yn;G]−1[z̃, z0;G]‖ ≤ 1

1 − 𝜓0(𝜇 + r + 𝜆𝜂, r + 𝜆𝜂)
.

(9)

‖xn − z̃‖ ≤ ‖xn − z0‖ + ‖z0 − z̃‖
≤ ‖(1 − 𝜆)zn + 𝜆zn−1 − z0‖ + ‖z0 − z̃‖
≤ ‖z0 − z̃‖ + ‖zn − z0‖ + 𝜆‖zn − zn−1‖
< 𝜇 + r + 𝜆𝜂,

(10)
‖yn − z0‖ ≤ ‖(1 + 𝜆)zn − 𝜆zn−1 − z0‖ ≤ ‖zn − z0‖ + 𝜆‖zn − zn−1‖ < r + 𝜆𝜂.

‖[z̃, z0;G]−1([xn, yn;G] − [z̃, z0;G])‖ ≤ 𝜓0

�‖xn − z̃‖, ‖yn − z0‖
�

≤ 𝜓0(𝜇 + r + 𝜆𝜂, r + 𝜆𝜂) < 1.
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In addition, from (7), it follows that ∥z1 − z0∥≤ η < r, then z1 ∈ B(z0,r). So, by 
applying Lemma 2, there exists [x1,y1;G]− 1.

On the other hand, we have

and

Then, from Lemma 1, (9) and (10),

Thus, as g0(r) < 1 by (C5), from (7) and (11), we get

Therefore, iterate z2 ∈ B(z0,r) and ∥z2 − z1∥ < ∥z1 − z0∥≤ η.
Next, we establish the recurrence relations that verify the elements of the 

sequence {xn} generated by the method (4) for a fixed λ ∈ (0,1].

Lemma 3 Let G be a continuous operator in Ω, z0 ∈ B(z̃,𝜇) and z− 1 ∈ B(z0,α) such 
that the conditions (C1)–(C5) are satisfied, then the following items hold, for j ≥ 3, 
by the sequence {zn}:

(ij) xj− 1,yj− 1 ∈ B(z0,r + λη) and xj−1, yj−1 ∈ B(z̃,𝜇 + r + 𝜆𝜂).

(iij) ∥zj− 1 − xj− 2∥≤ η + λη and ∥zj− 2 − yj− 2∥≤ λη.
(iiij) ∥zj−zj− 1∥≤ g(r)∥zj− 1−zj− 2∥≤ g(r)j− 2g0(r)∥z1−z0∥≤ g(r)j− 2g0(r)η < η.
(ivj) ‖zj − z0‖ ≤ �

g0(r)

1−g(r)
+ 1

�
� = r , then zj ∈ B(z0,r).

Proof Note that previously we have proved (ij)–(iiij) for j = 1,2.
We consider j = 3. From (9) and (10), we obtain that x2,y2 ∈ B(z0,r + λη) and 

x2, y2 ∈ B(z̃,𝜇 + r + 𝜆𝜂), which proves item (i3).
On the one hand, we have

‖z1 − x0‖ = ‖z1 − (1 − 𝜆)z0 − 𝜆z−1‖ ≤ ‖z1 − z0‖ + 𝜆‖z0 − z−1‖ < 𝜂 + 𝜆𝛼

‖z0 − y0‖ = ‖z0 − (1 + 𝜆)z0 + 𝜆z−1‖ ≤ 𝜆‖z0 − z−1‖ < 𝜆𝛼.

(11)

‖z2 − z1‖ = ‖[x1, y1;G]−1G(z1)‖≤ ‖[x1, y1;G]−1([z1, z0;G] − [x0, y0;G])(z1 − z0)‖≤ ‖[x1, y1;G]−1[z̃, z0;G]‖‖[z̃, z0;G]−1([z1, z0;G] − [x0, y0;G])‖‖z1 − z0‖≤ 1

1−𝜓0(‖x1−z̃‖,‖y1−z0‖)𝜓(‖z1 − x0‖, ‖z0 − y0‖)‖z1 − z0‖
≤ 𝜓(𝜂+𝜆𝛼,𝜆𝛼)

1−𝜓0(𝜇+r+𝜆𝜂,r+𝜆𝜂)
‖z1 − z0‖

(12)= g0(r)‖z1 − z0‖

(13)< ‖z1 − z0‖.

‖z2 − z0‖ ≤ ‖z2 − z1‖ + ‖z1 − z0‖ ≤ (g0(r) + 1)‖z1 − z0‖ <

�
g0(r)

1−g(r)
+ 1

�
𝜂 = r.

‖z2 − x1‖ = ‖z2 − (1 − 𝜆)z1 − 𝜆z0‖ ≤ ‖z2 − z1‖ + 𝜆‖z1 − z0‖ < 𝜂 + 𝜆𝜂
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and

Then (ii3) is satisfied.
On the other hand,

So, as g(r) < 1, we obtain that ∥z3 − z2∥ < ∥z2 − z1∥ < η. Therefore, (iii3) is proved.
To continue, we prove (iv3), this is that iterate z3 remains in the ball B(z0,r). For 

this, noting that the fact of being g(r) < 1 allow us to sum a geometric progression of 
reason g(r), we have

In order to complete the proof we apply an inductive procedure. So, we suppose 
that the items are satisfied, for k ≥ j ≥ 3 and similarly to the case j = 3, we prove that 
these items hold for j = k + 1.

Theorem  4 Let G be a continuous operator in Ω, for each z0 ∈ B(z̃,𝜇) and z− 1 
∈ B(z0,α) such that the conditions (C1)–(C5) are satisfied, then the sequence 
{zn}, given by (4), converges to z* a solution of equation G(z) = 0. Moreover, 
zn, z

∗ ∈ B(z0, r) for all n ⩾ 1.

Proof From the recurrence relations given in Lemma 3 we only have to prove the 
convergence of the sequence {zn}, given by (4). As X is a Banach space, we will see 
that {zn} is a Cauchy sequence. For this, we consider

By taking limits when n → ∞ , then ‖zn+k − zn‖ → 0. Hence, {zn} is a Cauchy 
sequence which converges to z∗ ∈ B(z0, r).

Moreover, from the following

‖z1 − y1‖ = ‖z1 − (1 + 𝜆)z1 + 𝜆z0‖ ≤ 𝜆‖z1 − z0‖ < 𝜆𝜂.

‖z3 − z2‖ ≤ ‖[x2, y2;G]−1G(z2)‖≤ ‖[x2, y2;G]−1([z2, z1;G] − [x1, y1;G])(z2 − z1)‖≤ ‖[x2, y2;G]−1[z̃, z0;G]‖‖[z̃, z0;G]−1([z2, z1;G] − [x1, y1;G])‖‖z2 − z1‖≤ 1

1−𝜓0(‖x2−z̃‖,‖y2−z0‖)𝜓(‖z2 − x1‖, ‖z1 − y1‖)‖z2 − z1‖
≤ 𝜓(𝜂+𝜆𝜂,𝜆𝜂)

1−𝜓0(𝜇+r+𝜆𝜂,r+𝜆𝜂)
‖z2 − z1‖ = g(r)‖z2 − z1‖

< ‖z2 − z1‖.

‖z3 − z0‖ ≤ ‖z3 − z2‖ + ‖z2 − z1‖ + ‖z1 − z0‖ ≤ (g(r) + 1)g0(r) + 1)‖z1 − z0‖≤ (g(r) + 1)g0(r) + 1)𝜂 < (
g0(r)

1−g(r)
+ 1)𝜂 = r.

‖zn+k − zn‖ ≤ ‖zn+k − zn+k−1‖ + ‖zn+k−1 − zn+k−2‖ +⋯ + ‖zn+2 − zn+1‖ + ‖zn+1 − zn‖
≤ k∑

i=1

‖zn+i − zn+i−1‖ ≤ k∑
i=1

g(r)n+i−2g0(r)‖z1 − z0‖
≤ �

1−g(r)k

1−g(r)

�
g(r)n−1g0(r)‖z1 − z0‖.
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by the continuity of the operator G and as g(r)k− 1 tends to zero when k tends to 
infinity, we have that G(z*) = 0.

Notice that B(z0, r) is a domain of existence of solution for G(z) = 0.
To prove the uniqueness we give the following result,

Theorem 5 Let G be a continuous operator in Ω, z0 ∈ B(z̃,𝜇) and z− 1 ∈ B(z0,α) such 
that the conditions (C1)–(C5) are satisfied. We assume that there exists r1 ≥ r such 
that

then, the limit point z* is the only solution of equation G(z) = 0 in B(z0, r1 + ��) ∩ Ω.

Proof Let y∗ ∈ B(z0, r1 + ��) ∩ Ω be such that G(y*) = 0. By defining Q = [z*,y*;G] 
we get

Hence, by Banach lemma the operator Q− 1 exists and as

then z* = y*.

Note that it may happen that the hypotheses necessary to ensure convergence 
are not verified for all values of λ ∈ (0,1].

2.2  Semilocal convergence

To establish another result for semilocal convergence, we consider z̃ = z−1 under 
the following conditions:

 (S1) Let z− 1 ∈ B(z0,μ), with μ > 0, B(z0,𝜇) ⊂ Ω and there exists [z− 1,z0;G]− 1 with 
∥[z− 1,z0;G]− 1G(z0)∥≤ α.

 (S2) ∥[z− 1,z0;G]− 1([x,y;G] − [u,v;G])∥≤ ψ(∥x − u∥,∥y − v∥) holds for all x,y,u,v ∈Ω 
with x≠y and u≠v, where � ∶ ℝ+ ×ℝ+

→ ℝ+ is a continuous non decreasing 
function in its both arguments.

 (S3) The scalar equation

‖[z̃, z0;G]−1G(zk+1)‖ = ‖[z̃, z0;G]−1([zk+1, zk;G] − [xk, yk;G])(zk+1 − zk)‖≤ 𝜓(‖zk+1 − xk‖, ‖zk − yk‖)‖zk+1 − zk‖≤ 𝜓(‖zk+1 − zk + 𝜆zk − 𝜆zk−1‖, ‖zk − zk − 𝜆zk + 𝜆zk−1‖)‖zk+1 − zk‖≤ 𝜓(𝜂 + 𝜆𝜂, 𝜆𝜂)‖zk+1 − zk‖ ≤ 𝜓(𝜂 + 𝜆𝜂, 𝜆𝜂)g(r)k−1g0(r)𝜂.

𝜓0(𝜇 + r + 𝜆𝜂, r1 + 𝜆𝜂) < 1,

‖[z̃, z0;G]−1([z∗, y∗;G] − [z̃, z0;G])‖ ≤ 𝜓0(‖z∗ − z̃‖, ‖y∗ − z0‖)≤ 𝜓0(‖z∗ − z0‖ + ‖z0 − z̃‖, ‖y∗ − z0‖)≤ 𝜓0(𝜇 + r + 𝜆𝜂, r1 + 𝜆𝜂) < 1.

[z∗, y∗;G](z∗ − y∗) = G(z∗) − G(y∗) = 0,
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where we have η > 0, for

   
and

has at least one positive real root and we denote by r the smallest positive 
root.

 (S4)  B(z0, r + 𝜆𝜂) ⊆ Ω and 0 < g(r) < 1.

As the previous study, we notice that from (S2), we deduce the following condition:

 (S2’) ∥[z− 1,z0;G]− 1([x,y;G] − [z− 1,z0;G])∥≤ ψ0(∥x − z− 1∥,∥y − z0∥) holds for all x,y 
∈Ω with x≠y, where �0 ∶ ℝ+ ×ℝ+

→ ℝ+ is a continuous non decreasing func-
tion in both arguments.

We assume that zn≠zn− 1, for all n ≥ 1, otherwise the sequence {zn} is convergent. If 
zn≠zn− 1, then we obtain xn≠yn. By using the definition of the method (4), we get

and

It shows that x0, y0 ∈ B(z0,𝜇) ⊂ Ω and as x0≠y0, then [x0,y0;G] is well defined. So, 
by using (S2′) as η > 0, we obtain

Therefore, by the Banach Lemma on invertible operators, [x0,y0;G]− 1 exists and

Moreover,

Lemma 6 Assume that the conditions (S1)–(S4) hold. If zn,zn− 1 ∈ B(z0,r) and ∥zn − 
zn− 1∥ < ∥z1 − z0∥ for n ≥ 1, then xn,yn ∈ B(z0,r + λη) and there exists [xn,yn;G]− 1 such 
that

(14)t(1 − g(t)) − � = 0,

�

1−�0(�+��,��)
= �,

g(t) =
g̃

1−𝜓0(𝜇+t+𝜆𝜂,t+𝜆𝜂)
,

g̃ = max{𝜓(𝜂 + 𝜆𝜇, 𝜆𝜇),𝜓(𝜂 + 𝜆𝜂, 𝜆𝜂)},

(15)‖x0 − z0‖ ≤ �‖z0 − z−1‖ = ��,

(16)‖y0 − z0‖ ≤ �‖z0 − z−1‖ = ��.

‖I − [z−1, z0;G]
−1[x0, y0;G]‖ ≤ 𝜓0(‖x0 − z−1‖, ‖y0 − z0‖) ≤ 𝜓0(𝜇 + 𝜆𝜇, 𝜆𝜇) < 1.

(17)‖[x0, y0;G]−1[z−1, z0;G]‖ ≤ 1

1−�0(�+��,��)
.

‖z1 − z0‖ ≤ ‖[x0, y0;G]−1[z−1, z0;G]‖‖[z−1, z0;G]−1G(z0)‖ ≤ �

1−�0(�+��,��)
= �.
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Proof Consider

and

Thus, xn,yn ∈ B(z0,r + λη) ⊂Ω and as xn≠yn, then [xn,yn;G] is well defined. Using 
(S1), (S2′), (18) and (19), and g(t) > 0, we get

Therefore, by Banach Lemma, [xn,yn;G]− 1 exists and

Using (18) and (19), we obtain x1,y1 ∈ B(z0,r + λη) ⊂Ω. As, z0≠z1 then x1≠y1, 
so [x1,y1;G] is well defined. Also from (14), we obtain ∥z1 − z0∥≤ η < r, then z1 ∈ 
B(z0,r). So, by using Lemma 6, there exists [x1,y1;G]− 1 and we have

since g(r) < 1. Further,

So, z2 ∈ B(z0, r) ⊆ B(z0, r + 𝜆𝜂) ⊂ Ω and ∥z2 − z1∥ < ∥z1 − z0∥≤ η. In the next 
Lemma, we establish the recurrence relations to prove the convergence of the 
sequence {zn}.

Lemma 7 Assume that the conditions (S1)–(S4) hold. Then for j ≥ 3, the following 
items are satisfied by the sequence {zn} :

(i) xj− 1,yj− 1 ∈ B(z0,r + λη).
(ii) ∥zj − zj− 1∥≤ g(r)∥zj− 1 − zj− 2∥≤ g(r)j− 1∥z1 − z0∥≤ g(r)j− 1η < η.
(iii) ‖zj − z0‖ <

𝜂

1−g(r)
= r, then zj ∈ B(z0,r).

Proof We have just shown that (i)–(iii) holds true for j = 1,2. From (18) and (19), we 
obtain x2,y2 ∈ B(z0,r + λη) which proves (i) for j = 3. Then,

‖[xn, yn;G]−1[z−1, z0;G]‖ ≤ 1

1−�0(�+r+��,r+��)
.

(18)‖xn − z0‖ ≤ ‖zn − z0‖ + 𝜆‖zn − zn−1‖ < r + 𝜆𝜂,

(19)‖yn − z0‖ ≤ ‖zn − z0‖ + 𝜆‖zn − zn−1‖ < r + 𝜆𝜂.

‖I − [z−1, z0;G]
−1[xn, yn;G]‖ ≤ 𝜓0(𝜇 + r + 𝜆𝜂, r + 𝜆𝜂) < 1.

‖[xn, yn;G]−1[z−1, z0;G]‖ ≤ 1

1−�0(�+r+��,r+��)
.

‖z2 − z1‖ = ‖[x1, y1;G]−1G(z1)‖≤ ‖[x1, y1;G]−1[z−1, z0;G]‖��[z−1, z0;G]−1([z1, z0;G] − [x0, y0;G])
��‖z1 − z0‖≤ 𝜓(‖z1−x0‖,‖z0−y0‖)

1−𝜓0(𝜇+r+𝜆𝜂,r+𝜆𝜂)
‖z1 − z0‖

≤ 𝜓(𝜂+𝜆𝜇,𝜆𝜇)

1−𝜓0(𝜇+r+𝜆𝜂,r+𝜆𝜂)
‖z1 − z0‖

≤ g(r)‖z1 − z0‖ < 𝜂,

‖z2 − z0‖ ≤ ‖z2 − z1‖ + ‖z1 − z0‖ ≤ (g(r) + 1)‖z1 − z0‖ <
𝜂

1−g(r)
= r.
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As g(r) < 1, therefore, ∥z3 − z2∥ < ∥z2 − z1∥ < η. Hence, (ii) is proved for j = 3. 
Further,

Therefore, z3 ∈ B(z0,r) and hence (iii) is proved for j = 3. We suppose that the 
items are satisfied, for k ≥ j ≥ 3 and similarly to the case j = 3, we prove that these 
items hold for j = k + 1.

Theorem 8 Suppose that the conditions (S1)–(S4) hold, then the sequence {zn} given 
by (4) converges to z* a solution of equation G(z) = 0 for each z0 ∈Ω and z− 1 ∈ 
B(z0,μ). Furthermore, zn ∈ B(z0,r) for all n ≥ 1. Moreover, if we suppose that there 
exists r1 ≥ r such that ψ0(μ + r + λη,r1 + λη) < 1, then z* is the unique solution of 
equation G(z) = 0 in B(z0, r1 + ��) ∩ Ω.

Proof To prove the convergence of the sequence, it is sufficient to prove that the 
sequence {zn} is a Cauchy sequence. For this, we consider

As n → ∞ , then ‖zn+k − zn‖ → 0, hence, {zn} is a Cauchy sequence which con-
verges to z∗ ∈ B(z0, r). Now,

As n → ∞ , we obtain G(z*) = 0 by using the continuity of G.
To prove the uniqueness, let y* be another solution of G(z) = 0 in 

B(z0, r1 + ��) ∩ Ω. Define Q = [z*,y*;G], then

Thus, by the Banach Lemma, Q− 1 exists and hence, z* = y*.

‖z3 − z2‖ ≤ ‖[x2, y2;G]−1[z−1, z0;G]‖‖[z−1, z0;G]−1
�
[z2, z1;G] − [x1, y1;G]

�‖‖z2 − z1‖≤ �(‖z2−x1‖,‖z1−y1‖)
1−�0(�+r+��,r+��)

‖z2 − z1‖
≤ �(�+��,��)

1−�0(�+r+��,r+��)
‖z2 − z1‖ ≤ g(r)‖z2 − z1‖.

‖z3 − z0‖ ≤ ‖z3 − z2‖ + ‖z2 − z1‖ + ‖z1 − z0‖≤ [(g(r) + 1)g(r) + 1]‖z1 − z0‖ <
𝜂

1−g(r)
= r.

‖zn+k − zn‖ ≤ ‖zn+k − zn+k−1‖ + ‖zn+k−1 − zn+k−2‖ +⋯ + ‖zn+2 − zn+1‖ + ‖zn+1 − zn‖
≤ k∑

i=1

‖zn+i − zn+i−1‖ ≤ k∑
i=1

g(r)n+i−1‖z1 − z0‖
≤ 1−g(r)k

1−g(r)
g(r)n‖z1 − z0‖.

‖[z−1, z0;G]−1G(zn+1)‖ = ‖[z−1, z0;G]−1
�
[zn+1, zn;G] − [xn, yn;G]

�
(zn+1 − zn)‖≤ �(‖zn+1 − xn‖, ‖zn − yn‖)‖zn+1 − zn‖≤ �(� + ��, ��)‖zn+1 − zn‖.

‖[z−1, z0;G]−1([z−1, z0;G] − [z∗, y∗;G])‖ ≤ 𝜓0(‖z−1 − z∗‖, ‖z0 − y∗‖)
≤ 𝜓0(𝜇 + r + 𝜆𝜂, r1 + 𝜆𝜂) < 1.
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2.3  Local convergence

In this section, a local convergence result is obtained by considering z̃ = z∗ under the 
following conditions:

 (LC1) Let z*∈Ω be a solution of G(z) = 0 and z0 ∈ B(z*,μ), with μ > 0, such that 
[z*,z0;G]− 1 exists.

 (LC2) Let z− 1 ∈Ω, with z− 1 ∈ B(z0,α), α ≤ 2μ and z− 1≠z0.
 (LC3) ∥[z*,z0;G]− 1([x,y;G] − [u,v;G])∥≤ ψ(∥x − u∥,∥y − v∥) holds for all x,y,u,v ∈Ω 

with x≠y and u≠v, where � ∶ ℝ+ ×ℝ+
→ ℝ+ is a continuous non decreasing 

function in its both arguments.
 (LC4)  B(z∗, (1 + 2𝜆)𝜇)) ⊆ Ω with ψ(2λμ,(1 + 2λ)μ) + ψ0((1 + 2λ)μ,2(1 + λ)μ) < 1.

As previously, we notice that from (LC3), we deduce the following condition:

 (LC3’) ∥[z*,z0;G]− 1([x,y;G] − [z*,z0;G])∥≤ ψ0(∥x − z*∥,∥y − z0∥) holds for all x,y ∈Ω 
with x≠y, where �0 ∶ ℝ+ ×ℝ+

→ ℝ+ is a continuous non decreasing function 
in both arguments.

Firstly, we present a result on the inverse of the divided difference of the operator 
G.

Lemma 9 Under conditions (LC1) and (LC3′), then there exists [x,y;G]− 1 and

for each pair of distinct points (x,y) ∈ B(z*,(1 + 2λ)μ) × B(z*,(1 + 2λ)μ).

Proof Using (LC3′), we get

Thus, by Banach Lemma, [x,y;G]− 1 exists and the result is obtained.

Now, by the definition of the method (4), it follows

and

(20)‖[x, y;G]−1[z∗, z0;G]‖ ≤ 1

1−�0((1+2�)�,2(1+�)�)
,

‖[z∗, z0;G]−1([z∗, z0;G] − [x, y;G])‖ ≤ 𝜓0(‖x − z∗‖, ‖y − z0‖) ≤ 𝜓0((1 + 2𝜆)𝜇, 2(1 + 𝜆)𝜇) < 1.

‖x0 − z∗‖ ≤ ‖x0 − z0‖ + ‖z0 − z∗‖
≤ ‖(1 − 𝜆)z0 + 𝜆z−1 − z0‖ + ‖z0 − z∗‖
≤ ‖z0 − z∗‖ + 𝜆‖z0 − z−1‖
< 𝜇 + 𝜆𝛼 ≤ (1 + 2𝜆)𝜇,

‖y0 − z∗‖ ≤ ‖y0 − z0‖ + ‖z0 − z∗‖ ≤ ‖(1 + 𝜆)z0 − 𝜆z−1 − z0‖
+‖z0 − z∗‖ ≤ 𝜆‖z0 − z−1‖
+‖z0 − z∗‖ < (1 + 2𝜆)𝜇.
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It follows that x0,y0 ∈ B(z*,(1 + 2λ)μ), and as x0≠y0 then [x0,y0;G] is well defined.
Therefore, by using Lemma 9, [x0,y0;G]− 1 exists. Again, by using (LC3) and 

(LC3′), we get

where g(�) = �(2��,(1+2�)�)

1−�0((1+2�)�,2(1+�)�)
 . As g(μ) < 1, therefore

In addition, we consider z1≠z0, then x1≠y1 and [x1,y1;G] is well defined. Thus,

and

Hence, iterates x1,y1 ∈ B(z*,(1 + 2λ)μ) and, by using Lemma 9, there exists 
[x1,y1;G]− 1. Further, it follows that

To continue this and by applying the mathematical induction, we get the follow-
ing recurrence relations for the sequence {zn} given by (4).

Lemma 10 Assume that the conditions (LC1)–(LC4) hold, then, for n ≥ 1, it follows:

(i) xn, yn ∈ B(z∗, (1 + 2𝜆)𝜇) ⊆ Ω with xn≠yn,
(ii) ∥zn − z*∥ < g(μ)∥zn− 1 − z*∥ < g(μ)n∥z0 − z*∥ < ∥z0 − z*∥ < μ.

Next, by using Lemma 10, we obtain a local convergence result for the sequence 
{zn} given by (4).

Theorem 11 Assume that the conditions (LC1)–(LC4) hold. For each z0 ∈ B(z*,μ), 
with z− 1 ∈ B(z0,α), the sequence {zn} given by (4) remains in B(z*,μ) and converges 
to z*, a solution of equation G(z) = 0. Furthermore, if we assume that there exists r1 
≥ μ such that ψ0(0,μ + r1) < 1. Then, z* is the unique solution of the equation G(z) 
= 0 in B(z*,r1) ∩Ω.

(21)

‖z1 − z∗‖ = ‖(z0 − z∗) − [x0, y0;G]
−1(G(z0) − G(z∗))‖

≤ ‖[x0, y0;G]−1[z∗, z0;G]‖‖[z∗, z0;G]−1([x0, y0;G] − [z0, z
∗;G])‖‖z0 − z∗‖

≤ �(‖x0−z0‖,‖y0−z∗‖)
1−�0((1+2�)�,2(1+�)�)

‖z0 − z∗‖
≤ �(2��,(1+2�)�)

1−�0((1+2�)�,2(1+�)�)
‖z0 − z∗‖ = g(�)‖z0 − z∗‖,

‖z1 − z∗‖ < ‖z0 − z∗‖ < 𝜇.

‖x1 − z∗‖ ≤ ‖x1 − z1‖ + ‖z1 − z∗‖
≤ ‖(1 − 𝜆)z1 + 𝜆z0 − z1‖ + ‖z1 − z∗‖
≤ ‖z1 − z∗‖ + 𝜆‖z1 − z0‖
< 𝜇 + 𝜆𝜇 ≤ (1 + 2𝜆)𝜇

‖y1 − z∗‖ ≤ ‖y1 − z1‖ + ‖z1 − z∗‖ ≤ ‖(1 + 𝜆)z1 − 𝜆z0 − z1‖
+‖z1 − z∗‖ ≤ 𝜆‖z1 − z0‖ + ‖z1 − z∗‖ < (1 + 2𝜆)𝜇.

‖z2 − z∗‖ < g(𝜇)‖z1 − z∗‖ < g(𝜇)2‖z0 − z∗‖ < ‖z0 − z∗‖ < 𝜇.
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Proof From the previous Lemma, the sequence {zn} is well defined remains in 
B(z*,μ) and converges to z*. To prove the uniqueness of solution, suppose that y*∈ 
B(z*,r1) ∩Ω be such that G(y*) = 0. Then by using (LC2′), we get

Therefore, [z*,y*;G]− 1 exists and hence z* = y*.

3  Non‑differentiable Hammerstein‑type integral equations

One of the most important mathematical tool to describe applied problems is related 
with nonlinear integral equations. We can mention among others science applied 
problems, fracture mechanics problems, aerodynamics, the theory of porous filter-
ing, antenna problems in electromagnetic theory and others. These complex and 
practical situations can be formulated as integral equations of the first, second and 
third kind. It is well known that, the obtainment of a solution of these equations 
are used to be very difficult and sometimes impossible, so numerical procedures to 
approximate the solutions are the angular stone in Numerical Methods. In the litera-
ture, we find different Fredholm-type integral equations [27, 31], Volterra-Fredholm 
integral equations [15, 26], nonlinear Fredholm integro-differential equations [23], 
systems of Fredholm-Volterra integral equations [24], etc.

Next, we deal with the following case of nonlinear Hammerstein-type integral 
equation [7, 25, 27]:

where � ∈ ℝ , −∞ < a < b < +∞ , the function h(s) is a given continuous func-
tion on [a,b], the kernel K(s, t) is a known continuous function in [a,b] × [a,b], the 
Nemytskii operator N ∶ Ω ⊆ C([a, b]) → C([a, b]) , where Ω is a nonempty open 
convex domain in C([a, b]) , given by N(z)(t) = N(z(t)) , where N is a known con-
tinuous but non-differentiable function in ℝ and z is a solution to be determined in 
C([a, b]) , where C([a, b]) denotes the space of continuous real functions in [a,b].

In this section, our first objective is to carry out a qualitative study of (22), 
obtaining domains of existence and uniqueness of solutions. The second objective 
is to use an iterative process of (4) for a fixed value λ ∈ (0,1], and by direct appli-
cation to approximate a solution of (22). For this, we observe that the (22) can be 
defined as G(z) = 0 for G ∶ Ω ⊆ C([a, b]) → C([a, b]) , where Ω is a nonempty open 
convex domain in C([a, b]) and

Obviously, a solution of G(z) = 0 is a solution of (22).

‖[z∗, z0;G]−1([z∗, z0;G] − [z∗, y∗;G])‖ ≤ 𝜓0(‖z∗ − z∗‖, ‖z0 − y∗‖) ≤ 𝜓0(0,𝜇 + r1) < 1.

(22)z(s) = h(s) + �∫
b

a

K(s, t)N(z)(t)dt, s ∈ [a, b],

(23)[G(z)](s) = z(s) − h(s) − �∫
b

a

K(s, t)N(z)(t)dt, s ∈ [a, b].
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It is clear that, in order to apply an iterative process of (4) for a fixed value λ ∈ 
(0,1], we will first need to define a first-order divided difference for the G opera-
tor. Taking into account that N  is a non-derivable real function, we can define the 
first-order divided difference in [a, b] ⊂ ℝ given by

Then, from this definition, we can define [x, y;G] ∶ Ω ⊆ C([a, b]) → C([a, b] 
with

where we consider

Therefore, for the continuous real functions x and y(x≠y), obviously [x, y;G]

∈ L(Ω,C([a, b])) and

Then, 
[
x, y;G

]
 is a first-order divided difference for the operator G ∶ Ω ⊆ C([a, b]) → C([a, b]).

In our study, the max-norm has been considered in C([a, b]).

3.1  Domain of existence of solution

As a consequence of Theorem  4 we saw that for each z0 ∈ B(z̃,𝜇) and z− 1 ∈ 
B(z0,α) such that the conditions (C1)-(C5) are satisfied, from the iterative pro-
cesses given in (4), we obtain a domain of existence of solution, B(z0, r) , for the 
equation G(z) = 0. Therefore, we study what conditions must be verified on the 
operator G , given in (23) from the integral (22), so that the corresponding condi-
tions (C1)-(C5) are satisfied and then, we apply the Theorem 4.

Firstly, we suppose that z0, z̃ ∈ Ω, withz0 ≠ z̃, such that[z̃, z0;G]
−1exists.

Notice that as z0 ≠ z̃ then, [z̃, z0;N] is well defined and if I  is the identity on 
C([a, a]) , we have

[u, v;N] =

⎧
⎪⎨⎪⎩

N(u)−N(v)

u−v
ifu, v ∈ [a, b]such thatu ≠ v,

0 ifu, v ∈ [a, b]such thatu = v.

(24)[x, y;G](u)(s) = u(s) − �∫
b

a

K(s, t)[x, y;N](u)(t)dt,

(25)

[x, y;N](u)(t) =

⎧
⎪⎨⎪⎩

N(x(t))−N(y(t))

x(t)−y(t)
u(t) ift ∈ [a, b]such thatx(t) ≠ y(t),

0 ift ∈ [a, b]such thatx(t) = y(t).

[
x, y;G

]
(x − y) = G(x) − G(y).

(I − [z̃, z0;G])(u)(s) = 𝜃∫
b

a

K(s, t)[z̃, z0;N](t)u(t)dt.
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Then, ‖I − [z̃, z0;G]‖ < �𝜃�M‖[z̃, z0;N]‖, where M =
‖‖‖∫ b

a
K(s, t)dt

‖‖‖.
Thus, if ‖[z̃, z0;N]‖ < 1∕(�𝜃�M), by the Banach Lemma for inverse operators 

[21], we obtain that there exists [z̃, z0;G]−1 with

 so, we denote 𝛽 =
1

1−�𝜃�M‖[z̃,z0;N]‖ .
Secondly, in order to analyze the domain of existence of iterative processes that 

do not use derivatives in their algorithms, the conditions are usually required on the 
operator divided difference. For this, we have that for each pair of distinct points x,y 
∈Ω, there exists a first-order divided difference of G at these points given in (24). 
Then, if we suppose that the following condition hold:

where � ∶ ℝ+ ×ℝ+
→ ℝ+ is a continuous nondecreasing function in its two argu-

ments, then we deduce that

and therefore

Notice that, from (26), we deduce the following condition: For all x,y ∈Ω, with 
x≠y holds:

where �0 ∶ ℝ+ ×ℝ+
→ ℝ+ is a continuous nondecreasing function in its two 

arguments.
Next, we establish the following convergence result for the sequence {zn}, given 

in (4). This sequence converges to a solution of equation G(z) = 0 with G given in 
(23).

Theorem 12 Let G be the continuous operator in Ω ⊆ C([a, b]) given in (23). Fixed λ 
∈ (0,1], we suppose that the following conditions are satisfied:

(I) Let z0, z̃ ∈ Ω, with z0 ∈ B(z̃,𝜇) and z0 ≠ z̃, such that [z̃, z0;G]−1 exists and 
‖[z̃, z0;G]‖−1 < 𝛽.

(II) Let z− 1 ∈Ω, with z− 1 ∈ B(z0,βδ) and z− 1≠z0, where ‖G(z0)‖ ≤ �.
(III) ‖[x, y;N] − [u, v;N]‖ ≤ �(‖x − u‖, ‖y − v‖), x, y, u, v ∈ Ω, where 
� ∶ ℝ+ ×ℝ+

→ ℝ+ is a continuous nondecreasing function in its two arguments.
(IV) The auxiliary real equation

‖[z̃, z0;G]−1‖ ≤ 1

1 − �𝜃�M‖[z̃, z0;N]‖ ,

(26)‖[x, y;N] − [u, v;N]‖ ≤ �(‖x − u‖, ‖y − v‖), x, y, u, v ∈ Ω,

[z̃, z0;G]
−1
(
[x, y;G] − [u, v;G]

)
(w)(s) = [z̃, z0;G]

−1
(
𝜃∫

b

a

K(s, t)
(
[u, v;N](t) − [x, y;N](t)

)
w(t)dt

)
,

(27)‖[z̃, z0;G]−1
�
[x, y;G] − [u, v;G]

�
‖ ≤ �𝜃�M𝛽𝜔(‖x − u‖, ‖y − v‖).

(28)‖[x, y;N] − [z̃, z0,N])‖ ≤ 𝜔0

�‖x − z̃‖, ‖y − z0‖
�
,

147



Numerical Algorithms (2023) 93:131–155

1 3

where

 and

 has at least one positive real root and we denote by R the smallest positive real 
root.
(V) B(z̃,𝜇 + R + 𝜆𝜉) ⊆ Ω , |𝜃|Mβω0(μ + R + λξ,R + λξ) < 1 and 
max{f0(R), f (R)} < 1.

Then, for each z0 ∈ B(z̃,𝜇) and z− 1 ∈ B(z0,βδ) satisfying the previous conditions, 
the sequence {zn}, given by (4), converges to z* a solution of equation G(z) = 0 . 
Moreover, zn, z∗ ∈ B(z0,R) for all n ⩾ 1.

Proof The idea of the proof is to apply Theorem 5 to the operator G given in (23).
From condition (I), we have that there exists [z̃, z0;G]−1 with ‖[z̃, z0;G]−1� ≤ 𝛽. 

Then, if ‖G(z0)‖ ≤ � , so that (C1) is satisfied with α = βδ. Obviously, from (II), with 
this notation (C2) is verified.

Moreover, from condition (III), taking into account (27), if we consider ψ(−,−) = 
|𝜃|Mβω(−,−), the condition (C3) is satisfied. Moreover, from (28), taking ψ0(−,−) = 
|𝜃|Mβω0(−,−), the condition (C3′) is satisfied.

To finish, note that, for α = βδ, the real functions ψ(−,−) and ψ0(−,−) indicated 
previously and r = R, from conditions (IV) and (V), it follows that the conditions 
(C4) and (C5) are also satisfied. Therefore we can apply the Theorem  5 and the 
result is proved.

Note that, the ball B(z0,R) is the domain of existence of solution for the equation 
G(z) = 0.

3.2  Domain of uniqueness of solution

To obtain the domain of uniqueness of solution for the (23), it is enough to apply the 
Theorem 5 taking into account the Theorem 12 that we have just proved.

(29)(f0(t) + 1 − f (t))� − (1 − f (t))t = 0,

� =
��

1 − |�|M��0(� + ���, ���)
,

f0(t) =
|�|M��(� + ���, ���)

1 − |�|M��0(� + �� + t, �� + t)

f (t) =
|�|M��(� + ��, ��)

1 − |�|M��0(� + �� + t, �� + t)
,
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Theorem 13 Let G be the continuous operator in Ω given in (23), z0 ∈ B(z̃,𝜇) and 
z− 1 ∈ B(z0,βδ) such that the conditions (I)-(V) are satisfied. We assume that there 
exists R1 ≥ R such that

 then, the limit point z* is the only solution of equation G(z) = 0 in B(z0,R1 + ��) ∩ Ω

.

Therefore, B(z0,R1 + ��) ∩ Ω is the domain of uniqueness of solution for the 
equation G(z) = 0.

3.3  Numerical experiment

Next, we present a numerical experiment where we illustrate all the above results. 
We consider the following nonlinear and non-differentiable integral equation of 
Fredholm-type of the form given in (22):

this is, for a fixed value � ∈ ℝ , we consider K(s, t) = st and N(z)(t) = z(t)2 −
|z(t)|
5

 . 
The function h(s) is chosen in order to z∗(s) = s −

1

2
 be a solution. In this case

Then, to solve this (30), we apply the iterative scheme (4) to the operator (23), 
with

being G ∶ Ω ⊆ C([a, b]) → C([a, b]) , where Ω is a nonempty open convex domain in 
C([a, b])

On the one hand, note that, if we consider z0 ≠ z̃ with z0, z̃ ∈ Ω and I  is the iden-
tity on C([�, �]) , it follows that

 then, we have

So, if �𝜃�
2

�
1

5
+ ‖z̃‖ + ‖z0‖

�
< 1 , by the Banach Lemma for inverse operators [21], 

we obtain that there exists [z̃, z0;G]−1 with

|𝜃|M𝛽𝜔0(𝜇 + R + 𝜆𝜉,R1 + 𝜆𝜉) < 1,

(30)z(s) = h(s) + �∫
1

0

st

(
z(t)2 −

|z(t)|
5

)
dt, s ∈ [0, 1],

(31)h(s) = (1 −
�

60
)s −

1

2

(32)[G(z)](s) = z(s) − (1 −
�

60
)s +

1

2
− �∫

1

0

st

(
z(t)2 −

|z(t)|
5

)
dt. s ∈ [0, 1],

(I − [z̃, z0;G])(u)(s) = 𝜃∫
1

0

st[z̃, z0;N](t)u(t)dt,

‖I − [z̃, z0;G]‖ ≤ �𝜃�
2
‖[z̃, z0;N]‖ ≤ �𝜃�

2
(
1

5
+ ‖z̃‖ + ‖z0‖),
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Then, we have 𝛽 =
1

1−
�𝜃�
2

�
1

5
+‖z̃‖+‖z0‖

� .

On the other hand, in this case, N(�) = �2 −
|�|
5

 and from (25), it is easy to 
check that

therefore, for condition (III) we have �(�, �) = 2

5
+ � + � , a non decreasing real 

function in its two variables.
To analyze the existence and uniqueness of solution for (23), we consider 

Ω = C([0, 1]) , 𝜃 = 1/10, and also ω0 = ω.
Firstly, fixed μ = 1, and taking different values for z− 1 and z0, by applying 

the theoretical results obtained in Theorems 6 and 7 we get the results given in 
Tables 1 and 2 . In this case, we observe that taking smaller values for the output 
points, better domains of existence and uniqueness are obtained. Besides, as one 
can check, when λ decreases the values slightly improve. The ball of existence 
(see R) is smaller, that is, we locate the solution better. While the ball of unique-
ness (see R1) grows, so we better separate the solutions.

Secondly, for μ = 1, μ = 1/3 and μ = 1/5 with z̃ = 0, z0 = 1∕2𝜇 and z− 1 = 1/3μ, 
by applying the theoretical results obtained in Theorems 6 and 7 we get the 
results given in Tables 2, 3 and 4. This study allows us to affirm that, reducing the 
value of μ better domains of existence and uniqueness are obtained. Furthermore, 
in each case, we can observe that when λ decreases the radii of existence and 
uniqueness balls slightly improve.

‖[z̃, z0;G]−1‖ ≤ 1

1 −
�𝜃�
2

�
1

5
+ ‖z̃‖ + ‖z0‖

� .

(33)‖[x, y;N] − [u, v;N]‖ ≤ 2

5
+ ‖x − u‖ + ‖y − v‖,

Table 1  Radii of the balls of 
existence and uniqueness, μ = 1, 
z̃ = 0, z0 = 1∕6, z− 1 = 1/9, β 
= 1.0187, δ = 0.6667.

λ R R1 

0.2 0.8129 18.1235
0.4 0.8439 17.7865
0.6 0.8780 17.4368
0.8 0.9158 17.0733
1 0.9584 16.6947

Table 2  Radii of the balls of 
existence and uniqueness, μ = 1, 
z̃ = 0, z0 = 1∕2𝜇, z− 1 = 1/3μ, β 
= 1.0363,δ = 1.

λ R R1 

0.2 1.31875 17.1237
0.4 1.4135 16.5493
0.6 1.5305 15.9286
0.8 1.6834 15.2464
1 1.9039 14.4689
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In general, since this situation is not differentiable, we observe that by 
approaching Newton’s method (λ = 0) with the iterative processes given in (4), we 
obtain better qualitative results.

Next, our interest is focused on approximating a solution of the (22), for this 
we will apply the iterative processes (4) to the operator G , given in (23), and thus 
obtain a solution of G(z) = 0 . In first place, we will need to calculate [xn, yn;G]−1 . 
For this, taking into account (24), for u, v, x, y ∈ Ω = C([0, 1]) , with x≠y, we 
consider

 then we have u(s) = v(s) + ��s, where � = ∫ 1

0
t[x, y;N](u)(t)dt , with 𝕀 ∈ ℝ . Therefore,

 where w(s) = s2. So, we obtain

 and then

 as long as �∫ 1

0
[x, y;N](w)(s)ds ≠ 1.

[x, y;G](u)(s) = u(s) − �∫
1

0

st[x, y;N](u)(t)dt = v(s),

∫
1

0

s[x, y;N](u)(s)ds = ∫
1

0

s[x, y;N](v)(s)ds + ��∫
1

0

[x, y;N](w)(s)ds,

� =
∫ 1

0
s[x, y;N](v)(s)ds

1 − �∫ 1

0
[x, y;N](w)(s)ds

,

u(s) = [x, y;G]−1(v)(s) = v(s) + �
∫ 1

0
s[x, y;N](v)(s)ds

1 − �∫ 1

0
[x, y;N](w)(s)ds

,

Table 3  Radii of the balls of 
existence and uniqueness, μ 
= 1/3, z̃ = 0, z0 = 1∕2𝜇, z− 1 
= 1/3μ, β = 1.0187, δ = 0.6667.

λ R R1 

0.2 0.7792 18.6873
0.4 0.8072 18.3832
0.6 0.8378 18.0694
0.8 0.8714 17.7453
1 0.9087 17.4103

Table 4  Radii of the balls of 
existence and uniqueness, μ 
= 1/5, z̃ = 0, z0 = 1∕2𝜇, z− 1 
= 1/3μ, β = 1.0152, δ = 0.6.

λ R R1 

0.2 0.6867 18.9087
0.4 0.7801 18.6435
0.6 0.7308 18.3711
0.8 0.7556 18.0915
1 0.7825 17.8017
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Now, taking into account (25), as N(z)(t) = z(t)2 −
|z(t)|
5

 is easy to check that

 and

 where |x(s)|−|y(s)|
x(s)−y(s)

 is zero if there exists s ∈ [0,1] such that x(s) = y(s).
To approximate a solution of the (22) by means the iterative process (4), with λ ∈ 

(0,1], we take z− 1,z0 ∈Ω and as xn(t) + yn(t) = 2zn(t), fixed � ∈ ℝ we apply the fol-
lowing algorithm for n ⩾ 0:

First step: Calculate:

Second step: Calculate:

Third step: Calculate:

 and finally set new iterate:

We implement this algorithm working with Matlab R2019a setting variable pre-
cision arithmetic with 60 digits, by choosing 𝜃 = 1/10, z0 = 1/2 and z− 1 = 1/3. 
So, by imposing as a stopping criteria ∥zn+ 1(s) − zn(s)∥≤  10− 30 we obtain the 
exact solution z*. With the results of Table 5, it can be checked that for smaller 
values of λ the results show a slight improvement in accuracy although in all 
cases computational order of convergence p = 2 is reached with the same num-
ber of iterations, iter. Also, we can compare the distance between the last 2 iter-
ates, ||zn+ 1(s) − zn(s)||, the value of the function at the approximation solution, 

[x, y;N](v)(s) =

(
x(s) + y(s) −

1

5

[|x(s)| − |y(s)|
x(s) − y(s)

])
v(s)

[x, y;N](w)(s) =

(
x(s) + y(s) −

1

5

[|x(s)| − |y(s)|
x(s) − y(s)

])
s2,

[G(zn)](s) = zn(s) − (1 −
�

60
)s +

1

2
− �s∫

1

0

t

(
zn(t)

2 −
|zn(t)|
5

)
dt.

An = ∫
1

0

2tzn(t)[G(zn)](t)dt,Bn = ∫
1

0

t

[|xn(t)| − |yn(t)|
xn(t) − yn(t)

]
[G(zn)](t))dt.

Cn = ∫
1

0

(
2zn(t) −

1

5

[|xn(t)| − |yn(t)|
xn(t) − yn(t)

])
t2dt.

Wn =
An −

1

5
Bn

1 − �Cn

,

zn+1(s) = zn(s) − [G(zn)](s) − �Wns.
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||G(zn+ 1)(s)|| and the distance between the approximated solution an the exact 
solution ||zn+ 1(s) − z*(s)||.

Now, by following the theoretical study performed in section 2.3 we obtain the con-
vergence ball centered at the exact solution z*(s) = s − 1/2. We take the values z0(s) 
= 1/2 and z− 1(s) = 1/3 so, α = ||z− 1(s) − z0(s)|| = 1/6 and then by imposing condition 
(LC4) we solve the equation:

 which smallest positive root gives us the value of μ = 1.7548, then we verify that 2α 
≤ μ, that is we obtain the local convergence ball B(z*,1.7) in case λ = 0.8. In Table 6 
we can check the radius for other values of parameter λ. We notice that the domain 
of convergence is better for smaller values ofλ.

4  Conclusions

In this work, we consider a uniparametric family of iterative processes that are 
derivative free, so we can apply them to solve non-differentiable problems, as is 
the case of nonlinear Hammerstein-type integral equations with the Nemystkii 
operator continuous but maybe non-differentiable. We perform a qualitative con-
vergence study with the particularity of using the technique based on auxiliary 
points, that allow us to obtain local and semilocal convergence balls. Finally, we 
apply the theoretical results for proving the existence of solution of an apply prob-
lem, obtaining the domain of existence and uniqueness. Moreover, the accessibil-
ity region is also provided.

�(2�t, (1 + 2�)t) + �0((1 + 2�)t, 2(1 + �)t) − 1 = 0,

Table 5  Numerical results for different value of λ with 60 digits

Method (4) λ = 0.1 λ = 0.2 λ = 0.4 λ = 0.6 λ = 0.8 

iter 6 6 6 6 6
p 2 2.0022 2.0548 2.0151 1.9246
||zn+ 1(s) − zn(s)|| 1.2238e-58 1.3607e-59 3.7993e-60 3.0797e-59 1.6014e-56
||G(zn+ 1(s))|| 6.0931e-59 6.7723e-60 3.7993e-60 1.5344e-59 7.9730e-57
||zn+ 1(s) − z*(s)|| 0 0 0 0 0

Table 6  Radii of the 
convergence ball for different 
values of λ 

(4) λ = 0.1 λ = 0.2 λ = 0.4 λ = 0.6 λ = 0.8 

μ 3.7 3.2 2.5 2 1.7
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