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Abstract: Rice is considered one of the most important crops in the world. According to the Food and
Agriculture Organization of the United Nations (FAO), rice production has increased significantly
(156%) during the last 50 years, with a limited increase in cultivated area (24%). With the recent
advances in remote sensing technologies, it is now possible to monitor rice crop production for a
better understanding of its management at field scale to ultimately improve rice yields. In this work,
we monitor within-field rice production of the two main rice varieties grown in Valencia (Spain)
JSendra and Bomba during the 2020 season. The sowing date of both varieties was May 22–25, while
the harvesting date was September 15–17 for Bomba and October 5–8 for JSendra. Rice yield data
was collected over 66.03 ha (52 fields) by harvesting machines equipped with onboard sensors that
determine the dry grain yield within irregular polygons of 3–7 m width. This dataset was split in two,
selecting 70% of fields for training and 30% for validation purposes. Sentinel-2 surface reflectance
spectral data acquired from May until September 2020 was considered over the test area at the two
different spatial resolutions of 10 and 20 m. These two datasets were combined assessing the best
combination of spectral reflectance bands (SR) or vegetation indices (VIs) as well as the best timing
to infer final within-field yields. The results show that SR improves the performance of models with
VIs. Furthermore, the correlation of each spectral band and VIs with the final yield changes with the
dates and varieties. Considering the training data, the best correlation with the yields is obtained on
July 4, with R2 for JSendra of 0.72 at 10 m and 0.76 at 20 m resolution, while the R2 for Bomba is 0.87
at 10 m and 0.92 at 20 m resolution. Based on the validation dataset, the proposed models provide
within-field yield modelling Mean Absolute Error (MAE) of 0.254 t·ha−1 (Mean Absolute Percentage
Error, MAPE, of 3.73%) for JSendra at 10 m (0.240 t·ha−1; 3.48% at 20 m) and 0.218 t·ha−1 (MAPE
5.82%) for Bomba (0.223 t·ha−1; 5.78% at 20 m) on July 4, that is three months before harvest. At parcel
level the model’s MAE is 0.176 t·ha−1 (MAPE 2.61%) for JSendra and 0.142 t·ha−1 (MAPE 4.51%) for
Bomba. These results confirm the close correlation between the rice yield and the spectral information
from satellite imagery. Additionally, these models provide a timeliness overview of underperforming
areas within the field three months before the harvest where farmers can improve their management
practices. Furthermore, it highlights the importance of optimum agronomic management of rice
plants during the first weeks of rice cultivation (40–50 days after sowing) to achieve high yields.
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1. Introduction

Rice (Oryza sativa L.) is one of the three most important crops in the world, being
vital for the world’s food supply. Rice is grown in Asia, America, Australia, Europe, and
Africa, following diverse production practices. In 2019, the global rice production was
close to 755 million tons, covering an area of 162 million hectares. In Europe, its production
is mostly located in the southern countries, Spain being one of the major producers and
representing approximately 28% of the total production across the European Union in
2019 [1]. The Valencian Community produces 16% (125 thousand tons) of the national rice,
covering an area of approximately 15 thousand hectares in 2019 [2]. During the last 50 years,
world rice production has increased by 156%, while the cultivated area has only increased
by 24%, resulting in a 107% increase in yield. The evolution of world population growth
and the increase in rice production have been closely connected over the last 50 years [1].
According to the latest United Nations’ forecasts for the next 50 years, the world population
could increase by 35% [3], which means that rice production must continue increasing.
Given that the statistics of the last five decades show that the cultivated area has hardly
changed, the required increase in rice production must imply an increase in yield [4].

Earth observation (EO) data allow efficient monitoring of crop growth at field scale
owning to its high spatial (~10 m) and temporal (each 5 days) resolutions (e.g., [5–7]). The
launch of the ESA optical high-resolution missions Sentinel-2A in 2015 and Sentinel-2B in
2017 and their fusion with Landsat providing free high-frequency and high-resolution data,
along with the significant advances in big data analytics and high-performance computing,
have revolutionized the EO uptake for agriculture applications. Recent works have shown
that satellite data can be used to infer crop yields both within-field and at field scales. For
instance, Skakun [8] showed that corn and soybean yield variability could be explained
using Planet 3 m spatial resolution while the coarser resolution of Sentinel-2 (10 m) reduces
the explained yield variability by 14%. The same study also concluded that the most
important spectral bands explaining the yield variability are green, red edge and Near
Infrared (NIR) but the lower correlation obtained for high yields suggested saturation
of multi-spectral optical data. Kayad [9] investigated different Vegetation Indices (VI)
from Sentinel-2 and machine learning techniques to assess corn yield within the field
scale. Their study selected as the best VI the Green Normalized Difference Vegetation
Index (GNDVI), which integrated into a Random Forest provided an R2 of 0.60 over an
independent validation test. Zhao [10] tested a set of VI from Sentinel-2 to estimate wheat
yield at the field scale. Deines [11] applied the Scalable Crop Yield Mapper (SCYM) [12] to
over one million corn fields yield observations spanning nine states in the US Corn Belt
and based on Landsat observations. Their results showed that remote sensing technology
at within-field scale show coefficients of determination of 0.40 and increase to 0.45 and 0.69
when aggregated to field level and county level scales, respectively.

Focusing on rice crops, the Asia-RiCE initiative [13] is the rice monitoring compo-
nent of the Group on Earth Observations Global Agricultural Monitoring initiative (GE-
OGLAM) [14]. Its main goal is to foster the use of EO, leveraging existing agricultural
monitoring programs and initiatives for rice monitoring at national, regional and global
scales as an input to the GEOGLAM Crop Monitor [15] and the Agricultural Market In-
formation System (AMIS) Market Monitor [16]. EO technologies have proven to be useful
in monitoring rice crops biophysical and biochemical properties pushing towards a more
efficient farming management. The implementation of remote sensing technologies in
rice farming has evident advantages in monitoring rice growth, soil fertility evaluation,
detection of diseases, and yield estimation, among others. Previous works have shown that
the growth of the rice crops, as well as the nitrogen content, can be inferred based on the
spectral reflectance from EO sensors. For instance, Cai [17] showed that the Normalized
Difference Vegetation Index (NDVI) or the Green NDVI (GDVI) can be used to monitor the
nitrogen content of rice crops. Shi [18] studied the use of different VIs to map the distri-
bution of rice diseases such as rice blast. In fact, several studies (e.g. [19–21]) show that
the NIR spectral region is sensitive enough to detect the first symptoms produced by rice
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blast, and other studies show how remote sensing data can be used to monitor the nitrogen
deficit in rice (e.g., [22,23]). Regarding rice yield monitoring, Gilardelli [24] assimilated
Leaf Area Index (LAI) data from Landsat and Sentinel-2 at 30 m spatial resolution into the
WARM rice model [25] to derive within-field rice yields in Italy with a Mean Absolute Error
(MAE) of 0.66 t·ha−1 and Relative Root Mean Square Error (RRMSE) of 13.8%. Finally, an
extensive overview on rice yield estimation or forecasting based on EO can be found in
Mosleh [26]. One of the major challenges in rice monitoring over Asia is the high frequency
of cloud coverage. Therefore, most of the works based on this area use synthetic aperture
radar (SAR) for rice yield monitoring (e.g. [27–29]). Other works use optical data based
on VI that are then related to forecast rice yields mostly at regional level using coarse
resolution data (MODIS [30,31], SPOT-4 [32] or AVHRR [33]) or medium resolution (Land-
sat [34]). However, most works or rice yield monitoring are applied at regional scale or at
parcel level and there are essentially no works on rice yield estimation at within-field scale.
Additionally, VIs are widely used as inputs for the yield models, and Skakun [8] showed
that surface reflectance-based models outperformed VI-based models highlighting the
importance of incorporating surface reflectance (SR) values directly into the yield models.
Therefore, in this work we aim to expand the science of rice yield monitoring at within-field
scale, testing all spectral information retrieved by Sentinel-2. Particularly, the main science
questions that we aim to answer in this study are: To what degree can EO data in the
optical spectral region explain the rice within-field yield variability? Which spectral band
or combination of bands is better correlated with the final yield? When is the most critical
timing of the rice growing season when satellite imagery can explain the final yields?

In this work we present a study to monitor rice within-field yield variability. It is
based on multi-spectral SR data retrieved by Sentinel-2 and rice yield maps acquired with
harvesting machines over 52 fields covering a total area of 66ha in Valencia (Spain) during
the 2020 season.

2. Materials and Methods
2.1. Study Area

The coastal wetland Albufera is located at the Mediterranean Spanish coast and south
of Valencia city (39◦20′ N, 0◦21′ W). The wetland has an area of 211.2 km2 and is bordered
by the Turia (north) and Jucar (south) rivers. The Albufera is the second largest lake in the
Iberian Peninsula with an area of 23.2 km2. It is shallow (1.2 m of mean depth) and has a
mean salinity of 1–2%. The European Commission [35] considers the Albufera a special
protected area in the Natura 2000 network and restricts agriculture practices in the area
to only rice crops. This area has a typical Mediterranean climate, with an annual mean
air temperature and humidity of 18.3 ± 0.1 ◦C and 65.0 ± 0.5%, respectively [36]. Annual
rainfall is usually concentrated in the spring and autumn seasons. The water level of the
lake is regulated by a large network of irrigation channels that connect it to the rice fields
and to the Mediterranean Sea. This area can be considered a homogeneous rice planting
area of approximately 10 × 20 km2 extension.

JSendra and Bomba common japonica-type Spanish rice varieties (Oryza sativa var.japonica),
were used in the experiment. The most commercial cultivar in East Spain (Valencia) is
JSendra (cross between M202 and Senia in 2005 by Instituto Valenciano de Investigaciones
Agrarias, IVIA), characterized by high yields (typically 7.5–8.0 t·ha−1) and good culinary
quality. Bomba is a traditional rice variety, obtained by selection in 1929 in Valencia, and
it is characterized by low yields (typically 3.5–4.0 t·ha−1) and excellent culinary quality.
The differences in performance between the two varieties are significant: JSendra plants
have a greater number of tillers, a lower height, and a longer season than Bomba plants.
The planted area of JSendra in 2020 was 6716 ha (44%), while in Bomba’s planted area was
1777 ha (12%). Table 1 shows the timing of the main stages of both varieties in Valencia.
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Table 1. Timing of the main phenological stages of rice in Valencia.

No Cultivation
Sowing Growing Harvest

No Cultivation
Vegetative Reproductive Ripening

Flooded Dry Flooded Dry Flooded

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

2.2. Field Data Pre-Processing

Field data was collected by harvesting machines and provide dry volumetric yield in
irregular polygons as shown in Figure 1A. These data were preprocessed to remove errors
in the software acquisition such as turns, overlaps (keeping the first overpass) and extreme
values (JSendra: >11.0 t·ha−1; Bomba: >7.0 t·ha−1) that had no biological meaning [37].
Additionally, we removed small sized polygons with extreme values compared to the
neighbors [38]. Given the noise observed in the dataset, these data were aggregated to an
intermediate 5 m resolution (Figure 1B) to apply a grid moving average filter of 7 × 7 pixels
(Figure 1C). Finally, this dataset was aggregated to 10 m resolution removing the edge
pixels (Figure 1D).
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Figure 1. Example of the harvester data curation of a Bomba rice field within the training samples
being (A) the original harvester machine data, (B) the 5 m aggregated data, (C) the 5 m aggregated
data after applying the grid moving average filter and (D) picture C aggregated to 10 m.

2.3. Satellite Data

We downloaded Sentinel-2A and Sentinel-2B data covering the main rice area in
Valencia, that is using the tiles 30SYJ and 31SBD, from May until September 2020 and
we applied the atmospheric correction algorithm LaSRC [39]. All the Sentinel-2 spectral
bands at 10 m and 20 m spatial resolution were analyzed to select the best combination
to infer rice crop yield. Table 2 shows the spectral response and spatial resolution of the
considered bands.

2.4. Methods

The two rice varieties were treated separately. For each variety, 70% of the data was
randomly selected as training data and 30% of data was kept for validation purposes
(Table 3). Additionally, Figure 2 shows the spatial distribution of the datasets.
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Table 2. Sentinel-2 bands analyzed in this study.

Band Name Central Wavelength (nm) Spatial Resolution (m)

B02-Blue 490 10
B03-Green 560 10
B04-Red 665 10
B05-Vegetation Red Edge 1 705 20
B06-Vegetation Red Edge 2 740 20
B07-Vegetation Red Edge 3 783 20
B08-NIR 842 10
B8A-NIR 2 865 20
B11-SWIR 1 1610 20
B12-SWIR 2 2190 20

Table 3. Field data dissemination to build and evaluate the algorithms (the number of pixels was
obtained at 10 m (20 m in parenthesis)).

Training Validation

Variety Area (ha) Number
of Pixels

Number
of Fields Area (ha) Number

of Pixels
Number
of Fields

JSendra 34.93 2439 (531) 25 15.48 980 (205) 13
Bomba 10.74 801 (163) 8 4.88 328 (64) 6
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Each date and spatial resolution were analyzed independently, looking for the best
combination that provided the best performance metrics against the yield values. Addi-
tionally, multivariable linear regressions were built between yields at pixel level and their
corresponding surface reflectance values of a given band, interactions between bands and
vegetation indices (Appendix C). Specifically, when combining all bands at each spatial
resolution, the following equation was tested to derive the yield of pixel i:

yest = a0 + a1·x1 + a2·x2 + a3·x3 + · · ·+ an·xn (1)
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where yest is the estimated yield; a0, a1, a2, a3, an are the model coefficients; and x1, x2, x3,
xn are the surface reflectance (SR) spectral bands, vegetation index (VI) or the interaction
between the different SR for a given date of the growing season.

The software StatGraphics Centurion XVII (v.17.2.00) [40] was implemented to deter-
mine the best combination of SR on equation 1, using a stepwise regression method, for
each date, spatial resolution, and variety.

Finally, the following performance metrics were derived based on the validation
data: the coefficient of determination (R2); the Mean Absolute Error (MAE); and the Mean
Absolute Percentage Error (MAPE).

R2 = 1−
∑n

i=1

(
yest − yre f

)2

∑n
i=1

(
yre f − yre f

)2 (2)

MAE =
∑n

i=1

∣∣∣yest − yre f

∣∣∣
n

(3)

MAPE =
100
n

n

∑
i=1

∣∣∣∣∣yest − yre f

yre f

∣∣∣∣∣ (4)

These performance metrics of each model based on a spectral band or combination
of bands. Finally, each of the variables were validated with a linear regression analysis
to test the statistical significance of each factor with a probability p < 0.05, according to
the Student’s t-test. The linear model was validated with the Snedecor statistical F-test
(p < 0.05).

The processing of the yield maps and the satellite images, as well as the validation,
was carried out with the QGIS 3.10.14 software [41].

3. Results
3.1. Evaluation at Within-Field Level in JSendra Rice

The JSendra fields’ coefficient of determination evolution for each Sentinel-2 spec-
tral band at 10 m (Figure A1a) and at 20 m (Figure A1b) spatial resolution is analyzed
in Appendix A. These results include the R2 temporal evolution of three simple linear
regression models combining the different spectral bands (M1S in Figure A1a and M2S and
M3S in Figure A1b). Note that the R2 values studied represent all within-field pixels of the
JSendra training data. The models can be written as:

M1S : yest = a0 + a1·B2 + a2·B3 + a3·B4 + a4·B8 (10 m)

M2S : yest = a0 + a1·B2 + a2·B3 + a3·B4 + a4·B8 (20 m)

M3S : yest = a0 + a1·B2 + a2·B3 + a3·B4 + a4·B5 + a5·B6 + a6·
B7 + a7·B8 + a8·B8A + a9·B11 + a10·B12 (20 m)

where the spatial resolution is specified in parenthesis and the model coefficients are
different for each equation and for each date.

Figure A1a shows that at 10 m, the band that shows the highest correlation with
the yield is B8 (NIR), followed by B2 (Blue) and B3 (Green), while B4 (Red) shows the
lowest correlation. At 20 m (Figure A1b), B8A shows the highest correlation, followed
by B8 and B7 (Red edge) whose evolution is very close to B6 (Red edge), but has a minor
peak at the beginning of the season. Other bands, such B11 and B12 (SWIR), show some
lower peaks of correlation, having only one significant peak on July 4. Visible bands show
a similar tendency compared to 10 m resolution and B5 (Red edge) is very close to B4
(Red). The linear models combining spectral bands (M1S, M2S and M3S) show the best
correlation, which is consistent with previous works utilizing remote sensing data to infer
within-field maize and soybean yields [8]. The best performance (based on the coefficient
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of determination evolution) happens on July 4 for both spatial resolutions, that is when
rice is in the tillering phase. Comparing the performance at 10 m and 20 m the coefficient
of determination remains almost the same and shows an equivalent evolution.

Focusing on July 4, Figure 3 shows the average spectral response of each band, splitting
all training data into nine yield ranges. Note that we preserved the spatial resolution of
each band. B6, B7, B8A and specially B8 show the largest differences amongst yield ranges
by increasing their reflectance values with the yield.
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Next, Tables A1 and A2 (Appendix B) show the performance metrics of each model at
10 m and 20 m spatial resolution, respectively, focusing on the tillering phase and based on
the training data. This phenological stage has been determined in the previous results as
critical to monitor rice yield. Three Sentinel-2 acquisition dates were selected to analyze
the performance metrics of each model: the date of the R2 peak (July 4), the previous date
(June 29) and the next one (July 19). Note that in these tables, models consisting in bands
are built based on a linear regression of said band or combination of band. Additionally,
the tables show the performance metrics of three models (M1S+, M2S+ and M3S+) whose
definition is based on a stepwise regression program (StatGraphics). These models are
written as:

M1S+ : yest = a0 + a1·B4 + a2·
B3
B4

+ a3·
B2
B8

+ a4·
B3
B2

(10 m)

M2S+ : yest = a0 + a1·B4 + a2·
B3
B4

+ a3·
B2
B8

+ a4·
B3
B2

(20 m)

M3S+ : yest = a0 + a1·B4 + a2·
B3
B4

+ a3·
B2
B8

+ a4·
B3
B2

+ a5·B6 + a6·B7 (20 m)

where the spatial resolution is specified in parenthesis and the model coefficients are
different for each equation and for each date. As a summary of the results, Table 4 shows
the evaluation of the best performing models for each date and spatial resolution.

The best performing models at 10 m are M1S and M1S+, which combine the four
bands (B2, B3, B4 and B8). In relation to 20 m, the best performing models are M3S, M2S+
and M3S+. Comparing the dates, July 4 observations provide the best performance metrics,
showing R2 greater than 0.70, MAPEs lower than 4% (<3% at 20 m) and MAEs ranging
from 0.20–0.25 t·ha−1. In relation to the VIs (based on visible, NIR, Red edge and SWIR
regions), they do not improve considerably the spectral bands or linear combinations of
bands with higher R2 (data, equations and references are shown in Appendix C). The best
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results for VIs are obtained with the Rice Growth Vegetation Index (RGVI) (R2 = 0.66).
Appendix D shows an example at 10 m and 20 m of a reference yield map, each spectral
band, and the modeled yield.

Table 4. JSendra best model evaluation for each date and spatial resolution with training data.

29 June 2020 04 July 2020 19 July 2020

Model Spatial Resolution
(m) R2 MAE

(t·ha−1)
MAPE

(%) R2 MAE
(t·ha−1)

MAPE
(%) R2 MAE

(t·ha−1)
MAPE

(%)

M1S+ 10 0.64 0.258 3.75 0.72 0.234 3.36 0.63 0.263 3.81
M3S+ 20 0.69 0.237 3.41 0.76 0.204 2.92 0.70 0.232 3.35

Finally, Figure 4 shows the evaluation of the best performing models (M1S and M1S+
at 10 m and M3S and M3S+ at 20 m) for the JSendra variety on July 4 considering all data
from the validation fields for each spatial resolution. M1S+ and M3S+ provide a yield
modelling error (MAE) of 0.254 t·ha−1 (3.73%) and 0.240 t·ha−1 (3.48%), respectively, which
is aligned with the statistics shown on the training data. In fact, 60% of all pixels evaluated
presented a difference between modelled and referenced yield lower than the MAE value,
with a maximum difference of 1.0 t·ha−1 and with only 10% of data exceeding a difference
of 0.50 t·ha−1. Additionally, Figure 4 (right) shows the performance metrics of the models
without interactions at a spatial resolution of 10 m (M1S) and 20 m (M3S). The performance
metrics (MAE of 0.318 t·ha−1 (4.71%) at 10 m and 0.305 t·ha−1 (4.50%) at 20 m) show worse
results than on the training data modelling, which suggests that the interactions proposed
in M1S+ and M3S+ models provide a better consistency and applicability. Finally, we
tested a Random Forest model considering all bands from the training data as inputs and
evaluating its performance with the validation data. This model provides an R2 of 0.79 and
MAE of 0.292 t·ha−1 (4.33%) at 10 m and R2 of 0.78 and MAE of 0.302 t·ha−1 (4.46%) at
20 m. These statistics are equivalent to M1S+ and M3S+.
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3.2. Evaluation at Within-Field Level in Bomba Rice

Focusing now on the Bomba variety, Figure A2 (Appendix A) shows the coefficient
of determination evolution along the rice season for each Sentinel-2 band acquisition at
10 m (Figure A2a) and at 20 m (Figure A2b) spatial resolution considering the training data.
Additionally, the figures include the R2 for three models which linearly combine all bands,
following the same structure than the models described in JSendra (M1S, M2S and M3S)
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but changing the model coefficients. Thus, for Bomba these equations are named M1B, M2B
and M3B (M1B in Figure A2a and M2B and M3B in Figure A2b). Note that Bomba rice was
harvested by mid-September, thus latter dates are excluded in the plot.

In this case, there are two dates with the maximum correlation at 10 m and 20 m, July
4 and August 28, although the latter includes half the number of pixels than the former.
Analogously to JSendra, the results are similar at both spatial resolutions. However, in
Bomba rice the visible bands (B2, B3, B4) show the best correlation with the final yields
on July 4. B5 shows a very similar performance to the visible bands, and even improves
and anticipates the correlation peak with the final yield on June 29. Furthermore, these
bands keep a high R2 throughout July and decrease in August (when the flowering stage
happens). Additionally, B3 (Green) and B5 show an acceptable value of R2 on August 28.
On the contrary, the NIR bands show poor correlation on July 4, which is improved by
mid-season (end of July), and finally shows an R2 peak on August 28. Analogously to
JSendra, B8, B8A and B7 present very similar results. B6 shows an equivalent evolution to
these bands but with a poor correlation during mid-season. Regarding the SWIR bands,
at the beginning of the season they show a small correlation peak which decreases until
reaching a minimum by the end of June and then improves again, reaching a peak by the
end of July which is comparable to the visible bands’ correlation. Finally, the models M1B,
M2B and M3B show the best performance.

Focusing on July 4, Figure 5 shows the average spectral surface reflectance for all
pixels within the training fields splitting them by yield ranges. In this variety and date,
the visible bands (specially B3) have a larger separability showing lower SR values for
higher yields. Otherwise, the NIR, Red edge and SWIR reflectance do not show a clear
dependency with the yield.
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Next, Tables A3 and A4 (Appendix B) show the performance metrics of each model
at 10 m and 20 m spatial resolution respectively, focusing on the same dates as in JSendra.
These three dates are essential for a forecast, since tillering is still being defined and it is
still possible to modify crop management to improve final yields. Models are built and
shown based on the same principles as in the JSendra variety. The resulting models of the
stepwise regression program (StatGraphics), M1B+, M2B+ and M3B+ are defined as:

M1B+ : yest = a0 + a1·B2 + a2·
B3
B4

+ a3·B2·B3 (10 m)
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M2B+ : yest = a0 + a1·B2 + a2·
B3
B4

+ a3·B2·B3 (20 m)

M3B+ : yest = a0 + a1·B2 + a2·
B3
B4

+ a3·B2·B3 + a4·B12 + a5·B11·B12 (20 m)

where the spatial resolution is specified in parenthesis and the model coefficients are
different for each equation and for each date. As a summary of the results, the Table 5
shows the evaluation of the best models for each date and spatial resolution.

Table 5. Bomba best model evaluation for each date and spatial resolution with training data.

29 June 2020 04 July 2020 19 July 2020

Model Spatial Resolution
(m) R2 MAE

(t·ha−1)
MAPE

(%) R2 MAE
(t·ha−1)

MAPE
(%) R2 MAE

(t·ha−1)
MAPE

(%)

M1B+ 10 0.75 0.288 10.08 0.87 0.229 7.37 0.8 0.266 9.59
M3B+ 20 0.87 0.223 7.67 0.92 0.175 5.74 0.88 0.222 7.77

Comparing the dates, July 4 observations provide the best performance metrics,
showing an R2 greater than 0.85, MAPEs lower than 8% (<6% at 20 m) and MAEs ranging
from 0.18–0.23 t·ha−1. The best model at 10 m is M1B+, that is the model including
B2, B3, B4 and their interactions. Note that this model does not include the NIR band.
Additionally, model M1B shows similar results to the simple linear model without the NIR
band (a0 + a1·B2 + a2·B3 + a3·B4). At 20 m, M2B+ and M3B+ show the best performance
metrics. Note that M2B+, which depends only on B2 and B3, shows similar performance
metrics to M3B+ (that depends on B2, B3, B11 and B12) and M3B (that includes all bands).
Additionally, it is important to note that B3 (Green) and B5 individually show excellent
results. Regarding VIs, the best performance is obtained using the Normalized Difference
Red Edge 2 (NDRE2) (R2 = 0.59). All the performance metrics of the VIs tested, their
equations and references can be found in Appendix C. Analogously to the JSendra section,
Appendix D shows an example at 10 m and 20 m of a reference yield map, each spectral
band, and the modeled yield.

Figure 6 (left) shows the validation of the best performance models (M1B+ and M3B+)
for the Bomba variety on July 4 considering the validation fields. These results show
that the proposed models M1B+ and M3B+ provide a MAE of 0.218 t·ha−1 (5.82%) and
0.223 t·ha−1 (5.78%), respectively. A total of 60% of pixels presented a difference between
modelled and referenced yield lower than the MAE, being the maximum difference around
0.80 t·ha−1, with only 9% of data exceeding a difference of 0.50 t·ha−1. Note that the
differences in MAPE between varieties were due to their corresponding average yields,
being 3.8 t·ha−1 for Bomba and 7.0 t·ha−1 for JSendra in the studied area. The validation
results of M1B and M3B are shown in Figure 6 (right) (MAE of 0.261 t·ha−1 (6.93%) at 10 m
and 0.273 t·ha−1 (7.17%) at 20 m) and are slightly worse than M1B+ and M3B+, respectively.
The decrease in R2 when compared to the training data evaluation is caused by the limited
yield variability in the validation pixels (between 2.5 and 5.0 t·ha−1) compared to the
training pixels (between 0.8 and 5.0 t·ha−1). Note that this is not the case in JSendra,
where the training and validation pixels show similar variability (5.5–8.0 t·ha−1). Finally,
a Random Forest algorithm based on the same dataset provides a R2 of 0.71 and MAE
of 0.287 t·ha−1 (7.67%) at 10 m and R2 of 0.67 and MAE of 0.297 t·ha−1 (7.69%) at 20 m.
These performance metrics are worse than the previous models based on linear regressions
(M1B+, M3B+, M1B and M3B).
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Figure 6. Validation of the Bomba models on July 4 at validation area: M1B+ (black) and M3B+ (red) (left); M1B (black) and
M3B (red) (right).

3.3. Evaluation at Parcel Level

Finally, Figure 7 shows the evaluation of the model at parcel level by aggregating at
this scale the pixel level estimations at 10 m based on models M1S+ for JSendra (left) and
M1B+ for Bomba (right) on July 4, and the harvester machine measurements through all
validation fields. These plots show a very good agreement with a MAE of 0.176 t·ha−1 and
2.61% MAPE for JSendra; and a MAE of 0.142 t·ha−1 and 4.51% MAPE for Bomba.
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Figure 7. Validation at parcel level of the JSendra fields (left) and Bomba fields (right).

4. Discussion

In this work we analyze the rice yield dependency on the spectral information pro-
vided by Sentinel-2 satellite image acquisitions prior to harvest. To do so, an extensive
dataset of harvester machine measurements of within-field yield during the 2020 campaign
is preprocessed and linked to the pixel level surface reflectance retrievals considering all
Sentinel-2 spectral bands. The two major rice varieties planted in the Albufera region have
been analyzed: JSendra and Bomba.

First of all, it is worth noting the high variability of within-field yields despite the
limited size of the Valencian fields (areas around 1 ha). In the few examples that we show
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in this work, even at 10 m resolution and after applying the grid moving average filter to
the harvester machine data, the variability of yields can get up to 2.5 t·ha−1, highlighting
underperforming areas within the field. Given that all areas within a field are managed in
the same manner, empirical models are the only feasible solution to model such variability.
Looking at the plots of the coefficient of determination’s seasonal evolution of each band
against the final yield, two periods with maximum values of R2 can be identified in both
varieties. There is a first period, when the crop is ending the vegetation stage and a second
period, when the crop is ending the maturity stage. Both periods are preceded and followed
by a decrease of R2. During the first month after the start of season (until end of June) there
is barely correlation of the spectral information with the final yield given the reduced size of
the rice plants and their signal mixture with water (we need to keep in mind that Valencian
rice remains flooded during most of the season). By the beginning of July, the highest
correlation is achieved in both varieties. This might be a consequence of the higher density
of vegetation and the minimization of the water background signal. During this period,
rice plants are in the tillering stage. Tillering is one of the fundamental rice stages defining
the final yield since it determines the number of productive tillers per plant which in turn
determine the number of grains and their weight. During this phase, the importance of each
spectral region is very different among both varieties. JSendra shows a stronger correlation
of NIR bands with the yield while Bomba shows a larger R2 with visible bands and band
5 (red edge). This might be a consequence of the agronomic characteristics of each variety.
While JSendra plants are denser but smaller in size, Bomba plants are thinner and have a
lighter green color. The higher NIR importance in JSendra during this stage might be linked
to the positive impact in the final yield of denser fields or areas within the field. Besides,
when monitoring vegetation, visible band spectral response is linked to the leaf pigments
performance. In particular, Feng [42] showed that band 5 (red edge) is correlated with
the chlorophyll-a content during the rice tillering stage. Therefore, the higher importance
of this spectral region in Bomba final yields might highlight the dependency of the yield
with the chlorophyll-a content during tillering. From mid-July until mid-August the NDVI
reaches its maximum in both varieties and remains high and stable. During this period the
plant remains in the reproductive stage. By mid-August, the coefficient of determination
that decreases during the reproductive stage reaches a minimum value. This could be
caused by mixing different fields with different phenological stages, where some areas
remain in the reproductive stage while others enter the ripening stage. It could also be a
consequence of the mixing signal from the springs. By the end of August there is another
R2 peak for both varieties. The JSendra variety shows a stronger correlation of visible bands
(and specially the green band) with the final yield. The importance of the visible bands
at the ripening stage might differ in those fields that enter the senescence phase earlier
compared to those that remain green longer, which may enhance final yields. Regarding
Bomba, NIR bands are predominant during this stage. However, looking at the number of
pixels covered during this second peak of correlation, which is reduced to 20% in JSendra
and 50% in Bomba, and considering its proximity to harvest, this second date has not been
considered to build the forecast model. Finally, comparing the performance metrics of
modeled rice yield with different VIs and SR data supports the findings in Skakun [8]
in corn and soybean, that is SR-based models outperform VI-based models to monitor
rice yields.

We also studied different models to correlate yield with the spectral surface reflectance.
The simplest model is the linear regression of all bands both at 10 m and at 20 m spatial
resolution. Besides, the models proposed by a stepwise regression model (StatGraphics),
linearly combine the spectral bands but add some multiplicative terms or band ratios.
The results show a similar performance by both models on the training samples, but
when applied to the validation samples, the StatGraphics model outperform the linear
regression models. Overall, and based on the available dataset and the particular year
analyzed, the best statistics can be achieved on July 4 with an error of 0.254 t·ha−1 (3.73%)
for JSendra and 0.218 t·ha−1 (5.82%) for Bomba rice based on the 10 m spatial resolution
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data. The 20 m resolution analysis, despite adding more spectral information, shows
very similar performance metrics. At parcel level the proposed models provide a MAE
of 0.176 t·ha−1 (2.61% MAPE) for JSendra and a MAE of 0.142 t·ha−1 (4.51% MAPE) for
Bomba. More complex relationships were also tested using a Random Forest algorithm,
providing equivalent results to the linear regression models in JSendra rice and worse
results in Bomba rice (given the lower number of samples). Therefore, given the simplicity
of linear models, which allow a better interpretation of the inputs considered, we propose
using linear models to monitor within-field rice yield.

Finally, we need to highlight that despite the good performance metrics obtained,
Figures 4 and 6 (validation plots) and the examples in Appendix D, show that extreme
yield values are smoothed out by the models, that is overestimation of low yields and
underestimation of high yields. This might be a consequence of the uncertainties of the
harvester machine. This is consistent with previous studies [8–10].

As a summary and addressing the science questions stated in the Introduction Section,
the most critical timing when EO data is better correlated with the final rice yield for both
varieties is the beginning of July during the rice tillering stage. The best bands that explain
the within-field yield variability are the NIR bands for JSendra and visible and red edge
(B5) for Bomba. The proposed models based uniquely on EO data provide accuracies of
0.22–0.25 t·ha−1 at within-field scale and 0.14–0.17 t·ha−1 at parcel level.

These models were developed considering as a reference yields from a particular year
(2020) and a limited sized area where meteorological conditions can be considered constant
so no meteorological data could be integrated. Therefore, these models are expected to
work on those years with similar meteorological conditions. To solve this limitation, future
works will integrate both EO and meteorological data of forthcoming seasons.

5. Conclusions

In this work we analyzed the use of remote sensing data to monitor rice yield. To
do so we leveraged an extensive within-field rice yield dataset covering 66 ha of the two
major rice varieties planted in Valencia, JSendra and Bomba. The results showed very
different correlation of the spectral bands with the final yields, depending on the variety
and phenology. During the vegetation stage, the NIR bands showed a stronger correlation
in JSendra, whereas the visible bands showed a higher importance in Bomba rice. On the
contrary, during the maturity stage, JSendra yield is better correlated with the visible bands
while Bomba yields show higher R2 with the NIR bands. These results highlight the need
for discriminating between the two varieties to generate EO-based yield models. The
proposed model allows a within-field yield forecast error with a MAE of 0.254 t·ha−1

(3.73%) for JSendra and 0.218 t·ha−1 (5.82%) for Bomba on July 4th and parcel level MAE of
0.176 t·ha−1 (2.61% MAPE) for JSendra and a MAE of 0.142 t·ha−1 (4.51% MAPE) for Bomba.
This date coincides with the rice tillering stage and underlines the importance of achieving
a good performance of the plants during this stage. Therefore, agronomic decisions in
crop management before this stage are critical to improve rice yield. Additionally, these
estimations are about three months prior to harvest and provide enough time for improving
the rice management towards more direct interventions of those areas that already show
any underperformance in plant nutrition (or diseases control) during the tillering stage,
thus advancing the science of precision agriculture.
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Figure A1. Coefficient of determination timeseries evolution focusing on JSendra training data of each band at 10 m (a) and
at 20 m (b) spatial resolution and the linear combination of all of them against the final yield at pixel level (M1S, M2S and
M3S). Additionally, the number of pixels is added as a reference of the cloud situation.
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Figure A2. Coefficient of determination timeseries evolution focusing on Bomba training data of each band at 10 m (a) and
at 20 m (b) spatial resolution and the linear combination of all of them against the final yield at pixel level (M1B, M2B and
M3B). Additionally, the number of pixels is added as a reference of the cloud situation.
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Appendix B

Table A1. JSendra 10 m spatial resolution model evaluation with training data (model coefficients are different for
each equation).

10 m 29 June 2020 04 July 2020 19 July 2020

Model R2 MAE
(t·ha−1)

MAPE
(%) R2 MAE

(t·ha−1)
MAPE

(%) R2 MAE
(t·ha−1)

MAPE
(%)

a0 + a1·B2 0.06 0.419 6.20 0.26 0.359 5.29 0.21 0.374 5.51
a0 + a1·B3 0.00 0.437 6.45 0.04 0.419 6.20 0.02 0.428 6.32
a0 + a1·B4 0.17 0.387 5.68 0.02 0.439 6.47 0.01 0.438 6.46
a0 + a1·B8 0.39 0.355 5.16 0.54 0.295 4.28 0.48 0.310 4.50
a0 + a1·B2 + a2·B3 0.29 0.351 5.19 0.51 0.309 4.49 0.43 0.324 4.75
a0 + a1·B2 + a2·B4 0.54 0.285 4.18 0.61 0.269 3.90 0.46 0.320 4.69
a0 + a1·B2 + a2·B8 0.39 0.355 5.16 0.55 0.292 4.23 0.54 0.292 4.23
a0 + a1·B3 + a2·B4 0.41 0.322 4.73 0.31 0.352 5.18 0.15 0.399 5.88
a0 + a1·B3 + a2·B8 0.44 0.336 4.88 0.55 0.292 4.24 0.49 0.308 4.47
a0 + a1·B4 + a2·B8 0.47 0.320 4.66 0.55 0.291 4.22 0.49 0.308 4.48
a0 + a1·B2 + a2·B3 + a3·B4 0.54 0.285 4.17 0.62 0.269 3.90 0.48 0.312 4.56
a0 + a1·B2 + a2·B3 + a3·B8 0.58 0.288 4.17 0.68 0.257 3.71 0.60 0.273 3.96
a0 + a1·B2 + a2·B4 + a3·B8 0.57 0.281 4.10 0.66 0.254 3.68 0.57 0.283 4.10
a0 + a1·B3 + a2·B4 + a3·B8 0.47 0.315 4.59 0.55 0.291 4.21 0.49 0.308 4.47
M1S 0.60 0.277 4.02 0.69 0.251 3.63 0.60 0.274 3.96
M1S+ 0.64 0.258 3.75 0.72 0.234 3.36 0.63 0.263 3.81

Table A2. JSendra 20 m spatial resolution model evaluation with training data (model coefficients are different for
each equation).

20 m 29 June 2020 04 July 2020 19 July 2020

Model R2 MAE
(t·ha−1)

MAPE
(%) R2 MAE

(t·ha−1)
MAPE

(%) R2 MAE
(t·ha−1)

MAPE
(%)

a0 + a1·B2 0.07 0.401 5.90 0.26 0.346 5.07 0.22 0.355 5.22
a0 + a1·B3 0.00 0.421 6.20 0.04 0.403 5.94 0.02 0.410 6.03
a0 + a1·B4 0.14 0.382 5.60 0.01 0.424 6.23 0.00 0.422 6.21
a0 + a1·B5 0.02 0.415 6.11 0.00 0.422 6.21 0.00 0.421 6.20
a0 + a1·B6 0.28 0.374 5.44 0.41 0.330 4.79 0.35 0.338 4.91
a0 + a1·B7 0.36 0.353 5.13 0.53 0.294 4.25 0.46 0.312 4.51
a0 + a1·B8 0.35 0.357 5.19 0.53 0.293 4.24 0.46 0.310 4.48
a0 + a1·B8A 0.35 0.358 5.21 0.54 0.291 4.19 0.50 0.297 4.29
a0 + a1·B11 0.14 0.392 5.76 0.42 0.328 4.75 0.25 0.372 5.40
a0 + a1·B12 0.03 0.414 6.10 0.25 0.373 5.43 0.05 0.417 6.11
M2S 0.62 0.261 3.78 0.71 0.232 3.33 0.63 0.261 3.77
M2S+ 0.66 0.240 3.47 0.74 0.216 3.09 0.66 0.246 3.53
M3S 0.63 0.259 3.75 0.74 0.221 3.18 0.66 0.247 3.57
M3S+ 0.69 0.237 3.41 0.76 0.204 2.92 0.70 0.232 3.35

Table A3. Bomba 10 m spatial resolution model evaluation with training data (model coefficients are different for
each equation).

10 m 29 June 2020 04 July 2020 19 July 2020

Model R2 MAE
(t·ha−1)

MAPE
(%) R2 MAE

(t·ha−1)
MAPE

(%) R2 MAE
(t·ha−1)

MAPE
(%)

a0 + a1·B2 0.41 0.476 17.91 0.47 0.443 16.08 0.39 0.463 17.64
a0 + a1·B3 0.71 0.317 11.63 0.81 0.274 9.87 0.62 0.365 14.47
a0 + a1·B4 0.45 0.458 16.47 0.68 0.336 12.12 0.55 0.385 15.83
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Table A3. Cont.

10 m 29 June 2020 04 July 2020 19 July 2020

Model R2 MAE
(t·ha−1)

MAPE
(%) R2 MAE

(t·ha−1)
MAPE

(%) R2 MAE
(t·ha−1)

MAPE
(%)

a0 + a1·B8 0.00 0.584 24.49 0.03 0.587 24.28 0.41 0.452 18.32
a0 + a1·B2 + a2·B3 0.72 0.312 11.67 0.81 0.274 9.84 0.62 0.357 14.39
a0 + a1·B2 + a2·B4 0.46 0.448 16.26 0.68 0.336 12.19 0.55 0.372 15.69
a0 + a1·B2 + a2·B8 0.41 0.473 17.79 0.47 0.443 16.05 0.54 0.420 15.63
a0 + a1·B3 + a2·B4 0.71 0.314 11.43 0.82 0.261 9.27 0.62 0.365 14.36
a0 + a1·B3 + a2·B8 0.71 0.310 11.4 0.82 0.267 9.64 0.64 0.359 14.07
a0 + a1·B4 + a2·B8 0.51 0.414 14.73 0.72 0.319 11.32 0.59 0.378 15.16
a0 + a1·B2 + a2·B3 + a3·B4 0.74 0.293 10.61 0.83 0.255 9.24 0.63 0.360 14.36
a0 + a1·B2 + a2·B3 + a3·B8 0.73 0.298 11.21 0.82 0.268 9.63 0.64 0.355 14.04
a0 + a1·B2 + a2·B4 + a3·B8 0.51 0.416 14.81 0.74 0.304 11.07 0.59 0.378 15.16
a0 + a1·B3 + a2·B4 + a3·B8 0.71 0.311 11.37 0.82 0.262 9.28 0.65 0.358 13.87
M1B 0.74 0.293 10.61 0.83 0.253 9.19 0.65 0.359 13.86
M1B+ 0.75 0.288 10.08 0.87 0.229 7.37 0.8 0.266 9.59

Table A4. Bomba 20 m spatial resolution model evaluation with training data (model coefficients are different for
each equation).

20 m 29 June 2020 04 July 2020 19 July 2020

Model R2 MAE
(t·ha−1)

MAPE
(%) R2 MAE

(t·ha−1)
MAPE

(%) R2 MAE
(t·ha−1)

MAPE
(%)

a0 + a1·B2 0.49 0.464 17.20 0.53 0.419 14.93 0.44 0.470 17.72
a0 + a1·B3 0.76 0.296 11.10 0.84 0.263 9.72 0.65 0.367 14.82
a0 + a1·B4 0.57 0.423 14.59 0.79 0.265 9.24 0.62 0.361 15.23
a0 + a1·B5 0.84 0.244 8.92 0.80 0.267 10.65 0.60 0.360 15.54
a0 + a1·B6 0.03 0.591 25.42 0.02 0.590 25.46 0.09 0.558 24.28
a0 + a1·B7 0.00 0.603 25.89 0.04 0.605 25.51 0.47 0.429 18.06
a0 + a1·B8 0.00 0.603 25.89 0.03 0.604 25.57 0.44 0.442 18.62
a0 + a1·B8A 0.00 0.603 25.89 0.03 0.604 25.57 0.42 0.453 19.02
a0 + a1·B11 0.11 0.612 24.18 0.02 0.594 25.49 0.21 0.528 21.22
a0 + a1·B12 0.19 0.596 22.65 0.02 0.602 25.65 0.47 0.437 17.17
M2B 0.81 0.256 9.10 0.87 0.215 7.93 0.67 0.362 14.16
M2B+ 0.83 0.251 8.49 0.90 0.201 6.48 0.84 0.247 8.98
M3B 0.86 0.228 7.89 0.88 0.213 7.74 0.79 0.285 10.52
M3B+ 0.87 0.223 7.67 0.92 0.175 5.74 0.88 0.222 7.77

Appendix C

Table A5 provides detailed information about the vegetation indices, and their mathe-
matical formula according to [8,10,26], that have been tested in the yield models. Table A6
shows the performance metrics of these VIs on July 4 for each variety.

Table A5. Vegetation indices used in the study.

Vegetation Index Formula

Normalized difference vegetation index (NDVI) B8−B4
B8+B4

Difference vegetation index (DVI) B8− B4

Enhanced vegetation index (EVI) 2.5× B8−B4
B8+6×B4−7.5×B2+1

Enhanced vegetation index 2 (EVI2) 2.5× B8−B4
B8+2.4×B4+1

Green NDVI (GNDVI) B8−B3
B8+B3

Green difference vegetation index (GDVI) B8− B3

Green chlorophyll vegetation index (GCVI) B8
B3 − 1
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Table A5. Cont.

Vegetation Index Formula

Wide dynamic range vegetation index (WDRVI) 0.1×B8−B4
0.1×B8+B4

Soil-adjusted vegetation index (SAVI) B8−B4
B8+B4+L (1 + L), L = 0.33

Ratio vegetation index (RVI) B8
B4

Land surface water index (LSWI) B8−B11
B8+B11

Normalized difference built-up index (NDBI) B11−B8
B11+B8

Triangular vegetation index (TVI)
√

B8−B4
B8+B4 + 0.5

Infrared percentage vegetation index (IPVI) B8
B8+B4

Rice growth vegetation index (RGVI) 1− B2−B4
B8+B11+B12

Red edge chlorophyll index 1 (CIre1) B7
B5 − 1

Normalized difference red edge 1 (NDRE1) B6−B5
B6+B5

Normalized difference red edge 2 (NDRE2) B7−B5
B7+B5

Table A6. Performance metrics of the VIs-based models considering the training dataset at 20 m spatial resolution.

JSendra Rice Bomba Rice

R2 MAE (t·ha−1) MAPE (%) R2 MAE (t·ha−1) MAPE (%)

a0 + a1·NDVI 0.40 0.331 4.82 0.36 0.485 18.86
a0 + a1·DVI 0.55 0.292 4.23 0.07 0.590 23.98
a0 + a1·EVI 0.60 0.274 3.97 0.11 0.585 23.59
a0 + a1·EVI2 0.56 0.287 4.17 0.11 0.585 23.56
a0 + a1·GNDVI 0.42 0.322 4.68 0.49 0.436 16.63
a0 + a1·GDVI 0.55 0.292 4.24 0.11 0.587 23.57
a0 + a1·GCVI 0.35 0.349 5.09 0.41 0.475 18.48
a0 + a1·WDRVI 0.40 0.329 4.78 0.36 0.494 19.28
a0 + a1·SAVI 0.56 0.286 4.15 0.14 0.578 23.17
a0 + a1·RVI 0.37 0.339 4.95 0.33 0.511 20.11
a0 + a1·LSWI 0.07 0.397 5.85 0.02 0.613 25.85
a0 + a1·NDBI 0.07 0.397 5.85 0.02 0.613 25.85
a0 + a1·TVI 0.40 0.334 4.86 0.36 0.484 18.85
a0 + a1·IPVI 0.40 0.331 4.82 0.36 0.485 18.86
a0 + a1·RGVI 0.66 0.245 3.54 0.57 0.394 16.3
a0 + a1·CIre1 0.40 0.325 4.71 0.48 0.446 17.77
a0 + a1·NDRE1 0.45 0.307 4.44 0.54 0.414 16.34
a0 + a1·NDRE2 0.43 0.313 4.52 0.59 0.393 15.29

Appendix D

Figure A3 shows the reference yield maps from the harvester machine (D1A and D1H)
over a JSendra training field and the corresponding surface reflectance and DVI values
from Sentinel-2 on July 4 (B-F at 10 m, I-M at 20 m). Furthermore, Figure A3G,N show the
resulting yield estimations based on the M1S+ (left) and M3S+ model (right). Looking at
the spatial distribution of the yield measurements, there are two areas with larger yield in
the center of the field while the left and right edges show lower yield values. This pattern
is very close to the NIR (B8) and DVI distribution across the parcel whereas the other bands
hardly show any similarity. This provides a visual idea of how each spectral band or VI
intervenes and how it affects the change of spatial resolution (10 m, left and 20 m, right).
The models can identify high and low yield zones. However, extreme values are smoothed.
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Figure A3. Example of one training JSendra field at 10 m (left, (1)) and 20 m (right, (2)) spatial
resolution, being: (A,H) the reference yield map; (B–F) and (I–M) the SR or VI indicated at legend;
(G,N) the modelling result (M1S+ for G and M3S+ for N).

Figure A4 shows an example of a Bomba training field where D2A and D2H show
the reference yields at 10 m and 20 m, respectively, other images show the corresponding
pixel level reflectance and DVI values (D2B-F at 10 m, D2I-M at 20 m). D2G and D2N
show the yield resulting maps after implementing M1B+ and M3B+ respectively. The yield
maps show two clusters with high within-field yields, while the top edge shows the lowest
yields. Looking at the surface reflectance and the DVI images, the green (B3) and red (B4)
bands show the highest correspondence with said distribution. Moreover, the maps give a
visual validation of the effect of spatial resolution. From these figures, NIR, Red edge and
SWIR should have better results in the modelling. However, those bands do not explain
the yield variability between fields well. Finally, the estimated yield maps present a good
agreement with the reference yield map identifying high and low yield zones, although
extreme values are smoothed out.
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